
Convex hull computation in Normaliz

Winfried Bruns

FB Mathematik/Informatik
Universität Osnabrück

wbruns@uos.de

Berlin, December 2016

Winfried Bruns Convex hull computation in Normaliz

Based on

W. Bruns, B. Ichim and C. Söger

The power of pyramid decomposition in Normaliz

J. Symb. Comp. 74 (2016), 513–536

Winfried Bruns Convex hull computation in Normaliz

Lattice points in a polyhedron

Normaliz computes the set N of lattice points in a rational polyhedron.
Main computation goals:

Generation Describe N by generators.

Enumeration Given a grading, count the
elements of degree k .

A rational polyhedron is defined by (inhom)

linear inequalities with coefficients from Z.

An affine lattice is defined by (inhom)

diophantine linear equations and

linear congruences.

I.e., Normaliz solves linear diophantine systems.
=⇒ Applications in many fields

Winfried Bruns Convex hull computation in Normaliz

Convex hull computation and vertex enumeration

A preparatory task for the lattice point
computations of Normaliz can best be
visualized in the language of polytopes.

They have two descriptions:

Theorem (Minkowski)

For a bounded set P ⊂ Rd the following are equivalent:

1 P = conv(x1, . . . , xn) for x1, . . . , xn ∈ Rd ;

2 P = {x ∈ Rd : λi (x) ≥ 0} for linear functions λ1, . . . , λs on Rd .

The conversion of the “V(ertex)-representation” (1) into the “H(alf
space)-representation” (2) is called convex hull computation and
the converse is vertex enumeration. (Equivalent via dualization.)

If chosen minimal, the xi are the vertices of P, the
Hi = {x : λi (x) = 0} are the support hyperplanes, the intersections
Fi = P ∩ Hi are the facets.

Winfried Bruns Convex hull computation in Normaliz

Performance in large computations

according to M. Köppe, Y. Zhou, New computer-based search
strategies for extreme functions of the Gomory–Johnson infinite
group problem, arXiv:1506.00017v3

Running time (s)

q dim ineq vert PPL Porta cddlib lrslib Panda Normaliz
. . .
11 4 78 18 0.003 0.016 0.031 0.009 23 0.007
13 5 105 40 0.007 0.018 0.11 0.021 4604 0.011
15 6 136 68 0.017 0.037 0.21 0.14 0.017
17 7 171 251 0.14 0.20 1.2 0.71 — 0.047
19 8 210 726 0.91 1.6 5.0 2.3 q 0.16
21 9 253 1661 6.6 13 24 13 0.67
23 10 300 7188 166 558 785 74 1.43 4.9
25 11 351 23214 1854 10048 12129 471 1.47 21
26 12 378 54010 2167 1.51 62
27 12 406 68216 1.32 89
28 13 435 195229 1.31 326

29 13 465 317145 q = v · d3/(106 · t) for Normaliz by WB 1.08 644
30 14 496 576696 0.93 1693
31 14 528 1216944 0.98 3411

Normaliz computation time linear in the output ?

Winfried Bruns Convex hull computation in Normaliz

Another case of linearity

Cones (or polytopes) coming from contingency tables

q = s · d3/(106 · t)

Input Dim Vert Supp time q

5× 4× 3 36 60 29,387 32 s 42.8

5× 5× 3 43 75 306,955 573 s 42.6

6× 4× 3 42 72 153,858 277 s 41.2

Computation times serial

Winfried Bruns Convex hull computation in Normaliz

Incremental polytope building

We use an an incremental algorithm that builds a polytope P ⊂ Rd

of dimension d by successively extending the system of generators
x1, . . . , xn and determining the support hyperplanes in this process.

Start: We may assume that x1, . . . , xd+1 are affinely independent.
The computation of the support hyperplanes is then simply the
inversion of the matrix with rows (x1, 1), . . . (, xd+1, 1). (In
principle superfluous.)

Extension: We add xd+2, . . . , xn successively: from the support
hyperplanes of P ′ = conv(x1, . . . , xn−1) we must compute the
support hyperplanes of P = conv(P ′, xn).

We describe this process geometrically.

Disadvantage of incremental algorithms: Large memory
requirements.

Winfried Bruns Convex hull computation in Normaliz

The geometry

We determine the boundary V of the part of P ′ that is visible from
xn and its decomposition into subfacets. Together with xn these
span the new facets of P. The facets of P ′ that are visible from xn
(λi (xn) < 0), are discarded.

For a 3-dimensional polytope:

xn

We have to find V : pair visible (λi (xn) < 0) and invisible
(λj(xn) > 0) facets: Each segment (in this dimension) of V is the
intersection of such a pair. Problem: Many pairs.

Winfried Bruns Convex hull computation in Normaliz

Fourier–Motzkin elimination: the treacherous double loop

Input: P ′ = conv(x1, . . . , xn−1) = {λi (x) ≥ 0, i = 1, . . . , s ′}.
Want: P = conv(P ′, xn) = {µj(x) ≥ 0, j = 1, . . . , s}.

Sort the λi : λi (xn) < 0, i = 1, . . . , n, λi (xn) > 0,
i = n + 1, . . . , n + p,, λi (xn) = 0 else.

k = 0.
for i = 1, . . . , n

for j = 1, . . . , p
µ = λj+n(xn)λi − λi (xn)λj+n

if P ′ ∩ {x : µ(x) = 0} is a subfacet of P ′

then k = k + 1, µk = µ

Return {µ1, . . . , µk} ∪ {λi : i = n + 1, . . . , s ′}

Very simple, but very treacherous: running time (at least) ≈ np,
and therefore quadratic in s (depending further on d).

Winfried Bruns Convex hull computation in Normaliz

The even worse double loop of placing triangulation

A short excursion into triangulations.

Input: P ′ = conv(x1, . . . , xn−1) = {λi (x) ≥ 0, i = 1, . . . , s ′},
triangulation ∆′

Want: triangulation ∆ of P = conv(P ′, xn).

∆ = ∅.

for all visible facets F of P
for all simplices σ ∈ ∆′

if dim(σ ∩ F) = d − 1 ,
then ∆ = ∆ ∪ {conv(xn, σ ∩ F)}

Return ∆

F

xn

Again very simple and the test of dim(σ ∩ F) = d − 1 is very fast.
But ∆′ can be very large, and one runs quickly out of memory: we
must localize the computation of ∆.

Winfried Bruns Convex hull computation in Normaliz

How to find the subfacets

Back to convex hulls.

P polytope of dimension d , support hyperplanes H1, . . . ,Hs

(defined by λ1, . . . , λs), facets F1, . . . ,Fs .

Theorem

Suppose that i 6= j and | vert(Fi ∩ Fj)| ≥ d − 1. Then the following
are equivalent:

Fi ∩ Fj is a subfacet,

dim(Fi ∩ Fj) = d − 2 (definition, but has algorithmic meaning)

if Fi ∩ Fj ⊂ Fk for a nonsimplex Fk , then k = i or k = j .

Moreover, if Fi or Fj is a simplex (contains exactly d vertices),
then Fi ∩ Fj is a subfacet.

Depending on d , | vert(Fi ∩ Fj)| and s Normaliz decides which test
to use.

Winfried Bruns Convex hull computation in Normaliz

Simplicial facets

The intersections of visible and invisible simplicial facets Fi and Fj
can be found much faster!

Reason: One knows the subfacets of P contained in a simplicial
facet.

Strategy: Make an ordered list of the subfacets of the invisible
facets, and search this list for a coincidence with a subfacet of a
visible facet.

Running time

≈ n(d + 1) log((d + 1)n) + p(d + 1) log((d + 1)n)

= (n + p)(d + 1) log((d + 1)n)

Disregarding d : ≈ (n + p) log(n).

Much, much bettter than np.

Winfried Bruns Convex hull computation in Normaliz

Pyramid decomposition

The main technique of Normaliz to break the treacherous double
loop is pyramid decomposition, originally for triangulations.

Instead of matching a visible facet with all invisible ones, we make
the pyramid Q = conv(F , xn). Then we compute the support
hyperplanes of Q and check which of them are support
hyperplanes of P.

F

xn

Q

Can be used recursively and is parallelization friendly. It localizes
triangulations.

Winfried Bruns Convex hull computation in Normaliz

The hybrid algoritm

If np is small, use the treacherots double loop (with special
care of simplicial facets)

Otherwise go over the visible facets F and decide for each of
them whether

to compute the support hyperplanes of the pyramid
Q = conv(F , xn) or
to pair F with the invisible facets if Q is too big.

The decision whether Q is too big is based on a criterion that
Normaliz “learns” during the run.

Another noteworthy point: Normaliz uses the information on the
subfacets that it gets for free.

Winfried Bruns Convex hull computation in Normaliz

From a log file

The last extension step of the case q = 28 of Köppe & Zhou:

Neg 54504 Pos 111500 NegSimp 12717 PosSimp 21988

Building pyramids

..

large pyramids 139

..

gen=157, 195229 hyp <-------- ORIGINALLY 435 gen

Checking pointedness ... done.

Select extreme rays via comparison ... done.

--

real 1m34.583s

user 5m37.500s

sys 0m4.684s

Winfried Bruns Convex hull computation in Normaliz

Fourier-Motzkin vs. the hybrid algorithm

Input Dim Vert Supps Fourier-Motzkin hybrid

lo6 16 720 910 39.3 s 35.0 s

cyclo60 17 60 656,100 – 1:57 m

A553 55 75 306,955 2:48 h 9:33 m

lo6 shows that the advantage of the hybrid algorithm is negligible
if there are few support hyperplanes: All intermediate cones have
< 10, 000 support hyperplanes.

A somewhat mysterious aspect: the order of the generators.
Normaliz orders them lexicographically.

Winfried Bruns Convex hull computation in Normaliz

