Geometry of ν -Tamari lattices

UNIVERSITÄT LEIPZIG

Camilo Sarmiento

sarmiento@math.uni-leipzig.de (j.w.w. César Ceballos, Arnau Padrol) Einstein Workshop on Lattice polytopes Berlin

Geometry of the Tamari lattice

Tamari lattice: poset of Catalan objects

The Hasse diagram of the Tamari lattice is isomorphic to the edge graph of a simple polytope: the associahedron [Haiman '84, Lee '89, Gelfand-Kapranov-Zelevinsky '90, Fomin-Zelevinsky '03, Postnikov '09,...]

Extensions of the Tamari lattice

m-Tamari lattice: poset of

Fuss-Catalan paths [Bergeron-Préville-Ratelle '11]

 ν -Tamari lattice: poset of lattice paths above ν [Préville-Ratelle-Viennot '14]

Are there geometric realizations of *m*-Tamari lattices analogous to the associahedron? [Bergeron '12]

Theorem 1 [Ceballos-Padrol-S.]

The Hasse diagram of the ν -Tamari lattice is isomorphic to the edge graph of a polyhedral complex: the ν -associahedron. Its cells are cartesian products of associahedra.

In the Fuss-Catalan case, the ν -associahedron is a tropical subdivision of an associahedron.

Associahedral triangulations

Theorem 2 [Ceballos-Padrol-S.]

Lattice paths above ν are in bijection with (I, \overline{J}) -trees

(here $I = \{0, 1, 2, 5, 6, 9\}, \overline{J} = \{3, 4, 7, 8, 0\}$). ν -Tamari covering relations \iff flips of (I, \overline{J}) -trees

Following [Gelfand-Graev-Postnikov '97], (I, \overline{J}) -trees index the maximal simplices of a flag regular triangulation of a subpolytope $\mathcal{U}_{l,\overline{l}}\subset$ $\Delta_I \times \Delta_{\overline{I}}$, where

$$\Delta_{I} \times \Delta_{\overline{J}} := \operatorname{conv} \left\{ (\mathbf{e}_{i}, \mathbf{e}_{\overline{j}}) \colon \mathbf{e}_{i} \in I, \mathbf{e}_{\overline{j}} \in \overline{J} \right\} \subset \mathbb{R}^{I} \oplus \mathbb{R}^{\overline{J}}$$

$$\mathcal{U}_{I,\overline{J}} := \operatorname{conv} \left\{ (\mathbf{e}_{i}, \mathbf{e}_{\overline{j}}) \colon \mathbf{e}_{i} \in I, \mathbf{e}_{\overline{j}} \in \overline{J}, i \leq j \right\}$$

We call it the (I, \overline{J}) -associahedral triangulation $\mathfrak{A}_{I,\overline{J}}$ (for $I = [n], \overline{J} = [\overline{n}]$ it is dual to a (n-1)-associahedron.)

Proof of Theorem 1

By [Develin-Sturmfels '04, Fink-Rincón '15], regular triangulations of subpolytopes of $\Delta_n \times \Delta_{\overline{m}}$ are in bijection with combinatorial types of arrangements of n+1 tropical hyperplanes in \mathbb{TP}^m . Apply this to the triangulation $\mathfrak{A}_{I,\overline{I}}$ to construct the ν -associahedron.

Theorem 3 [Ceballos-Padrol-S.]

The *h*-vector of $\mathfrak{A}_{I,\overline{I}}$ is given by the ν -Narayana numbers $h_{\ell} = |\{ \text{lattice paths above } \nu \text{ with exactly } \ell \text{ valleys} \} |$

Type B extensions

Centrally symmetric triangulations of a (2n+2)-gon are in bijection with cyclic $([n], [\overline{n}])$ -trees

Theorem 4 [Ceballos-Padrol-S.]

Cyclic ([n], $[\overline{n}]$)-trees index the maximal simplices of a flag regular Gorenstein triangulation of $\Delta_n \times \Delta_{\overline{n}}$, dual to a *n*-cyclohedron: the *n*-cyclohedral triangulation \mathfrak{C}_n .

Restricting \mathfrak{C}_n to $\Delta_I \times \Delta_{\overline{J}}$ we get

- \bullet (/, \overline{J})-cyclohedral triangulation
- simplicial (I, \overline{J}) -cyclohedra
- simple (I, \overline{J}) -cyclohedra
- type $B(I, \overline{J})$ -Tamari poset (not always a lattice ②)