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BASIC DEFINITIONS

• Lattice d-polytope P : convex hull of a finite set of points in Zd

with aff(P ) = Rd.

• Simplex: P is a n-simplex if its vertices are affinely independent.

• Empty: P is empty if its only lattice points are its vertices.

• Facet: a d − 1-dimensional face of a d-polytope.

• Volume of P ∶ Volume normalized to the lattice (e.g., volume of a
simplex equals its determinant).

• Width of P ∶ minimum lattice distance between 2 parallel lat-
tice hyperplanes enclosing P . Equiv., minimum length of f(P )
among all affine integer maps f ∶ Rd → R.

Lattice Simplex in R3.

CLASSIFICATION OF EMPTY 3-SIMPLICES

In dimension 3, all empty simplices have width 1, i.e., they lie between
2 consecutive lattice planes.
Even more, there is a complete classification of empty lattice 3-
simplices:

THEOREM: [White, 1963]
Every empty lattice tetrahedron of volume q is Z-equivalent to
one of the form T (p, q), for some p ∈ {1,⋯, q} with gcd(p, q) =
1:

T (p, q) ∶= conv{(0,0,0), (1,0,0), (0,0,1), (p, q,1)}
Moreover, T (p, q) is Z-equivalent to T (p′, q) if and only if p′ =
±p±1 (mod q)

PREVIOUS WORK IN 4-SIMPLICES

1. There are infinitely many lattice emtpy 4-simplices of width 1
(e.g., cones over empty tetrahedra).

2. There are infinitely many lattice emtpy 4-simplices of width
2. [4]

3. The amount of empty lattice 4-simplices of width greater than
2 is finite. [3] (Note: A previous proof from [2] is wrong).

Haase and Ziegler did an exhaustive computer enumeration of
empty 4-simplices up to determinant 1000, obtaining:

THEOREM [Haase-Ziegler, 2000] Among the four-
dimensional empty lattice simplices of determinant D ≤
1000,

1. There are no simplices of width ≥ 5,

2. There is a unique equivalence class of simplices of
width 4, whose determinant is D = 101,

3. All simplices of width 3 have determinant between
41 and 179 (both extremal cases are unique, but for
intermediate determinants non-equivalent simplices
exist).

Based on this, Haase and Ziegler stated the following Conjecture:

CONJECTURE [Haase-Ziegler, 2000] There is no empty 4-
simplex of width greater than 2 of determinant greater than
179.

OUR GOAL: Prove this conjecture by (a) proving a good
upper bound Dmax for the determinant of empty 4-
simplices of width > 2, and (b) continuing the Haase-
Ziegler computations up to Dmax.

A FIRST UPPER BOUND FOR THE VOLUME OF EMPTY 4-SIMPLICES
The fist approach tryng to bound to volume of empty lattice 4-simplices with general results of convex theory allow to give the following bounds
for the volume of a simplex P ∶

vol(P ) ≤ vol(P − P )/2d ≤ 1/λ1(P − P )d,
where λ1(P − P ) is the first succesive minima. That is the lowest number such that λK contains i linear independent vectors of Z4. Considering π
the projection along the direction where λ1(P − P ) is attained for P , and considering z ∈ π(P ) = Q the point projected by the line where λ1(P − P )
is attained, it can be obtained a bound that depends on the distances between this point z and the intersection between the facets of Q and the line
from z to this facets.

λ = λ1(P − P )−1 ≤ π−1(x)/π−1(y) ≤ ∣xz∣/∣yz∣.
And the ratio ∣xz∣/∣yz∣ can be expressed in terms of the coefficient of assymetry of a polytope. Using bounds for the coefficient of assymetry in
dimension 3 it is possible to obtain a general bound for empty simplices that project into not hollow 3-polytopes, which we can classify:

vol(P ) = vol(P − P )/(8

4
) ≤ 24 ⋅ 24λ−4/(8

4
) ∼ 3λ−4 ≃ 16 000 000.

So, with this general method we do not get a useful upper bound. Enumerating empty 4-simplices uo to volume 1 million is computationally
unreachable.

VOLUME VS. WIDTH IN HOLLOW 3-POLYTOPES
For dimension 3, some results are known for the maximum volume of
hollow polytopes, polytopes without lattice points in the interior:

● PROPOSITION: [Averkov et al., 2015] Let K be a lattice-free
(without lattice point in its interior) convex body in dimension
three and with width at least 3.

(a) λ1(K −K) > 1/4,

(b) vol(K −K) ≤ 23 ⋅ 27,

We generalize this result for lattice-free convex bodies of width bounded
from below.

● THEOREM: [Iglesias-Valiño,Santos, 2016]:
Let w > 2.155 and let µ = w−1. Then, the following statements
hold for any lattice-free convex body K in dimension three of
width at least w:

(a) λ1(K −K) ≥ 1 − (1 + 2/
√

3)µ.

(b)

vol(K) ≤
⎧⎪⎪⎨⎪⎪⎩

3/4µ2(1 − µ(1 + 2/
√

3)) if w ≤ 2.427,

8/(1 − µ)3 = 8w3

(w−1)3 if w ≥ 2.427.

MAIN THEORETICAL RESULTS

The generalized results obtained in dimension 3 help us to get a bound in the volume of empyt lattice 4-simplices if we can rewrite the relation
between successive minima with the property of being lattice free in dimension 3 ∶

LEMMA Let P be a lattice-free convex body and let λ1 ∶= λ1(P −P ). Consider the projection π ∶ P → Q of P along the direction where
λ1 is achieved and assume Q is not lattice-free. Then, λ1 ≥ 1 − r where r > 0 is the maximum value such that rQ is lattice-free.

By using, the projection approach together with the generalization of the Averkov et al. result in dimension 3, we are able to give a compution-
ally reachable bound for the volume of hollow simplices of width greater than 3

THEOREM [Iglesias-Valiño,Santos, 2016]
There is no hollow 4-simplex of width greater than 3 with volume greater than 7588.

REMARK: 4-simplices of width one are easy to classify. Thus, if the list of simplices up to volume 7588 is known, then only simplices
of width two remain to be classified.

CLASSIFICATION OF EMPTY LATTICE 4- SIMPLICES

By combining the theoretical result from Main Theorem and the Computations up to volume 7588 we can solve the conjecture of Haase and Ziegler [4] and state following:

THEOREM [Iglesias-Valiño, Santos, 2016]

• There is no empty 4-simplex of width greater than 4.

• There is only one equivalence class of empty lattice 4-simplex of width 4. It has volume 101 and is given by σ[(6,14,17,65)]. (Its quintuple is (−1,6,14,17,65) mod 101).

• All empty lattice 4-simplices that have width 3 have volume between 41 and 179. The whole list is as stated in Haase and Ziegler [4] and the complete list can be found in Master Thesis of Perriello [9].

• All simplices other than that, have width 2 or 1. Those of prime volume are as classified in [2], but infinite families of empty 4-simplices of width 2 and not present in the classification of [2] do exist.

RESULT: This implies the conjecture of Haase and Ziegler and gives a classification of empty lattice 4-simplices, except perhaps some of width two.

ENUMERATION ALGORITHMS

Let ∆ be an empty lattice 4-simplex. Since the quotient of Z4 by the lat-
tice generated by vertices of ∆ is always a cyclic group [2], ∆ can be rep-
resented by its volume D ∈ N plus a quintuple (a0, a1, a2, a3, a4) ∈ ZD
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with ∑ai = 0 (the barycentric coordinates, dilated by D, of a generator
of this quotient).
Enumerating all such tuples up to D = 7588 is too much ( 1015 possibili-
ties). The following ideas reduce this considerably:

• Simplices of prime-power volume have (at least) one unimodular
facet. Thus, they are equivalent to a simplex of the form σ(v) ∶=
conv{e1, e2, e3, e4, v}, the convex hull of the standard unit vectors
and another v ∈ Z4.

Remark σ(v) has determinant D = ∣∣v∣∣1 − 1 and v ∖ v′ = 0 (mod D)
implies v ≡ v′.

ENUMERATION ALGORITHM (PRIME-POWER):
For each prime-power D ∈ {1, . . . ,7588}, and each v ∈ ZD

4 ∩
{∑xi =D + 1}, consider the simplex σ(v).

• Simplices of non-prime-power volume D could, a priori, have all
facets non-unimodular. But they can be constructed as a “common
refinement” of two simplices of smaller volumes:

LEMMA: Let D = p ⋅ q, with gcd(p, q) = 1.. Let ∆p and ∆q

be simplices generated by quintuples u = (u0, u1, u2, u3, u4)
mod p and v = (v0, v1, v2, v3, v4) mod q. Then, the simplex
generated by the quintuple p ⋅∆q + q ⋅∆p has volume D.
Moreover, every lattice 4-simplex of volume D arises in this
way.

ENUMERATION ALG. (NON-PRIME-POWER ):
For each non-prime-power D ∈ {1, . . . ,7588}

1. FactorD = p ⋅q, with p, q ≥ 2 and gcd(p, q) = 1. All empty
lattice 4-simplices of volumes p and q are precalculated.

2. For each possible pair of simplices of volume p and q,
∆p and ∆q , calculate the glued simplex p ⋅ ∆q + q ⋅ ∆p

(mod D).

REMARKS:

• In the prime-power case some “tricks” are imple-
mented to quickly discard choices of v that lead to non-
empty simplices (e.g., gcd(D,vi, vj) = 1 for all i, j).

• In the non-prime-power case the choice of p and q in
point 1 affects the computation time. Experimentally, it
seems best to have both p ≃ q.

COMPUTATIONS

We have enumerated empty lattice 4-simplices up to volume 7588 with the algorithms above. The calculations have been done with
the Altamira node of the Spanish Computing Network. The code for the algorithms has been written in python.
The total CPU time has been about 10 000 hours. The following table gives computation times for some specific values of the volume
D.

Table 1. Computation time (hours) for all empty lattice 4-simplices of a given volume
Volume Primes Algorithm Gluing Algorithm(p similar to q) Gluing Algorithm (p << q)
≃ 2000 0.53 0.29 1.06
≃ 3000 1.14 0.65 7.32
≃ 4000 5.31 1.17 17.76
≃ 5000 11.45 2.32 10.31
≃ 6000 21.88 4.42 21.38
≃ 7000 38.59 6.69 26.95

COMPUTATION REMARKS:

• The time we give to the gluing algorithm does not take into account the precalculation of the simplices of volumes p
and q that are needed to glue.

• As seen in the table, gluing part is much faster if p is about the size of q, which is not always possible.
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