UC

UNIVERSIDAD
DE CANTABRIA

BASIC DEFINITIONS

convex hull of a finite set of points in Z“

Lattice d-polytope P with aff (P) = R¢
Size of P

Width of P with respect to
the linear functional f : R? - R

the number of lattice points in P: |P n Z9|
length of the interval f(P)

the minimum width(P, f) among

Width of P all non-constant linear functionals f

The width of P can also be interpreted as the minimum
lattice distance between two lattice hyperplanes enclosing P
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ENUMERATING LATTICE 3-POLYTOPES

EQUIVALENCE

A unimodular transformation is a linear integer map ¢ : R — R that preserves the lattice.
That is,
t(x)=A-z+b, zeR?

for A € Z%?, det(A) = +1 and b € Z%. Two lattice d-polytopes P and () are equivalent if
there exists a unimodular transformation ¢ such that ¢(P) = Q.

Size and width are invariant under unimodular transformations.

We consider “equivalence classes of ” lattice d-polytopes

Consider, for each n > d + 1, the following set:

CPd(n) := { (classes of) lattice d-polytopes of size n} )

It is known that
P1(n)| =1 (a segment of lenght n — 1), for all n > 2.

Po(n)| < oo for all n > 3 (Pick’s formula).

Pi(n)| = oo forall d > 3 and n > d + 1 (for example, Reeve tetrahedra for d = 3, n = 4).

We want to classify all lattice 3-polytopes (via their size n)

® Classification of P;(4) (empty tetrahedra)

e Foralln > 7...

...Jollow the colors!!!!

(White 1964, [6])

P3(4) = {T(p,q), 0<p<q, ged(p,q) =1}

where T'(p, q) := conv ((0,0,0),(1,0,0),(0,0,1), (p,q,1)),
of width one. Moreover, T'(p, q) is equivalent to T'(p’, q)
if and only if p’ = +p*! (mod q).

® Classification of P5(5) and P3(6)
(Blanco-Santos, 2014-15, [2, 3])

(classification done via oriented matroids )

Size 4 5
width 1 | oo
width 2 | 0
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LATTICE d-POLYTOPES OF WIDTH 1

3(n)

computer algorithm

M3z (n) Merging (P;(n — 1))

Pi(n) |

essential vertices

‘ Boxed(n)
Qs(n)

A lattice d-polytope P of size n and width one consists of the convex hull of two lattice polytopes P; and P>, of dimensions
dy,d2 <d-1,and of sizes ny1,ny > 1, n; + na = n, lying in consecutive parallel lattice hyperplanes.

e In d =1, the only polytope of width one is the segment of length one (size n = 2).

e In d = 2, each polytope of width one is determined by the number of lattice points n; and ns in each of the parallel lines.
e For d > 3, there are infinitely many ways of positioning (rotating) one with respect to the other. That is, ford >3 and n >d + 1,

there exist infinitely many lattice d-polyotpes of size n and width one.
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DIMENSION 4

In dimension 4, the main ingredient used in dimension 3 (the fact that |P3 (n)| < o), fails:

THEOREM: (Haase-Ziegler, 2000, [5]) There exist infinitely many lattice emtpy
4-simplices (elements of P,(5)) of width 2.

THEOREM: (Blanco-Haase-Hofmann-Santos, 2015, [1])
{PePy(n)| width(P) >2}| < 0o, foralln>5

So there are only finitely many lattice 3-polytopes of width larger than one of each size.

ENUMERATION RESULTS (ON 3-POLYTOPES OF WIDTH > 1)

width 2 width 3 width4 | total | approx.comp.time
9 0 0 9 [2]
74 2 0 76 3]
477 19 0 496 14 min.
2524 151 0 2675 70 min.
0
2

10862 836 11698 7 hours
40885 45035 48 hours
137803 156464 20 days

Software: MATLAB
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QUASIMINIMAL VS. MERGED POLYTOPES

Let P € P;(n), and let v € vert(P). We denote PV := conv(P~ {v} nZ%) c R®. This polytope
has size n — 1 but it is not necessarily d-dimensional.

We say that v is an essential vertex if P* has width zero ((d — 1)-dimensional), or one.
We say that v is NOT essential if P” has width > 1, in which case, P ¢ Pj(n - 1).

e We say that a polytope P € P (n) is quasiminimal if all but at most one of its ver-
tices are essential (P has width 0 or 1, for all but at most one of its vertices v).

CQd(n) = {P ePi(n)| Pis quasiminimal})

e We say that a polytope P € P (n) is merged if at least two of its vertices u, v are NOT
essential (such that P“, PY have width > 1) AND the polytope

P%? = conv(P% n P*nZ%) = conv(P ~ {u,v} nZ?) is still d-dimensional.

(/\/ld(n) = {P ePi(n)| Pis merged} )

These two sets are disjoint for every d and every n > d + 1. But, do they cover all P;(n)?

EXCEPTIONS: If a polytope P € P;(n) has at least two NOT essential vertices,
and for all pairs of NOT essential vertices v and v (that is, with P“, P € P} (n —
1)), the polytope P*“" is (d — 1)-dimensional, then P ¢ Q4(n) and P ¢ M4(n).

ﬂ}

Dimension 3: Notice that P;(4) = @ and P; (5) = Q3(5).

THEOREM: There is a single lattice 3-polytope of width larger than

one that is neither quasiminimal nor merged, and it is of size n = 6.

That is,
P3(6) N (Q3(6) uM;(6))] =1 and Pi(n) = Qs(n)uMs(n),

Vn>71.

MERGED POLYTOPES

ALGORITHM: Merging

INPUT: some finite list L of lattice d-polytopes of size n — 1 and width > 1.

OUTPUT: the list L’ = Merging(L) of all lattice d-polytopes P of size n and width
greater than one, containing subpolytopes P;, P» € L and such that
conv(P; n P, nZ%) is d-dimensional and of size n — 2.

For each two polytopes P;, P» € L, and for each vertex v; of P, and vy of Px:
1. Let P| = conv(Z%n Py N {v1}) and Pj = conv(Z¥ n Py~ {vy}).

2. Check if P/ and P, are d-dimensional and unimodularly equivalent. If they
are, lett : Z% — 7 be an equivalence sending P; to P5. (t may be not unique,
but there are finitely many possibilities for it; do step 3 for each).

. If the size of P := conv(t(P;) u P,) equals n, add P to the output list L'.

Dimension 3: By definition of M3(n), and since P;(n - 1) is a finite list:

Ms(n) =Merging(P;(n-1)),foralln >7.
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e If the set { f, : v is essential vertex of P} linearly spans (R%)*, then we can find d lin-
early independent f,. We call these polytopes boxed, because

\ \ P < P <
® U \ v
7 g ’ 7 \P fv
e If the set {f, : v is essential vertex of P} does not linearly span (R%)*, then there is a
projection 7 that respects all f,,. We call these polytopes spiked, because

QUASIMINIMAL POLYTOPES

Let P € Q4(n), for every essential vertex v € vert(P), let
fo : RY - R be an integer linear functional that gives width
one (or zero) to P".

We distinguish 2 cases:

most of their lattice points lie in the vertices
of a d-parallelepiped T’

CBoxedd(n) = {P € Qq4(n) | Pis boxed} )

most of their lattice points lie in a segment

CSpikedd(n) ={PeQu(n)| Pis spiked})

Clearly, Q4(n) = Boxed,(n) u Spiked,(n), Vn,d.

BOXED POLYTOPES:

The lattice points of a boxed d-polytope are d essential vertices plus some of the 2% vertices
of this parallelepiped. Hence a boxed d-polytope has size < d + 2.

In dimension 2, boxed polytopes have size < 6 and their classification is done via exhaus-
tive search among the polytopes of those sizes (of which there are finitely many).

LEMMA: Every boxed 2-polytope is equivalent to one of the following:

freor- A 9 2 I R

The grey dot represents the non-essential vertex.

In dimension 3, boxed polytopes have size < 11. Because [P;(n)| < oo for all n > 4, the

11
list of boxed 3-polytopes is finite: | U Boxeds(n)| < co. Moreover, the parallelepiped I' can
n=4

only be the unit cube:

LEMMA: Let P € Boxeds(n), for n > 7, then P consist of 3 essential

vertices plus some of the vertices of the unit cube [0, 1]°.

Boxed 3-polytopes are enumerated by theoretically bounding the possibilities for the 3
vertices outside of [0, 1]° and then trying every possibility via computer search.

SPIKED POLYTOPES:

The lattice projection of a spiked polytope via 7 (a projection that preserves all the f,) has
one dimension lower and properties very similar to those of a quasiminimal polytope.

In dimension 2, spiked polytopes project to the unique quasiminimal 1-polytope, the seg-
ment of length 2:

LEMMA: Every spiked 2-polytope is equivalent to one of the following:

n>3

In dimension 3, the list of possible projections of a spiked polytope is still finite:

THEOREM: Every polytope P € Spiked,(n), for n > 7, projects
to one of the following 2-polytopes in such a way that all of the
vertices in the projection have a unique element in the preimage.
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Spiked 3-polytopes are explicitly described for each size n > 7: each of those polygons
have finitely many polytopes projecting to them with the necessary properties and size n.




