LATTICE d－POLYTOPES OF WIDTH 1
A lattice d－polytope P of size n and width one consists of the convex hull of two lattice polytopes P_{1} and P_{2} ，of dimensions

DIMENSION 4
In dimension 4 ，the main ingredient used in dimension 3 （he fact that $\left.\left|\mathcal{P}_{3}^{*}(n)\right|<\infty\right)$ ，fails： THEOREM：（Haase－Ziegler，2000，［5］）There exist infinitely many lattice emtpy
4－simplices（elements of $\mathcal{P}_{4}(5)$ ）of width 2．

THEOREM：（Blanco－Haase－Hofmann－Santos，2015，［1］）
M：（Blanco－Haase－Hofmann－Santos，2015，

QUASIMINIMAL POLYTOPES

Let $P \in \mathcal{Q}_{d}(n)$ ，for every essential vertex $v \in$ vert (P) ，let
$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an integer linear functional that gives width
for $\mathbb{R}^{d} \rightarrow \mathbb{R}$ be an integer linear functional that gives width
one（or zero）to P^{v} ．

distinguish 2 cases：

If the set $\left\{f_{v}: v\right.$ is essential vertex of $\left.P\right\}$ linearly spans $\left(\mathbb{R}^{d}\right)^{*}$ ，then we can find d in
most of their lattice points slie in the vertices
of a d－parallelepiped Γ
$\operatorname{Boxed}_{d}(n):=\left\{P \in \mathcal{Q}_{d}(n) \mid P\right.$ is boxed $\}$
If the set $\left\{f_{v}: v\right.$ is essential vertex of $\left.P\right\}$ does not linearly span $\left(\mathbb{R}^{d}\right)^{*}$ ，then there
projection π that respects all f ．We call these polytopes spiked，because
most of their lattice points lie in a segment
Spiked $_{d}(n):=\left\{P \in \mathcal{Q}_{d}(n) \mid P\right.$ is spiked $\}$

－ロー＝ー＝ー

BOXED POLYTOPES：
The lattice eooints of a boxed d－polytope are d essential vertices plus some of the 2^{d} vertices
of this paralleteppiped．Hence a boxed d－polvtyope has size $\leq d+2^{d}$ ． In dimension 2 ，boxed polytopes have size ≤ 6 and their classification is done via
tive search among the polytopes of those sizes（of which there are finitely many）．

Dimension 3：Notice that $\mathcal{P}_{3}^{*}(4)=\varnothing$ and $\mathcal{P}_{3}^{*}(5)=\mathcal{Q}_{3}(5)$.
$\begin{aligned} & \text { THEOREM：There is a single lattice } 3 \text {－polytope of width larger than } \\ & \text { one that is neither quasiminimal nor merged，and it is of size } n=6 . \\ & \text { That is，} \\ & \left|\mathcal{P}_{3}^{*}(6) \backslash\left(\mathcal{Q}_{3}(6) \cup \mathcal{M}_{3}(6)\right)\right|=1\end{aligned} \quad$ and $\quad \mathcal{P}_{3}^{*}(n)=\mathcal{Q}_{3}(n) \cup \mathcal{M}_{3}(n)$,
$\forall n \geq 7$.

LATTICE POLYTOPES OF WIDTH＞
 $\mathcal{P}_{d}^{*}(n):=\left\{P \in \mathcal{P}_{d}(n) \mid \operatorname{width}(P)>1\right\}$

THEOREM：（Blanco－Santos，2014，［2］）For each $n \geq 4,\left|P_{3}^{*}(n)\right|<\infty$ ．
e of each size．

MERGED polytopes
ALGORITHM：Merging
INPUT：some finite list L of lattice d－polytopes of size $n-1$ and widt
OUTPUT：the list L＇$=$ Merg ing (L) of
 $\operatorname{conv}\left(P_{1} \cap P_{2} \cap Z^{a}\right)$ is d－dimensional and of size $n-2$ ． Let $P_{1}^{\prime}=\operatorname{conv}\left(\mathbb{Z}^{d} \cap P_{1} \backslash\left\{v_{1}\right\}\right)$ and $P_{2}^{\prime}=\operatorname{conv}\left(\mathbb{Z}^{d} \cap P_{2} \backslash\left\{v_{2}\right\}\right\}$ ．
．Check if P^{\prime} and P^{\prime} are d－dimensional and unimodularly equivalent．If they
are lett $: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}$ be an equivalence sending P^{\prime} to P^{\prime}（t t may be not unique are，let $t: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}$ be an equivalence sending P_{1}^{\prime} to $P_{2}^{\prime} .(t$ may be not unique
but there are finitely many possibilities for it；do step 3 for each）． ut there are finitely many possibilities for it；do step 3 for each）．

Dimension 3：By definition of $\mathcal{M}_{3}(n)$ ，and since $\mathcal{P}_{3}^{*}(n-1)$ is a finite list

QUASIMINIMAL VS．MERGED POLYTOPRS

Let $P \in \mathcal{P}_{(}^{*}(n)$ ，and 1 let $v \in$ vett (P) ．We denote $P^{v i}:=$ con
has size $n-1$ but tit is not neessarily d－dimensional．
We
We say that v is an essential vertex if P^{v} has width zero $(d-1)$－dimensional），or one
We say that v is NOT essential if P^{v} has width >1 ，in which case $P^{v} \in \mathcal{P}^{*}(n-1)$ ，
We say that a polytope $P \in \mathcal{P}_{d}^{*}(n)$ is quasiminimal if all but at most one of its
tices are essential（ P^{v} has width 0 or 1 ，for all but at most one of its vertices v ）．
$\mathcal{Q}_{d}(n):=\left\{P \in \mathcal{P}_{d}^{*}(n) \mid P\right.$ is quasiminimal $\}$

We say that a polytope $P \in \mathcal{P}^{*}(n)$ is merged if at least two of its vertices u, v are NO
essential（such that $P P^{u}, P^{v}$ have width $\left.>1\right)$ AND the polytope $\left(P \backslash\{u, v\} \cap \mathbb{Z}^{d}\right)$ is still d－dimensional． $\mathcal{M}_{d}(n):=\left\{P \in \mathcal{P}_{d}^{*}(n) \mid P\right.$ is merged $\}$

EXCEPTIONS：If a polytope $P \in P^{*}(n)$ has at least two NOT essential vertices，
and for all pairs of NOT essential vertices u and v（that is，with $P u, P^{v} \in \mathcal{P}^{*}(n-$ and for all pairs of NOT essential vertices u and v（that is with $P^{u}, P^{v} \in \mathcal{P}_{(}^{k}(n$
$1)$ ），the polytope $P^{u, v}$ is $(d-1)$－dimensional，then $P \notin \mathcal{Q}_{d}(n)$ and $P \notin \mathcal{M}_{d}(n)$ ．

Equivalence

That is
For $A \in \mathbb{Z}^{d \times d} d, \operatorname{det}(A)= \pm 1$ and $b \in \mathbb{Z}^{d}$ ．Two lattice d－polytopes P and Q are equivalent if
here exists a unimodular transformation t such that $t(P)=Q$ ．
Size and width are invariant under unimodular transformations
We consider＂equivalence classes of＂lattice d－polytopes
$\geq d+1$ ，the following set
$\mathcal{P}_{d}(n):=\{$（classes of $)$ lattice d－polytopes of size $\left.n\right\}$
is known that
－
$\boldsymbol{P}_{d}(n)=\infty$ for $n \geq 3$（Pick＇s formula）

 Ist of boxed 3 －polytopes is finite：$\left|\bigcup_{n=4}^{11} \operatorname{Boxed}_{3}(n)\right|<\infty$ ．Moreover，the parallelepiped Γ canLema Let
LEMMA：Let $P \in \operatorname{Boxed}_{3}(n)$ ，for $n \geq 7$ ，then P consist of 3 essential
vertices plus some of the vertices of the unit cube $[0,1]^{3}$ ． Boxed 3 －polytopes are enumerated by theoretically bounding the posibilities for the
vertices outside of $[0,1]^{\text {and }}$ and then trying every possibility via computer search．

ED POLYTOPES：

The lattice projection of a spiked polytope via π（a projection that preserves all the f_{v} ）has dimension 2 spiked polytopes proiect to the unique quasiminimal 1 －polytope the sed

dimension 3 ，the list of possible projections of a spiked polytope is still finite

Spiked 3－polytopes are explicitly described for each size $n \geq 7$ ：each of those polygons
（ave finitely many polytopes projecting to them with the necessary properties and size n ．

