Enumerating lattice 3-polytopes

GOAL (and course of action)

We want to classify all lattice 3-polytopes (via their size n):

- **Classification of $P(1)$ (empty tetrahedron)**
 \[P(1) = \{ T(\pi, 0), 0 \leq \pi \leq 2\pi, \pi(x,y,z) = 1 \} \]
 where $T(\pi, z) = \cos(0.01z)$, $(0.01z)$, $(0.01z)$, $(0.01y + 1)$, of width of 1.
 Moreover, $T(\pi, y)$ is equivalent to $T(\pi, x)$ if and only if $\pi = \pi + 2\pi$ (mod 2).

- **Classification of $P(2)$ and $P(3)$**

Basic definitions

Lattice d-polytopes P are convex hull of a finite set of points in \mathbb{Z}^d with all (P) \mathbb{R}^d.

- **Size of P**
 The number of lattice points in P.

- **Width of P with respect to the linear function f**
 $|f(P)|$.

- **Width of P**
 The minimum width of P among all non-constant linear functions f.

The width of P can also be interpreted as the minimum lattice distance between two lattice hyperplanes enclosing P.

Lattice d-polytopes of width 1

A lattice d-polytope P of size n and width one consists of the convex hull of two lattice polytopes P_1 and P_2 of dimensions d_1, d_2, \ldots, d_k, and of size n_1, n_2, \ldots, n_k, lying in consecutive parallel lattice hyperplanes.

- **In $d = 3$**, the only polytope of width one is the segment of length one (size $n = 2$).
- **In $d > 3$**, each polytope of width one is determined by the number of lattice points v_1, v_2, \ldots, v_k in each of the parallel lines.

For $d = 3$, there are infinitely many ways of positioning (rotating) one with respect to the other. That is, for $d = 3$, there exist infinitely many lattice d-polytopes of size n and width one.

EQUIVALENCE

A unimodular transformation is a linear map $f: \mathbb{Z}^d \to \mathbb{Z}^d$ that preserves the lattice. That is, $f(x) = x + y$ for some $y \in \mathbb{Z}^d$.

For A 2D $P(0,0)$, if x and $y \in \mathbb{Z}^2$, two lattice polytopes P and Q are equivalent if there exists a unimodular transformation f such that $f(P) = Q$.

Size and width are invariant under unimodular transformations.

We consider “equivalence classes” of lattice d-polytopes.

Basic definitions

Lattice d-polytopes P are convex hull of a finite set of points in \mathbb{Z}^d with all (P) \mathbb{R}^d.

- **Size of P**
 The number of lattice points in P.

- **Width of P with respect to the linear function f**
 $|f(P)|$.

- **Width of P**
 The minimum width of P among all non-constant linear functions f.

The width of P can also be interpreted as the minimum lattice distance between two lattice hyperplanes enclosing P.

GOAL (and course of action)

We want to classify all lattice 3-polytopes (via their size n):

- **Classification of $P(1)$ (empty tetrahedron)**
 \[P(1) = \{ T(\pi, 0), 0 \leq \pi \leq 2\pi, \pi(x,y,z) = 1 \} \]
 where $T(\pi, z) = \cos(0.01z)$, $(0.01z)$, $(0.01z)$, $(0.01y + 1)$, of width of 1.
 Moreover, $T(\pi, y)$ is equivalent to $T(\pi, x)$ if and only if $\pi = \pi + 2\pi$ (mod 2).

- **Classification of $P(2)$ and $P(3)$**

Basic definitions

Lattice d-polytopes P are convex hull of a finite set of points in \mathbb{Z}^d with all (P) \mathbb{R}^d.

- **Size of P**
 The number of lattice points in P.

- **Width of P with respect to the linear function f**
 $|f(P)|$.

- **Width of P**
 The minimum width of P among all non-constant linear functions f.

The width of P can also be interpreted as the minimum lattice distance between two lattice hyperplanes enclosing P.

Lattice d-polytopes of width 1

A lattice d-polytope P of size n and width one consists of the convex hull of two lattice polytopes P_1 and P_2 of dimensions d_1, d_2, \ldots, d_k, and of size n_1, n_2, \ldots, n_k, lying in consecutive parallel lattice hyperplanes.

- **In $d = 3$**, the only polytope of width one is the segment of length one (size $n = 2$).
- **In $d > 3$**, each polytope of width one is determined by the number of lattice points v_1, v_2, \ldots, v_k in each of the parallel lines.

For $d = 3$, there are infinitely many ways of positioning (rotating) one with respect to the other. That is, for $d = 3$, there exist infinitely many lattice d-polytopes of size n and width one.

EQUIVALENCE

A unimodular transformation is a linear map $f: \mathbb{Z}^d \to \mathbb{Z}^d$ that preserves the lattice. That is, $f(x) = x + y$ for some $y \in \mathbb{Z}^d$.

For A 2D $P(0,0)$, if x and $y \in \mathbb{Z}^2$, two lattice polytopes P and Q are equivalent if there exists a unimodular transformation f such that $f(P) = Q$.

Size and width are invariant under unimodular transformations.

We consider “equivalence classes” of lattice d-polytopes.

Basic definitions

Lattice d-polytopes P are convex hull of a finite set of points in \mathbb{Z}^d with all (P) \mathbb{R}^d.

- **Size of P**
 The number of lattice points in P.

- **Width of P with respect to the linear function f**
 $|f(P)|$.

- **Width of P**
 The minimum width of P among all non-constant linear functions f.

The width of P can also be interpreted as the minimum lattice distance between two lattice hyperplanes enclosing P.