Zahlentheorie II

Probeklausur

Exercise 1.	In	the	following	table,	indicate	which	properties	the	rings	in t	the	first	column	have	by
making an X	t in	the	correspon	nding b	oxes.										

	domain	local	complete local	1-dimensional ¹	Dedekind	discrete valuation ring
\mathbb{Z}						
$\mathbb{F}_3[X,Y]/(XY-1)$						
$\mathbb{Z}_2[X]$						
$\mathbb{Z}/6\mathbb{Z}$						
$\mathbb{Q}(\sqrt{7})\llbracket X \rrbracket$						
\mathbb{Z}_{23}						
$\mathbb{Q}(\sqrt{2},\sqrt{5})\otimes_{\mathbb{Q}}\mathbb{Q}(\sqrt{2})$						
$\mathbb{Z}[\sqrt{23}]$						
$\mathbb{Z}[\sqrt{7}]$						
$\mathbb{F}_2[X]_{(x^2+x+1)}$						
$\varprojlim_n \mathbb{Q}(\sqrt{-1})\llbracket X \rrbracket / (X^n)$						

Exercise 2. Which of the following rational numbers has square-roots in the field \mathbb{Q}_3 ? 2, -2, $\frac{1}{2}$, 3, 9, -1. Prove your claims!

Exercise 3. Let A be a Dedekind domain with fraction field K, L/K a finite separable field extension and B the integral closure of A in L. Let \mathfrak{p} be a maximal ideal in A and assume that \mathfrak{p} ramifies in B. Does there exist a finite separable field extension L'/L such that \mathfrak{p} splits completely in L'?

(Recall that by definition a prime \mathfrak{p} of A splits completely in L' if and only if \mathfrak{p} is the product of [L': K]-many different prime ideals in the integral closure of A in L').

Exercise 4. For $n \in \mathbb{N}$ define

$$B_n := \{ x \in \mathbb{Q}_p || x|_p \le 1/n \},\$$

where $|x|_p := (1/p)^{v_p(x)}$. Show that B_n is an ideal in \mathbb{Z}_p , and give a generator.

Exercise 5. The integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[X]/(X^3-2)$ is isomorphic to $A := \mathbb{Z}[X]/(X^3-2)$. (You don't have to prove this!) Describe the ramification behavior of the prime ideal $(5) \subset \mathbb{Z}$ in A i.e.

- (1) Is $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ a Galois extension?
- (2) How many prime ideals of A are lying over (5)?
- (3) What are the ramification indices and the degrees the residue extensions of the primes lying over (5)?
- (4) Describe the primes over (5) explicitly by giving 2 generators of each prime.
- (5) For each prime \mathfrak{q} of A lying over (5) give a local parameter of $A_{\mathfrak{q}}$.

¹Recall that this means that for any inclusion of prime ideals $\mathfrak{p}_1 \subsetneqq \mathfrak{p}_2$, the ideal \mathfrak{p}_2 is maximal.

Exercise 6. Set $A = \mathbb{Z}_3[\zeta_3]$, where $\zeta_3 \in \overline{\mathbb{Q}}_3$ is a 3rd-primitive root of unity. Recall from Exercise sheet 9, that $\mathbb{Z}_3[\zeta_3]$ is a complete discrete valuation ring with local prameter $\zeta_3 - 1$. Thus $f := X^3 - (\zeta_3 - 1)$ is an Eisenstein polynomial and you know from the lecture that B = A[X]/(f) is a complete discrete valuation ring with local parameter x = the image of X in B. Set K = Frac(A) and L = Frac(B).

Show that L/K is Galois and compute the ramification subgroups G_i , $i \ge -1$ of $\operatorname{Gal}(L/K)$.