
April 19th, 2013

Zahlentheorie II

Exercise sheet 3

Exercise 1 (2 Points). Let K be a finite extension of Q, and OK the integral closure of Z in
K. Show that the Dedekind domain OK has infinitely many prime ideals.

Exercise 2 (Trace maps, 4 points). Let K be a field and R a commutative K-algebra with
unit, which is finite dimensioal as K-vector space. For x ∈ R, multiplication by x induces a
homomorphism of K-vector spaces R → R, r 7→ xr, and we write TrR/K(x) ∈ K for its trace.
(Recall that for an endomorphism φ : V → V of a finite dimensional K-vector space V , the
trace Tr(φ) is the sum of the diagonal elements of any matrix representing φ.)

Prove the following statements:

(1) TrR/K defines a K-linear map R→ K.
(2) (Transitivity of the trace) If L is a finite field extension of K, and R a finite dimensional

L-algebra, then
TrR/K = TrL/KTrR/L.

(3) If R, S are finite dimensional K-algebras, then the cartesian product R × S is a finite
dimensional K-algebra, and Tr(R×S)/K((x, y)) = TrR/K(x) + TrS/K(y) for all (x, y) ∈
R× S.

(4) (Base change formula) If R is a finite dimensional K-algebra and L/K an algebraic
extension (not necessarily finite), then Tr(R⊗KL)/L = TrR/K ⊗K L, i.e.

Tr(R⊗KL)/L(x⊗ y) = yTrR/K(x)

for all x⊗ y ∈ R⊗K L.

Exercise 3 (6 Points). Let K be a field. A polynomial f(x) ∈ K[x] is called separable if f(x)
does not have multiple zeroes in an algebraic extension of K. Let L/K be an algebraic field
extension. An element α ∈ L is called separable over K if the minimal polynomial mα(x) ∈ K[x]
of α is separable. An algebraic extension extension L/K is called separable if every element of
L is separable over K.

Let K be a field. For a polynomial f(x) =
∑n

i=0 aix
i ∈ K[x] we write f ′(x) :=

∑n
i=1 i · aixi−1

for its formal derivative.

(1) If f(x) ∈ K[x] is a polynomial, then f(x) is separable if and only if f(x) is coprime to
f ′(x), i.e. if the ideal spanned by f(x) and f ′(x) is K[x].

(2) If K is of characteristic 0, every algebraic extension L of K is separable over K.
(3) If K has characteristic p > 0, and if f(x) ∈ K[x] is an irreducible polynomial, show

that there exists a unique integer k ≥ 0 and a unique separable irreducible polynomial
fsep(x) ∈ K[x], such that f(x) = fsep(xp

k
).

(4) If K is a field of characteristic p > 0, show that the map (K,+) → (K,+), λ 7→ λp is
an injective morphism of abelian groups. The field K is called perfect if the above map
is bijective.

(5) If K is a perfect field of characteristic p > 0, then every algebraic extension L of K is
separable.

(6) Give an example of an inseparable finite extension. (Hint: Think about the field of
rational functions Fp(x)).
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Exercise 4 (Primitive Element Theorem, 3 points). Let L/K be a finite extension and assume
that it only has finitely many subextensions, i.e. that there are only finitely many fields M
with K ( M ( L. Show that there exists an α ∈ L such that L = K(α). (Hint: There are
two cases: K is a finite field, and K is an infinite field. The first case follows from the general
structure of finite fields. For the second case: Reduce the problem to L = K(β1, β2) and find
λ ∈ K such that L = K(β1 + λβ2)).

It is a consequence of Galois theory that a finite separable extension L/K only has finitely
many subextensions (you do not need to prove this).

Exercise 5 (Separable extensions, 4 Points). Show that the following statements about a finite
extension K ⊂ L of fields are equivalent (Hint: Exercise 3, (3) can be helpful.)

(1) L/K is separable.
(2) The trace map TrL/K : L→ K is not constant 0.
(3) The map T : L×L→ K, (x, y) 7→ TrL/K(xy) is a nondegenerate symmetric K-bilinear

form. (Recall: K-bilinear means that the maps T (−, x) and T (x,−) are K-linear for
every x ∈ L, and nondegenerate means that for every x ∈ L \ {0}, there is y ∈ L such
that T (x, y) 6= 0.)

(4) The extension L/K is generated by a separable element, i.e. L = K(α), with α separable
over K.

Hints.

(1) ⇒ (2): Reduce to the case L = K(α) by using the transitivity of the trace (Exercise 2),
and the fact that TrL/K is either 0 or surjective because it is a K-linear map to the
1-dimensional K-vector space K.

Next let K be an algebraic closure of K, and consider the finite dimensional K-algebra
K(α) ⊗K K. Show that it is a finite cartesian product of fields which are isomorphic
to K, by using that K(α) = K[x]/(mα(x)) and that α is separable. Here mα(x) is the
minimal polynomial of α. Now use Exercise 2, (3) to conclude the argument.

(2) ⇒ (1): If L/K is not separable, there exists α ∈ L which is not separable over K. Again
use the transitivity of the trace to reduce to the case L = K(α) with α inseparable.
Now we use the same trick as in the previous direction: Think about the K-algebra
K(α)⊗K K and show that TrK(α)⊗KK/K

= 0. Conclude that TrK(α)/K = 0 by using the
base-change formula and the fact that a linear map φ : V → W of K-vector spaces is 0
if and only if the base changed map φ⊗ idK : V ⊗K K → W ⊗K K is 0.

(2) ⇔ (3): This is entirely formal.
(1) ⇒ (4): This is Exercise 4.
(4) ⇒ (2): See the hints for (1) ⇒ (2).

Exercise 6 (6 Points). Let k be an algebraically closed field of characteristic p > 0. Consider
the discrete valuation ring R := kJtK and its fraction field K := k((t)). Let L = K((t))[u]/(up −
u− 1/t), and define S to be the integral closure of R in L.

(1) Show that L/K is a finite, separable extension.
(2) Show that u 6∈ S, but u−1 ∈ S. Let P a prime ideal of S containing u−1, and write

t = (u−1)nv for some v ∈ S \P and some n ∈ N. Conclude that S is a discrete valuation
ring, i.e. a local Dedekind domain. (Hint: Use the formula

[L : K] =
∑
P|(t)
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from Proposition 10 of Serre’s Local fields.)
(3) From your computation in the previous part of the exercise, find an uniformizer for S,

and read off the ramification index of the maximal ideal of S over the maximal ideal of
R.

At the latest, hand in your solutions on May 8. For questions, feel free to send an email to
kindler@math.fu-berlin.de or come to A3.112A.


