Number Theory I (Commutative Algebra)

Hélène Esnault, Exercises: Shane Kelly

Exercise sheet 7

As in the textbook, all rings are commutative with a unit. If M' is an R'-module for some ring R', recall that

 $\operatorname{Spec}(R') \stackrel{def}{=} \{ \text{prime ideals of } R' \}$ (cf. [AK2017, 13.1]),

Ann $(M') \stackrel{def}{=} \{ x \in R' \mid xm = 0 \ \forall \ m \in M' \}$ (cf. [AK2017, 4.1]),

 $\operatorname{Supp}(M') \stackrel{def}{=} \{ \mathfrak{r} \in \operatorname{Spec}(R') \mid M'_{\mathfrak{r}} \neq 0 \} \qquad (\text{cf. [AK2017, 13.3]}),$

and that we have

 $\operatorname{Supp}(M') \subset \{\mathfrak{r} \in \operatorname{Spec}(R') \mid \operatorname{Ann}(M') \subset \mathfrak{r}\}$

with equality if M' is finitely generated, [AK2017, 13.4(3)].

Exercise 1 ([AK2017, Theorem 14.8], Going-down for flat modules). Let $\phi : R \to R'$ be a map of rings, M' a finitely generated R'-module, $\mathfrak{p} \subset \mathfrak{q}$ nested primes of R, and \mathfrak{q}' a prime of $\operatorname{Supp}(M')$ lying over \mathfrak{q} . Assume M' is flat over R. We will show that there is a prime $\mathfrak{p}' \in \operatorname{Supp}(M')$ lying over \mathfrak{p} and contained in \mathfrak{q}' .

$$\mathfrak{p}' \subset \mathfrak{q}' \in \operatorname{Supp}(M') \subset \operatorname{Spec}(R')$$

 $\mathfrak{p} \subset \mathfrak{q} \in \operatorname{Spec}(R)$

- (1) Replacing R, R', and M' with R/\mathfrak{p} , $R'/\mathfrak{p}R'$ and $M'/\mathfrak{p}M'$, show that we can assume $\mathfrak{p} = \langle 0 \rangle$ and R is integral. (I.e.,
 - (a) Show that $M'/\mathfrak{p}M'$ is a finitely generated $R'/\mathfrak{p}R'$ -module,
 - (b) $M'/\mathfrak{p}M'$ is a flat R/\mathfrak{p} -module, and that
 - (c) if we can find a prime $\mathfrak{p}'' \in \operatorname{Supp}(M'/\mathfrak{p}M')$ lying over (0) and containing $\mathfrak{q}'/\mathfrak{p}\mathfrak{q}'$, then we can find a prime $\mathfrak{p}' \in \operatorname{Supp}(M')$ lying over \mathfrak{p} and contained in \mathfrak{q}' .)
- (2) Replacing R' with R' / Ann(M') and q' with q' / Ann(M'), show that we can assume that we have Ann(M') = 0. (I.e., show that M' is a finitely generated R' / Ann(M')-module and if we can find a prime p'' ∈ Supp_{R'/Ann(M')}(M') lying over (0) and contained in q' / Ann(M'), then we can find a prime p' ∈ Supp_{R'}(M') lying over p and contained in q').
- (3) Show that we have $\operatorname{Supp}(M') = \operatorname{Spec}(R')$, since M' is finitely generated and we are now assuming $\operatorname{Ann}(M') = 0$. Hence, any prime $\mathfrak{p}' \subset R'$ lying over \mathfrak{p} and contained in \mathfrak{q}' satisfies our requirements.
- (4) Use Zorn's lemma to find any minimal prime, say \mathfrak{p}' of R' contained in \mathfrak{q}' .
- (5) Use the localisation $R'_{\mathfrak{p}'}$ at our minimal prime \mathfrak{p}' and

$$\sqrt{\langle 0 \rangle} = \bigcap_{\text{primes } \mathfrak{r} \in \text{Spec}(R'_{\mathfrak{p}'})} \mathfrak{r} \qquad [\text{AK2017, Theorem 3.14}]$$

to show that all elements of the chosen minimal prime \mathfrak{p}' are zerodivisors of R'.

- (6) Choosing generators for M', and recalling that we are now assuming we have $\operatorname{Ann}(M') = 0$, find an injective R'-module morphism $R' \to M'^n$ for some n.
- (7) By considering the maps "multiplication by x" maps

$$\mu_x : R \to R,$$

$$\mu_x : M' \to M',$$

$$\mu_x : M'^n \to M'^n,$$

$$\mu_x : R' \to R'$$

for an element x of our now-assumed-integral-ring R, and parts (5) and (6), show that $\mathfrak{p}' \cap R = \langle 0 \rangle$.

Note, since we are now assuming $\mathfrak{p} = \langle 0 \rangle$, and $\operatorname{Supp}(M') = \operatorname{Spec}(R')$, and we chose \mathfrak{p}' to be contained in \mathfrak{q}' , we are finished.

 2