Remark on Exercise class of November 27th

Dr. V. Di Proietto

Theorem 1. Every irreducible and primitive polynomial in $\mathbb{Z}[X]$ is irreducible in $\mathbb{Q}[X]$.

Proof. Let $f(X) = a_0 + a_1 X + \dots + a_n X^n$ be an irreducible and primitive polynomial in $\mathbb{Z}[X]$, in particular $a_i \in \mathbb{Z}$, and let us suppose that f(X) = g(X)h(X) in $\mathbb{Q}[X]$ with g(X) and h(X) not units in $\mathbb{Q}[X]$. Then there exists $\alpha \in \mathbb{Z}$ such that $\alpha g(X)$ is a polynomial in $\mathbb{Z}[X]$. We consider the greatest common divisor d of the coefficients of $\alpha g(X)$, then $\gamma(X) = \frac{\alpha}{d}g(X)$ is an element of $\mathbb{Z}[X]$ which is primitive. We do the same with h(X): there exists an integer β such that $\beta h(X)$ is in $\mathbb{Z}[X]$. Then we take d' the greatest common divisor of the coefficients of $\beta h(X)$, hence $\eta(X) = \frac{\beta}{d'}h(X)$ is a primitive polynomial in $\mathbb{Z}[X]$. Now

(1)
$$\frac{\alpha}{d}\frac{\beta}{d'}f(X) = \gamma(X)\eta(X)$$

is a primitive polynomial of $\mathbb{Z}[X]$ because of ex 1 (v). We want to prove that

$$\frac{\alpha}{d}\frac{\beta}{d'} = \frac{A}{B}$$

is in \mathbb{Z} . Suppose the rational number $\frac{A}{B}$ is not in \mathbb{Z} , then there exists a prime number p such that $p \mid B$ but $p \nmid A$. But

$$\frac{A}{B}f(X) = \frac{A}{B}a_0 + \frac{A}{B}a_1X + \dots + \frac{A}{B}a_nX^n$$

is in $\mathbb{Z}[X]$. Hence

$$\frac{A}{B}a_i$$

is in \mathbb{Z} for every i = 0, ..., n, hence $p \mid Aa_i$ for every i = 0, ..., n, and $p \nmid A$ so $p \mid a_i$ for every i = 0, ..., n, but this is not possible because f(X) was supposed to be primitive. Hence $\frac{A}{B}$ is in \mathbb{Z} . Since $\frac{A}{B}f(X)$ is primitive, then $\frac{A}{B} = \pm 1$. Hence equation (1) becomes

$$f(X) = \pm \gamma(X)\eta(X)$$

But since by hypothesis f(X) is irreducible in $\mathbb{Z}[X]$, then this implies that $\gamma(X)$ or $\eta(X)$ is a unit of $\mathbb{Z}[X]$. Therefore since $\eta(X) = \frac{\beta}{d'}h(X)$ and $\gamma(X) = \frac{\alpha}{d}g(X)$ this implies that h(X) and g(X) are units in $\mathbb{Q}[X]$ which is a contradiction. \Box