November 10th, 2013

Algebra I

Prof. H. Esnault

Exercise Sheet 9^1

Exercise 9.1. Let X be a compact Hausdorff space, C(X) the ring of real-valued continuous functions on X. Is the zero ideal decomposable in this ring?

(*Hint:* Show that if $\mathfrak{p} \subset \mathcal{C}(X)$ is a prime ideal, then the locus $V(\mathfrak{p}) = \{x \in X \mid f(x) = 0 \quad \forall f \in \mathfrak{p}\}$ consists only of a single point of X.)

Exercise 9.2. Let A be a ring, let D(A) denote the set of prime ideals \mathfrak{p} that satisfy the following condition: there exists $a \in A$ such that \mathfrak{p} is minimal in the set of prime ideals containing (0:a). Show:

- (a) $x \in A$ is a zero divisor if and only if $x \in \mathfrak{p}$ for some $\mathfrak{p} \in D(A)$. (*Hint:* The radical of (0:a) is the intersection of the minimal prime ideals containing (0:a).)
- (b) If the zero ideal has a primary decomposition, then D(A) is the set of associated prime ideals of 0.
- (c) $\bigcap_{\mathfrak{p}\in D(A)} S_{\mathfrak{p}}(0) = (0)$, where $S_{\mathfrak{p}}(0)$ denotes the kernel of the homomorphism $A \to A_{\mathfrak{p}}$.

Exercise 9.3. Let $A \subset B$ be an integral ring extension. Show:

- (a) If $x \in A$ is a unit in B, then it is a unit in A.
- (b) Let $f : A \to F$ be a homomorphism of A into an algebraically closed field F. Then f can be extended to a homomorphism of B into F.

Exercise 9.4. Let A be an integral domain. Show the following theorem:

If A is integrally closed, then the polynomial ring A[X] is integrally closed.

You can proceed as follows: Let A be a subring of an integral domain B, and let C be the integral closure of A in B.

(a) Let f, g be monic polynomials in B[X] such that $fg \in C[X]$. Then f, g are in C[X].

(*Hint:* Take a field containing B in which the polynomials f, g split into linear factors. Each root of f and each root of g is a root of fg, hence is integral over C. This implies that the coefficients of f and g are integral over C.)

¹If you want your solutions of this exercise sheet to be corrected, please hand them in just before the lecture on November 17th. Questions or comments to henrik.russell@math.fu-berlin.de or come to office A3, 112.

- (b) Prove that C[X] is the integral closure of A[X] in B[X]. (*Hint:* If f ∈ B[X] is integral over A[X], then there is an equation f^m+g_{m-1}f^{m-1}+...+g₀ = 0 with g_i ∈ A[X]. Let r be an integer larger than m and the degrees of g₀,..., g_{m-1}, and let f₁ = f - X^r, so that (f₁+X^r)^m+g_{m-1}(f₁+X^r)^{m-1}+...+g₀ = 0. This can be written in the form f₁^m + h_{m-1}f₁^{m-1} + ... + h₀ = 0 for certain h_i ∈ A[X]. Now apply step (a) to the polynomials f₁ and f₁^{m-1} + h_{m-1}f₁^{m-2} + ... + h₁.)
- (c) Now let B = K be the fraction field of A and assume that A is integrally closed. Prove the theorem.
 (*Hint:* Use transitivity. Why is K[X] integrally closed? Use step (b).)

 $\mathbf{2}$