A Term of
Commutative Algebra

By Allen B. Altman
and Steven L. Kleiman

Version of August 6, 2017: tca.tex
Contents

<table>
<thead>
<tr>
<th>Part I Subject Matter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rings and Ideals</td>
<td>2</td>
</tr>
<tr>
<td>A. Text</td>
<td>2</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>7</td>
</tr>
<tr>
<td>2. Prime Ideals</td>
<td>11</td>
</tr>
<tr>
<td>A. Text</td>
<td>11</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>15</td>
</tr>
<tr>
<td>3. Radicals</td>
<td>18</td>
</tr>
<tr>
<td>A. Text</td>
<td>18</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>22</td>
</tr>
<tr>
<td>4. Modules</td>
<td>24</td>
</tr>
<tr>
<td>A. Text</td>
<td>24</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>30</td>
</tr>
<tr>
<td>5. Exact Sequences</td>
<td>32</td>
</tr>
<tr>
<td>A. Text</td>
<td>32</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>37</td>
</tr>
<tr>
<td>C. Appendix: Fitting Ideals</td>
<td>38</td>
</tr>
<tr>
<td>D. Appendix: Exercises</td>
<td>42</td>
</tr>
<tr>
<td>6. Direct Limits</td>
<td>44</td>
</tr>
<tr>
<td>A. Text</td>
<td>44</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>49</td>
</tr>
<tr>
<td>7. Filtered Direct Limits</td>
<td>52</td>
</tr>
<tr>
<td>A. Text</td>
<td>52</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>57</td>
</tr>
<tr>
<td>8. Tensor Products</td>
<td>59</td>
</tr>
<tr>
<td>A. Text</td>
<td>59</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>65</td>
</tr>
<tr>
<td>9. Flatness</td>
<td>66</td>
</tr>
<tr>
<td>A. Text</td>
<td>66</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>70</td>
</tr>
<tr>
<td>10. Cayley–Hamilton Theorem</td>
<td>73</td>
</tr>
<tr>
<td>A. Text</td>
<td>73</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>78</td>
</tr>
<tr>
<td>11. Localization of Rings</td>
<td>81</td>
</tr>
<tr>
<td>A. Text</td>
<td>81</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>85</td>
</tr>
<tr>
<td>12. Localization of Modules</td>
<td>87</td>
</tr>
<tr>
<td>A. Text</td>
<td>87</td>
</tr>
<tr>
<td>B. Exercises</td>
<td>91</td>
</tr>
<tr>
<td>13. Support</td>
<td>94</td>
</tr>
<tr>
<td>A. Text</td>
<td>94</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>B.</td>
<td>Exercises</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Noether Normalization</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Chain Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Associated Primes</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Primary Decomposition</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Length</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Hilbert Functions</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Dimension</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Completion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Discrete Valuation Rings</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Dedekind Domains</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.</td>
<td>Fractional Ideals</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>A. Text</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>B. Exercises</td>
<td>222</td>
</tr>
<tr>
<td>26.</td>
<td>Arbitrary Valuation Rings</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>A. Text</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>B. Exercises</td>
<td>227</td>
</tr>
</tbody>
</table>

Part II Solutions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rings and Ideals</td>
<td>230</td>
</tr>
<tr>
<td>2.</td>
<td>Prime Ideals</td>
<td>238</td>
</tr>
<tr>
<td>3.</td>
<td>Radicals</td>
<td>244</td>
</tr>
<tr>
<td>4.</td>
<td>Modules</td>
<td>250</td>
</tr>
<tr>
<td>5.</td>
<td>Exact Sequences</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Appendix: Fitting Ideals</td>
<td>258</td>
</tr>
<tr>
<td>6.</td>
<td>Direct Limits</td>
<td>260</td>
</tr>
<tr>
<td>7.</td>
<td>Filtered direct limits</td>
<td>264</td>
</tr>
<tr>
<td>8.</td>
<td>Tensor Products</td>
<td>268</td>
</tr>
<tr>
<td>9.</td>
<td>Flatness</td>
<td>272</td>
</tr>
<tr>
<td>10.</td>
<td>Cayley–Hamilton Theorem</td>
<td>277</td>
</tr>
<tr>
<td>11.</td>
<td>Localization of Rings</td>
<td>283</td>
</tr>
<tr>
<td>12.</td>
<td>Localization of Modules</td>
<td>288</td>
</tr>
<tr>
<td>13.</td>
<td>Support</td>
<td>293</td>
</tr>
<tr>
<td>15.</td>
<td>Noether Normalization</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>Appendix: Jacobson Rings</td>
<td>318</td>
</tr>
<tr>
<td>16.</td>
<td>Chain Conditions</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>Appendix: Noetherian Spaces</td>
<td>327</td>
</tr>
<tr>
<td>17.</td>
<td>Associated Primes</td>
<td>330</td>
</tr>
<tr>
<td>18.</td>
<td>Primary Decomposition</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Appendix: Old-primary Submodules</td>
<td>339</td>
</tr>
<tr>
<td>19.</td>
<td>Length</td>
<td>344</td>
</tr>
<tr>
<td>20.</td>
<td>Hilbert Functions</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Appendix: Homogeneity</td>
<td>351</td>
</tr>
<tr>
<td>21.</td>
<td>Dimension</td>
<td>353</td>
</tr>
<tr>
<td>22.</td>
<td>Completion</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Appendix: Hensel’s Lemma</td>
<td>381</td>
</tr>
<tr>
<td>23.</td>
<td>Discrete Valuation Rings</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Appendix: Cohen–Macaulay Modules</td>
<td>389</td>
</tr>
<tr>
<td>24.</td>
<td>Dedekind Domains</td>
<td>396</td>
</tr>
<tr>
<td>25.</td>
<td>Fractional Ideals</td>
<td>399</td>
</tr>
<tr>
<td>26.</td>
<td>Arbitrary Valuation Rings</td>
<td>401</td>
</tr>
</tbody>
</table>

References

- Disposition of the Exercises in [4]
- Use of the Exercises in this Book
- Notation
- Index
Preface

There is no shortage of books on Commutative Algebra, but the present book is different. Most books are monographs, with extensive coverage. But there is one notable exception: Atiyah and Macdonald’s 1969 classic \[4\]. It is a clear, concise, and efficient textbook, aimed at beginners, with a good selection of topics. So it has remained popular. However, its age and flaws do show. So there is need for an updated and improved version, which the present book aims to be.

Atiyah and Macdonald explain their philosophy in their introduction. They say their book “has the modest aim of providing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts on Commutative Algebra. . . . The lecture-note origin of this book accounts for the rather terse style, with little general padding, and for the condensed account of many proofs.” They “resisted the temptation to expand it in the hope that the brevity of [the] presentation will make clearer the mathematical structure of what is by now an elegant and attractive theory.” They endeavor “to build up to the main theorems in a succession of simple steps and to omit routine verifications.”

Atiyah and Macdonald’s successful philosophy is wholeheartedly embraced below (it is a feature, not a flaw!), and also refined a bit. The present book also “grew out of a course of lectures.” That course was based primarily on their book, but has been offered a number of times, and has evolved over the years, influenced by other publications, especially \[16\], and the reactions of the students. That course had as prerequisite a “first elementary course in general algebra” based on \[3\]. Below, to further clarify and streamline the “mathematical structure” of the theory, the theory is usually developed in its natural generality, where the settings are just what is appropriate for the arguments.

Atiyah and Macdonald’s book comprises eleven chapters, split into forty-two sections. The present book comprises twenty-six chapters; each chapter represents a single lecture, and is self-contained. Lecturers are encouraged to emphasize the meaning of statements and the ideas of proofs, especially those in the longer and richer chapters, “waving their hands” and leaving the details for students to read on their own and to discuss with others.

Atiyah and Macdonald “provided . . . exercises at the end of each chapter,” as well as some exercises within the text. They “provided hints, and sometimes complete solutions, to the hard” exercises. Furthermore, they developed a significant amount of new material in the exercises. By contrast, in the present book, the exercises are more closely tied in to the text, and complete solutions are given in the second part of the book. Doing so lengthened the book considerably. The solutions fill nearly as much space as the text. Moreover, seven chapters have appendices; they elaborate on important issues, most stemming from Atiyah and Macdonald’s exercises.

There are 585 exercises below, including all of Atiyah and Macdonald’s. The disposition of the latter is indicated in a special index. The 578 also include many exercises that come from other publications and many that originate here. Here the exercises are tailored to provide a means for students to check, to solidify, and to expand their understanding. The 578 are intentionally not difficult, tricky, or
involved. Rarely do they introduce new techniques, although some introduce new concepts, and many are used later. All the exercises within the text are used right away. Another special index indicates all the exercises that are used, and where.

Students are encouraged to try to solve lots of exercises, without first reading the solutions. If they become stuck on an exercise, then they should review the relevant material; if they remain stuck, then they should change tack by studying the solution, possibly discussing it with others, but always making sure they can, eventually, solve the whole exercise entirely on their own. In any event, students should always read the given solutions, just to make sure they haven’t missed any details; also, some solutions provide enlightening alternative arguments.

As to prioritizing the exercises, here is one reasonable order: first, those that appear within the text; second, those that are used more often, as indicated in the index, “Use of the Exercises . . .”; third, those whose solutions are less involved, as indicated by their length; fourth, those whose statements sound interesting; fifth, those stemming from the exercises in Atiyah and Macdonald’s book, as indicated in the index, “Disposition” Of course, no one should exhaust all the exercises of one level of priority before considering exercises of lower level; rather, if there’s no other good reason to choose one exercise over another, then the order of priorities could serve as the deciding factor.

Instructors are encouraged to assign six exercises with short solutions, say a paragraph or two long, per lecture, and to ask students to write up solutions in their own words. Instructors are encouraged to examine students, possibly orally at a blackboard, possibly via written tests, on a small, randomly chosen subset of the assigned exercises. For use during each exam, instructors are urged to provide each student with a copy of the book that omits the solutions. A reasonable way to grade is to count the exercises as 30%, a midterm as 30%, and a final as 40%.

Atiyah and Macdonald explain that “a proper treatment of Homological Algebra is impossible within the confines of a small book; on the other hand, it is hardly sensible to ignore it completely.” So they “use elementary homological methods — exact sequence, diagrams, etc. — but . . . stop short of any results requiring a deep study of homology.” Again, their philosophy is embraced and refined in the present book. Notably, below, elementary methods are used, not Tor’s as they do, to prove the Ideal Criterion for flatness, and to prove that, over local rings, flat modules are free. Also, projective modules are treated below, but not in their book.

In the present book, Category Theory is a basic tool; in Atiyah and Macdonald’s, it seems like a foreign language. Thus they discuss the universal (mapping) property (UMP) of localization of a ring, but provide an ad hoc characterization. They also prove the UMP of tensor product of modules, but do not name it this time. Below, the UMP is fundamental: there are many standard constructions; each has a UMP, which serves to characterize the resulting object up to unique isomorphism owing to one general observation of Category Theory. For example, the Left Exactness of Hom is viewed simply as expressing in other words that the kernel and the cokernel of a map are characterized by their UMPs; by contrast, Atiyah and Macdonald prove the Left Exactness via a tedious elementary argument.

Atiyah and Macdonald prove the Adjoint-Associativity Formula. They note it says that Tensor Product is the left adjoint of Hom. From it and the Left Exactness of Hom, they deduce the Right Exactness of Tensor Product. They note that this derivation shows that any “left adjoint is right exact.” More generally, as explained
below, this derivation shows that any left adjoint preserves arbitrary direct limits, ones indexed by any small category. Atiyah and Macdonald consider only direct limits indexed by a directed set, and sketch an ad hoc argument showing that tensor product preserves direct limit. Also, arbitrary direct sums are direct limits indexed by a discrete category (it is not a directed set); hence, the general result yields that Tensor Product and other left adjoints preserve arbitrary Direct Sum.

Below, left adjoints are proved unique up to unique isomorphism. Therefore, the functor of localization of a module is canonically isomorphic to the functor of tensor product with the localized base ring, as both are left adjoints of the same functor, Restriction of Scalars from the localized ring to the base ring. There is an alternative argument: since Localization is a left adjoint, it preserves Direct Sum and Cokernel; whence, it is isomorphic to that tensor-product functor by Watts Theorem, which characterizes all tensor-product functors as those linear functors that preserve Direct Sum and Cokernel. Atiyah and Macdonald’s treatment is ad hoc. However, they do use the proof of Watts Theorem directly to show that, under the appropriate conditions, Completion of a module is Tensor Product with the completed base ring.

Below, Direct Limit is also considered as a functor, defined on the appropriate category of functors. As such, Direct Limit is a left adjoint. Hence, direct limits preserve other direct limits. Here the theory briefly climbs to a higher level of abstraction. The discussion is completely elementary, but by far the most abstract in the book. The extra abstraction can be difficult, especially for beginners.

Below, filtered direct limits are treated too. They are closer to the kind of limits treated by Atiyah and Macdonald. In particular, filtered direct limits preserve exactness and flatness. Further, they appear in the following lovely form of Lazard’s Theorem: in a canonical way, every module is the direct limit of free modules of finite rank; moreover, the module is flat if and only if that direct limit is filtered.

Atiyah and Macdonald treat primary decomposition in a somewhat dated way. First, they study primary decompositions of ideals. Then, in the exercises, they indicate how to translate the theory to modules. Associated primes play a secondary role: they are defined as the radicals of the primary components, then characterized as the primes that are the radicals of annihilators of elements. Finally, when the rings and modules are Noetherian, primary decompositions are proved to exist, and associated primes to be annihilators themselves.

Below, as is standard nowadays, associated primes of modules are studied right from the start; they are defined as the primes that are annihilators of elements. Submodules are called primary if the quotient modules have only one associated prime. Below, Atiyah and Macdonald’s primary submodules are called old-primary submodules, and they are studied too, mostly in an appendix. In the Noetherian case, the two notions agree; so the two studies provide alternative proofs.

Below, general dimension theory is developed for Noetherian modules; whereas, Atiyah and Macdonald treat only Noetherian rings. Moreover, the modules below are often assumed to be semilocal — that is, their annihilator lies in only finitely many maximal ideals — correspondingly, Atiyah and Macdonald’s rings are local.

There are several other significant differences between Atiyah and Macdonald’s treatment and the one below. First, the Noether Normalization Lemma is proved below in a stronger form for nested sequences of ideals; consequently, for algebras that are finitely generated over a field, dimension theory can be developed directly
Preface

and more extensively, without treating Noetherian local rings first (see (21.24) for the latter approach). Second, in a number of results below, the modules are assumed to be finitely presented over an arbitrary ring, rather than finitely generated over a Noetherian ring. Third, there is an elementary treatment of regular sequences below and a proof of Serre’s Criterion for Normality; this important topic is developed further in an appendix. Fourth, below, the Adjoint-Associativity Formula is proved over a pair of base rings; hence, it yields both a left and a right adjoint to the functor of restriction of scalars.

Many people have contributed to the quality of the present book. Pavel Etingof and Bjorn Poonen lectured from an earlier edition, and Dan Grayson and Amnon Yekutieli read parts of it; all four have made a number of good comments and suggestions, which were incorporated. Many people have pointed out typos, which were corrected. For this service to the community, the authors are grateful, and they welcome any future such remarks from anyone.

It is rarely easy to learn anything new of substance, value, and beauty, like Commutative Algebra, but it is always satisfying, enjoyable, and worthwhile to do so. The authors bid their readers much success in learning Commutative Algebra.

Allen B. Altman and Steven L. Kleiman
July 2017
Part I

Subject Matter
1. Rings and Ideals

We begin by reviewing and developing basic notions and conventions to set the stage. Throughout this book, we emphasize universal mapping properties (UMPs); they are used to characterize notions and to make constructions. So, although polynomial rings and residue rings should already be familiar in other ways, we present their UMPs immediately, and use them extensively. We also discuss Boolean rings, idempotents, and the Chinese Remainder Theorem.

A. Text

(1.1) (Rings). — Recall that a ring R is an abelian group, written additively, with an associative multiplication that is distributive over the addition.

Throughout this book, every ring has a multiplicative identity, denoted by 1. Further, every ring is commutative (that is, $xy = yx$ in it), with an occasional exception, which is always marked (normally, it’s a ring of matrices).

As usual, the additive identity is denoted by 0. Note that, for any x in R,

$$x \cdot 0 = 0;$$

indeed, $x \cdot 0 = x(0 + 0) = x \cdot 0 + x \cdot 0$, and $x \cdot 0$ can be canceled by adding $-(x \cdot 0)$.

We allow $1 = 0$. If $1 = 0$, then $R = 0$; indeed, $x = x \cdot 1 = x \cdot 0 = 0$ for any x.

A unit is an element u with a reciprocal $1/u$ such that $u \cdot 1/u = 1$. Alternatively, $1/u$ is denoted u^{-1} and is called the multiplicative inverse of u. The units form a multiplicative group, denoted R^\times.

For example, the ordinary integers form a ring \mathbb{Z}, and its units are 1 and -1.

A ring homomorphism, or simply a ring map, $\varphi: R \to R'$ is a map preserving sums, products, and 1. Clearly, $\varphi(R^\times) \subseteq R'^\times$. We call φ an isomorphism if it is bijective, and then we write $\varphi: R \cong R'$. We call φ an endomorphism if $R' = R$. We call φ an automorphism if it is bijective and if $R' = R$.

If there is an unnamed isomorphism between rings R and R', then we write $R \cong R'$ when it is canonical; that is, it does not depend on any artificial choices, so that for all practical purposes, R and R' are the same — they are just copies of each other. For example, the polynomial rings $R[X]$ and $R[Y]$ in variables X and Y are canonically isomorphic when X and Y are identified. (Recognizing that an isomorphism is canonical can provide insight and obviate verifications. The notion is psychological, and depends on the context.) Otherwise, we write $R \congneq R'$.

A subset $R'' \subseteq R$ is a subring if R'' is a ring and the inclusion $R'' \hookrightarrow R$ a ring map. In this case, we call R a extension (ring) of R', and the inclusion $R'' \hookrightarrow R$ an extension (of rings) or a (ring) extension. For example, given a ring map $\varphi: R \to R'$, its image $\text{Im}(\varphi) := \varphi(R)$ is a subring of R'. We call $\varphi: R \to R'$ an extension of $\varphi'': R'' \to R'$, and we say that φ'' extends to φ if $\varphi|_{R''} = \varphi''$.

An R-algebra is a ring R' that comes equipped with a ring map $\varphi: R \to R'$, called the structure map. To indicate that R' is an R-algebra without referring to φ, we write R'/R. For example, every ring is canonically a \mathbb{Z}-algebra. An R-algebra homomorphism, or R-map, $R' \to R''$ is a ring map between R-algebras compatible with their structure maps.

A group G is said to act on R if there is a homomorphism given from G into the
group of automorphisms of R. Normally, we identify each $g \in G$ with its associated automorphism. The ring of invariants R^G is the subring defined by
\[R^G := \{ x \in R \mid gx = g \text{ for all } g \in G \}. \]

Similarly, a group G is said to act on R'/R if G acts on R' and each $g \in G$ is an R-map. Note that R^G is an R-subalgebra.

(1.2) (Boolean rings). — The simplest nonzero ring has two elements, 0 and 1. It is unique, and denoted \mathbb{F}_2.

Given any ring R and any set X, let R^X denote the set of functions $f : X \to R$. Then R^X is, clearly, a ring under valuewise addition and multiplication.

For example, take $R := \mathbb{F}_2$. Given $f : X \to R$, put $S := f^{-1}\{1\}$. Then $f(x) = 1$ if $x \in S$, and $f(x) = 0$ if $x \notin S$; in other words, f is the characteristic function χ_S. Thus the characteristic functions form a ring, namely, \mathbb{F}_2^X.

Given $T \subset X$, clearly $\chi_S \cdot \chi_T = \chi_{S \cap T}$. Further, $\chi_S + \chi_T = \chi_{S \cup T}$, where $S \cup T$ is the symmetric difference:
\[S \cup T := (S \cup T) - (S \cap T) = (S - T) \cup (T - S); \]

here $S - T$ denotes, usual, the set of elements of S not in T. Thus the subsets of X form a ring: sum is symmetric difference, and product is intersection. This ring is canonically isomorphic to \mathbb{F}_2^X.

A ring B is called Boolean if $f^2 = f$ for all $f \in B$. If so, then $2f = 0$ as $2f = (f + f)^2 = f^2 + 2f + f^2 = 4f$. For example, \mathbb{F}_2^2 is, plainly, Boolean.

Suppose X is a topological space, and give \mathbb{F}_2 the discrete topology; that is, every subset is both open and closed. Consider the continuous functions $f : X \to \mathbb{F}_2$. Clearly, they are just the χ_S where S is both open and closed. Clearly, they form a Boolean subring of \mathbb{F}_2^X. Conversely, Stone’s Theorem (13.44) asserts that every Boolean ring is canonically isomorphic to the ring of continuous functions from a compact Hausdorff topological space X to \mathbb{F}_2, or equivalently, isomorphic to the ring of open and closed subsets of X.

(1.3) (Polynomial rings). — Let R be a ring, $P := R[X_1, \ldots, X_n]$ the polynomial ring in n variables (see [3, pp. 352–3] or [11, p. 268]). Recall that P has this Universal Mapping Property (UMP): given a ring map $\varphi : R \to R'$ and given an element x_i of R' for each i, there is a unique ring map $\pi : P \to R'$ with $\pi|_R = \varphi$ and $\pi(X_i) = x_i$. In fact, since π is a ring map, necessarily π is given by the formula:
\[\pi \left(\sum a_{i_1, \ldots, i_n} X_1^{i_1} \cdots X_n^{i_n} \right) = \sum \varphi(a_{i_1, \ldots, i_n}) x_1^{i_1} \cdots x_n^{i_n}. \]

In other words, P is universal among R-algebras equipped with a list of n elements: P is one, and P maps uniquely to any other with the lists are respected.

Similarly, let $X := \{ X_\lambda \}_{\lambda \in \Lambda}$ be any set of variables. Set $P' := R[X]$; the elements of P' are the polynomials in any finitely many of the X_λ; sum and product are defined as in P. Thus P' contains as a subring the polynomial ring in any finitely many X_λ, and P' is the union of these subrings. Clearly, P' has essentially the same UMP as P: given $\varphi : R \to R'$ and given $x_\lambda \in R'$ for each λ, there is a unique $\pi : P' \to R'$ with $\pi|_R = \varphi$ and $\pi(X_\lambda) = x_\lambda$.

(1.4) (Ideals). — Let R be a ring. Recall that a subset a is called an ideal if
(1) $0 \in a$,
(2) whenever $a, b \in a$, also $a + b \in a$, and
(3) whenever \(x \in R \) and \(a \in \mathfrak{a} \), also \(xa \in \mathfrak{a} \).

Given a subset \(\mathfrak{a} \subset R \), by the ideal \(\langle \mathfrak{a} \rangle \) that \(\mathfrak{a} \) generates, we mean the smallest ideal containing \(\mathfrak{a} \). Given elements \(a_{\lambda} \in R \) for \(\lambda \in \Lambda \), by the ideal they generate, we mean the ideal generated by the set \(\{a_{\lambda}\} \). If \(\Lambda = \emptyset \), then this ideal consists just of 0. If \(\Lambda = \{1, \ldots, n\} \), then the ideal is usually denoted by \(\langle a_1, \ldots, a_n \rangle \).

Any ideal containing all the \(a_{\lambda} \) contains any (finite) linear combination \(\sum x_{\lambda}a_{\lambda} \) with \(x_{\lambda} \in R \) and almost all 0. Form the set \(\mathfrak{a} \), or \(\sum \mathfrak{a}_{\lambda} \), of all such linear combinations. Plainly, \(\mathfrak{a} \) is an ideal containing all \(a_{\lambda} \), so is the ideal they generate.

Given an ideal \(\mathfrak{a} \) and elements \(a_{\lambda} \) that generate it, we call the \(a_{\lambda} \) generators.

Given a single element \(a \), we say that the ideal \(\langle a \rangle \) is principal. By the preceding observation, \(\langle a \rangle \) is equal to the set of all multiples \(xa \) with \(x \in R \).

Given a number of ideals \(\mathfrak{a}_{\lambda} \), by their sum \(\sum \mathfrak{a}_{\lambda} \), we mean the set of all finite linear combinations \(\sum x_{\lambda}a_{\lambda} \) with \(x_{\lambda} \in R \) and \(a_{\lambda} \in \mathfrak{a}_{\lambda} \). Plainly, \(\sum \mathfrak{a}_{\lambda} \) is equal to the ideal the \(\mathfrak{a}_{\lambda} \) generate, namely, the smallest ideal that contains all \(\mathfrak{a}_{\lambda} \).

By the intersection \(\bigcap \mathfrak{a}_{\lambda} \), we mean the intersection as sets. It is plainly an ideal.

If the \(\mathfrak{a}_{\lambda} \) are finite in number, by their product \(\prod \mathfrak{a}_{\lambda} \), we mean the ideal generated by all products \(\prod \mathfrak{a}_{\lambda} \) with \(a_{\lambda} \in \mathfrak{a}_{\lambda} \).

Given two ideals \(\mathfrak{a} \) and \(\mathfrak{b} \), by the transporter of \(\mathfrak{b} \) into \(\mathfrak{a} \), we mean the set

\[
\langle \mathfrak{a} : \mathfrak{b} \rangle := \{ x \in R \mid x\mathfrak{b} \subset \mathfrak{a} \}.
\]

Plainly, \(\langle \mathfrak{a} : \mathfrak{b} \rangle \) is an ideal. Plainly,

\[
ab \subset \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{a} + \mathfrak{b}, \quad \mathfrak{a}, \mathfrak{b} \subset \mathfrak{a} + \mathfrak{b}, \quad \text{and} \quad \mathfrak{a} \subset \langle \mathfrak{a} : \mathfrak{b} \rangle.
\]

Further, for any ideal \(\mathfrak{c} \), the distributive law holds: \(\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c} \).

Given an ideal \(\mathfrak{a} \), notice \(\mathfrak{a} = R \) if and only if 1 \(\in \mathfrak{a} \). Indeed, if 1 \(\in \mathfrak{a} \), then \(x = x \cdot 1 \in \mathfrak{a} \) for every \(x \in R \). It follows that \(\mathfrak{a} = R \) if and only if \(\mathfrak{a} \) contains a unit. Further, if \(\langle x \rangle = R \), then \(x \) is a unit, since then there is an element \(y \) such that \(xy = 1 \). If \(\mathfrak{a} \neq R \), then \(\mathfrak{a} \) is said to be proper.

Given a ring map \(\varphi : R \to R' \), denote by \(aR' \) or \(a^c \) the ideal of \(R' \) generated by the set \(\varphi(a) \). We call it the extension of \(a \).

Given an ideal \(a' \) of \(R' \), its preimage \(\varphi^{-1}(a') \) is, plainly, an ideal of \(R \). We call \(\varphi^{-1}(a') \) the contraction of \(a' \) and sometimes denote it by \(a^c \).

(1.5) (Residue rings). — Let \(\varphi : R \to R' \) be a ring map. Recall its kernel \(\text{Ker}(\varphi) \) is defined to be the ideal \(\varphi^{-1}(0) \) of \(R \). Recall \(\text{Ker}(\varphi) = 0 \) if and only if \(\varphi \) is injective.

Conversely, let \(a \) be an ideal of \(R \). Form the set of cosets of \(a \):

\[
R/a := \{ x + a \mid x \in R \}.
\]

Recall that \(R/a \) inherits a ring structure, and is called the residue ring or quotient ring or factor ring of \(R \) modulo \(a \). Form the quotient map

\[
\kappa : R \to R/a \quad \text{by} \quad \kappa x := x + a.
\]

The element \(\kappa x \in R/a \) is called the residue of \(x \). Clearly, \(\kappa \) is surjective, \(\kappa \) is a ring map, and \(\kappa \) has kernel \(a \). Thus every ideal is a kernel!

Note that \(\text{Ker}(\varphi) \supset a \) if and only if \(\varphi a = 0 \).

Recall that, if \(\text{Ker}(\varphi) \supset a \), then there is a ring map \(\psi : R/a \to R' \) with \(\psi \kappa = \varphi \);
that is, the following diagram is commutative:

$$\begin{array}{ccc}
R & \xrightarrow{\kappa} & R/\mathfrak{a} \\
\varphi \downarrow & & \downarrow \psi \\
R' & & R/\mathfrak{a}
\end{array}$$

Conversely, if \(\psi \) exists, then \(\text{Ker}(\varphi) \supseteq \mathfrak{a} \), or \(\varphi \mathfrak{a} = 0 \), or \(\mathfrak{a}R' = 0 \), since \(\kappa \mathfrak{a} = 0 \).

Further, if \(\psi \) exists, then \(\psi \) is unique as \(\kappa \) is surjective.

Finally, as \(\kappa \) is surjective, if \(\psi \) exists, then \(\varphi \) is surjective if and only if \(\varphi \) is so.

In addition, then \(\psi \) is injective if and only if \(\mathfrak{a} = \text{Ker}(\varphi) \). Hence then \(\psi \) is an isomorphism if and only if \(\mathfrak{a} = \text{Ker}(\varphi) \). Therefore, always

$$R / \text{Ker}(\varphi) \cong \text{Im}(\varphi). \quad (1.5.1)$$

In practice, it is usually more productive to view \(R/\mathfrak{a} \) not as a set of cosets, but simply as another ring \(R' \) that comes equipped with a surjective ring map \(\varphi: R \to R' \) whose kernel is the given ideal \(\mathfrak{a} \).

Finally, \(R/\mathfrak{a} \) has, as we saw, this UMP: \(\kappa(\mathfrak{a}) = 0 \), and given \(\varphi: R \to R' \) such that \(\varphi(\mathfrak{a}) = 0 \), there is a unique ring map \(\psi: R/\mathfrak{a} \to R' \) such that \(\psi\kappa = \varphi \). In other words, \(R/\mathfrak{a} \) is universal among \(R \)-algebras \(R' \) such that \(\mathfrak{a}R' = 0 \).

Above, if \(\mathfrak{a} \) is the ideal generated by elements \(\alpha_\lambda \), then the UMP can be usefully rephrased as follows: \(\kappa(\alpha_\lambda) = 0 \) for all \(\lambda \), and given \(\varphi: R \to R' \) such that \(\varphi(\alpha_\lambda) = 0 \) for all \(\lambda \), there is a unique ring map \(\psi: R/\mathfrak{a} \to R' \) such that \(\psi\kappa = \varphi \).

The UMP serves to determine \(R/\mathfrak{a} \) up to unique isomorphism. Indeed, say \(R' \), equipped with \(\varphi: R \to R' \), has the UMP too. Then \(\varphi(\mathfrak{a}) = 0 \); so there is a unique \(\psi: R/\mathfrak{a} \to R' \) with \(\psi\kappa = \varphi \). And \(\kappa(\mathfrak{a}) = 0 \); so there is a unique \(\psi': R' \to R/\mathfrak{a} \) with \(\psi'\varphi = \kappa \). Then, as shown, \((\psi'\psi)\kappa = \kappa \), but \(1 \circ \kappa = \kappa \) where \(1 \) is the identity map of \(R/\mathfrak{a} \); hence, \(\psi'\psi = 1 \) by uniqueness. Similarly, \(\psi\psi' = 1 \) where \(1 \) now stands for the identity map of \(R' \). Thus \(\psi \) and \(\psi' \) are inverse isomorphisms.

The preceding proof is completely formal, and so works widely. There are many more constructions to come, and each one has an associated UMP, which therefore serves to determine the construction up to unique isomorphism.

Proposition (1.6). — Let \(R \) be a ring, \(P := R[X] \) the polynomial ring in one variable, \(a \in R \), and \(\pi: P \to R \) the \(R \)-algebra map defined by \(\pi(X) := a \). Then

1. \(\text{Ker}(\pi) = \{ F(X) \in P \mid F(a) = 0 \} = (X - a) \) and \((2) \ P / (X - a) \cong R \).

Proof: Set \(G := X - a \). Given \(F \in P \), let’s show \(F = GH + r \) with \(H \in P \) and \(r \in R \). By linearity, we may assume \(F := X^n \). If \(n \geq 1 \), then \(F = (G + a)X^{n-1} \), so \(F = GH + aX^{n-1} \) with \(H := X^{n-1} \). If \(n - 1 \geq 1 \), repeat with \(F := X^{n-1} \). Etc.

Then \(\pi(F) = \pi(G)\pi(H) + \pi(r) = r \). Hence \(F \in \text{Ker}(\pi) \) if and only if \(F = GH \). But \(\pi(F) = F(a) \) by (1.3.1). Thus (1) holds. So (1.5.1) yields (2). □
\textbf{(1.7) (Degree of a polynomial).} — Let \(R \) be a ring, \(P \) the polynomial ring in any number of variables. Given a nonzero \(F \in P \), recall that its (total) degree, \(\deg(F) \), is defined as follows: if \(F \) is a monomial \(M \), then its degree \(\deg(M) \) is the sum of its exponents; in general, \(\deg(F) \) is the largest \(\deg(M) \) of all monomials \(M \) in \(F \).

Given any \(G \in P \) with \(FG \) nonzero, notice that
\[
\deg(FG) \leq \deg(F) + \deg(G). \tag{1.7.1}
\]
Indeed, any monomial in \(FG \) is the product \(MN \) of a monomial \(M \) in \(F \) and a monomial \(N \) in \(G \). Further, \(\deg(MN) = \deg(M) + \deg(N) \leq \deg(F) + \deg(G) \).

However, equality need not hold. For example, suppose that there is only one variable \(X \), that \(F = aX^m + \cdots \) and \(G = bX^n + \cdots \) with \(m = \deg(F) \) and \(n = \deg(G) \), and that \(ab \neq 0 \). Then \(\deg(FG) < mn \).

Note also that, if \(a \neq b \), then the polynomial \(X^2 - (a + b)X \) has degree 2, but at least three distinct zeros: 0, \(a \), \(b \).

\textbf{(1.8) (Order of a polynomial).} — Let \(R \) be a ring, \(P \) the polynomial ring in variables \(X_\lambda \) for \(\lambda \in \Lambda \), and \((x_\lambda) \in R^\Lambda \) a vector. Let \(\varphi(x_\lambda) : P \to P \) denote the \(R \)-algebra map defined by \(\varphi(x_\lambda)X_\mu := X_\mu + x_\mu \) for all \(\mu \in \Lambda \). Plainly \(\varphi(x_\lambda) \) is an automorphism with inverse \(\varphi_0 = \varphi(-x_\lambda) \). Fix a nonzero \(F \in P \).

The \textbf{order} of \(F \) at the zero vector \((0) \), denoted \(\ord_{(0)} F \), is defined as the smallest \(\deg(M) \) of all the monomials \(M \) in \(F \). In general, the \textbf{order} of \(F \) at the vector \((x_\lambda) \), denoted \(\ord_{(x_\lambda)} F \), is defined by the formula:
\[
\ord_{(x_\lambda)} F :=\ord_{(0)}((\varphi(x_\lambda) F)).
\]
Notice that \(\ord_{(x_\lambda)} F = 0 \ if \ and \ only \ if \ F(x_\lambda) \neq 0 \). Indeed, the equivalence is obvious if \((x_\lambda) = (0) \). Thus it always holds, as \((\varphi(x_\lambda) F)(0) = F(x_\lambda) \).

Given \(\mu \) and \(x \in R \), form \(F_{\mu,x} \) by substituting \(x \) for \(X_\mu \) in \(F \). If \(F_{\mu,x} = 0 \), then
\[
\ord_{(x_\lambda)} F \leq \ord_{(x_\lambda)} F_{\mu,x_\mu}. \tag{1.8.1}
\]
Indeed, if \(x_\mu = 0 \), then \(F_{\mu,x_\mu} \) is the sum of the terms without \(X_\mu \) in \(F \). Hence, if \((x_\lambda) = (0) \), then (1.8.1) holds. But substituting 0 for \(X_\mu \) in \(\varphi(x_\lambda) F \) is the same as substituting \(x_\mu \) for \(X_\mu \) in \(F \) and then applying \(\varphi(x_\lambda) \) to the result; that is, \((\varphi(x_\lambda) F)_{(0)} = \varphi(x_\lambda) F_{\mu,x_\mu} \). Thus (1.8.1) always holds.

Of course, \(F_{\mu,x} \) lies in the polynomial subring in the variables \(X_\lambda \) for all \(\lambda \neq \mu \). Let \((\hat{x}_\lambda) \) be the vector of \(x_\lambda \) for all \(\lambda \neq \mu \). If \(F_{\mu,x_\mu} \neq 0 \), then
\[
\ord_{(x_\lambda)} F_{\mu,x_\mu} = \ord_{(\hat{x}_\lambda)} F_{\mu,x_\mu}. \tag{1.8.2}
\]
Plainly, (1.8.2) holds if \((x_\lambda) = (0) \). So it always holds, as \(\varphi(x_\lambda) F_{\mu,x_\mu} = \varphi(\hat{x}_\lambda) F_{\mu,x_\mu} \).

Given any \(G \in P \) with \(FG \) nonzero, notice that
\[
\ord_{(x_\lambda)} FG \geq \ord_{(x_\lambda)} F + \ord_{(x_\lambda)} G. \tag{1.8.3}
\]
Indeed, if \((x_\lambda) = (0) \), then the proof of (1.8.3) is similar to that of (1.7.1). But \(\varphi(x_\lambda) FG = \varphi(x_\lambda) F \varphi(x_\lambda) G \). Thus (1.8.3) always holds.

\textbf{(1.9) (Nested ideals).} — Let \(R \) be a ring, \(a \) an ideal, and \(\kappa : R \to R/a \) the quotient map. Given an ideal \(b \supset a \), form the corresponding set of cosets of \(a \):
\[
b/a := \{ b + a \mid b \in b \} = \kappa(b).
\]
Clearly, \(b/a \) is an ideal of \(R/a \). Also \(b/a = b(R/a) \).

Clearly, the operations \(b \mapsto b/a \) and \(b' \mapsto \kappa^{-1}(b') \) are inverse to each other, and establish a bijective correspondence between the set of ideals \(b \) of \(R \) containing \(a \) and the set of all ideals \(b' \) of \(R/a \). Moreover, this correspondence preserves inclusions.
Rings and Ideals (1.10) / (1.13)

Exercises

Given an ideal \(b \supset a \), form the composition of the quotient maps

\[
\varphi : R \to R/a \to (R/a)/(b/a).
\]

Clearly, \(\varphi \) is surjective, and \(\text{Ker}(\varphi) = b \). Hence, owing to (1.5), \(\varphi \) factors through the canonical isomorphism \(\psi \) in this commutative diagram:

\[
\begin{array}{ccc}
R & \longrightarrow & R/b \\
\downarrow \varphi & & \swarrow \simeq \\
R/a & \to & (R/a)/(b/a)
\end{array}
\]

(1.10) (Idempotents). — Let \(R \) be a ring. Let \(e \in R \) be an idempotent; that is, \(e^2 = e \). Then \(Re \) is a ring with \(e \) as 1, because \((xe)e = xe \). But \(Re \) is not a subring of \(R \) unless \(e = 1 \), although \(Re \) is an ideal.

Set \(e' := 1 - e \). Then \(e' \) is idempotent and \(e \cdot e' = 0 \). We call \(e \) and \(e' \) complementary idempotents. Conversely, if two elements \(e_1, e_2 \in R \) satisfy \(e_1 + e_2 = 1 \) and \(e_1e_2 = 0 \), then they are complementary idempotents, as for each \(i \),

\[
e_i = e_i \cdot 1 = e_i(e_1 + e_2) = e_i^2.
\]

We denote the set of all idempotents by \(\text{Idem}(R) \). Let \(\varphi : R \to R' \) be a ring map. Then \(\varphi(e) \) is idempotent. So the restriction of \(\varphi \) to \(\text{Idem}(R) \) is a map

\[
\text{Idem}(\varphi) : \text{Idem}(R) \to \text{Idem}(R').
\]

Example (1.11). — Let \(R := R' \times R'' \) be a product of two rings: its operations are performed componentwise. The additive identity is \((0, 0)\); the multiplicative identity is \((1, 1)\). Set \(e' := (1, 0) \) and \(e'' := (0, 1) \). Then \(e' \) and \(e'' \) are complementary idempotents. The next proposition shows this example is the only one possible.

Proposition (1.12). — Let \(R \) be a ring, and \(e', e'' \) complementary idempotents. Set \(R' := Re' \) and \(R'' := Re'' \). Define \(\varphi : R \to R' \times R'' \) by \(\varphi(x) := (xe', xe'') \). Then \(\varphi \) is a ring isomorphism. Moreover, \(R' = R/Re'' \) and \(R'' = R/Re' \).

Proof: Define a surjection \(\varphi' : R \to R' \) by \(\varphi'(x) := xe' \). Then \(\varphi' \) is a ring map, since \(xy e' = x ye' = (xe')(ye') \). Moreover, \(\text{Ker}(\varphi') = Re'' \), since if \(xe' = 0 \), then \(x = x \cdot 1 = xe + xe'' = xe'' \). Thus (1.5.1) yields \(R' = R/Re'' \).

Similarly, define a surjection \(\varphi'' : R \to R'' \) by \(\varphi''(x) := xe'' \). Then \(\varphi'' \) is a ring map, and \(\text{Ker}(\varphi'') = Re' \). Thus \(R'' = R/Re' \).

So \(\varphi \) is a ring map. It’s surjective, since \((xe', xe''e'') = \varphi(xe' + xe'') \). It’s injective, since if \(xe' = 0 \) and \(xe'' = 0 \), then \(x = xe' + xe'' = 0 \). Thus \(\varphi \) is an isomorphism. \(\square \)

B. Exercises

Exercise (1.13). — Let \(\varphi : R \to R' \) be a map of rings, \(a, a_1, a_2 \) ideals of \(R \), and \(b, b_1, b_2 \) ideals of \(R' \). Prove the following statements:

(1a) \((a_1 + a_2)^c = a_1^c + a_2^c \). (1b) \((b_1 + b_2)^c \supset b_1^c + b_2^c \).
(2a) \((a_1 \cap a_2)^c \subset a_1^c \cap a_2^c \). (2b) \((b_1 \cap b_2)^c = b_1^c \cap b_2^c \).
(3a) \((a_1 a_2)^c = a_1^c a_2^c \). (3b) \((b_1 b_2)^c \supset b_1^c b_2^c \).
(4a) \((a_1 : a_2)^c \subset (a_1^c : a_2^c) \). (4b) \((b_1 : b_2)^c \subset (b_1^c : b_2^c) \).
Exercise (1.14) . — Let \(\varphi: R \to R' \) be a map of rings, \(a \) an ideal of \(R \), and \(b \) an ideal of \(R' \). Prove the following statements:

1. Then \(a + b \subseteq a \) and \(b + c \subseteq b \).

2. Then \(a + b = a \) and \(b + c = b \).

3. If \(b \) is an extension, then \(b + c \) is the largest ideal of \(R \) with extension \(b \).

4. If two extensions have the same contraction, then they are equal.

Exercise (1.15) . — Let \(R \) be a ring, \(a \) an ideal, \(X \) a set of variables. Prove:

1. The extension \(a(R[X]) \) is the set \(a[X] \) of polynomials with coefficients in \(a \).

2. \(a(R[X]) \cap R = a \).

Exercise (1.16) . — Let \(R \) be a ring, \(a \) an ideal, and \(X \) a set of variables. Set \(P := R[X] \). Prove \(P/aP = (R/a)[X] \).

Exercise (1.17) . — Let \(R \) be a ring, \(P := R[X] \) the polynomial ring in variables \(X \lambda \) for \(\lambda \in \Lambda \), and \((x_\lambda) \in R^\Lambda \) a vector. Let \(\pi(x_\lambda): P \to R \) denote the \(\Lambda \)-algebra map defined by \(\pi(x_\lambda) \mu := x_\mu \) for all \(\mu \in \Lambda \). Show:

1. Any \(F \in P \) has the form \(F = \sum a_{(i_1, \ldots, i_n)}(X_{i_1} - x_{i_1})^{i_1} \cdots (X_{i_n} - x_{i_n})^{i_n} \) for unique \(a_{(i_1, \ldots, i_n)} \in R \).

2. Then \(\text{Ker}(\pi(x_\lambda)) = \{ F \in P | F((x_\lambda)) = 0 \} = \{ (X_{i_1} - x_{i_1}) \} \).

3. Then \(\pi \) induces an isomorphism \(P/\langle X_{i_1} - x_{i_1} \rangle \to R \).

4. Given \(F \in P \), its residue in \(P/\langle X_{i_1} - x_{i_1} \rangle \) is equal to \(F((x_\lambda)) \).

5. Let \(\overline{y} \) be a second set of variables. Then \(P[[\overline{y}]]/\langle X_{i_1} - x_{i_1} \rangle \to R[[\overline{y}]] \).

Exercise (1.18) . — Let \(R \) be a ring, \(P := R[X_1, \ldots, X_n] \) the polynomial ring in variables \(X_i \). Given \(F = \sum a_{(i_1, \ldots, i_n)}X_1^{i_1} \cdots X_n^{i_n} \in P \), formally set

\[
\frac{\partial F}{\partial X_j} := \sum i_j a_{(i_1, \ldots, i_n)}X_1^{i_1} \cdots X_n^{i_n}/X_j \in P \quad \text{for } j = 1, \ldots, n. \tag{1.18.1}
\]

Given \((x_1, \ldots, x_n) \in R^n \), set \(x := (x_1, \ldots, x_n) \), set \(a_j := (\partial F/\partial X_j)(x) \), and set \(\mathfrak{m} := \langle X_1 - x_1, \ldots, X_n - x_n \rangle \). Show \(F = F(x) + \sum a_j(X_j - x_j) + G \) with \(G \in \mathfrak{m}^2 \).

First show that, if \(F = (X_1 - x_1)^{i_1} \cdots (X_n - x_n)^{i_n} \), then \(\partial F/\partial X_j = i_j F/(X_j - x_j) \).

Exercise (1.19) . — Let \(R \) be a ring, \(X \) a variable, \(F \in P := R[X] \), and \(a \in R \).

Set \(F' := \partial F/\partial X \); see (1.18.1). We call \(a \) a root of \(F \) if \(F(a) = 0 \), a simple root if also \(F'(a) \neq 0 \), and a supersimple root if also \(F''(a) \) is a unit.

Show that if \(\overline{a} \) is a root of \(F \) if and only if \(F = (X - a)G \) for some \(G \in P \), and if so, then \(G \) is unique: that \(a \) is a simple root if and only if also \(G(a) \neq 0 \); and that \(a \) is a supersimple root if and only if also \(G(a) \) is a unit.

Exercise (1.20) . — Let \(R \) be a ring, \(P := R[X_1, \ldots, X_n] \) the polynomial ring, \(F \in P \) of degree \(d \), and \(F_i := X_i^{d_i} + a_i X_i^{d_i-1} + \cdots \) a monic polynomial in \(X_i \) alone for all \(i \). Find \(G, G_i \in P \) such that \(F = \sum_{i=1}^n F_i G_i + G \) where \(G_i = 0 \) or \(\deg(G_i) \leq d - d_i \) and where the highest power of \(X_i \) in \(G \) is less than \(d_i \).

Exercise (1.21) (Chinese Remainder Theorem) . — Let \(R \) be a ring.

1. Let \(a \) and \(b \) be comaximal ideals; that is, \(a + b = R \). Show
 \[
 (a) \ ab = a \cap b \quad \text{and} \quad (b) \ R/ab = (R/a) \times (R/b).
 \]

2. Let \(a \) be comaximal to both \(b \) and \(b' \). Show \(a \) is also comaximal to \(bb' \).

3. Given \(m, n \gtrsim 1 \), show \(a \) and \(b \) are comaximal if and only if \(a^n \) and \(b^n \) are.
1.22 Let \(L \) be a Boolean ring. Show:
\begin{enumerate}
\item \(a_1 \) and \(a_2 \ldots a_n \) are comaximal;
\item \(a_1 \cap \cdots \cap a_n = a_1 \cdots a_n \);
\item \(R/(a_1 \cdots a_n) \cong \prod (R/a_i) \).
\end{enumerate}

1.24 For all \(x, y \in L \), set \(x \vee y := (x \wedge y)^\prime \). Furthermore, show that the following six laws are obeyed:
\begin{align*}
x \wedge x &= x \quad \text{(idempotent)} \\
x \wedge 0 &= 0 \quad x \wedge 1 &= 1 \quad x \wedge 0 &= x \quad (\text{unitary}) \\
x \wedge y &= y \wedge x \quad (\text{commutative}) \\
x \wedge (y \wedge z) &= (x \wedge y) \wedge z \\
x \vee (y \wedge z) &= (x \vee y) \wedge z \\
x^\prime = x \quad 0^\prime = 1 \quad 1^\prime = 0 \quad (\text{involutive}) \\
(x \wedge y)^\prime = x' \wedge y' \quad \text{and} \quad (x \vee y)^\prime = x' \vee y'. \quad \text{(De Morgan's)}
\end{align*}

Moreover, show that \(x \leq y \) if and only if \(x = x \wedge y \).

1.25 For all \(x, y \in L \), set \(x + y := (x \wedge y)^\prime \vee (x' \wedge y') \) and \(xy := \neg x \wedge y \).

Show: \(x + y = (x \wedge y)(x' \wedge y') \) and \((x + y)^\prime = (x'y') \wedge (xy) \). Furthermore, show \(L \) is a Boolean ring.

1.26 Given a Boolean ring \(R \), order \(R \) by \(x \leq y \) if \(x = xy \). Show \(R \) is thus a Boolean lattice. Viewing this construction as a map \(\rho \) from the set of Boolean-ring structures on \(R \) to the set of Boolean-lattice structures on \(R \), show \(\rho \) is bijective with inverse the map \(\lambda \) associated to the construction in (1.26).
Exercise (1.28). — Let X be a set, and L the set of all subsets of X, partially ordered by inclusion. Show that L is a Boolean lattice and that the ring structure on L constructed in (1.2) coincides with that constructed in (1.26).

Assume X is a topological space, and let M be the set of all its open and closed subsets. Show that M is a sublattice of L, and that the subring structure on M of (1.2) coincides with the ring structure of (1.26) with M for L.

Exercise (1.29). — Let R be a ring, $P := R[X_1, \ldots, X_m]$ the polynomial ring in variables X_i, and $V \subset R^n$ the set of common zeros of a set of polynomials $F_\lambda \in P$.

(1) Let $I(V)$ be the ideal of all $F \in P$ vanishing on V, and $P(V)$ the R-algebra of all functions $\gamma : V \to R$ given by evaluating some $G \in P$. Show $I(V)$ is the largest set of polynomials with V as set of common zeros. Show $P/I(V) = P(V)$. And show $1 \in I(V)$ (or $P(V) = 0$) if and only if $V = \emptyset$.

(2) Let $W \subset R^n$ be like V, and $\rho : V \to W$ any map. Call ρ regular if there are $G_i \in P$ with $\rho(v) = (G_1(v), \ldots, G_n(v))$ for all $v \in V$. If ρ is regular, define $\rho^* : P(W) \to P(V)$ by $\rho^*(\delta) := \delta \circ \rho$, and show ρ^* is a well-defined algebra map.

(3) Let $Q := R[Y_1, \ldots, Y_n]$ be the polynomial ring, and $\zeta_i \in P(W)$ the function given by evaluating the variable Y_i. Let $\varphi : P(W) \to P(V)$ be an algebra map. Define $\varphi^* : V \to W$ by $\varphi^*(v) := (w_1, \ldots, w_n)$ where $w_i := (\varphi \zeta_i)(v)$, and show φ^* is a well-defined regular map.

(4) Show $\rho \mapsto \rho^*$ and $\varphi \mapsto \varphi^*$ define inverse bijective correspondences between the regular maps $\rho : V \to W$ and the algebra maps $\varphi : P(W) \to P(V)$.

10
2. Prime Ideals

Prime ideals are the key to the structure of commutative rings. So we review the basic theory. Specifically, we define prime ideals, and show their residue rings are domains. We show maximal ideals are prime, and discuss examples. Finally, we use Zorn’s Lemma to prove the existence of maximal ideals in every nonzero ring.

A. Text

(2.1) (Zerodivisors). — Let R be a ring. An element x is called a zerodivisor if there is a nonzero y with $xy = 0$; otherwise, x is called a nonzerodivisor. Denote the set of zerodivisors by $\text{z.div}(R)$ and the set of nonzerodivisors by S_0.

(2.2) (Multiplicative subsets, prime ideals). — Let R be a ring. A subset S is called multiplicative if $1 \notin S$ and if $x, y \in S$ implies $xy \in S$.

For example, the subset of nonzerodivisors S_0 is multiplicative.

An ideal p is called prime if its complement $R - p$ is multiplicative, or equivalently, if $1 \notin p$ and if $xy \in p$ implies $x \in p$ or $y \in p$.

(2.3) (Fields, domains). — A ring is called a field if $1 \neq 0$ and if every nonzero element is a unit. Standard examples include the rational numbers \mathbb{Q}, the real numbers \mathbb{R}, the complex numbers \mathbb{C}, and the finite field \mathbb{F}_q with q elements.

A ring is called an integral domain, or simply a domain, if $\langle 0 \rangle$ is prime, or equivalently, if R is nonzero and has no nonzero zerodivisors.

Every domain R is a subring of its fraction field $\text{Frac}(R)$, which consists of the fractions $x=y$ with $x, y \in R$ and $y \neq 0$. Conversely, any subring R of a field K, including K itself, is a domain; indeed, any nonzero $x \in R$ cannot be a zerodivisor, because, if $xy = 0$, then $(1/x)(xy) = 0$, so $y = 0$. Further, $\text{Frac}(R)$ has this UMP: the inclusion of R into any field L extends uniquely to an inclusion of $\text{Frac}(R)$ into L. For example, the ring of integers \mathbb{Z} is a domain, and $\text{Frac}(\mathbb{Z}) = \mathbb{Q}$.

(2.4) (Polynomials over a domain). — Let R be a domain, $X := \{X_\lambda \}_{\lambda \in \Lambda}$ a set of variables. Set $P := R[X]$. Then P is a domain too. In fact, given nonzero $F, G \in P$, not only is their product FG nonzero, but also, as explained next, given a well ordering of the variables, the grlex leading term of FG is the product of the grlex leading terms of F and G, and

$$\text{deg}(FG) = \text{deg}(F) + \text{deg}(G). \tag{2.4.1}$$

Using the given ordering of the variables, well order all the monomials M of the same degree via the lexicographic order on exponents. Among the M in F with $\text{deg}(M) = \text{deg}(F)$, the largest is called the grlex leading monomial of F. Its grlex leading term is the product aM where $a \in R$ is the coefficient of M in F, and a is called the grlex leading coefficient.

The grlex leading term of FG is the product of those aM and bN of F and G, and (2.4.1) holds, for the following reasons. First, $ab \neq 0$ as R is a domain. Second,

$$\text{deg}(MN) = \text{deg}(M) + \text{deg}(N) = \text{deg}(F) + \text{deg}(G).$$

Third, $\text{deg}(MN) \geq \text{deg}(M'N')$ for every pair of monomials M' and N' in F and G. Equality holds if and only if $\text{deg}(M') = \text{deg}(F)$ and $\text{deg}(N') = \text{deg}(G)$. If so
and if either $M' \neq M$ or $N' \neq N$, then $M'N'$ is strictly smaller than MN. Thus $abMN$ is the grlex leading term of FG, and (2.4.1) holds.

Similarly, as explained next, the grlex hind term of FG is the product of the grlex hind terms of F and G. Further, given a vector $(x, y) \in R^2$, then

$$\text{ord}(x, y)FG = \text{ord}(x, y)F + \text{ord}(x, y)G,$$

(2.4.2)

Among the monomials M in F with $\text{ord}(M) = \text{ord}(F)$, the smallest is called the grlex hind monomial of F. The grlex hind term of F is the product aM where $a \in R$ is the coefficient of M in F.

It is easy to prove that the grlex hind term of FG is the product of the grlex hind terms of F and G by adapting the reasoning with grlex leading terms given above. Hence, if $(x, y) = (0)$, then (2.4.2) holds. Thus it holds in general, because $\varphi(x, y)F = \varphi(x, y)F \varphi(x, y)G$; see (1.8).

If $FG = 1$, note $F, G \in R$ owing to (2.4.1). This observation can fail if R is not a domain. For example, if $a^2 = 0$ in R, then $(1 + a)(1 - a) = 1$ in $R[X]$.

The fraction field $\text{Frac}(P)$ is called the field of rational functions, and is also denoted by $K(X)$ where $K := \text{Frac}(R)$.

Prove (2.5) (Unique factorization). — Let R be a domain, p a nonzero nonunit. We call p prime if, whenever $p \mid xy$ (that is, there exists $z \in R$ such that $pz = xy$), either $p \mid x$ or $p \mid y$. Clearly, p is prime if and only if the ideal $\langle p \rangle$ is prime.

Given $x, y \in R$, we call any $d \in R$ their greatest common divisor and write $d = \gcd(x, y)$ if $d\lvert x$ and $d\lvert y$ and if $c\lvert x$ and $c\lvert y$ implies $c\lvert d$. As R is a domain, it’s easy to see that $\gcd(x, y)$ is unique up to unit factor.

We call p irreducible if, whenever $p = yz$, either y or z is a unit. We call R a **Unique Factorization Domain** (UFD) if (1) every nonzero nonunit factors into a product of irreducibles and (2) the factorization is unique up to order and units.

Recall that (1) holds if and only if every ascending chain of principal ideals $\langle x_1 \rangle \subset \langle x_2 \rangle \subset \cdots$ stabilizes; see [3, (2.3), p. 393]. Moreover, if (1) holds, then (2) holds if and only if every irreducible is prime; see [3, (2.8), p. 395]. Conversely, primes are, plainly, always irreducible.

Plainly, if R is a UFD, then $\gcd(x, y)$ always exists.

Standard examples of UFDs include any field, the integers Z, and a polynomial ring in n variables over a UFD; see [3, p. 398, p. 401], [11, Cor. 18.23, p. 297].

Lemma (2.6). — Let $\varphi: R \to R'$ be a ring map, and $T \subset R'$ a subset. If T is multiplicative, then $\varphi^{-1}T$ is multiplicative; the converse holds if φ is surjective.

Proof: Set $S := \varphi^{-1}T$. If T is multiplicative, then $1 \in S$ as $\varphi(1) = 1 \in T$, and $x, y \in S$ implies $xy \in S$ as $\varphi(xy) = \varphi(x)\varphi(y) \in T$; thus S is multiplicative.

If S is multiplicative, then $1 \in T$ as $1 \in S$ and $\varphi(1) = 1$; further, $x, y \in S$ implies $\varphi(x), \varphi(y), \varphi(xy) \in T$. If φ is surjective, then every $x' \in T$ is of the form $x' = \varphi(x)$ for some $x \in S$. Thus if φ is surjective, then T is multiplicative if $\varphi^{-1}T$ is.

Proposition (2.7). — Let $\varphi: R \to R'$ be a ring map, and $q \subset R'$ an ideal. Set $p := \varphi^{-1}q$. If q is prime, then p is prime; the converse holds if φ is surjective.

Proof: By (2.6), $R - p$ is multiplicative if and only if $R' - q$ is. So the assertion results from the definition (2.2).

Corollary (2.8). — Let R be a ring, p an ideal. Then p is prime if and only if R/p is a domain.
Prime Ideals

Proof: By (2.7), \(p \) is prime if and only if \(\langle 0 \rangle \subset R/p \) is. So the assertion results from the definition of domain in (2.3).

Exercise (2.9). — Let \(R \) be a ring, \(P := R[X, Y] \) the polynomial ring in two sets of variables \(X \) and \(Y \). Set \(p := \langle \chi \rangle \). Show \(p \) is prime if and only if \(R \) is a domain.

Definition (2.10). — Let \(R \) be a ring. An ideal \(m \) is said to be maximal if \(m \) is proper and if there is no proper ideal \(a \) with \(m \subsetneq a \).

Example (2.11). — Let \(R \) be a domain, \(R[X, Y] \) the polynomial ring. Then \(\langle X \rangle \) is prime by (2.9). However, \(\langle X \rangle \) is not maximal since \(\langle X \rangle \subsetneq \langle X, Y \rangle \). Moreover, \(\langle X, Y \rangle \) is maximal if and only if \(R \) is a field by (1.17)(3) and by (2.14) below.

Proposition (2.12). — A ring \(R \) is a field if and only if \(\langle 0 \rangle \) is a maximal ideal.

Proof: Suppose \(R \) is a field. Let \(a \) be a nonzero ideal, and \(a \) a nonzero element of \(a \). Since \(R \) is a field, \(a \in R^\times \). So (1.4) yields \(a = R \).

Conversely, suppose \(\langle 0 \rangle \) is maximal. Take \(x \neq 0 \). Then \(\langle x \rangle \neq \langle 0 \rangle \). So \(\langle x \rangle = R \). So \(x \) is a unit by (1.4). Thus \(R \) is a field.

Corollary (2.13). — Let \(R \) be a ring, \(m \) an ideal. Then \(m \) is maximal if and only if \(R/m \) is a field.

Proof: Clearly, \(m \) is maximal in \(R \) if and only if \(\langle 0 \rangle \) is maximal in \(R/m \) by (1.9). Hence the assertion results from (2.12).

Example (2.14). — Let \(R \) be a ring, \(P \) the polynomial ring in variables \(X, Y \), and \(x_\lambda \in R \) for all \(\lambda \). Set \(m := \{X_\lambda - x_\lambda \} \). Then \(P/m = R \) by (1.17)(3). Thus \(m \) is maximal if and only if \(R \) is a field by (2.13).

Corollary (2.15). — In a ring, every maximal ideal is prime.

Proof: A field is a domain by (2.3). So (2.8) and (2.13) yield the result.

(2.16) (Coprime elements). — Let \(R \) be a ring, and \(x, y \in R \). We say \(x \) and \(y \) are (strictly) coprime if their ideals \(\langle x \rangle \) and \(\langle y \rangle \) are comaximal.

Plainly, \(x \) and \(y \) are coprime if and only if there are \(a, b \in R \) such that \(ax + by = 1 \), if and only if, given any \(z \in R \), there are \(a, b \in R \) such that \(ax + by = z \).

Plainly, \(x \) and \(y \) are coprime if and only if there is \(b \in R \) with \(by \equiv 1 \pmod{\langle x \rangle} \), if and only if the residue of \(y \) is a unit in \(R/\langle x \rangle \).

Fix \(m, n \geq 1 \). By (1.21)(3), \(x \) and \(y \) are coprime if and only if \(x^m \) and \(y^n \) are.

If \(x \) and \(y \) are coprime, then their images in any algebra \(R' \) are too.

(2.17) (PIDs). — A domain \(R \) is called a Principal Ideal Domain (PID) if every ideal is principal. Examples include a field \(k \), the polynomial ring \(k[X] \) in one variable, and the ring \(\mathbb{Z} \) of integers. A PID is a UFD; see [3, (2.12), p. 396], [11, Thm. 18.11, p. 291].

Let \(R \) be a PID, \(p \) a nonzero prime ideal. Say \(p = \langle p \rangle \). Then \(p \) is prime by (2.5), so irreducible. Now, let \(q \in R \) be irreducible. Then \(\langle q \rangle \) is maximal for this reason: if \(\langle q \rangle \subsetneq \langle x \rangle \), then \(q = xy \) for some nonunit \(y \); so \(x \) must be a unit as \(q \) is irreducible. So \(R/\langle q \rangle \) is a field by (2.13). Also \(\langle q \rangle \) is prime by (2.15); so \(q \) is prime by (2.5). Thus every irreducible element is prime, and every nonzero prime ideal is maximal.

Exercise (2.18). — Show that, in a PID, nonzero elements \(x \) and \(y \) are relatively prime (share no prime factor) if and only if they’re coprime.
Prime Ideals \((2.19) / (2.22)\) Text

Example (2.19). — Let \(R\) be a PID, and \(p \in R\) a prime. Set \(k := R/(p)\). Let \(X\) be a variable, and set \(P := R[X]\). Take \(G \in P\); let \(G'\) be its image in \(k[X]\); assume \(G'\) is irreducible. Set \(m := \langle p, G \rangle\). Then \(P/m \rightarrow k[X]/\langle G' \rangle\) by (1.16) and (1.9), and \(k[X]/\langle G' \rangle\) is a field by (2.17); hence, \(m\) is maximal by (2.13).

Theorem (2.20). — Let \(R\) be a PID. Let \(P := R[X]\) be the polynomial ring in one variable \(X\), and \(p\) a nonzero prime ideal of \(P\).

1. Then \(p = \langle F \rangle\) with \(F\) prime, or \(p\) is maximal.
2. Assume \(p\) is maximal. Then either \(p = \langle F \rangle\) with \(F\) prime, or \(p = \langle p, G \rangle\) with \(p \in R\) prime, \(pR = p \cap R\), and \(G \in P\) prime with image \(G' \in (R/pR)[X]\) prime.

Proof: Recall that \(R\) is a UFD, and so \(P\) is one too; see (2.17) and (2.5).

If \(p = \langle F \rangle\) for some \(F \in P\), then \(F\) is prime as \(p\) is. So assume \(p\) isn’t principal.

Take a nonzero \(F_1 \in p\). Since \(p\) is prime, \(p\) contains a prime factor \(F'_1\) of \(F_1\). Replace \(F_1\) by \(F'_1\). As \(p\) isn’t principal, \(p \neq \langle F_1 \rangle\). So there is a prime \(F_2 \in p - \langle F_1 \rangle\). Set \(K := \text{Frac}(R)\). Gauss’s Lemma implies that \(F_1\) and \(F_2\) are also prime in \(K[X]\); see [3, p. 401], [11, Thm. 18.15, p. 295]. So \(F_1\) and \(F_2\) are relatively prime in \(K[X]\).

So (2.17) and (2.18) yield \(G_1, G_2 \in P\) and \(c \in R\) with \((G_1/c)F_1 + (G_2/c)F_2 = 1\). So \(c = G_1F_1 + G_2F_2 \in R \cap p\). Hence \(R \cap p \neq 0\). But \(R \cap p \) is prime, and \(R\) is a PID; so \(R \cap p = pR\) where \(p\) is prime. Also \(pR\) is maximal by (2.17).

Set \(k := R/pR\). Then \(k\) is a field by (2.13). Set \(q := p/pR \subset k[X]\). Then \(k[X]/q = p/pR\) by (1.16) and (1.9). But \(p\) is prime; so \(P/pR\) is a domain by (2.8). So \(k[X]/q\) is a domain too. So \(q\) is prime also by (2.8). So \(q\) is maximal by (2.17). So \(p\) is maximal by (1.9). In particular, (1) holds.

Since \(k[X]\) is a PID and \(q\) is prime, \(q = \langle G' \rangle\) where \(G'\) is prime in \(k[X]\). Take \(G \in p\) with image \(G'\). Then \(p = \langle p, G \rangle\) as \(p/(p) = \langle G' \rangle\). Say \(G = \prod \{G_i\}_i\) with \(G_i \in P\) prime. So \(G' = \prod \{G'_i\}_j\) with \(G'_i\) the image of \(G_i\) in \(k[X]\). But \(G'\) is prime. So \(\langle G' \rangle = \langle G'_j \rangle\) for some \(j\). So replace \(G'\) by \(G'_j\) and \(G\) by \(G_j\). Then \(G\) is prime.

Finally, \(p = \langle F \rangle\) and \(p = \langle p, G \rangle\) can’t both hold. Else, \(F \mid p\). So \(\deg(F) = 0\) by (2.4.1). So \(\langle F \rangle = \langle p \rangle\). So \(p = \langle p \rangle\). So \(G' = 0\), a contradiction. Thus (2) holds.

Theorem (2.21). — Every proper ideal \(a\) is contained in some maximal ideal.

Proof: Set \(S := \{\text{ideals } b \mid b \supset a \text{ and } b \neq 1\}\). Then \(a \in S\), and \(S\) is partially ordered by inclusion. Given a totally ordered subset \(\{b_\lambda\}\) of \(S\), set \(b := \bigcup b_\lambda\). Then \(b\) is clearly an ideal, and \(1 \not\in b\); so \(b\) is an upper bound of \(\{b_\lambda\}\) in \(S\). Hence by Zorn’s Lemma [16, pp. 25, 26], [14, p. 880, p. 884], \(S\) has a maximal element, and it is the desired maximal ideal.

Corollary (2.22). — Let \(R\) be a ring, \(x \in R\). Then \(x\) is a unit if and only if \(x\) belongs to no maximal ideal.

Proof: By (1.4), \(x\) is a unit if and only if \(\langle x \rangle\) is not proper. Apply (2.21).
B. Exercises

Exercise (2.23). — Let a and b be ideals, and p a prime ideal. Prove that these conditions are equivalent: (1) $a \subset p$ or $b \subset p$; and (2) $a \cap b \subset p$; and (3) $ab \subset p$.

Exercise (2.24). — Let R be a ring, p a prime ideal, and m_1, \ldots, m_n maximal ideals. Assume $m_1 \cdots m_n = 0$. Show $p = m_i$ for some i.

Exercise (2.25). — Let R be a ring, and p, a_1, \ldots, a_n ideals with p prime.

1. Assume $p \supset \bigcap_{i=1}^n a_i$. Show $p \supset a_j$ for some j.
2. Assume $p = \bigcap_{i=1}^n a_i$. Show $p = a_j$ for some j.

Exercise (2.26). — Let R be a ring, S the set of all ideals that consist entirely of zerodivisors. Show that S has maximal elements and they’re prime. Conclude that $z/\text{div}(R)$ is a union of primes.

Exercise (2.27). — Given a prime number p and an integer $n \geq 2$, prove that the residue ring $\mathbb{Z}/(p^n)$ does not contain a domain as a subring.

Exercise (2.28). — Let $R := R' \times R''$ be a product of two rings. Show that R is a domain if and only if either R' or R'' is a domain and the other is 0.

Exercise (2.29). — Let $R := R' \times R''$ be a product of rings, $p \subset R$ an ideal. Show p is prime if and only if either $p = p' \times R''$ with p' prime or $p = R' \times p''$ with p'' prime.

Exercise (2.30). — Let R be a domain, and $x, y \in R$. Assume $(x) = (y)$. Show $x = uy$ for some unit u.

Exercise (2.31). — Let k be a field, R a nonzero ring, $\varphi: k \to R$ a ring map. Prove φ is injective.

Exercise (2.32). — Let R be a ring, p a prime, X a set of variables. Let $p[X]$ denote the set of polynomials with coefficients in p. Prove these statements:

1. $pR[X]$ and $p[\mathcal{X}]$ and $pR[X] + \langle \mathcal{X} \rangle$ are primes of $R[X]$, which contract to p.
2. Assume p is maximal. Then $pR[X] + \langle \mathcal{X} \rangle$ is maximal.

Exercise (2.33). — Let R be a ring, X a variable, $H \in P := R[X]$, and $a \in R$. Given $n \geq 1$, show $(X - a)^n$ and H are coprime if and only if $H(a)$ is a unit.

Exercise (2.34). — Let R be a ring, X a variable, $F \in P := R[X]$, and $a \in R$. Set $F' := \partial F/\partial X$; see (1.18.1). Show the following statements are equivalent:

1. a is a supersimple root of F.
2. a is a root of F, and $X - a$ and F' are coprime.
3. $F = (X - a)G$ for some G in P coprime to $X - a$.

Show that, if (3) holds, then G is unique.

Exercise (2.35). — Let R be a ring, p a prime; X a set of variables; $F, G \in R[X]$. Let $c(F), c(G), c(FG)$ be the ideals of R generated by the coefficients of F, G, FG.

1. Assume p doesn’t contain either $c(F)$ or $c(G)$. Show p doesn’t contain $c(FG)$.
2. Assume $c(F) = R$ and $c(G) = R$. Show $c(FG) = R$.

Exercise (2.36). — Let B be a Boolean ring. Show that every prime p is maximal, and that $B/p = \mathbb{F}_2$.

15
Exercise (2.37). — Let R be a ring. Assume that, given any $x \in R$, there is an $n \geq 2$ with $x^n = x$. Show that every prime p is maximal.

Exercise (2.38). — Prove the following statements or give a counterexample.

1. The complement of a multiplicative subset is a prime ideal.
2. Given two prime ideals, their intersection is prime.
3. Given two prime ideals, their sum is prime.
4. Given a ring map $\varphi : R \to R'$, the operation φ^{-1} carries maximal ideals of R' to maximal ideals of R.
5. In (1.9), an ideal $n' \subset R/a$ is maximal if and only if $\kappa^{-1}n' \subset R$ is maximal.

Exercise (2.39). — Preserve the setup of (2.20). Let $F := a_0 X^n + \cdots + a_n$ be a polynomial of positive degree n. Assume that R has infinitely many prime elements p, or simply that there is a p such that $p \nmid a_0$. Show that $\langle F \rangle$ is not maximal.

Exercise (2.40). — Preserve the setup of (2.20). Let $\langle 0 \rangle \subsetneq p_1 \subsetneq \cdots \subsetneq p_n$ be a chain of primes in P. Show $n \leq 2$, with equality if the chain is maximal—or, not a proper subchain of a longer chain—and if R has infinitely many primes.

Exercise (2.41) (Schwartz–Zippel Theorem with multiplicities) . — Let R be a domain, $T \subset R$ a subset of n elements, $P := R[X_1, \ldots, X_n]$ the polynomial ring in n variables, and $F \in P$ a nonzero polynomial of degree d.

1. Show by induction on n that $\sum_{x \in T} \text{ord}(x_1, \ldots, x_n) F \leq dq^{n-1}$.
2. Show that at most dq^{n-1} points $(x_1, \ldots, x_n) \in T^n$ satisfy $F(x_1, \ldots, x_n) = 0$.
3. Assume $d < q$. Show that $F(x_1, \ldots, x_n) \neq 0$ for some $x_i \in T_i$.

Exercise (2.42). — Let R be a domain, $P := R[X_1, \ldots, X_n]$ the polynomial ring, $F \in P$ nonzero, and $T_i \subset R$ subsets with t_i elements for $i = 1, \ldots, n$. For all i, assume that the highest power of X_i in F is at most $t_i - 1$. Show by induction on n that $F(x_1, \ldots, x_n) \neq 0$ for some $x_i \in T_i$.

Exercise (2.43) (Alon’s Combinatorial Nullstellensatz [1]) . — Let R be a domain, $P := R[X_1, \ldots, X_n]$ the polynomial ring, $F \in P$ nonzero of degree d, and $T_i \subset R$ a subset with t_i elements for $i = 1, \ldots, n$. Let $M := \prod_{i=1}^n X_i^{m_i}$ be a monomial with $m_i < t_i$ for all i. Assume F vanishes on $T_1 \times \cdots \times T_n$. Set $F_i(X_i) := \prod_{x \in T_i} (X_i - x)$. Then F has a nonzero factor over R.

1. Find $G_i \in P$ with $\deg(G_i) \leq d - t_i$ such that $F = \sum_{i=1}^n F_i G_i$.
2. Assume $\text{deg}(M) < d$. Show M appears in F.
3. Assume R is a field K. Set $a := \langle F_1, \ldots, F_n \rangle$ and $t := \prod_{i=1}^n t_i$. Define the evaluation map $\text{ev} : P \to K^t$ by $\text{ev}(G) := (G(x_1, \ldots, x_n))$ where (x_1, \ldots, x_n) runs over $T_1 \times \cdots \times T_n$. Show that ev induces a K-algebra isomorphism $\varphi : P/a \cong K^t$.

Exercise (2.44) (Cauchy–Davenport Theorem) . — Let $A, B \subset \mathbb{F}_p$ be nonempty subsets. Set $C := \{a + b \mid a \in A \text{ and } b \in B\}$. Say A, B, C have α, β, γ elements.

1. Assume $C \subsetneq \mathbb{F}_p$. Use $F(X, Y) := \prod_{c \in C} (X + Y - c)$ to show $\gamma \geq \alpha + \beta - 1$.
2. Show $\gamma \geq \min\{\alpha + \beta - 1, \, p\}$.

Exercise (2.45) (Chevalley–Warning Theorem) . — Let $P := \mathbb{F}_q[X_1, \ldots, X_n]$ be the polynomial ring, $F_1, \ldots, F_m \in P$, and $(c_1, \ldots, c_n) \in \mathbb{F}_q^n$ a common zero of the F_j. Assume $n > \sum_{i=1}^m \deg(F_i)$. Set $G_1 := \prod_{i=1}^m (1 - F_i^{q-1})$, $G_2 := \delta \prod_{j=1}^n \prod_{c \in \mathbb{F}_q, c \neq c_j} (X_j - c)$, and $F := G_1 - G_2$. Assume that for all i, $F_i^{q^n} - F_i \in \mathbb{F}_q$.
and choose δ so that $F(c_1, \ldots, c_n) = 0$.

1. Show that $X_1^{q-1} \cdots X_n^{q-1}$ has coefficient $-\delta$ in F and $\delta \neq 0$.
2. Use F and (2.43)(4) to show that the F_j have another common zero.
3. Radicals

Two radicals of a ring are commonly used in Commutative Algebra: the Jacobson radical, which is the intersection of all maximal ideals, and the nilradical, which is the set of all nilpotent elements. Closely related to the nilradical is the radical of a subset. We define these three radicals, and discuss examples. In particular, we study local rings; a local ring has only one maximal ideal, which is then its Jacobson radical. We prove two important general results: Prime Avoidance, which states that, if an ideal lies in a finite union of primes, then it lies in one of them, and the Scheinnullstellensatz, which states that the nilradical of an ideal is equal to the intersection of all the prime ideals containing it.

A. Text

Definition (3.1). — Let \(R \) be a ring. Its (Jacobson) radical \(\text{rad}(R) \) is defined to be the intersection of all its maximal ideals.

Proposition (3.2). — Let \(R \) be a ring, \(a \) an ideal, \(x \in R \), and \(u \in R^\times \). Then \(x \in \text{rad}(R) \) if and only if \(u - xy \in \text{rad}(R) \) for all \(y \in R \). In particular, the sum of an element of \(\text{rad}(R) \) and a unit is a unit, and \(a \subset \text{rad}(R) \) if \(1 - a \in R^\times \).

Proof: Assume \(x \in \text{rad}(R) \). Given a maximal ideal \(m \), suppose \(u - xy \in m \). Since \(x \in m \) too, also \(u \in m \), a contradiction. Thus \(u - xy \) is a unit by (2.22). In particular, taking \(y := -1 \) yields \(u + x \in R^\times \).

Conversely, assume \(x \notin \text{rad}(R) \). Then there is a maximal ideal \(m \) with \(x \notin m \). So \((x) + m = R \). Hence there exist \(y \in R \) and \(m \in m \) such that \(xy + m = u \). Then \(u - xy = m \in m \). So \(u - xy \) is not a unit by (2.22), or directly by (1.4).

In particular, given \(y \in R \), set \(a := u^{-1}xy \). Then \(u - xy = u(1 - a) \in R^\times \) if \(1 - a \in R^\times \). Also \(a \in a \) if \(x \in a \). Thus the first assertion implies the last. □

Corollary (3.3). — Let \(R \) be a ring, \(a \) an ideal, \(\kappa: R \to R/a \) the quotient map. Assume \(a \subset \text{rad}(R) \). Then \(\text{Idem}(\kappa) \) is injective.

Proof: Given \(e, e' \in \text{Idem}(R) \) with \(\kappa(e) = \kappa(e') \), set \(x := e - e' \). Then
\[
x^3 = e^3 - 3e^2e' + 3ee'^2 - e'^3 = e - e' = x.
\]
Hence \(x(1 - x^2) = 0 \). But \(\kappa(x) = 0 \); so \(x \in a \). But \(a \subset \text{rad}(R) \). Hence \(1 - x^2 \) is a unit by (3.2). Thus \(x = 0 \). Thus \(\text{Idem}(\kappa) \) is injective. □

Definition (3.4). — A ring is called local if it has exactly one maximal ideal, and semilocal if it has at least one and at most finitely many.

By the residue field of a local ring \(A \), we mean the field \(A/m \) where \(m \) is the (unique) maximal ideal of \(A \).

Lemma (3.5) (Nonunit Criterion). — Let \(A \) be a ring, \(n \) the set of nonunits. Then \(A \) is local if and only if \(n \) is an ideal; if so, then \(n \) is the maximal ideal.

Proof: Every proper ideal \(a \) lies in \(n \) as \(a \) contains no unit. So, if \(n \) is an ideal, then it is a maximal ideal, and the only one. Thus \(A \) is local.

Conversely, assume \(A \) is local with maximal ideal \(m \). Then \(A - n = A - m \) by (2.22). So \(n = m \). Thus \(n \) is an ideal. □
Example (3.6). — The product ring $R' \times R''$ is not local by (3.5) if both R' and R'' are nonzero. Indeed, $(1,0)$ and $(0,1)$ are nonunits, but their sum is a unit.

Example (3.7). — Let R be a ring. A formal power series in the n variables X_1, \ldots, X_n is a formal finite sum of the form $\sum a_{i_1}X_1^{i_1} \cdots X_n^{i_n}$ where $a_{i_1} \in R$ and where $(i_i) := (i_1, \ldots, i_n)$ with each $i_j \geq 0$. The term $a_{(0)}$ where $(0) := (0, \ldots, 0)$ is called the constant term. Addition and multiplication are performed as for polynomials; with these operations, these series form a ring $R[[X_1, \ldots, X_n]]$.

Set $P := R[[X_1, \ldots, X_n]]$ and $a := (X_1, \ldots, X_n)$. Then $\sum a_{(i)} X_1^{i_1} \cdots X_n^{i_n} \mapsto a_{(0)}$ is a canonical surjective ring map $P \to R$ with kernel a; hence, $P/a = R$.

Given an ideal $m \subseteq R$, set $n := a + mP$. Then (1.9) yields $P/n = R/m$.

A power series F is a unit if and only if its constant term $a_{(0)}$ is a unit. Indeed, if $FF' = 1$, then $a_{(0)}a_{(0)} = 1$ where $a_{(0)}$ is the constant term of F'. Conversely, if $a_{(0)}$ is a unit, then $F = a_{(0)}(1 - G)$ with $G \in a$. Set $F' := a^{-1}(1 + G + G^2 + \cdots)$; this sum makes sense as the component of degree d involves only the first $d + 1$ summands. Clearly $F \cdot F' = 1$.

Suppose R is a local ring with maximal ideal m. Given a power series $F \notin n$, its constant term lies outside m, so it is a unit by (2.22). So F itself is a unit. Hence the nonunits constitute n. Thus (3.5) implies P is local with maximal ideal n.

Example (3.8). — Let k be a ring, and $A := k[[X]]$ the formal power series ring in one variable. A formal Laurent series is a formal sum of the form $\sum_{i=-\infty}^{\infty} a_i X^i$ with $a_i \in k$ and $m \in \mathbb{Z}$. Plainly, these series form a ring $k[[X]]$. Set $K := k[[X]]$.

Set $F := \sum_{i=-\infty}^{\infty} a_i X^i$. If $a_{-m} \in k \setminus 0$, then $F \in K^\times$; indeed, $F = a_{-m}X^{-m}(1 - G)$ where $G \in A$, and $F - a_{-m}X^m(1 + G + G^2 + \cdots) = 1$.

Assume k is a field. If $F \neq 0$, then $F = X^{-m}H$ with $H := a_{-m}(1 - G) \in A \setminus \{0\}$. Let $a \subseteq A$ be a nonzero ideal. Suppose $F \in a$. Then $X^{-m} \in a$. Let n be the smallest integer such that $X^n \in a$. Then $-m \geq n$. Set $E := X^{-m-n}H$. Then $E \in A$ and $F = X^nE$. Hence $a = (X^n)$. Thus A is a PID.

Further, K is a field. In fact, $K = \text{Frac}(A)$ because any nonzero $F \in K$ is of the form $F = H/X^m$ where $H, X^m \in A$.

Let $A[Y]$ be the polynomial ring in one variable, and $\iota: A \hookrightarrow K$ the inclusion. Define $\varphi: A[Y] \to K$ by $\varphi|A = \iota$ and $\varphi(Y) := X^{-1}$. Then φ is surjective. Set $m := \ker(\varphi)$. Then m is maximal by (2.13) and (1.5). So by (2.20), m has the form $\langle F \rangle$ with F irreducible, or the form $\langle p, G \rangle$ with $p \in A$ irreducible and $G \in A[Y]$. But $m \cap A = (0)$ as ι is injective. So $m = \langle F \rangle$. But $XY - 1$ belongs to m, and is clearly irreducible; hence, $XY - 1 = FH$ with H a unit. Thus $\langle XY - 1 \rangle$ is maximal.

In addition, $\langle X, Y \rangle$ is maximal. Indeed, $A[Y]/\langle Y \rangle = A$ by (1.6)(2), and so (3.7) yields $A[Y]/\langle X, Y \rangle = A/\langle X \rangle = k$. However, $\langle X, Y \rangle$ is not principal, as no nonunit of $A[Y]$ divides both X and Y. Thus $A[Y]$ has both principal and nonprincipal maximal ideals, the two types allowed by (2.20).

Proposition (3.9). — Let R be a ring, S a multiplicative subset, and a an ideal with $a \cap S = \emptyset$. Set $S := \{\text{ideals } b \mid b \supset a \text{ and } b \cap S = \emptyset\}$. Then S has a maximal element p, and every such p is prime.

Proof: Clearly, $a \in S$, and S is partially ordered by inclusion. Given a totally ordered subset $\{b_\lambda\}$ of S, set $b := \bigcup b_\lambda$. Then b is an upper bound for $\{b_\lambda\}$ in S. So by Zorn’s Lemma, S has a maximal element p. Let’s show p is prime.
Take \(x, y \in R - p\). Then \(p + \langle x \rangle\) and \(p + \langle y \rangle\) are strictly larger than \(p\). So there are \(p, q \in p\) and \(a, b \in R\) with \(p + ax \in S\) and \(q + by \in S\). Since \(S\) is multiplicative, \(pq + phy + qax + abxy \in S\). But \(pq + phy + qax \in p\), so \(xy \notin p\). Thus \(p\) is prime. \(\square\)

Exercise (3.10). — Let \(\varphi: R \to R'\) be a ring map, \(p\) an ideal of \(R\). Show:

1. there is an ideal \(q\) of \(R'\) with \(\varphi^{-1}(q) = p\) if and only if \(\varphi^{-1}(pR') = p\).
2. if \(p\) is prime with \(\varphi^{-1}(pR') = p\), then there’s a prime \(q\) of \(R'\) with \(\varphi^{-1}(q) = p\).

Exercise (3.11) (Saturated multiplicative subsets). — Let \(R\) be a ring, and \(S\) a multiplicative subset. We say \(S\) is saturated if, given \(x, y \in R\) with \(xy \in S\), necessarily \(x, y \in S\).

For example, the following statements are easy to check. The group of units \(R^\times\) and the subset of nonzerodivisors \(S_0\) are saturated multiplicative subsets. Further, let \(\varphi: R \to R'\) be a ring map, \(T \subset R'\) a subset. If \(T\) is saturated multiplicative, then so is \(\varphi^{-1}T\). The converse holds if \(\varphi\) is surjective.

Lemma (3.12) (Prime Avoidance). — Let \(R\) be a ring, \(a\) a subset of \(R\) that is stable under addition and multiplication, and \(p_1, \ldots, p_n\) ideals such that \(p_3, \ldots, p_n\) are prime. If \(a \nsubseteq p_j\) for all \(j\), then there is an \(x \in a\) such that \(x \notin p_j\) for all \(j\); or equivalently, if \(a \subseteq \bigcup_{i=1}^n p_i\), then \(a \subseteq p_i\) for some \(i\).

Proof: Proceed by induction on \(n\). If \(n = 1\), the assertion is trivial. Assume that \(n \geq 2\) and by induction that, for every \(i\), there is an \(x_i \in a\) such that \(x_i \notin p_j\) for all \(j \neq i\). We may assume \(x_i \in p_i\) for every \(i\), else we’re done. If \(n = 2\), then clearly \(x_1 + x_2 \notin p_j\) for \(j = 1, 2\). If \(n \geq 3\), then \((x_1 \cdots x_{n-1}) + x_n \notin p_j\) for all \(j\); as, if \(j = n\), then \(x_n \in p_n\) and \(p_n\) is prime, and if \(j < n\), then \(x_n \notin p_j\) and \(x_j \in p_j\). \(\square\)

Exercise (3.13) (Other radicals). — Let \(R\) be a ring, \(a\) a subset. Its radical \(\sqrt{a}\) is the set

\[\sqrt{a} := \{x \in R \mid x^n \in a\text{ for some }n = n(x) \geq 1\}\]

Notice \(a \subseteq \sqrt{a}\) and \(\sqrt{\sqrt{a}} = \sqrt{a}\). Given a subset \(b \subseteq a\), notice \(b \subseteq \sqrt{a}\).

If \(a\) is an ideal and \(a = \sqrt{a}\), then \(a\) is said to be radical. For example, suppose \(a = \bigcap p_i\) with all \(p_i\) prime. If \(x^n \in a\) for some \(n \geq 1\), then \(x \in p_{\lambda}\) for all \(\lambda\). So \(\sqrt{a} \subseteq a\). Thus \(a\) is radical. This example is the only one by (3.14) below.

We call \(\sqrt{(0)}\) the nilradical, and sometimes denote it by \(\text{nil}(R)\). We call an element \(x \in R\) nilpotent if \(x\) belongs to \(\sqrt{(0)}\), that is, if \(x^n = 0\) for some \(n \geq 1\).

We call an ideal \(a\) nilpotent if \(a^n = 0\) for some \(n \geq 1\).

Recall that every maximal ideal is prime by (2.15) and that \(\text{rad}(R)\) is defined to be the intersection of all the maximal ideals. Thus \(\sqrt{\text{rad}(R)} = \text{rad}(R)\).

However, \(\langle 0 \rangle \subseteq \text{rad}(R)\). So \(\sqrt{(0)} \subseteq \sqrt{\text{rad}(R)}\). Thus

\[\text{nil}(R) \subseteq \text{rad}(R)\]

(3.13.1)

We call \(R\) reduced if \(\text{nil}(R) = \langle 0 \rangle\), that is, if \(R\) has no nonzero nilpotents.

Theorem (3.14) (Scheinnullstellensatz). — Let \(R\) be a ring, \(a\) an ideal. Then

\[\sqrt{a} = \bigcap_{p \supseteq a} p\]

where \(p\) runs through all the prime ideals containing \(a\). (By convention, the empty intersection is equal to \(R\).)
Take Use Zorn's lemma to prove that any prime ideal Let Let If Then Assume Let Let

Plainly (all the minimal primes of a So owing to the Scheinnullstellensatz (prime ideal q for every prime of a So by (3.10), there’s a prime q of R[X] with q R = p. So by (3.10)(2), there’s a prime q of R[X] with q R = p. In fact, a specific choice for q is the set of series \(\sum a_n x^n \) with \(a_n \in p \). Indeed, the canonical map \(R \to R/p \) induces a surjection \(R[X]/q \to (R/p)[X] \) with kernel q; so \(R[X]/q = (R/p)[X] \). Plainly \((R/p)[X] \) is a domain. But (3.19)(5) shows q may not be equal to \(p R[X] \).
B. Exercises

Exercise (3.21). — Let R be a ring, $a \subset \text{rad}(R)$ an ideal, $w \in R$, and $w' \in R/a$ its residue. Prove that $w \in R^x$ if and only if $w' \in (R/a)^x$. What if $a \not\subset \text{rad}(R)$?

Exercise (3.22). — Let A be a local ring, e an idempotent. Show $e = 1$ or $e = 0$.

Exercise (3.23). — Let A be a ring, m a maximal ideal such that $1 + m$ is a unit for every $m \in m$. Prove A is local. Is this assertion still true if m is not maximal?

Exercise (3.24). — Let R be a ring, S a subset. Show that S is saturated multiplicative if and only if $R - S$ is a union of primes.

Exercise (3.25). — Let R be a ring, and S a multiplicative subset. Define its saturation to be the subset

$$\mathcal{S} := \{ x \in R \mid \text{there is } y \in R \text{ with } xy \in S \}.$$

(1) Show (a) that $\mathcal{S} \supset S$, and (b) that \mathcal{S} is saturated multiplicative, and (c) that any saturated multiplicative subset T containing S also contains \mathcal{S}.

(2) Set $U := \bigcup_{p \ni S = 0} p$. Show that $R - \mathcal{S} = U$.

(3) Let a be an ideal; assume $S = 1 + a$; set $W := \bigcup_{p \ni a} p$. Show $R - \mathcal{S} = W$.

(4) Given $f, g \in R$, show that $\mathcal{S}f \subset \mathcal{S}g$ if and only if $\sqrt{(f)} \supset \sqrt{(g)}$.

Exercise (3.26). — Let R be a nonzero ring, S a subset. Show S is maximal in the set \mathcal{S} of multiplicative subsets T of R with $0 \notin T$ if and only if $R - S$ is a minimal prime of R.

Exercise (3.27). — Let k be a field, X_{λ} for $\lambda \in \Lambda$ variables, and Λ_{π} for $\pi \in \Pi$ disjoint subsets of Λ. Set $P := k[[X_{\lambda}]_{\lambda \in \Lambda}]$ and $p_{\pi} := \langle \{X_{\lambda}\}_{\lambda \in \Lambda_{\pi}} \rangle$ for all $\pi \in \Pi$. Let $F, G \in P$ be nonzero, and $a \subset P$ a nonzero ideal. Set $U := \bigcup_{\pi \in \Pi} p_{\pi}$. Show:

(1) Assume $F \in p_{\pi}$ for some $\pi \in \Pi$. Then every monomial of F is in p_{π}.

(2) Assume there are $\pi, \rho \in \Pi$ such that $F + G \in p_{\pi}$ and $G \in p_{\rho}$ but p_{ρ} contains no monomial of F. Then p_{π} contains every monomial of F and of G.

(3) Assume $a \subset U$. Then $a \subset p_{\pi}$ for some $\pi \in \Pi$.

Exercise (3.28). — Let k be a field, $S \subset k$ a subset of cardinality d at least 2.

(1) Let $P := k[X_1, \ldots, X_n]$ be the polynomial ring, $F \in P$ nonzero. Assume the highest power of any X_i in F is less than d. Proceeding by induction on n, show there are $a_1, \ldots, a_n \in S$ with $F(a_1, \ldots, a_n) \neq 0$.

(2) Let V be a k-vector space, and W_1, \ldots, W_r proper subspaces. Assume $r < d$. Show $\bigcup_i W_i \neq V$.

(3) In (2), let $W \subset \bigcup_i W_i$ be a subspace. Show $W \subset W_i$ for some i.

(4) Let R a k-algebra, a, a_1, \ldots, a_r ideals with $a \subset \bigcup_i a_i$. Show $a \subset a_i$ for some i.

Exercise (3.29). — Let k be a field, $R := k[X, Y]$ the polynomial ring in two variables, $m := \langle X, Y \rangle$. Show m is a union of strictly smaller primes.

Exercise (3.30). — Find the nilpotents in $\mathbb{Z}/(n)$. In particular, take $n = 12$.

Exercise (3.31) (Nakayama’s Lemma for nilpotent ideals). — Let R be a ring, a an ideal, M a module. Assume $aM = M$ and a is nilpotent. Show $M = 0$.

Exercise (3.32). — Let R be a ring; a, b ideals; p a prime. Prove the following:

1. $\sqrt{ab} = \sqrt{a} \cap \sqrt{b}$.
2. $\sqrt{a} = R$ if and only if $a = R$.
3. $\sqrt{a + b} = \sqrt{\sqrt{a} + \sqrt{b}}$.
4. $\sqrt{p^n} = p$ for all $n > 0$.

22
Exercises

Exercise (3.33). — Let R be a ring. Prove these statements: (1) Assume every ideal not contained in $\text{nil}(R)$ contains a nonzero idempotent. Then $\text{nil}(R) = \text{rad}(R)$. (2) Assume R is Boolean. Then $\text{nil}(R) = \text{rad}(R) = \langle 0 \rangle$.

Exercise (3.34). — Let $e, e' \in \text{Idem}(R)$. Assume $\sqrt[\text{nil}]{\langle e \rangle} = \sqrt[\text{nil}]{\langle e' \rangle}$. Show $e = e'$.

Exercise (3.35). — Let R be a ring, a_1, a_2 comaximal ideals with $a_1a_2 \subset \text{nil}(R)$. Show there are complementary idempotents e_1 and e_2 with $e_1 + e_2 = 1$.

Exercise (3.36). — Let R be a ring, a an ideal, $\phi: R \to R'$ the quotient map. Assume $a \subset \text{nil}(R)$. Show $\text{Idem}(\phi)$ is bijective.

Exercise (3.37). — Let R be a ring. Prove the following statements equivalent:

(1) R has exactly one prime p;
(2) every element of R is either nilpotent or a unit;
(3) $R/\text{nil}(R)$ is a field.

Exercise (3.38). — Let R be a ring, a and b ideals. Assume that b is finitely generated modulo a and that $b \subset \sqrt[a]{a}$. Show there’s $n \geq 1$ with $b^n \subset a$.

Exercise (3.39). — Let $\varphi: R \to R'$ be a ring map, $a \subset R$ and $b \subset R'$ subsets. Prove these two relations: (1) $(\varphi(\sqrt[a]{a}))R' \subset \sqrt[a]{\langle \varphi(a) \rangle}R'$ and (2) $\varphi^{-1}(\sqrt[b]{b}) = \sqrt[a]{\varphi^{-1}(b)}$.

Exercise (3.40). — Let R be a ring, a an ideal, p a prime. Assume p is finitely generated modulo q. Show $p = \sqrt[a]{a}$ if and only if there’s $n \geq 1$ with $p^n \supset q \supset p^n$.

Exercise (3.41). — Let R be a ring. Assume R is reduced and has finitely many minimal prime ideals p_1, \ldots, p_n. Prove $\varphi: R \to \prod(R/p_i)$ is injective, and for each i, there is some $(x_1, \ldots, x_n) \in \text{Im}(\varphi)$ with $x_i \neq 0$ but $x_j = 0$ for $j \neq i$.

Exercise (3.42). — Let R be a ring, X a variable, $F := a_0 + a_1X + \cdots + a_nX^n$.

(1) Prove F is nilpotent if and only if a_0, \ldots, a_n are nilpotent.
(2) Prove F is a unit if and only if a_0 is a unit and a_1, \ldots, a_n are nilpotent.

Exercise (3.43). — Generalize (3.42) to the polynomial ring $P := R[X_1, \ldots, X_r]$.

Exercise (3.44). — Let R be a ring, R' an algebra, X a variable. Show:

(1) $\text{nil}(R)R' \subset \text{nil}(R')$ and (2) $\text{rad}(R[X]) = \text{nil}(R[X]) = \text{nil}(R)R[X]$.
4. Modules

In Commutative Algebra, it has proven advantageous to expand the study of rings to include modules. Thus we obtain a richer theory, which is more flexible and more useful. We begin the expansion here by discussing residue modules, kernels, and images. In particular, we identify the UMP of the residue module, and use it to construct the Noether isomorphisms. We also construct free modules, direct sums, and direct products, and we describe their UMPs.

A. Text

(4.1) (Modules). — Let \(R \) be a ring. Recall that an \(R \)-module \(M \) is an abelian group, written additively, with a scalar multiplication \(R \times M \to M \), written \((x,m) \mapsto xm\), which is

1. distributive, \(x(m+n) = xm + xn \) and \((x+y)m = xm + ym\),
2. associative, \(x(ym) = (xy)m \), and
3. unitary, \(1 \cdot m = m \).

For example, if \(R \) is a field, then an \(R \)-module is a vector space. Moreover, a \(\mathbb{Z} \)-module is just an abelian group; multiplication is repeated addition.

As in (1.1), for any \(x \in R \) and \(m \in M \), we have \(x \cdot 0 = 0 \) and \(0 \cdot m = 0 \).

A submodule \(N \) of \(M \) is a subgroup that is closed under multiplication; that is, \(xn \in N \) for all \(x \in R \) and \(n \in N \). For example, the ring \(R \) itself is an \(R \)-module, and the submodules are just the ideals. Given an ideal \(a \), let \(aN \) denote the smallest submodule containing all products \(an \) with \(a \in a \) and \(n \in N \). Similar to (1.4), clearly \(aN \) is equal to the set of finite sums \(\sum a_i n_i \) with \(a_i \in a \) and \(n_i \in N \).

Given \(m \in M \), define its annihilator, denoted \(\text{Ann}(m) \) or \(\text{Ann}_R(m) \), by

\[\text{Ann}(m) := \{ x \in R \mid xm = 0 \} \]

Furthermore, define the annihilator of \(M \), denoted \(\text{Ann}(M) \) or \(\text{Ann}_R(M) \), by

\[\text{Ann}(M) := \{ x \in R \mid xm = 0 \text{ for all } m \in M \} \]

Plainly, \(\text{Ann}(m) \) and \(\text{Ann}(M) \) are ideals.

We call the intersection of all maximal ideals containing \(\text{Ann}(M) \) the radical of \(M \), and denote it by \(\text{rad}(M) \) or \(\text{rad}_R(M) \). Note that, owing to (1.9) and (2.7), reduction sets up a bijective correspondence between the maximal ideals containing \(\text{Ann}(M) \) and the maximal ideals of \(R/\text{Ann}(M) \); hence,

\[\text{rad}(R/\text{Ann}(M)) = \text{rad}(M)/\text{Ann}(M). \] \(\tag{4.1.1} \)

If \(R \) is local with maximal ideal \(m \) and if \(M \neq 0 \), notice \(m = \text{rad}(M) \).

Given a submodule \(N \) of \(M \), note \(\text{Ann}(M) \subset \text{Ann}(N) \). Thus \(\text{rad}(M) \subset \text{rad}(N) \). Similarly, \(\text{Ann}(M) \subset \text{Ann}(M/N) \). Thus \(\text{rad}(M) \subset \text{rad}(M/N) \).

We call \(M \) semilocal if there are only finitely many maximal ideals containing \(\text{Ann}(M) \). Trivially, if \(R \) is semilocal, then so is \(M \). Moreover, owing to the bijective correspondence between maximal ideals noted above, \(M \) is semilocal if and only if \(R/\text{Ann}(M) \) is a semilocal ring.

Given a set \(X := \{ X_\lambda \}_{\lambda \in \Lambda} \) of variables, form the set of “polynomials”:

\[M[X] := \left\{ \sum_{i=0}^n m_i M_i \mid m_i \in M \text{ and the } M_i \text{ monomials in the } X_\lambda \right\} \]
Canonically, $M[\mathcal{X}]$ is an $R[\mathcal{X}]$-module.

Exercise (4.3). Let R be a ring, M a module. Consider the set map

$$\rho: \text{Hom}(R,M) \to M \quad \text{defined by} \quad \rho(\theta) := \theta(1).$$

Show that ρ is an isomorphism, and describe its inverse.

Exercise (4.3). Let R be a ring, M a module. Consider the set map

$$\rho: \text{Hom}(R,M) \to M \quad \text{defined by} \quad \rho(\theta) := \theta(1).$$

Show that ρ is an isomorphism, and describe its inverse.

Exercise (4.3). Let R be a ring, M a module. Consider the set map

$$\rho: \text{Hom}(R,M) \to M \quad \text{defined by} \quad \rho(\theta) := \theta(1).$$

Show that ρ is an isomorphism, and describe its inverse.
we obtain a module structure on N by setting $xn := (\nu x)(n)$. Then $\mu_R = \nu$.

We call M faithful if $\mu_R: R \to \text{End}_R(M)$ is injective, or $\text{Ann}(M) = 0$. For example, R is a faithful R-module, as $x \cdot 1 = 0$ implies $x = 0$.

Exercise 4.5 (Algebras). — Fix two rings R and R'.

Suppose R' is an R-algebra with structure map φ. Let M' be an R'-module. Then M' is also an R-module by restriction of scalars: $xm := \varphi(x)m$. In other words, the R-module structure on M' corresponds to the composition

$$R \xrightarrow{\varphi} R' \xrightarrow{\mu_R} \text{End}_R(M').$$

In particular, R' is an R'-module, so R' is an R-module; further,

$$(xy)z = x(yz) \quad \text{for all } x \in R \text{ and } y, z \in R'.$$

Indeed, R' is an R'-module, so an R-module by restriction of scalars; further, $(xy)z = x(yz)$ since $(\varphi(x)y)z = \varphi(x)(yz)$ by associativity in R'.

Conversely, suppose R' is an R'-module satisfying (4.5.1). Then R' has an R-algebra structure that is compatible with the given R-module structure. Indeed, define $\varphi: R \to R'$ by $\varphi(x) := x \cdot 1$. Then $\varphi(x)x = xz$ as $(x \cdot 1)z = x(1 \cdot z)$. So the composition $\mu_R: R \to \text{End}_R(M) \to \text{End}_R(R'') \to \text{End}_R(R') \to \text{End}_R(R')$ is equal to μ_R. Hence φ is a ring map, because μ_R is one and μ_R is injective by (4.4). Thus R' is an R-algebra, and restriction of scalars recovers its given R-module structure.

Suppose that $R' = R/a$ for some ideal a. Then an R-module M has a compatible R'-module structure if and only if $aM = 0$; if so, then the R'-structure is unique. Indeed, the ring map $\mu_R: R \to \text{End}_R(M)$ factors through R' if and only if $\mu_R(a) = 0$ by (1.5), so if and only if $aM = 0$; as $\text{End}_R(M)$ may be noncommutative, we must apply (1.5) to $\mu_R(R)$, which is commutative.

For a second example, suppose R' is the polynomial ring in one variable $R[X]$. Fix an R-module M. Then to give a compatible $R'[X]$-module structure is the same as to give an endomorphism $\chi: M \to M$, because to give a factorization $\mu_R: R \to R'[X] \to \text{End}_R(M)$ is the same as to give an $\chi \in \text{End}_R(M)$.

Again suppose R' is an arbitrary R-algebra with structure map φ. A subalgebra R'' of R' is a subring such that φ maps into R''. The subalgebra generated by $x\lambda \in R'$ for $\lambda \in \Lambda$ is the smallest R-subalgebra that contains all $x\lambda$. We denote it by $R[\{x\lambda\}]$, or simply by $R[x_1, \ldots, x_n]$ if $\Lambda = \{1, \ldots, n\}$, and call the $x\lambda$ algebra generators. This subalgebra plainly contains all polynomial combinations of the $x\lambda$ with coefficients in R. In fact, the set R'' of these polynomial combinations is itself, plainly, an R-subalgebra; hence, $R'' = R[\{x\lambda\}]$.

We say R' is a finitely generated R-algebra or is algebra finite over R if there exist $x_1, \ldots, x_n \in R'$ such that $R' = R[x_1, \ldots, x_n]$.

Exercise 4.6 (Residue modules). — Let R be a ring, M a module, $M' \subset M$ a submodule. Form the set of cosets, or set of residues,

$$M/M' := \{m + M' \mid m \in M\}.$$

Recall that M/M' inherits a module structure, and is called the residue module, or quotient, of M modulo M'. Form the quotient map

$$\kappa: M \to M/M' \quad \text{by} \quad \kappa(m) := m + M'.$$

Clearly κ is surjective, κ is linear, and κ has kernel M'.

Let $\alpha: M \to N$ be linear. Note that $\text{Ker}(\alpha) \supset M'$ if and only if $\alpha(M') = 0$.

26
Recall that, if $\text{Ker}(\alpha) \supset M'$, then there exists a homomorphism $\beta: M/M' \to N$ such that $\beta \kappa = \alpha$; that is, the following diagram is commutative:

$$
\begin{array}{ccc}
M & \xrightarrow{\kappa} & M/M' \\
\downarrow{\alpha} & & \downarrow{\beta} \\
N & & N
\end{array}
$$

Conversely, if β exists, then $\text{Ker}(\alpha) \supset M'$, or $\alpha(M') = 0$, as $\kappa(M') = 0$.

Further, if β exists, then β is unique as κ is surjective.

Thus, as κ is surjective, if β exists, then β is surjective if and only if α is so. In addition, then β is injective if and only if $M' = \text{Ker}(\alpha)$. Therefore, β is an isomorphism if and only if α is surjective and $M' = \text{Ker}(\alpha)$. In particular, always $M/\text{Ker}(\alpha) \cong \text{Im}(\alpha)$. \hfill (4.6.1)

In practice, it is usually more productive to view M/M' not as a set of cosets, but simply another module M'' that comes equipped with a surjective homomorphism $\alpha: M \to M''$ whose kernel is the given submodule M'.

Finally, as we have seen, M/M' has the following UMP: $\kappa(M') = 0$, and given $\alpha: M \to N$ such that $\alpha(M') = 0$, there is a unique homomorphism $\beta: M/M' \to N$ such that $\beta \kappa = \alpha$. Formally, the UMP determines M/M' up to unique isomorphism.

(4.7) (Cyclic modules). — Let R be a ring. A module M is said to be cyclic if there exists $m \in M$ such that $M = Rm$. If so, form $\alpha: R \to M$ by $x \mapsto xm$; then α induces an isomorphism $R/\text{Ann}(m) \cong M$ as $\text{Ker}(\alpha) = \text{Ann}(m)$; see (4.6.1). Note that $\text{Ann}(m) = \text{Ann}(M)$. Conversely, given any ideal a, the R-module R/a is cyclic, generated by the coset of 1, and $\text{Ann}(R/a) = a$.

(4.8) (Noether Isomorphisms). — Let R be a ring, N a module, and L and M submodules.

First, assume $L \subset M$. Form the following composition of quotient maps:

$$
\alpha: N \to N/L \to (N/L)/(M/L).
$$

Clearly α is surjective, and $\text{Ker}(\alpha) = M$. Hence owing to (4.6), α factors through the isomorphism β in this commutative diagram:

$$
\begin{array}{ccc}
N & \xrightarrow{\beta} & N/M \\
\downarrow{} & & \downarrow{\simeq} \\
N/L & \to & (N/L)/(M/L)
\end{array}
$$

\hfill (4.8.1)

Second, no longer assuming $L \subset M$, set

$$
L + M := \{ \ell + m \mid \ell \in L, \ m \in M \} \subset N.
$$

Plainly $L + M$ is a submodule. It is called the sum of L and M.

Form the composition α' of the inclusion map $L \to L + M$ and the quotient map $L + M \to (L + M)/M$. Clearly α' is surjective and $\text{Ker}(\alpha') = L \cap M$. Hence owing to (4.6), α' factors through the isomorphism β' in this commutative diagram:

$$
\begin{array}{ccc}
L & \xrightarrow{\beta'} & L/(L \cap M) \\
\downarrow{} & & \downarrow{\simeq} \\
L + M & \to & (L + M)/M
\end{array}
$$

\hfill (4.8.2)
The isomorphisms of (4.6.1) and (4.8.1) and (4.8.2) are called Noether’s First, Second, and Third Isomorphisms.

(4.9) (Cokernels, coimages). — Let \(R \) be a ring, \(\alpha: M \to N \) a linear map. Associated to \(\alpha \) are its cokernel and its coimage,

\[
\text{Coker}(\alpha) := N/\text{Im}(\alpha) \quad \text{and} \quad \text{Coim}(\alpha) := M/\text{Ker}(\alpha);
\]

they are quotient modules, and their quotient maps are both denoted by \(\kappa \).

Note (4.6) yields the UMP of the cokernel: \(\kappa \alpha = 0 \), and given a map \(\beta: N \to P \) with \(\beta \alpha = 0 \), there is a unique map \(\gamma: \text{Coker}(\alpha) \to P \) with \(\gamma \kappa = \beta \) as shown below

\[
\begin{array}{c}
M \xrightarrow{\alpha} N \xrightarrow{\alpha} \text{Coker}(\alpha) \\
\downarrow{\beta} \downarrow{\gamma} \\
P
\end{array}
\]

Further, (4.6.1) becomes \(\text{Coim}(\alpha) \xrightarrow{\kappa} \text{Im}(\alpha) \). Moreover, \(\text{Im}(\alpha) = \text{Ker}(\kappa) \).

(4.10) (Generators, free modules). — Let \(R \) be a ring, \(M \) a module. Given a subset \(N \subseteq M \), by the submodule \(\langle N \rangle \) that \(N \) generates, we mean the smallest submodule containing \(N \).

Given elements \(m_\lambda \in M \) for \(\lambda \in \Lambda \), by the submodule they generate, we mean the submodule generated by the set \(\{ m_\lambda \} \). If \(\Lambda = \emptyset \), then this submodule consists just of \(0 \). If \(\Lambda = \{ 1, \ldots, n \} \), then the submodule is usually denoted by \(\langle m_1, \ldots, m_n \rangle \).

Any submodule containing all the \(m_\lambda \) contains any (finite) linear combination \(\sum x_\lambda m_\lambda \) with \(x_\lambda \in R \) and almost all \(0 \). Form the set \(N \), or \(\sum Rm_\lambda \), of all such linear combinations. Plainly, \(N \) is a submodule containing all \(m_\lambda \), so is the submodule they generate.

Given a submodule \(N \) and elements \(m_\lambda \in N \) that generate \(N \), we refer to the \(m_\lambda \) as generators of \(N \).

Given a number of submodules \(N_\lambda \), by their sum \(\sum N_\lambda \), we mean the set of all finite linear combinations \(\sum x_\lambda m_\lambda \) with \(x_\lambda \in R \) and \(m_\lambda \in N_\lambda \). Plainly, \(\sum N_\lambda \) is equal to the submodule the \(N_\lambda \) generate, namely, the smallest submodule that contains all \(N_\lambda \).

By the intersection \(\bigcap N_\lambda \), we mean the intersection as sets. It is, plainly, a submodule.

Elements \(m_\lambda \in M \) are said to be free or linearly independent if, whenever \(\sum x_\lambda m_\lambda = 0 \), also \(x_\lambda = 0 \) for all \(\lambda \). The \(m_\lambda \) are said to form a (free) basis of \(M \) if they are free and generate \(M \); if so, then we say \(M \) is free on the \(m_\lambda \).

We say \(M \) is finitely generated if it has a finite set of generators.

We say \(M \) is free if it has a free basis. If so, then by either (5.32)(2) or (10.5) below, any two free bases have the same number \(\ell \) of elements, and we say \(M \) is free of rank \(\ell \), and we set \(\text{rank}(M) := \ell \).

For example, form the set of restricted vectors

\[
R^{\oplus \Lambda} := \{(x_\lambda) \mid x_\lambda \in R \quad \text{with} \quad x_\lambda = 0 \quad \text{for almost all} \quad \lambda \}.
\]

It is a module under componentwise addition and scalar multiplication. It has a standard basis, which consists of the vectors \(e_\mu \) whose \(\lambda \)th component is the value of the Kronecker delta function; that is,

\[
e_\mu := (\delta_{\mu \lambda}) \quad \text{where} \quad \delta_{\mu \lambda} := \begin{cases} 1, & \text{if} \quad \lambda = \mu; \\ 0, & \text{if} \quad \lambda \neq \mu. \end{cases}
\]

28
Clearly the standard basis is free. If \(\Lambda \) has a finite number of elements, then \(R^{\oplus \Lambda} \) is often written \(R^\ell \) and called the direct sum of \(\ell \) copies of \(R \).

For instance, \(\mathbb{Z}^{\oplus \Lambda} \) is just the free Abelian group on \(\Lambda \).

The free module \(R^{\oplus \Lambda} \) has the following UMP: given a module \(M \) and elements \(m_\lambda \in M \) for \(\lambda \in \Lambda \), there is a unique \(R \)-map

\[
\alpha : R^{\oplus \Lambda} \to M \text{ with } \alpha(e_\lambda) = m_\lambda \text{ for each } \lambda \in \Lambda;
\]

namely, \(\alpha((x_\lambda)) = \sum \alpha(x_\lambda e_\lambda) = \sum x_\lambda m_\lambda \). Note the following obvious statements:

1. \(\alpha \) is surjective if and only if the \(m_\lambda \) generate \(M \).
2. \(\alpha \) is injective if and only if the \(m_\lambda \) are linearly independent.
3. \(\alpha \) is an isomorphism if and only if the \(m_\lambda \) form a free basis.

Thus \(M \) is free of rank \(\ell \) if and only if \(M \cong R^\ell \).

Example (4.11). — Take \(R := \mathbb{Z} \) and \(M := \mathbb{Q} \). Then any two \(x, y \) in \(M \) are not free; indeed, if \(x = a/b \) and \(y = -c/d \), then \(bcx + ady = 0 \). So \(M \) is not free.

Also \(M \) is not finitely generated. Indeed, given any \(m_1/n_1, \ldots, m_r/n_r \in M \), let \(d \) be a common multiple of \(n_1, \ldots, n_r \). Then \((1/d)\mathbb{Z} \) contains every linear combination \(x_1(m_1/n_1) + \cdots + x_r(m_r/n_r) \), but \((1/d)\mathbb{Z} \not\subset M \).

Moreover, \(\mathbb{Q} \) is not algebra finite over \(\mathbb{Z} \). Indeed, let \(p \in \mathbb{Z} \) be any prime not dividing \(n_1 \cdots n_r \). Then \(1/p \notin \mathbb{Z}[m_1/n_1, \ldots, m_r/n_r] \).

Theorem (4.12). — Let \(R \) be a PID, \(E \) a free module, \(\{e_\lambda\}_{\lambda \in \Lambda} \) a (free) basis, and \(F \) a submodule. Then \(F \) is free, and has a basis indexed by a subset of \(\Lambda \).

Proof: Well order \(\Lambda \). For all \(\lambda \), let \(\pi_\lambda : E \to R \) be the \(\lambda \)th projection. For all \(\mu \), set \(E_\mu := \bigoplus_{\lambda \leq \mu} Re_\lambda \) and \(F_\mu := F \cap E_\mu \). Then \(\pi_\mu(F_\mu) = \langle a_\mu \rangle \) for some \(a_\mu \in R \) as \(R \) is a PID. Choose \(f_\mu \in F_\mu \) with \(\pi_\mu(f_\mu) = a_\mu \). Set \(\Lambda_0 := \{ \mu \in \Lambda \mid a_\mu \neq 0 \} \).

Say \(\sum_{\mu \in \Lambda_0} c_\mu f_\mu = 0 \) for some \(c_\mu \in R \). Set \(\Lambda_1 := \{ \mu \in \Lambda_0 \mid c_\mu \neq 0 \} \). Suppose \(\Lambda_1 \neq \emptyset \). Note \(\Lambda_1 \) is finite. Let \(\mu_1 \) be the greatest element of \(\Lambda_1 \). Then \(\pi_{\mu_1}(f_{\mu_1}) = 0 \) for \(\mu < \mu_1 \) as \(f_{\mu_1} \in E_{\mu_1} \). So \(\pi_{\mu_1}(\sum c_\mu f_\mu) = c_{\mu_1} a_{\mu_1} \). So \(c_{\mu_1} a_{\mu_1} = 0 \). But \(c_{\mu_1} \neq 0 \) and \(a_{\mu_1} \neq 0 \), a contradiction. Thus \(\{f_\mu\}_{\mu \in \Lambda_0} \) is linearly independent.

Note \(F = \bigcup_{\lambda \in \Lambda} F_\lambda \). Given \(\lambda \in \Lambda_0 \), set \(\Lambda_\lambda := \{ \mu \in \Lambda_0 \mid \mu \leq \lambda \} \). Suppose \(\lambda \) is least such that \(\{f_\mu\}_{\mu \in \Lambda_\lambda} \) does not generate \(F_\lambda \). Given \(f \in F_\lambda \), say \(f = \sum_{\mu \leq \lambda} c_\mu e_\mu \) with \(c_\mu \in R \). Then \(\pi_\lambda(f) = c_\lambda \). But \(\pi_\lambda(F_\lambda) = \langle a_\lambda \rangle \). So \(c_\lambda = b_\lambda a_\lambda \) for some \(b_\lambda \in R \). Set \(g := f - b_\lambda f_\lambda \). Then \(g \in F_\lambda \), and \(\pi_\lambda(g) = 0 \). So \(g \in F_\nu \) for some \(\nu \in \Lambda_0 \) with \(\nu < \lambda \). Hence \(g = \sum_{\mu \in \Lambda_\nu} b_\mu f_\mu \) for some \(b_\mu \in R \). So \(f = \sum_{\mu \in \Lambda_\lambda} b_\mu f_\mu \), a contradiction. Hence \(\{f_\mu\}_{\mu \in \Lambda_0} \) generates \(F_\lambda \). Thus \(\{f_\mu\}_{\mu \in \Lambda_0} \) is a basis of \(F_\lambda \). \(\square \)

4.13 (Direct Products, Direct Sums). — Let \(R \) be a ring, \(\Lambda \) a set, \(M_\lambda \) a module for \(\lambda \in \Lambda \). The direct product of the \(M_\lambda \) is the set of arbitrary vectors:

\[
\prod M_\lambda := \{ (m_\lambda) \mid m_\lambda \in M_\lambda \}.
\]

Clearly, \(\prod M_\lambda \) is a module under componentwise addition and scalar multiplication.

The direct sum of the \(M_\lambda \) is the subset of restricted vectors:

\[
\bigoplus M_\lambda := \{ (m_\lambda) \mid m_\lambda = 0 \text{ for almost all } \lambda \} \subset \prod M_\lambda.
\]

Clearly, \(\bigoplus M_\lambda \) is a submodule of \(\prod M_\lambda \). Clearly, \(\bigoplus M_\lambda = \prod M_\lambda \) if \(\Lambda \) is finite. If \(\Lambda = \{ \lambda_1, \ldots, \lambda_n \} \), then \(\bigoplus M_\lambda \) is also denoted by \(M_{\lambda_1} \oplus \cdots \oplus M_{\lambda_n} \). Further, if \(M_\lambda = M \) for all \(\lambda \), then \(\bigoplus M_\lambda \) is also denoted by \(M^\lambda \), or by \(M^n \) if \(\Lambda \) has just \(n \) elements.
The direct product comes equipped with projections
\[\pi_\kappa : \prod M_\lambda \to M_\kappa \quad \text{given by} \quad \pi_\kappa((m_\lambda)) := m_\kappa. \]
It is easy to see that \(\prod M_\lambda \) has this UMP: \textit{given R-maps} \(\alpha_\kappa : L \to M_\kappa \), \textit{there’s a unique R-map} \(\alpha : L \to \prod M_\lambda \) \textit{with} \(\pi_\kappa \alpha = \alpha_\kappa \) \textit{for all} \(\kappa \in \Lambda \); namely, \(\alpha(n) = (\alpha_\lambda(n)) \).
Often, \(\alpha \) is denoted \((\alpha_\lambda) \).
In other words, the \(\pi_\kappa \) induce a bijection of sets,
\[\text{Hom}(L, \prod M_\lambda) \cong \prod \text{Hom}(L, M_\lambda). \quad (4.13.1) \]
Clearly, this bijection is an isomorphism of modules.
Similarly, the direct sum comes equipped with injections
\[\iota_\kappa : M_\kappa \to \bigoplus M_\lambda \quad \text{given by} \quad \iota_\kappa(m) := (m_\lambda) \quad \text{where} \quad m_\lambda := \begin{cases} m, & \text{if} \ \lambda = \kappa; \\ 0, & \text{if} \ \lambda \neq \kappa. \end{cases} \]
It’s easy to see it has this UMP: \textit{given R-maps} \(\beta_\kappa : M_\kappa \to N \), \textit{there’s a unique R-map} \(\beta : \bigoplus M_\lambda \to N \) \textit{with} \(\beta \iota_\kappa = \beta_\kappa \) \textit{for all} \(\kappa \in \Lambda \); namely, \(\beta((m_\lambda)) = \sum \beta_\lambda(m_\lambda) \).
Often, \(\beta \) is denoted \(\sum \beta_\lambda \); often, \((\beta_\lambda) \).
In other words, the \(\iota_\kappa \) induce this bijection:
\[\text{Hom}(\bigoplus M_\lambda, N) \cong \prod \text{Hom}(M_\lambda, N). \quad (4.13.2) \]
Clearly, this bijection of sets is an isomorphism of modules.
For example, if \(M_\lambda = R \) for all \(\lambda \), then \(\bigoplus M_\lambda = R^{\oplus \Lambda} \) by construction. Further, if \(N_\lambda := N \) for all \(\lambda \), then \(\text{Hom}(R^{\oplus \Lambda}, N) = \prod N_\lambda \) by (4.13.2) and (4.3).

B. Exercises

Exercise (4.14). Let \(R \) be a ring, \(a \) and \(b \) ideals, \(M \) and \(N \) modules. Set
\[\Gamma_a(M) := \{ m \in M \mid a \subset \sqrt{\text{Ann}(m)} \}. \]
Show: (1) Assume \(a \supset b \). Then \(\Gamma_a(M) \subset \Gamma_b(M) \).
(2) Assume \(M \subset N \). Then \(\Gamma_a(M) = \Gamma_a(N) \cap M \).
(3) Then \(\Gamma_a(\Gamma_b(M)) = \Gamma_{a+b}(M) = \Gamma_a(M) \cap \Gamma_b(M) \).
(4) Then \(\Gamma_a(M) = \Gamma_{\sqrt[\Lambda]{a}}(M) \).
(5) Assume \(a \) is finitely generated. Then \(\Gamma_a(M) = \bigcup_{n \geq 1} \{ m \in M \mid a^n m = 0 \} \).

Exercise (4.15). Let \(R \) be a ring, \(M \) a module, \(x \in \text{rad}(M) \), and \(m \in M \). Assume \((1+x)m = 0 \). Show \(m = 0 \).

Exercise (4.16). Let \(R \) be a ring, \(M \) a module, \(N \) and \(N_\lambda \) submodules for \(\lambda \in \Lambda \), and \(a, a_\lambda, b \) ideals for \(\lambda \in \Lambda \). Set \((N : a) := \{ m \in M \mid am \subset N \} \).
Show:
(1) \((N : a) \) is a submodule.
(2) \(N \subset (N : a) \).
(3) \((N : a)a \subset N \).
(4) \((N : a)b = (N : ab) = ((N : a)b) : a \).
(5) \((\bigcap N_\lambda : a) = \bigcap (N_\lambda : a) \).
(6) \(N : (\sum a_\lambda) = \bigcap (N : a_\lambda) \).

Exercise (4.17). Let \(R \) be a ring, \(M \) a module, \(N, N_\lambda, L, L_\lambda \) submodules for \(\lambda \in \Lambda \). Set \((N : L) := \{ x \in R \mid xL \subset N \} \).
Show:
(1) \((N : L) \) is an ideal.
(2) \(N : L = \text{Ann}((L + N)/N) \).
(3) \(0 : L = \text{Ann}(L) \).
(4) \(N : L = R \) if \(L \subset N \).
(5) \((\bigcap N_\lambda : L) = \bigcap (N_\lambda : L) \).
(6) \(N : (\sum L_\lambda) = \bigcap (N : L_\lambda) \).
4.18 \textbf{Exercise}. Let R be a ring, $X := \{X_{\lambda}\}$ a set of variables, M a module, N a submodule. Prove these statements:

1. $M[X]$ is universal among R-modules Q with a given R-map $\alpha: M \to Q$; namely, there’s a unique R-map $\beta: M[X] \to Q$ with $\beta|_M = \alpha$.

2. $M[X]$ has this UMP: given a P-module Q and R-maps $\alpha: M \to Q$ and $\chi: Q \to Q$ for all λ, there’s a unique R-map $\beta: M[X] \to Q$ with $\beta|M = \alpha$ and $\beta|_{\lambda M} = \chi|_{\lambda M}$ for all λ.

4.19 \textbf{Exercise}. Let R be a ring, X a set of variables, M a module, and N_1, \ldots, N_r submodules. Set $N = \bigcap N_i$. Prove the following equations:

1. $\Ann(M[X]) = \Ann(M)[X]$.

2. $N[X] = \bigcap N_i[X]$.

4.20 \textbf{Exercise}. Let R be a ring, M a module, X a variable, $F \in R[X]$. Assume there’s a nonzero $G \in M[X]$ with $FG = 0$. Show there’s a nonzero $m \in M$ with $Fm = 0$. Proceed as follows. Say $G = m_0 + m_1X + \cdots + m_sX^s$ with $m_s \neq 0$. Assume s is minimal among all possible G. Show $Fm_s = 0$ (so $s = 0$).

4.21 \textbf{Exercise}. Let R be a ring, a and b ideals, and M a module. Set $N := M/aM$. Show that $M/(a+b)M \cong N/bN$.

4.22 \textbf{Exercise}. Show that a finitely generated free module F has finite rank.

4.23 \textbf{Exercise}. Let R be a domain, and $x \in R$ nonzero. Let M be the submodule of $\text{Frac}(R)$ generated by 1, x^{-1}, x^{-2}, \ldots. Suppose that M is finitely generated. Prove that $x^{-1} \in R$, and conclude that $M = R$.

4.24 \textbf{Exercise}. Let Λ be an infinite set, $R\lambda$ a nonzero ring for $\lambda \in \Lambda$. Endow $\prod R\lambda$ and $\bigoplus R\lambda$ with componentwise addition and multiplication. Show that $\prod R\lambda$ has a multiplicative identity (so is a ring), but that $\bigoplus R\lambda$ does not (so is not a ring).

4.25 \textbf{Exercise}. Let R be a ring, M a module, and M', M'' submodules. Show that $M = M' \oplus M''$ if and only if $M = M' + M''$ and $M' \cap M'' = 0$.

4.26 \textbf{Exercise}. Let L, M, and N be modules. Consider a diagram

$$L \overset{\alpha}{\longrightarrow} M \overset{\beta}{\longrightarrow} N$$

where α, β, ρ, and σ are homomorphisms. Prove that $M = L \oplus N$ and $\alpha = \iota_L$, $\beta = \pi_N$, $\sigma = \iota_N$, $\rho = \pi_L$ if and only if the following relations hold:

$\beta \alpha = 0$, $\beta \sigma = 1$, $\rho \sigma = 0$, $\rho \alpha 1$, and $\alpha \rho + \sigma \beta = 1$.

4.27 \textbf{Exercise}. Let L be a module, Λ a nonempty set, M_{λ} a module for $\lambda \in \Lambda$. Prove that the injections $\iota_{\lambda}: M_{\lambda} \to \bigoplus M_{\lambda}$ induce an injection $\bigoplus \text{Hom}(L, M_{\lambda}) \hookrightarrow \text{Hom}(L, \bigoplus M_{\lambda})$, and that it is an isomorphism if L is finitely generated.

4.28 \textbf{Exercise}. Let a be an ideal, Λ a nonempty set, M_{λ} a module for $\lambda \in \Lambda$. Prove $a(\bigoplus M_{\lambda}) = \bigoplus aM_{\lambda}$. Prove $a(\prod M_{\lambda}) = \prod aM_{\lambda}$ if a is finitely generated.

4.29 \textbf{Exercise}. Let R be a ring, Λ a set, M_{λ} a module for $\lambda \in \Lambda$, and $N_{\lambda} \subseteq M_{\lambda}$ a submodule. Set $M := \bigoplus M_{\lambda}$ and $N := \bigoplus N_{\lambda}$ and $Q := \bigoplus M_{\lambda}/N_{\lambda}$. Show $M/N = Q$.
5. Exact Sequences

In the study of modules, the exact sequence plays a central role. We relate it to the kernel and image, the direct sum and direct product. We introduce diagram chasing, and prove the Snake Lemma, which is a fundamental result in homological algebra. We define projective modules, and characterize them in four ways. Finally, we prove Schanuel’s Lemma, which relates two arbitrary presentations of a module.

In an appendix, we use determinants to study Fitting ideals and free modules. In particular, we prove that the rank of a free module is invariant under isomorphism; more proofs are given in (8.25)(2) and (10.5). We also prove the Elementary Divisors Theorem for a nested pair $N \subset M$ of free modules with N of rank n over a PID; it asserts that M has (a free) basis containing elements x_1, \ldots, x_n with unique multiples d_1x_1, \ldots, d_nx_n that form a basis of N; also, $d_i \mid d_{i+1}$ for $i < n$.

A. Text

Definition (5.1). — A (finite or infinite) sequence of module homomorphisms

$$\cdots \rightarrow M_{i-1} \xrightarrow{\alpha_{i-1}} M_i \xrightarrow{\alpha_i} M_{i+1} \rightarrow \cdots$$

is said to be **exact at** M_i if $\text{Ker}(\alpha_i) = \text{Im}(\alpha_{i-1})$. The sequence is said to be **exact** if it is exact at every M_i, except an initial source or final target.

Example (5.2). — (1) A sequence $0 \rightarrow L \rightarrow M \rightarrow 0$ is exact if and only if α is injective. If so, then we often identify L with its image $\alpha(L)$.

Dually — that is, in the analogous situation with all arrows reversed — a sequence $M \rightarrow N \rightarrow 0$ is exact if and only if β is surjective.

(2) A sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is exact if and only if $L = \text{Ker}(\alpha)$, where ‘=’ means “canonically isomorphic.” Dually, a sequence $L \rightarrow M \rightarrow N \rightarrow 0$ is exact if and only if $N = \text{Coker}(\beta)$ owing to (1) and (4.6.1).

Example (5.2). — (1) A sequence $0 \rightarrow L \rightarrow M \rightarrow 0$ is exact if and only if α is injective. If so, then we often identify L with its image $\alpha(L)$.

Dually — that is, in the analogous situation with all arrows reversed — a sequence $M \rightarrow N \rightarrow 0$ is exact if and only if β is surjective.

(2) A sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is exact if and only if $L = \text{Ker}(\alpha)$, where ‘=’ means “canonically isomorphic.” Dually, a sequence $L \rightarrow M \rightarrow N \rightarrow 0$ is exact if and only if $N = \text{Coker}(\beta)$ owing to (1) and (4.6.1).

(5.3) Short exact sequences. — A sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is exact if and only if α is injective and $N = \text{Coker}(\beta)$, or dually, if and only if β is surjective and $L = \text{Ker}(\alpha)$. If so, then the sequence is called **short exact**, and often we regard L as a submodule of M, and N as the quotient M/L.

For example, the following sequence is clearly short exact:

$$0 \rightarrow L \xrightarrow{i_L} L \oplus N \xrightarrow{\pi_N} N \rightarrow 0$$

where $\pi_N(l, n) := n$.

Proposition (5.4). — For $\lambda \in \Lambda$, let $M^{\prime}_{\lambda} \rightarrow M_{\lambda} \rightarrow M^{\prime\prime}_{\lambda}$ be a sequence of module homomorphisms. If every sequence is exact, then so are the two induced sequences

$$\bigoplus M^{\prime}_{\lambda} \rightarrow \bigoplus M_{\lambda} \rightarrow \bigoplus M^{\prime\prime}_{\lambda} \quad \text{and} \quad \prod M^{\prime}_{\lambda} \rightarrow \prod M_{\lambda} \rightarrow \prod M^{\prime\prime}_{\lambda}.$$

Conversely, if either induced sequence is exact then so is every original one.

Proof: The assertions are immediate from (5.1) and (4.13).

Exercise (5.5). — Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime\prime} \rightarrow 0$ be a short exact sequence. Prove that, if M^{\prime} and $M^{\prime\prime}$ are finitely generated, then so is M.

32
Let consider this commutative diagram with exact rows:

\begin{equation}
\begin{array}{ccc}
M' & \xrightarrow{\alpha} & M \\
\gamma & \downarrow & \beta \\
0 & \xrightarrow{\gamma'} & N
\end{array}
\end{equation}

Assume (1). Then there exists a section \(\sigma : M'' \rightarrow M' + M'' \) with \(\sigma \alpha = \iota_{M'} \) and \(\beta \sigma = \pi_{M''} \). Then plainly (2) and (3) hold.

Assume (2). Set \(\sigma' := 1_M - \alpha \rho \). Then \(\sigma' \alpha = \alpha - \alpha \rho \alpha \). But \(\rho \alpha = 1_{M'} \) as \(\rho \) is a retraction. So \(\sigma' \alpha = 0 \). Hence there exists \(\sigma : M'' \rightarrow M \) with \(\sigma \beta = \sigma' \) by (5.2) and the UMP of (4.9). Thus \(1_M = \alpha \rho + \sigma \beta \).

Hence \(\beta = \beta \rho + \beta \sigma \beta \). But \(\beta \alpha = 0 \) as the sequence is exact. So \(\beta = \beta \sigma \beta \). But \(\beta \) is surjective. Thus \(1_M = \beta \sigma ; \) that is, (3) holds.

Similarly, \(\sigma = \alpha \rho \sigma + \sigma \beta \sigma \). But \(\beta \sigma = 1_{M''} \) as (3) holds. So \(0 = \alpha \rho \sigma \). But \(\alpha \) is injective, as \(\rho \) is a retraction of it. Thus \(\rho \sigma = 0 \). Thus (4.26) yields (1).

Assume (3). Then similarly (1) and (2) hold.

Example (5.9). — Let \(R \) be a ring, \(R' \) an \(R \)-algebra, and \(M \) an \(R' \)-module. Set \(H := \text{Hom}_R(R', M) \). Define \(\alpha : M \rightarrow H \) by \(\alpha(m)(x) := xm \), and \(\rho : H \rightarrow M \) by \(\rho(\theta) := \theta(1) \). Then \(\rho \) is a retraction of \(\alpha \), as \(\rho(\alpha(m)) = 1 \cdot m \). Let \(\beta : M \rightarrow \text{Coker}(\alpha) \) be the quotient map. Then (5.8) implies that \(M \) is a direct summand of \(H \) with \(\alpha = \iota_M \) and \(\rho = \pi_M \).

Lemma (5.10) (Snake). — Consider this commutative diagram with exact rows:

\begin{equation}
\begin{array}{ccc}
M' & \xrightarrow{\alpha} & M \\
\gamma & \downarrow & \beta \\
0 & \xrightarrow{\gamma'} & N
\end{array}
\end{equation}

It yields the following exact sequence:

\begin{equation}
\text{Ker}(\gamma) \xrightarrow{\gamma} \text{Ker}(\gamma) \xrightarrow{\psi} \text{Ker}(\gamma'') \xrightarrow{\beta} \text{Coker}(\gamma'') \xrightarrow{\psi'} \text{Coker}(\gamma'').
\end{equation}

Moreover, if \(\alpha \) is injective, then so is \(\psi \); dually, if \(\beta' \) is surjective, then so is \(\psi' \).

Proof: Clearly \(\alpha \) restricts to a map \(\varphi \), because \(\alpha(\text{Ker}(\gamma')) \subseteq \text{Ker}(\gamma) \) since \(\alpha' \gamma'(\text{Ker}(\gamma')) = 0 \). By the UMP discussed in (4.9), \(\alpha' \) factors through a unique map \(\varphi' \) because \(M' \) goes to 0 in \(\text{Coker}(\gamma) \). Similarly, \(\beta \) and \(\beta' \) induce corresponding maps \(\psi \) and \(\psi' \). Thus all the maps in (5.10) defined except for \(\partial \).

To define \(\partial \), chase an \(m'' \in \text{Ker}(\gamma'') \) through the diagram. Since \(\beta \) is surjective, there is \(m \in M \) such that \(\beta(m) = m'' \). By commutativity, \(\gamma' \beta(m) = \beta' \gamma(m) \). So
Let $\beta\gamma(m) = 0$. By exactness of the bottom row, there is a unique $n' \in N'$ such that $\alpha'(n') = \gamma(m)$. Define $\partial(m'')$ to be the image of n' in $\text{Coker}(\gamma')$.

To see ∂ is well defined, choose another $m_1 \in M$ with $\beta(m_1) = m''$. Let $n'_1 \in N'$ be the unique element with $\alpha'(n'_1) = \gamma(m_1)$ as above. Since $\beta(m - m_1) = 0$, there is an $m' \in M'$ with $\alpha(m') = m - m_1$. But $\alpha'(m') = \gamma(m)$. So $\alpha'(n'_1) = \gamma(m)$ and $\alpha'(n'_1) = \gamma(m)$. Hence $\gamma'(m') = n' - n'_1$ since α' is injective. So n' and n'_1 have the same image in $\text{Coker}(\gamma')$. Thus ∂ is well defined.

Let’s show that (5.10.1) is exact at $\text{Ker}(\gamma'')$. Take $m'' \in \text{Ker}(\gamma'')$. As in the construction of ∂, take $m \in M$ such that $\beta(m) = m''$ and take $n' \in N'$ such that $\alpha'(n') = \gamma(m)$. Suppose $m'' \in \text{Ker}(\partial)$. Then the image of n' in $\text{Coker}(\gamma')$ is equal to zero; so there is $m' \in M'$ such that $\gamma'(m') = n'$. Clearly $\gamma\alpha(m') = \alpha'\gamma(m')$. So $\gamma\alpha(m') = \alpha'(m'n) = \gamma(m)$. Hence $m - \alpha(m') \in \text{Ker}(\gamma)$. Since $\beta(m - \alpha(m')) = m''$, clearly $m'' = \psi(m - \alpha(m'))$; so $m'' \in \text{Im}(\psi)$. Hence $\text{Ker}(\partial) \subseteq \text{Im}(\psi)$.

Conversely, suppose $m'' \in \text{Im}(\psi)$. We may assume $m \in \text{Ker}(\gamma)$. So $\gamma(m) = 0$ and $\alpha'(n') = 0$. Since α' is injective, $n' = 0$. Thus $\partial(m'') = 0$, and so $\text{Im}(\psi) \subseteq \text{Ker}(\partial)$. Thus $\text{Ker}(\partial) = \text{Im}(\psi)$; that is, (5.10.1) is exact at $\text{Ker}(\gamma'')$.

The other verifications of exactness are similar or easier.

The last two assertions are clearly true. \qed

Theorem (5.11) (Left exactness of Hom). — (1) Let $M' \to M \to M'' \to 0$ be a sequence of linear maps. Then it is exact if and only if, for all modules N, the following induced sequence is exact:

$$0 \to \text{Hom}(M'', N) \to \text{Hom}(M, N) \to \text{Hom}(M', N). \tag{5.11.1}$$

(2) Let $0 \to N' \to N \to N''$ be a sequence of linear maps. Then it is exact if and only if, for all modules M, the following induced sequence is exact:

$$0 \to \text{Hom}(M, N') \to \text{Hom}(M, N) \to \text{Hom}(M, N'').$$

Proof: By (5.2)(2), the exactness of $M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ means simply that $M'' = \text{Coker}(\alpha)$. On the other hand, the exactness of (5.11.1) means that a $\varphi \in \text{Hom}(M, N)$ maps to zero, or equivalently $\varphi\alpha = 0$, if and only if there is a unique $\gamma: M'' \to N$ such that $\gamma\beta = \varphi$. So (5.11.1) is exact if and only if M'' has the UMP of $\text{Coker}(\alpha)$, discussed in (4.9); that is, $M'' = \text{Coker}(\alpha)$. Thus (1) holds.

The proof of (2) is similar — in fact, dual. \qed

Definition (5.12). — An (free) **presentation** of a module M is an exact sequence

$$G \to F \to M \to 0$$

with G and F free. If G and F are free of finite rank, then the presentation is called **finite**. If M has a finite presentation, then M is said to be **finitely presented**.

Proposition (5.13). — Let R be a ring, M a module, m_λ for $\lambda \in \Lambda$ generators. Then there is an exact sequence $0 \to K \to R^{\oplus \Lambda} \xrightarrow{\alpha} M \to 0$ with $\alpha(e_\lambda) = m_\lambda$, where $\{e_\lambda\}$ is the standard basis, and there is a presentation $R^{\oplus \Sigma} \to R^{\oplus \Lambda} \xrightarrow{\alpha} M \to 0$.

Proof: By (4.10)(1), there is a surjection $\alpha: R^{\oplus \Lambda} \to M$ with $\alpha(e_\lambda) = m_\lambda$. Set $K := \text{Ker}(\alpha)$. Then $0 \to K \to R^{\oplus \Lambda} \to M \to 0$ is exact by (5.3). Take a set of generators $\{k_\sigma\}_{\sigma \in \Sigma}$ of K, and repeat the process to obtain a surjection $R^{\oplus \Sigma} \to K$. Then $R^{\oplus \Sigma} \to R^{\oplus \Lambda} \to M \to 0$ is a presentation. \qed
Definition (5.14). — A module P is called **projective** if, given any surjective linear map $\beta : M \to N$, every linear map $\alpha : P \to N$ lifts to one $\gamma : P \to M$; namely, $\alpha = \beta \gamma$.

Exercise (5.15). — Show that a free module $R^\oplus \Lambda$ is projective.

Theorem (5.16). — The following conditions on an R-module P are equivalent:

1. The module P is projective.
2. Every short exact sequence $0 \to K \to M \to P \to 0$ splits.
3. There is a module K such that $K \oplus P$ is free.
4. Every exact sequence $N' \to N \to N''$ induces an exact sequence $\text{Hom}(P, N') \to \text{Hom}(P, N) \to \text{Hom}(P, N'')$.

\begin{equation}
\text{(5.16.1)}
\end{equation}

5. Every surjective homomorphism $\beta : M \to N$ induces a surjection $\text{Hom}(P, \beta) : \text{Hom}(P, M) \to \text{Hom}(P, N)$.

Proof: Assume (1). In (2), the surjection $M \to P$ and the identity $P \to P$ yield a section $P \to M$. So the sequence splits by (5.8). Thus (2) holds.

Assume (2). By (5.13), there is an exact sequence $0 \to K \to R^\oplus \Lambda \to P \to 0$. Then (2) implies $K \oplus P \simeq R^\oplus \Lambda$. Thus (3) holds.

Assume (3); say $K \oplus P \simeq R^\oplus \Lambda$. For each $\lambda \in \Lambda$, take a copy $N'_\lambda \to N_\lambda \to N'_\lambda$ of the exact sequence $N' \to N \to N''$ of (4). Then the induced sequence

$$\prod N'_\lambda \to \prod N_\lambda \to \prod N''_\lambda.$$

is exact by (5.4). But by the end of (4.13), that sequence is equal to this one:

$$\text{Hom}(R^\oplus \Lambda, N') \to \text{Hom}(R^\oplus \Lambda, N) \to \text{Hom}(R^\oplus \Lambda, N'').$$

But $K \oplus P \simeq R^\oplus \Lambda$. So owing to (4.13.2), the latter sequence is also equal to $\text{Hom}(K, N') \oplus \text{Hom}(P, N') \to \text{Hom}(K, N) \oplus \text{Hom}(P, N) \to \text{Hom}(K, N'') \oplus \text{Hom}(P, N'')$.

Hence (5.16.1) is exact by (5.4). Thus (4) holds.

Assume (4). Then every exact sequence $M \xrightarrow{\beta} N \to 0$ induces an exact sequence

$$\text{Hom}(P, M) \xrightarrow{\text{Hom}(P, \beta)} \text{Hom}(P, N) \to 0.$$

In other words, (5) holds.

Assume (5). Then every $\alpha \in \text{Hom}(P, N)$ is the image under $\text{Hom}(P, \beta)$ of some $\gamma \in \text{Hom}(P, M)$. But, by definition, $\text{Hom}(P, \beta)(\gamma) = \beta \gamma$. Thus (1) holds. \qed

Lemma (5.17) (Schanuel’s). — Any two short exact sequences

$$0 \to L \xrightarrow{\alpha} P \xrightarrow{\beta} M \to 0 \quad \text{and} \quad 0 \to L' \xrightarrow{\alpha'} P' \xrightarrow{\beta'} M \to 0$$

with P and P' projective are essentially isomorphic; namely, there’s a commutative diagram with vertical isomorphisms:

\[\begin{array}{ccc}
0 \to L \oplus P' & \xrightarrow{1 \oplus 1\beta'} & P \oplus P' \xrightarrow{(\alpha, 0)} M \to 0 \\
\downarrow \beta & \approx & \downarrow \gamma \\
0 \to P \oplus L' & \xrightarrow{1P \oplus 1\alpha'} & P \oplus P' \xrightarrow{(0, \alpha')} M \to 0
\end{array} \]
Exact Sequences

First, let’s construct an intermediate isomorphism of exact sequences:

\[
0 \to L \oplus P' \overset{\iota \oplus 1_{P'}}{\longrightarrow} P \oplus P' \overset{(\alpha \ 0)}{\longrightarrow} M \to 0
\]

\[
\xymatrix{ 0 \ar[r] & L \ar[r] \ar[d]^\lambda & P \oplus P' \ar[r]^-\theta \ar[d] & M \ar[r] & 0 \\
0 \ar[r] & K \ar[r] & \frac{P}{\text{ker}(\alpha)} \ar[r] & \frac{M}{\text{coker}(\alpha)} \ar[r] & 0 }
\]

Take \(K := \ker(\alpha \alpha') \). To form \(\theta \), recall that \(P' \) is projective and \(\alpha \) is surjective. So there is a map \(\pi: P' \to P \) such that \(\alpha' = \alpha \pi \). Take \(\theta := \frac{1}{0} \).

Then \(\theta \) has \(\frac{1}{0} \) as inverse. Further, the right-hand square is commutative:

\[
(\alpha \ 0)\theta = (\alpha \ 0)\left(\frac{1}{0}\right) = (\alpha \alpha \pi) = (\alpha \alpha').
\]

So \(\theta \) induces the desired isomorphism \(\lambda: K \to L \oplus P' \).

Symmetrically, form an isomorphism \(\theta': P \oplus P' \to P \oplus L' \), which induces an isomorphism \(\lambda': K \to P \oplus L' \). Finally, take \(\gamma := \theta' \theta \) and \(\beta := \lambda' \lambda^{-1} \).

Exercise (5.18). — Let \(R \) be a ring, and \(0 \to L \to R^n \to M \to 0 \) an exact sequence. Prove \(M \) is finite presented if and only if \(L \) is finite generated.

Proposition (5.19). — Let \(0 \to L \overset{\alpha}{\to} M \overset{\beta}{\to} N \to 0 \) be a short exact with \(L \) finite generated and \(M \) finite presented. Then \(N \) is finite presented.

Proof: Let \(R \) be the ground ring, \(\mu: R^n \to M \) any surjection. Set \(\nu := \beta \mu \), set \(K := \ker \nu \), and set \(\lambda := \mu[K] \). Then the following diagram is commutative:

\[
\xymatrix{ 0 \ar[r] & K \ar[r] \ar[d]^\lambda & R^n \ar[r]^-\nu \ar[d]^\mu & N \ar[r] \ar[d]^-{1_N} & 0 \\
0 \ar[r] & L \ar[r]^-\alpha & M \ar[r] & N \ar[r] & 0 }
\]

The Snake Lemma (5.10) yields an isomorphism \(\ker \lambda \to \ker \mu \). But \(\ker \mu \) is finite generated by (5.18). So \(\ker \lambda \) is finite generated. Also, the Snake Lemma implies \(\coker \lambda = 0 \) as \(\coker \mu = 0 \); so \(0 \to \ker \lambda \to K \to L \to 0 \) is exact. Hence \(K \) is finite generated by (5.5). Thus \(N \) is finite presented by (5.18).

Proposition (5.20). — Let \(0 \to L \overset{\alpha}{\to} M \overset{\beta}{\to} N \to 0 \) be a short exact with \(L \) and \(N \) finite presented. Then \(M \) is finite presented too.

Proof: Let \(R \) be the ground ring, \(\lambda: R^\ell \to L \) and \(\nu: R^n \to N \) any surjections. Define \(\gamma: R^\ell \to M \) by \(\gamma := \alpha \lambda \). Note \(R^n \) is projective by (5.15), and define \(\delta: R^n \to M \) by lifting \(\nu \) along \(\beta \). Define \(\mu: R^\ell \oplus R^n \to M \) by \(\mu := \gamma + \delta \). Then the following diagram is, plainly, commutative, where \(\iota := \iota_{R^n} \) and \(\pi := \pi_{R^n} \):

\[
\xymatrix{ 0 \ar[r] & R^\ell \ar[r]^-\lambda & R^\ell \oplus R^n \ar[r]^-\mu \ar[d]^\nu & R^n \ar[r] & 0 \\
0 \ar[r] & L \ar[r]^-\alpha & M \ar[r]^-\beta & N \ar[r] & 0 }
\]

Since \(\lambda \) and \(\nu \) are surjective, the Snake Lemma (5.10) yields an exact sequence

\[
0 \to \ker \lambda \to \ker \mu \to \ker \nu \to 0,
\]

and implies \(\coker \mu = 0 \). Also, \(\ker \lambda \) and \(\ker \nu \) are finite generated by (5.18). So \(\ker \mu \) is finite generated by (5.5). Thus \(M \) is finite presented by (5.18).
B. Exercises

Exercise (5.21). — Let M' and M'' be modules, $N \subseteq M'$ a submodule. Set
$M := M' \oplus M''$. Using (5.2) (1) and (5.3) and (5.4), prove $M/N = M'/N \oplus M''$.

Exercise (5.22). — Let M', M'' be modules, and set $M := M' \oplus M''$. Let N be
a submodule of M containing M', and set $N' := N \cap M'$. Prove $N = M' \oplus N'$.

Exercise (5.23) (Five Lemma). — Consider this commutative diagram:

\[
\begin{array}{cccccc}
M_4 & \xrightarrow{\alpha_4} & M_3 & \xrightarrow{\alpha_3} & M_2 & \xrightarrow{\alpha_2} & M_1 & \xrightarrow{\alpha_1} & M_0 \\
\gamma_4 \downarrow & & \gamma_3 \downarrow & & \gamma_2 \downarrow & & \gamma_1 \downarrow & & \gamma_0 \downarrow \\
N_4 & \xrightarrow{\beta_4} & N_3 & \xrightarrow{\beta_3} & N_2 & \xrightarrow{\beta_2} & N_1 & \xrightarrow{\beta_1} & N_0
\end{array}
\]

Assume it has exact rows. Via a chase, prove these two statements:

1. If γ_3 and γ_1 are surjective and if γ_0 is injective, then γ_2 is surjective.
2. If γ_3 and γ_1 are injective and if γ_4 is surjective, then γ_2 is injective.

Exercise (5.24) (Nine Lemma). — Consider this commutative diagram:

\[
\begin{array}{cccccccc}
& & 0 & & 0 & & 0 & & \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & \rightarrow & L' & \rightarrow & L & \rightarrow & L'' & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & \rightarrow & M' & \rightarrow & M & \rightarrow & M'' & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & \rightarrow & N' & \rightarrow & N & \rightarrow & N'' & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & & 0 & & 0 & & \\
\end{array}
\]

(5.24.1)

Assume all the columns are exact and the middle row is exact. Applying the Snake
Lemma, prove that the first row is exact if and only if the third is.

Exercise (5.25). — Referring to (4.8), give an alternative proof that β is an
isomorphism by applying the Snake Lemma to the diagram

\[
\begin{array}{ccc}
0 & \rightarrow & M \\
\downarrow & & \downarrow \kappa \\
N/M & \rightarrow & N/M
\end{array}
\]

\[
\begin{array}{c}
0 \rightarrow M/L \rightarrow N/L \xrightarrow{\Delta} (N/L)/(M/L) \rightarrow 0
\end{array}
\]

Exercise (5.26). — Consider this commutative diagram with exact rows:

\[
\begin{array}{ccccccc}
M' & \xrightarrow{\beta} & M & \xrightarrow{\gamma} & M'' \\
\alpha' \downarrow & & \alpha \downarrow & & \alpha'' \downarrow \\
N' & \xrightarrow{\beta'} & N & \xrightarrow{\gamma'} & N''
\end{array}
\]

Assume α' and γ are surjective. Given $n \in N$ and $m'' \in M''$ with $\alpha''(m'') = \gamma'(n)$,
show that there is $m \in M$ such that $\alpha(m) = n$ and $\gamma(m) = m''$.

Exercise (5.27). — Let R be a ring. Show that a module P is finitely generated
and projective if and only if it’s a direct summand of a free module of finite rank.
Exercise (5.28). — Let R be a ring, P and N finitely generated modules with P projective. Prove $\text{Hom}(P, N)$ is finitely generated, and is finitely presented if N is.

Exercise (5.29). — Let R be a ring, X_1, X_2, \ldots infinitely many variables. Set $P := R[X_1, X_2, \ldots]$ and $M := P/(X_1, X_2, \ldots)$. Is M finitely presented? Explain.

Exercise (5.30). — Let $0 \rightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \rightarrow 0$ be a short exact sequence with M finitely generated and N finitely presented. Prove L is finitely generated.

C. Appendix: Fitting Ideals

(5.31) (The Ideals of Minors). — Let R be a ring, $A := (a_{ij})$ an $m \times n$ matrix with $a_{ij} \in R$. Given $r \in \mathbb{Z}$, let $I_r(A)$ denote the ideal generated by the $r \times r$ minors of A; by convention, we have

$$I_r(A) = \begin{cases} \langle 0 \rangle, & \text{if } r > \min\{m, n\}; \\ R, & \text{if } r \leq 0. \end{cases} \quad (5.31.1)$$

Let $B := (b_{ij})$ be an $r \times r$ submatrix of A. Let B_{ij} be the $(r-1) \times (r-1)$ submatrix obtained from B by deleting the ith row and the jth column. For any i, expansion yields $\det(B) = \sum_{j=1}^{r} (-1)^{i+j} b_{ij} \det(B_{ij})$. So $I_r(A) \subset I_{r-1}(A)$. Thus

$$R = I_0(A) \supset I_1(A) \supset \cdots \quad (5.31.2)$$

Let U be an invertible $m \times m$ matrix. Then $\det(U)$ is a unit, as $UV = I$ yields $\det(U) \det(V) = 1$. So $I_m(U) = R$. Thus $I_r(U) = R$ for all $r \leq m$.

Proposition (5.32). — Let R be a nonzero ring, and $\alpha: R^n \rightarrow R^m$ a linear map.

1. If α is injective, then $n \leq m$. 2. If α is an isomorphism, then $n = m$.

Proof: For (1), assume $n > m$, and let’s show α is not injective.

Let A be the matrix of α. Note (5.31.1) yields $I_p(A) = \langle 0 \rangle$ for $p > m$ and $I_0(A) = R$. Let r be the largest integer with $\text{Ann}(I_r(A)) = \langle 0 \rangle$. Then $0 \leq r \leq m$.

Take any nonzero $x \in \text{Ann}(I_{r+1}(A))$. If $r = 0$, set $z := (x, 0, \ldots, 0)$. Then $z \neq 0$ and $\alpha(z) = 0$, so α is not injective. So assume $r > 0$.

As $x \neq 0$, also $x \notin \text{Ann}(I_r(A))$. So there’s an $r \times r$ submatrix B of A with $x \det(B) \neq 0$. By renumbering, we may assume that B is the upper left $r \times r$ submatrix of A. Let C be the upper left $(r+1) \times (r+1)$ submatrix if $r \leq m$; if $r = m$, let C be the left $r \times (r+1)$ submatrix augmented at the bottom by a row of $r + 1$ zeros.

Let c_i be the cofactor of $a_{(r+1)i}$ in $\det(C)$; so $\det(C) = \sum_{i=1}^{r+1} a_{(r+1)i} c_i$. Then $c_{r+1} = \det(B)$. So $xc_{r+1} \neq 0$. Set $z := (x, c_1, \ldots, c_{r+1}, 0, \ldots, 0)$. Then $z \neq 0$.

Let’s show $\alpha(z) = 0$. Given $1 \leq k \leq m$, denote by A_k the kth row of A, by D the matrix obtained by replacing the $(r+1)$st row of C with the first $(r+1)$ entries of A_k, and by $z \cdot A_k$ the dot product. Then $z \cdot A_k = x \det(D)$. If $k \leq r$, then D has two equal rows; so $z \cdot A_k = 0$. If $k \geq r + 1$, then D is an $(r+1) \times (r+1)$ submatrix of A; so $z \cdot A_k = 0$ as $xI_{r+1}(A) = 0$. Thus $\alpha(z) = 0$. Thus α is not injective. Thus (1) holds.

For (2), apply (1) to α^{-1} too; thus also $m \leq n$. Thus (2) holds. \hfill \square

Lemma (5.33). — Let R be a ring, A an $m \times n$ matrix, B an $n \times p$ matrix, U be an invertible $m \times m$ matrix, and V an invertible $n \times n$ matrix. Then for all r,

1. $I_r(AB) \subset I_r(A)I_r(B)$ and 2. $I_r(UAV) = I_r(A)$.

38
Exact Sequences

(5.34) / (5.34)

App: Fitting Ideals

Proof: As a matter of notation, given a \(p \times q \) matrix \(X := (x_{ij}) \), denote its \(j \)th column by \(X^j \). Given sequences \(I := (i_1, \ldots, i_r) \) with \(1 \leq i_1 < \cdots < i_r \leq p \) and \(J := (j_1, \ldots, j_r) \) with \(1 \leq j_1 < \cdots < j_r \leq q \), set

\[
X_{IJ} := \begin{pmatrix}
 x_{i_1, j_1} & \cdots & x_{i_1, j_r} \\
 \vdots & \ddots & \vdots \\
 x_{i_r, j_1} & \cdots & x_{i_r, j_r}
\end{pmatrix} \quad \text{and} \quad X_I := \begin{pmatrix}
 x_{i_1, 1} & \cdots & x_{i_1, n} \\
 \vdots & \ddots & \vdots \\
 x_{i_r, 1} & \cdots & x_{i_r, n}
\end{pmatrix}.
\]

For (1), say \(A = (a_{ij}) \) and \(B = (b_{ij}) \). Set \(C := AB \). Given \(I := (i_1, \ldots, i_r) \) with \(1 \leq i_1 < \cdots < i_r \leq m \) and \(K := (k_1, \ldots, k_r) \) with \(1 \leq k_1 < \cdots < k_r \leq p \), note

\[
\det(C_{IK}) = \det(C_{1K}, \ldots, C_{nK})
\]

\[
= \det \left(\sum_{j_i = 1}^{n} A_{ij_1}^{j_i} b_{j_1 k_1}, \ldots, \sum_{j_r = 1}^{n} A_{ij_r}^{j_r} b_{j_r k_r} \right)
\]

\[
= \sum_{j_1, \ldots, j_r = 1}^{n} \det(A_{1j_1}^{j_1}, \ldots, A_{nj_r}^{j_r}) \cdot b_{j_1 k_1} \cdots b_{j_r k_r}.
\]

In the last sum, each term corresponds to a sequence \(J := (j_1, \ldots, j_r) \) with \(1 \leq j_i \leq n \). If two \(j_i \) are equal, then \(\det(A_{ij_1}^{j_1}, \ldots, A_{nj_r}^{j_r}) = 0 \) as two columns are equal. Suppose no two \(j_i \) are equal. Then \(J \) is a permutation \(\sigma \) of \(H := (h_1, \ldots, h_r) \) with \(1 \leq h_1 < \cdots < h_r \leq q \); so \(j_i = \sigma(h_i) \). Denote the sign of \(\sigma \) by \((-1)^{\sigma} \). Then

\[
\det(A_{ij_1}^{j_1}, \ldots, A_{nj_r}^{j_r}) = (-1)^{\sigma} \det(A_{iH}).
\]

But \(\det(B_{HK}) = \sum_{\sigma} (-1)^{\sigma} b_{\sigma(h_1) k_1} \cdots b_{\sigma(h_r) k_r} \). Hence

\[
\det(C_{IK}) = \sum_H \det(A_{iH}) \det(B_{HK}).
\]

Thus (1) holds.

For (2), note that \(I_r(W) = R \) for \(W = U, U^{-1}, V, V^{-1} \) by (5.31). So (1) yields

\[
I_r(A) = I_r(U^{-1}UAVV^{-1}) \subset I_r(UAV) \subset I_r(A).
\]

Thus (2) holds. \(\Box \)

Lemma (5.34) (Fitting). — Let \(R \) be a ring, \(M \) a module, \(r \) an integer, and

\[
R^n \rightarrow R^m \overset{\mu}{\rightarrow} M \rightarrow 0 \quad \text{and} \quad R^r \overset{\beta}{\rightarrow} R^p \overset{\gamma}{\rightarrow} M \rightarrow 0
\]

presentations. Represent \(\alpha, \beta \) by matrices \(A, B \). Then \(I_{m-r}(A) = I_{p-r}(B) \).

Proof: First, assume \(m = p \) and \(\mu = \pi \). Set \(K := \text{Ker}(\mu) \). Then \(\text{Im}(\alpha) = K \) and \(\text{Im}(\beta) = K \) by exactness; so \(\text{Im}(\alpha) = \text{Im}(\beta) \). But \(\text{Im}(\alpha) \) is generated by the columns of \(A \). Hence each column of \(B \) is a linear combination of the columns of \(A \). So there’s a matrix \(C \) with \(AC = B \). Set \(s := m - r \). Then (5.33)(1) yields

\[
I_s(B) = I_s(AC) \subset I_s(A)I_s(C) \subset I_s(A).
\]

Symmetrically, \(I_s(A) \subset I_s(B) \). Thus \(I_s(A) = I_s(B) \), as desired.

Second, assume \(m = p \) and that there’s an isomorphism \(\gamma : R^m \rightarrow R^p \) with \(\pi \gamma = \mu \). Represent \(\gamma \) by a matrix \(G \). Then \(R^m \overset{\gamma}{\rightarrow} R^p \overset{\pi}{\rightarrow} M \rightarrow 0 \) is a presentation, and \(GA \) represents \(\gamma \alpha \). So, by the first paragraph, \(I_s(B) = I_s(GA) \). But \(G \) is invertible. So \(I_s(GA) = I_s(A) \) by (5.33)(2). Thus \(I_s(A) = I_s(B) \), as desired.

Third, assume that \(q = n + t \) and \(p = m + t \) for some \(t \geq 1 \) and that \(\beta = \alpha \oplus 1_{R^p} \) and \(\pi = \mu + 0 \). Then \(B = \begin{pmatrix} A & 0_{m \times t} \\ 0_{n \times t} & I_r \end{pmatrix} \).

39
Given an $s \times s$ submatrix C of A, set $D := (C_{ij} \ 0_{ij})$. Then D is an $(s+t) \times (s+t)$ submatrix of B, and $\det(D) = \det(C)$. Thus $I_s(A) \subset I_{s+t}(B)$.

For the opposite inclusion, given an $(s+t) \times (s+t)$ submatrix D of B, assume $\det(D) \neq 0$. If D includes part of the $(m+i)$th row of B, then D must also include part of the $(n+i)$th column, or D would have an all zero row. Similarly, if D includes part of the $(n+i)$th column, then D must include part of the $(m+i)$th row. So $D(C_{ik} \ 0_{ik})$ where $h := s + t - k$ for some $k \leq t$ and for some $h \times h$ submatrix C of A. But $\det(D) = \det(C)$. So $\det(D) \in I_h(A)$. But $I_h(A) \subset I_s(A)$ by (5.31.2). So $\det(D) \in I_s(A)$. Thus $I_{s+t}(B) \subset I_s(A)$. Thus $I_{s+t}(B)I_s(A)$, or $I_{m-r}(A) = I_{p-r}(B)$, as desired.

Finally, in general, Schanuel’s Lemma (5.17) yields the commutative diagram

$$
\begin{array}{c}
R^n \oplus R^p \xrightarrow{\alpha \oplus \beta} R^m \oplus R^p \xrightarrow{\mu \oplus 0} M \to 0 \\
\cong \end{array}
\begin{array}{c}
R^m \oplus R^p \xrightarrow{1 \oplus \beta} R^m \oplus R^p \xrightarrow{0 \oplus \pi} M \to 0
\end{array}
$$

Thus, by the last two paragraphs, $I_{m-r}(A) = I_{p-r}(B)$, as desired.

(5.35) (Fitting Ideals). — Let R be a ring, M a finitely presented module, and r an integer. Take any presentation $R^n \to R^m \to M \to 0$, let A be the matrix of α, and define the rth Fitting ideal of M by

$$F_r(M) := I_{m-r}(A).$$

It is independent of the choice of presentation by (5.34).

By definition, $F_r(M)$ is finitely generated. Moreover, (5.31.2) yields

$$\langle 0 \rangle = F_{-1}(M) \subset F_0(M) \subset \cdots \subset F_m(M) = R. \quad (5.35.1)$$

Exercise (5.36). — Let R be a ring, and $a_1, \ldots, a_m \in R$ with $\langle a_1 \rangle \supset \cdots \supset \langle a_m \rangle$. Set $M := R/\langle a_1 \rangle \oplus \cdots \oplus R/\langle a_m \rangle$. Show that $F_r(M) = \langle a_1 \cdots a_{r-1} \rangle$.

Exercise (5.37). — In the setup of (5.36), assume a_1 is a nonunit. Show:

1. Then m is the smallest integer such that $F_m(M) = R$.
2. Let n be the largest integer with $F_n(M) = \langle 0 \rangle$; set $k := m - n$. Assume R is a domain. Then (a) $a_i \neq 0$ for $i < k$ and $a_i = 0$ for $i \geq k$, and (b) each a_i is unique up to unit multiple.

Theorem (5.38) (Elementary Divisors). — Let R be a PID, M a free module, N a free submodule of rank $n < \infty$. Then there’s a decomposition $M = M' \oplus M''$, a basis x_1, \ldots, x_n of M', and $d_1, \ldots, d_n \in R$, unique up to unit multiple, with

$$M' = Rx_1 \oplus \cdots \oplus Rx_n, \quad N = Rd_1x_1 \oplus \cdots \oplus Rd_nx_n, \quad d_1 | \cdots | d_n \neq 0.$$

Moreover, set $Q := \{m \in M \mid xm \in N \text{ for some nonzero } x \in R\}$. Then $M' = Q$.

Proof: Let’s prove existence by induction on n. For $n = 0$, take $M' := 0$; no d_i or x_i are needed. So $M'' = M$, and the displayed conditions are trivially satisfied.

Let $\{c_\lambda\}$ be a basis of M, and $\pi_\lambda : M \to R$ the λth projection. Assume $n > 0$. Given any nonzero $z \in N$, write $z = \sum c_\lambda e_\lambda$ for some $c_\lambda \in R$. Then some $c_{\lambda_0} \neq 0$. But $c_{\lambda_0} = \pi_{\lambda_0}(z)$. Thus $\pi_{\lambda_0}(N) \neq 0$.

Consider the set S of nonzero ideals of the form $\alpha(N)$ where $\alpha : M \to R$ is a linear map. Partially order S by inclusion. Given a totally ordered subset $\{\alpha_\rho(N)\}$, set $b := \bigcup \alpha_\rho(N)$. Then b is an ideal. So $b = \langle b \rangle$ for some $b \in R$ as R is a PID. Then
b ∈ α_ν(N) for some ν. So α_ν(N) = b. By Zorn’s Lemma, S has a maximal element, say α_1(N). Fix d_1 ∈ R with α_1(N) = ⟨d_1⟩, and fix y_1 ∈ N with α_1(y_1) = d_1.

Given any linear map β: M → R, set b := β(y_1). Then ⟨d_1⟩ + ⟨b⟩ = ⟨c⟩ for some c ∈ R, as R is a PID. Write c = dd_1 + eb for d, e ∈ R, and set γ := dx_1 + eβ. Then γ(N) ⊆ ⟨γ(y_1)⟩. But γ(y_1) = c. So ⟨c⟩ ⊆ γ(N). But ⟨d_1⟩ ⊆ ⟨c⟩. Hence, by maximality, ⟨d_1⟩ = γ(N). But ⟨b⟩ ⊆ ⟨c⟩. Thus β(y_1) = b ∈ ⟨d_1⟩.

Write y_1 = Σ c_λ x_λ for some c_λ ∈ R. Then π_λ(y_1) = c_λ. But c_λ = d_1 c_λ for some d_1 ∈ R by the above paragraph with β := π_λ. Set x_1 := Σ d_1 c_λ. Then y_1 = d_1 x_1.

So α_1(y_1) = d_1 α_1(x_1). But x_1(y_1) = d_1. So d_1 α_1(x_1) = d_1. But R is a domain and d_1 ≠ 0. Thus α_1(x_1) = 1.

Set M_1 := Ker(α_1). As α_1(x_1) = 1, clearly Rx_1 ∩ M_1 = 0. Also, given x ∈ M, write x = α_1(x)x_1 + (x − α_1(x)x_1); thus x ∈ Rx_1 + M_1. Hence (4.25) implies M = Rx_1 ⊕ M_1. Further, Rx_1 and M_1 are free by (4.12). Set N_1 := M_1 ∩ N.

Recall d_1 x_1 = y_1 ∈ N. So N ⊇ Rd_1 x_1 ⊕ N_1. Conversely, given y ∈ N, write y = bx_1 + m_1 with b ∈ R and m_1 ∈ M_1. Then α_1(y) = b, so b ∈ ⟨d_1⟩. Hence y ∈ Rd_1 x_1 + N_1. Thus N = Rd_1 x_1 + N_1.

Define ϕ: R → Rd_1 x_1 by ϕ(a) = ad_1 x_1. If ϕ(a) = 0, then ad_1 = 0 as α_1(x_1) = 1, and so a = 0 as d_1 ≠ 0. Thus ϕ is injective, so a homomorphism.

Note N_1 ≃ R^m with m ≤ n owing to (4.12) with N for E. Hence N ≃ R^{m+1}. But N ≃ R^n. So (5.32)(2) yields m + 1 = n.

By induction on n, there exist a decomposition M_1 = M'_1 ⊕ M'', a basis x_2, . . . , x_n of M'_1 and d_2, . . . , d_n ∈ R with

\[M_1 = Rx_2 ⊕ \cdots ⊕ Rx_n, \ N_1 = Rd_2 x_2 ⊕ \cdots ⊕ Rd_n x_n, \ d_2 | \cdots | d_n \neq 0. \]

Then M = M' ⊕ M'' and M' = Rx_1 ⊕ \cdots ⊕ Rx_n and N = Rd_1 x_1 ⊕ \cdots ⊕ Rd_n x_n. Now, Rx_1 is free, and x_2, . . . , x_n form a basis of M'_1, and M' = Rx_1 ⊕ M'_1; thus, x_1, . . . , x_n form a basis of M_1.

Next, consider the projection π: M_1 → R with π(x_j) = δ_{2j} for j ≤ 2 ≤ n and π|M'' = 0. Define ρ: M → R by ρ(ax_1 + m_1) := a + π(m_1). Then ρ(d_1 x_1) = d_1. So ρ(N) ⊇ ⟨d_1⟩ = α_1(N). By maximality, ρ(N) = α_1(N). But d_2 = ρ(d_2 x_2) ∈ ρ(N).

Thus d_2 ∈ ⟨d_1⟩; that is, d_1 | d_2. Thus d_1 | d_2. . . | d_n ≠ 0.

Moreover, given m ∈ M', note x_m ∈ N where x := d_1 \cdots d_n; so M' ⊆ Q. Conversely, given m ∈ Q, say x_m ∈ N with x ∈ R nonzero. Say m = m'+ m'' with m' ∈ M' and m'' ∈ M''. Then x m'' = x m - x m' ∈ M' as N ⊆ M'. But M' ∩ M'' = 0. So x m'' = 0. But M is free, x is nonzero, and R is a domain. So m'' = 0. So m = m' ∈ M'. Thus M' ⊇ Q. Thus M'' = Q.

Finally, note M'/N = R/⟨d_1⟩ ⊕ \cdots ⊕ R/⟨d_m⟩ by (5.3) and (5.4). Thus, by (5.37)(2), each d_i is unique up to unit multiple.

Theorem (5.39). Let A be a local ring, M a finitely presented module.

(1) Then M can be generated by m elements if and only if F_m(M) = A.

(2) Then M is free of rank m if and only if F_m(M) = A and F_{m-1}(M) = ⟨0⟩.

Proof: For (1), assume M can be generated by m elements. Then (5.13) yields a presentation \[A^n \rightarrowtail A^m \rightarrowtail M \rightarrowtail 0 \] for some n. So F_m(M) = A by (5.34).

For the converse, assume also F_k(M) = A with k < m. Then F_{m-1}(M) = A by (5.35.1). Hence one entry of the matrix (a_{ij}) of α does not belong to the maximal ideal, so is a unit by (3.5). By (5.33)(2), we may assume a_{11} = 1 and the other entries in the first row and first column of A are 0. Thus \[A = \begin{pmatrix} 1 & 0 \\ \hline 0 & B \end{pmatrix} \] where B is an (m - 1) × (s - 1) matrix. Then B defines a presentation \[A^{s-1} \rightarrow A^{m-1} \rightarrowtail M \rightarrowtail 0. \]
So \(M \) can be generated by \(m - 1 \) elements. Repeating, we see that \(M \) can be generated by \(k \) elements, as desired. Thus (1) holds.

In (2), if \(M \) is free of rank \(m \), then there’s a presentation \(0 \to A^m \to M \to 0 \); so \(F_m(M) = A \) and \(F_{m-1}(M) = \{0\} \) by (5.35). Conversely, if \(F_m(M) = A \), then (1) and (5.13) yield a presentation \(A^r \xrightarrow{\alpha} A^m \to M \to 0 \) for some \(s \). If also \(F_{m-1}(M) = \{0\} \), then \(\alpha = 0 \) by (5.35). Thus \(M \) is free of rank \(m \); so (2) holds. \(\square \)

Proposition (5.40). — Let \(R \) be a ring, and \(M \) a finitely presented module. Say \(M \) can be generated by \(m \) elements. Set \(\mathfrak{a} := \text{Ann}(M) \). Then

\[
(1) \ a^\mathfrak{a} F_r(M) \subset F_{r-1}(M) \quad \text{for all} \quad r \geq 0 \quad \text{and} \quad (2) \ a^m \subset F_0(M) \subset \mathfrak{a}.
\]

Proof: As \(M \) can be generated by \(m \) elements, (5.13) yields a presentation \(A^n \xrightarrow{\alpha} A^m \xrightarrow{\beta} M \to 0 \) for some \(n \). Say \(\alpha \) has matrix \(A \).

In (1), if \(r > m \), then trivially \(a^\mathfrak{a} F_r(M) \subset F_{r-1}(M) \) owing to (5.35.1). So assume \(r \leq m \) and set \(s := m - r + 1 \). Given \(x \in \mathfrak{a} \), form the sequence

\[
R^n + m \xrightarrow{x} R^m \xrightarrow{\beta} M \to 0 \quad \text{with} \quad \beta := \alpha + x R^m.
\]

Note that this sequence is a presentation. Also, the matrix of \(\beta \) is \((A|x I_m) \), obtained by juxtaposition, where \(I_m \) is the \(m \times m \) identity matrix.

Given an \((s-1) \times (s-1)\) matrix \(B \) of \(A \), enlarge it to an \(s \times s \) matrix \(B' \) of \((A|x I_m)\) as follows: say the \(i \)th row of \(A \) is not involved in \(B \); form the \(m \times s \) matrix \(B'' \) of \((A|x I_m)\) with the same columns as \(B \) plus the \(i \)th column of \(x I_m \) at the end; finally, form \(B' \) as the \(s \times s \) matrix of \(B'' \) with the same rows as \(B \) plus the \(i \)th row in the appropriate position.

Expanding along the last column yields \(\det(B') = \pm x \det(B) \). By construction, \(\det(B') \in I_s(A|x I_m) \). But \(I_s(A|x I_m) = I_s(A) \) by (5.34). Furthermore, \(x \in \mathfrak{a} \) is arbitrary, and \(I_m(A) \) is generated by all possible \(\det(B) \). Thus (1) holds.

For (2), apply (1) repeatedly to get \(a^k F_r(M) \subset F_{r-k}(M) \) for all \(r \) and \(k \). But \(F_m(M) = R \) by (5.35.1). So \(a^m \subset F_0(M) \).

For the second inclusion, given any \(m \times m \) submatrix \(B \) of \(A \), say \(B = (b_{ij}) \). Let \(e_i \) be the \(i \)th standard basis vector of \(R^m \). Set \(m_i := \mu(e_i) \). Then \(\sum b_{ij} m_j = 0 \) for all \(i \). Let \(C \) be the matrix of cofactors of \(B \); the \((i,j)\)th entry of \(C \) is \((-1)^{i+j} \) times the determinant of the matrix obtained by deleting the \(j \)th row and the \(i \)th column of \(B \). Then \(CB = \det(B) I_m \). Hence \(\det(B)m_i = 0 \) for all \(i \). So \(\det(B) \in \mathfrak{a} \). But \(I_m(A) \) is generated by all such \(\det(B) \). Thus \(F_0(M) \subset \mathfrak{a} \). Thus (2) holds. \(\square \)

D. Appendix: Exercises

Exercise (5.41) (Structure Theorem). — Let \(R \) be a PID, \(M \) a finitely generated module. Set \(T := \{m \in M \mid x m = 0 \text{ for some nonzero } x \in R\} \). Show:

1. Then \(M \) has a free submodule \(F \) of finite rank with \(M = T \oplus F \).
2. Then \(T \simeq \bigoplus_{j=1}^n R/(d_j) \) with the \(d_j \) nonzero nonunits in \(R \), unique up to unit multiple, and \(d_j \mid d_{j+1} \) for \(1 \leq j < n \).
3. Then \(T \simeq \bigoplus_{j=1}^n R/(p_{ij}^e_{ij}) \) with \(M(p_i) := \bigoplus_{j=1}^n R/(p_{ij}^e_{ij}) \), the \(p_i \) primes in \(R \), unique up to unit multiple, and the \(e_{ij} \) unique with \(0 \leq e_{ij} \leq e_{ij+1} \) and \(1 \leq e_{in} \).
4. If \(M \) isn’t finitely generated, there may be no free \(F \) with \(M = T \oplus F \).
Exercise (5.42). — Criticize the following misstatement of (5.8): given a 3-term exact sequence $M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$, there is an isomorphism $M \simeq M' \oplus M''$ if and only if there is a section $\sigma: M'' \to M$ of β and α is injective.

Moreover, show that this construction (due to B. Noohi) yields a counterexample: For each integer $n \geq 2$, let M_n be the direct sum of countably many copies of $\mathbb{Z}/\langle n \rangle$. Set $M := \bigoplus M_n$. Then let p be a prime number, and take M' to be a cyclic subgroup of order p of one of the components of M isomorphic to $\mathbb{Z}/\langle p^2 \rangle$.
6. Direct Limits

Category theory provides the right abstract setting for certain common concepts, constructions, and proofs. Here we treat adjoints and direct limits. We elaborate on two key special cases of direct limits: coproducts (direct sums) and coequalizers (cokernels). From them, we construct arbitrary direct limits of sets and of modules. Further, we prove direct limits are preserved by left adjoints; hence, direct limits commute with each other, and in particular, with coproducts and coequalizers.

Although this chapter is the most abstract of the entire book, all the material here is elementary, and none of it is very deep. In fact, the abstract statements here are, largely, just concise restatements, in more expressive language, of the essence of some mundane statements in Commutative Algebra. Experience shows that it pays to learn this more abstract language, but that doing so requires determined, yet modest effort.

A. Text

(6.1) (Categories). — A category \(\mathbf{C} \) is a collection of elements, called objects. Each pair of objects \(A, B \) is equipped with a set \(\text{Hom}_\mathbf{C}(A, B) \) of elements, called maps or morphisms. We write \(\alpha: A \to B \) or \(A \overset{\alpha}{\to} B \) to mean \(\alpha \in \text{Hom}_\mathbf{C}(A, B) \).

Further, given objects \(A, B, C \), there is a composition law

\[
\text{Hom}_\mathbf{C}(A, B) \times \text{Hom}_\mathbf{C}(B, C) \to \text{Hom}_\mathbf{C}(A, C),
\]

written \((\alpha, \beta) \mapsto \beta \alpha\), and there is a distinguished map \(1_B \in \text{Hom}_\mathbf{C}(B, B)\), called the identity such that

1. composition is associative, or \(\gamma(\beta \alpha) = (\gamma \beta)\alpha \) for \(\gamma: C \to D \), and
2. \(1_B \) is unitary, or \(1_B \alpha = \alpha \) and \(\beta 1_B = \beta \).

We say \(\alpha \) is an isomorphism with inverse \(\beta: B \to A \) if \(\alpha \beta = 1_B \) and \(\beta \alpha = 1_A \).

For example, four common categories are those of sets \((\text{Sets})\), of rings \((\text{Rings})\), of \(R \)-modules \((\text{R-mod})\), and of \(R \)-algebras \((\text{R-alg})\); the corresponding maps are the set maps, and the ring, \(R \)-module, and \(R \)-algebra homomorphisms.

Given categories \(\mathbf{C} \) and \(\mathbf{C}' \), their product \(\mathbf{C} \times \mathbf{C}' \) is the category whose objects are the pairs \((A, A')\) with \(A \) an object of \(\mathbf{C} \) and \(A' \) an object of \(\mathbf{C}' \) and whose maps are the pairs \((\alpha, \alpha')\) of maps \(\alpha \) in \(\mathbf{C} \) and \(\alpha' \) in \(\mathbf{C}' \).

(6.2) (Functors). — A map of categories is known as a functor. Namely, given categories \(\mathbf{C} \) and \(\mathbf{C}'\), a (covariant) functor \(F: \mathbf{C} \to \mathbf{C}' \) is a rule that assigns to each object \(A \) of \(\mathbf{C} \) an object \(F(A) \) of \(\mathbf{C}' \) and to each map \(\alpha: A \to B \) of \(\mathbf{C} \) a map \(F(\alpha): F(A) \to F(B) \) of \(\mathbf{C}' \) preserving composition and identity; that is,

1. \(F(\beta \alpha) = F(\beta)F(\alpha) \) for maps \(\alpha: A \to B \) and \(\beta: B \to C \) of \(\mathbf{C} \), and
2. \(F(1_A) = 1_{F(A)} \) for any object \(A \) of \(\mathbf{C} \).

We also denote a functor \(F \) by \(F(\bullet) \), by \(A \mapsto F(A) \), or by \(A \mapsto F_A \).

Note that a functor \(F \) preserves isomorphisms. Indeed, if \(\alpha \beta = 1_B \) and \(\beta \alpha = 1_A \), then \(F(\alpha)F(\beta) = F(1_B) = 1_{F(B)} \) and \(F(\beta)F(\alpha) = 1_{F(A)} \).

For example, let \(R \) be a ring, \(M \) a module. Then clearly \(\text{Hom}_R(M, \bullet) \) is a functor from \((\text{R-mod})\) to \((\text{Sets})\); it sends a module to its underlying set and a homomorphism to its underlying set map.

44
A map of functors is known as a natural transformation. Namely, given two functors $F, F': \mathcal{C} \to \mathcal{C}'$, a **natural transformation** $\theta: F \to F'$ is a collection of maps $\theta(A): F(A) \to F'(A)$, one for each object A of \mathcal{C}, such that $\theta(B)F(\alpha) = F'(\alpha)\theta(A)$ for every map $\alpha: A \to B$ of \mathcal{C}; that is, the following diagram is commutative:

$$
\begin{array}{c}
F(A) \xrightarrow{F(\alpha)} F(B) \\
\theta(A) \downarrow \quad \quad \quad \downarrow \theta(B) \\
F'(A) \xrightarrow{F'(\alpha)} F'(B)
\end{array}
$$

For example, the identity maps $1_{F(A)}$ trivially form a natural transformation 1_F from any functor F to itself. We call F and F' **isomorphic** if there are natural transformations $\theta: F \to F'$ and $\theta': F' \to F$ with $\theta'\theta = 1_F$ and $\theta\theta' = 1_{F'}$.

A **contravariant** functor G from \mathcal{C} to \mathcal{C}' is a rule similar to F, but G reverses the direction of maps; that is, $G(\alpha)$ carries $G(B)$ to $G(A)$, and G satisfies the analogues of (1) and (2). For example, fix a module N; then $\text{Hom}(\bullet, N)$ is a contravariant functor from $((R\text{-mod}))$ to $((R\text{-mod}))$.

(6.3) **(Adjoints).** — Let $F: \mathcal{C} \to \mathcal{C}'$ and $F': \mathcal{C}' \to \mathcal{C}$ be functors. We call (F, F') an **adjoint pair**, F the **left adjoint** of F', and F' the **right adjoint** of F if, for every pair of objects $A \in \mathcal{C}$ and $A' \in \mathcal{C}'$, there is given a natural bijection

$$
\text{Hom}_{\mathcal{C}'}(F(A), A') \simeq \text{Hom}_{\mathcal{C}}(A, F'(A)). \quad (6.3.1)
$$

Here **natural** means that maps $B \to A$ and $A' \to B'$ induce a commutative diagram:

$$
\begin{array}{c}
\text{Hom}_{\mathcal{C}'}(F(A), A') \simeq \text{Hom}_{\mathcal{C}}(A, F'(A)) \\
\downarrow \quad \quad \quad \downarrow \\
\text{Hom}_{\mathcal{C}'}(F(B), B') \simeq \text{Hom}_{\mathcal{C}}(B, F'(B))
\end{array}
$$

Naturality serves to determine an adjoint up to canonical isomorphism. Indeed, let F and G be two left adjoints of F'. Given $A \in \mathcal{C}$, define $\theta(A): G(A) \to F(A)$ to be the image of $1_{F(A)}$ under the adjoint bijections

$$
\text{Hom}_{\mathcal{C}'}(F(A), F(A)) \simeq \text{Hom}_{\mathcal{C}}(A, F'F(A)) \simeq \text{Hom}_{\mathcal{C}'}(G(A), F(A)).
$$

To see that $\theta(A)$ is natural in A, take a map $\alpha: A \to B$. It induces the following diagram, which is commutative owing to the naturality of the adjoint bijections:

$$
\begin{array}{c}
\text{Hom}_{\mathcal{C}'}(F(A), F(A)) \simeq \text{Hom}_{\mathcal{C}}(A, F'F(A)) \simeq \text{Hom}_{\mathcal{C}'}(G(A), F(A)) \\
\downarrow \quad \quad \quad \downarrow \\
\text{Hom}_{\mathcal{C}'}(F(A), F(B)) \simeq \text{Hom}_{\mathcal{C}}(A, F'F(B)) \simeq \text{Hom}_{\mathcal{C}'}(G(A), F(B)) \\
\uparrow \quad \quad \quad \uparrow \\
\text{Hom}_{\mathcal{C}'}(F(B), F(B)) \simeq \text{Hom}_{\mathcal{C}}(B, F'F(B)) \simeq \text{Hom}_{\mathcal{C}'}(G(B), F(B))
\end{array}
$$

Chase after $1_{F(A)}$ and $1_{F(B)}$. Both map to $F(\alpha) \in \text{Hom}_{\mathcal{C}'}(F(A), F(B))$. So both map to the same image in $\text{Hom}_{\mathcal{C}'}(G(A), F(B))$. But clockwise, $1_{F(A)}$ maps to $F(\alpha)\theta(A)$; counterclockwise, $1_{F(B)}$ maps to $\theta(B)G(\alpha)$. So $\theta(B)G(\alpha) = F(\alpha)\theta(A)$. Thus the $\theta(A)$ form a natural transformation $\theta: G \to F$.

Similarly, there is a natural transformation $\theta': F \to G$. It remains to show
Let \(\theta' \theta = 1 \) and \(\theta \theta' = 1 \). But, by naturality, the following diagram is commutative:

\[
\begin{array}{ccc}
\text{Hom}_{C'}(F(A), F(A)) & \simeq & \text{Hom}_C(A, F'F(A)) \\
\downarrow & & \downarrow \\
\text{Hom}_{C'}(F(A), G(A)) & \simeq & \text{Hom}_C(A, F'G(A)) \\
\end{array}
\]

Chase after \(1_{F(A)} \). Counterclockwise, its image is \(\theta'(A)\theta(A) \) in the lower right corner. Counterclockwise, its image is \(1_{G(A)} \), owing to the definition of \(\theta' \). Thus \(\theta' \theta = 1 \).

Similarly, \(\theta \theta' = 1 \), as required.

For example, the “free module” functor is the left adjoint of the forgetful functor from \(((R\text{-mod})) \) to \(((\text{Sets})) \), since owing to \((4.10) \),

\[
\text{Hom}_{((R\text{-mod}))}(R^\oplus \Lambda, M) = \text{Hom}_{((\text{Sets}))}(\Lambda, M).
\]

Similarly, the “polynomial ring” functor is the left adjoint of the forgetful functor from \(((R\text{-alg})) \) to \(((\text{Sets})) \), since owing to \((1.3) \),

\[
\text{Hom}_{((R\text{-alg}))}(R[X_1, \ldots, X_n], R') = \text{Hom}_{((\text{Sets}))}(\{X_1, \ldots, X_n\}, R').
\]

Direct limits. — Let \(\mathcal{C} \) be categories. Assume \(\Lambda \) is small; that is, its objects form a set. Given a functor \(\lambda : \Lambda \to M_\Lambda \) from \(\Lambda \) to \(\mathcal{C} \), its **direct limit** or **colimit**, denoted \(\varprojlim M_\Lambda \) or \(\varinjlim_{\Lambda \in \Lambda} M_\Lambda \), is defined to be the object of \(\mathcal{C} \) universal among objects \(P \) equipped with maps \(\beta_\mu : M_\mu \to P \), called **insertions**, that are compatible with the **transition maps** \(\alpha^\mu_\nu : M_\nu \to M_\mu \), which are the images of the maps of \(\Lambda \). (Note: given \(\kappa \) and \(\mu \), there may be more than one map \(\kappa \to \mu \), and so more than one transition map \(\alpha^\mu_\nu \).) In other words, there is a unique map \(\beta \) such that all of the following diagrams commute:

\[
\begin{array}{ccc}
M_\kappa & \xrightarrow{\alpha_\mu^\nu} & M_\mu \\
\downarrow{\beta_\kappa} & & \downarrow{\beta_\mu} \\
P & \xrightarrow{1_P} & P
\end{array}
\]

To indicate this context, the functor \(\lambda : \Lambda \to M_\Lambda \) is often called a **direct system**.

As usual, universality implies that, once equipped with its insertions \(\alpha_\mu \), the limit \(\varprojlim M_\Lambda \) is determined up to unique isomorphism, assuming it exists. In practice, there is usually a canonical choice for \(\varprojlim M_\Lambda \), given by a construction. In any case, let us use \(\varprojlim M_\Lambda \) to denote a particular choice.

We say that \(\mathcal{C} \) **has direct limits indexed by** \(\Lambda \) if, for every functor \(\lambda : \Lambda \to M_\Lambda \) from \(\Lambda \) to \(\mathcal{C} \), the direct limit \(\varprojlim M_\Lambda \) exists. We say that \(\mathcal{C} \) **has direct limits** if it has direct limits indexed by every small category \(\Lambda \).

Given a functor \(F : \mathcal{C} \to \mathcal{C}' \), note that a functor \(\lambda : \Lambda \to M_\Lambda \) from \(\Lambda \) to \(\mathcal{C} \) yields a functor \(\lambda : F(M_\Lambda) \) from \(\Lambda \) to \(\mathcal{C}' \). Furthermore, whenever the corresponding two direct limits exist, the maps \(F(\alpha^\mu_\nu) : F(M_\nu) \to F(\varprojlim M_\Lambda) \) induce a canonical map

\[
\varphi_F : \varprojlim F(M_\Lambda) \to F(\varprojlim M_\Lambda).
\]

If \(\varphi_F \) is always an isomorphism, we say \(F \) **preserves direct limits**. At times, given \(\varprojlim M_\Lambda \), we construct \(\varprojlim F(M_\Lambda) \) by showing \(F(\varprojlim M_\Lambda) \) has the requisite UMP.

Assume \(\mathcal{C} \) has direct limits indexed by \(\Lambda \). Then, given a natural transformation...
Let \(A \) be a category. Then the coequalizer is defined as the object of \(\triangleright \) is one). Then taking direct limits yields a functor \(\varprojlim \) from \(A \) to \(C \).

In fact, it is just a restatement of the definitions that the “direct limit” functor \(\varprojlim \) is the left adjoint of the diagonal functor \(\Delta : C \to \varprojlim A \).

By definition, \(\Delta \) sends each object \(M \) to the constant functor \(\Delta M \), which has the same value \(M \) at every \(\lambda \in \Lambda \) and has the same value \(1_M \) at every map of \(\Lambda \); further, \(\Delta \) carries a map \(\gamma : M \to N \) to the natural transformation \(\Delta \gamma : \Delta M \to \Delta N \), which has the same value \(\gamma \) at every \(\lambda \in \Lambda \).

(6.5) (Coproducts). — Let \(C \) be a category, \(\Lambda \) a set, and \(M_\lambda \) an object of \(C \) for each \(\lambda \in \Lambda \). The coproduct \(\coprod_{\lambda \in \Lambda} M_\lambda \), or simply \(\coprod M_\lambda \), is defined as the object of \(C \) universal among objects \(P \) equipped with a map \(\beta_\mu : M_\mu \to P \) for each \(\mu \in \Lambda \). The maps \(\iota_\mu : M_\mu \to \coprod M_\lambda \) are called the inclusions. Thus, given such a \(P \), there exists a unique map \(\beta : \coprod M_\lambda \to P \) with \(\beta \iota_\mu = \beta_\mu \) for all \(\mu \in \Lambda \).

If \(\Lambda = \emptyset \), then the coproduct is an object \(B \) with a unique map \(\beta \) to every other object \(P \). There are no \(\mu \in \Lambda \), so no inclusions \(\iota_\mu : M_\mu \to B \), so no equations \(\beta_\mu = \beta_\mu \) to restrict \(\beta \). Such a \(B \) is called an initial object.

For instance, suppose \(C = ((R \text{-mod})) \). Then the zero module is an initial object. For any \(\Lambda \), the coproduct \(\coprod M_\lambda \) is just the direct sum \(\bigoplus M_\lambda \) (a convention if \(\Lambda = \emptyset \)). Next, suppose \(C = ((\text{Sets})) \). Then the empty set is an initial object. For any \(\Lambda \), the coproduct \(\coprod M_\lambda \) is the disjoint union \(\coprod M_\lambda \) (a convention if \(\Lambda = \emptyset \)).

Note that the coproduct is a special case of the direct limit. Indeed, regard \(\Lambda \) as a discrete category: its objects are the \(\lambda \in \Lambda \), and it has just the required maps, namely, the \(1_\lambda \). Then \(\varprojlim M_\lambda = \coprod M_\lambda \) with the insertions equal to the inclusions.

(6.6) (Coequalizers). — Let \(\alpha, \alpha' : M \rightrightarrows N \) be two maps in a category \(C \). Their coequalizer is defined as the object of \(C \) universal among objects \(P \) equipped with a map \(\eta : N \to P \) such that \(\eta \alpha = \eta \alpha' \).

For instance, if \(C = ((R \text{-mod})) \), then the coequalizer is \(\text{Coker}(\alpha - \alpha') \). In particular, the coequalizer of \(\alpha \) and \(0 \) is just \(\text{Coker}(\alpha) \).

Suppose \(C = ((\text{Sets})) \). Take the smallest equivalence relation \(\sim \) on \(N \) with \(\alpha(m) \sim \alpha'(m) \) for all \(m \in M \); explicitly, \(n \sim n' \) if there are elements \(m_1, \ldots, m_r \) with \(\alpha(m_1) = n \), with \(\alpha'(m_r) = n' \), and with \(\alpha(m_i) = \alpha'(m_{i+1}) \) for \(1 \leq i < r \). Clearly, the coequalizer is the quotient \(N/\sim \) equipped with the quotient map.

Note that the coequalizer is a special case of the direct limit. Indeed, let \(\Lambda \) be the category consisting of two objects \(\kappa, \mu \) and two nontrivial maps \(\varphi, \varphi' : \kappa \rightrightarrows \mu \). Define \(\lambda \mapsto M_\lambda \) in the obvious way: set \(M_\kappa := M \) and \(M_\mu := N \); send \(\varphi \) to \(\alpha \) and \(\varphi' \) to \(\alpha' \). Then the coequalizer is \(\varprojlim M_\lambda \).

Lemma (6.7). — A category \(C \) has direct limits if and only if \(C \) has coproducts and coequalizers. If a category \(C \) has direct limits, then a functor \(F : C \to C' \) preserves them if and only if \(F \) preserves coproducts and coequalizers.
Direct Limits (6.8) / (6.10)

Proof: If \(\mathcal{C} \) has direct limits, then \(\mathcal{C} \) has coproducts and coequalizers because they are special cases by (6.5) and (6.6). By the same token, if \(F: \mathcal{C} \to \mathcal{C}' \) preserves direct limits, then \(F \) preserves coproducts and coequalizers.

Conversely, assume that \(\mathcal{C} \) has coproducts and coequalizers. Let \(\Lambda \) be a small category, and \(\lambda \mapsto M_\lambda \) a functor from \(\Lambda \) to \(\mathcal{C} \). Let \(\Sigma \) be the set of all transition maps \(\alpha^\lambda_\mu: M_\lambda \to M_\mu \). For each \(\sigma := \alpha^\lambda_\mu \in \Sigma \), set \(M_\sigma := M_\lambda \). Set \(M := \coprod_{\sigma \in \Sigma} M_\sigma \) and \(N := \coprod_{\lambda \in \Lambda} M_\lambda \). For each \(\sigma \), there are two maps \(\rho_\sigma: M_\sigma \to N \): the inclusion \(\iota_\lambda \) and the composition \(\iota_\mu \alpha^\lambda_\mu \). Correspondingly, there are two maps \(\alpha, \alpha': M \to N \).

Let \(\mathcal{C} \) be their coequalizer, and \(\eta: N \to C \) the insertion.

Given maps \(\beta': M \to P \) with \(\beta_\mu \alpha^\lambda_\mu = \beta_\lambda \), there is a unique map \(\beta: N \to P \) with \(\beta \iota_\lambda = \beta_\lambda \) by the UMP of the coproduct. Clearly \(\beta \alpha = \beta \alpha' \); so \(\beta \) factors uniquely through \(C \) by the UMP of the coequalizer. Thus \(C = \lim_M \), as desired.

Finally, if \(F: \mathcal{C} \to \mathcal{C}' \) preserves coproducts and coequalizers, then \(F \) preserves arbitrary direct limits as \(F \) preserves the above construction.

□

Theorem (6.8). — The categories \(((R\text{-mod})) \) and \(((\text{Sets})) \) have direct limits.

Proof: The assertion follows from (6.7) because \(((R\text{-mod})) \) and \(((\text{Sets})) \) have coproducts by (6.5) and have coequalizers by (6.6).

□

Theorem (6.9). — Every left adjoint \(F: \mathcal{C} \to \mathcal{C}' \) preserves direct limits.

Proof: Let \(\Lambda \) be a small category, \(\lambda \mapsto M_\lambda \) a functor from \(\Lambda \) to \(\mathcal{C} \) such that \(\lim_M \) exists. Given an object \(P' \) of \(\mathcal{C}' \), consider all possible commutative diagrams

\[
\begin{array}{ccc}
F(M_\lambda) & \xrightarrow{F(\alpha^\lambda_\mu)} & F(M_\mu) \\
\downarrow{\beta_\mu} & & \downarrow{\beta'_\mu} \\
P' & \xrightarrow{1} & P'
\end{array}
\]

where \(\alpha^\lambda_\mu \) is any transition map and \(\alpha_\mu \) is the corresponding insertion. Given the \(\beta'_\mu \), we must show there is a unique \(\beta' \).

Say \(F \) is the left adjoint of \(F': \mathcal{C}' \to \mathcal{C} \). Then giving (6.9.1) is equivalent to giving this corresponding commutative diagram:

\[
\begin{array}{ccc}
M_\lambda & \xrightarrow{\alpha^\lambda_\mu} & M_\mu \\
\downarrow{\beta_\Lambda} & & \downarrow{\beta_\mu} \\
F'(P') & \xrightarrow{1} & F'(P')
\end{array}
\]

which factors uniquely through \(C \) by the UMP of the coequalizer. Thus \(C = \lim_M \), as desired.

□

Proposition (6.10). — Let \(\mathcal{C} \) be a category, \(\Lambda \) and \(\Sigma \) small categories. Assume \(\mathcal{C} \) has direct limits indexed by \(\Sigma \). Then the functor category \(\mathcal{C}^\Lambda \) does too.

Proof: Let \(\sigma \mapsto (\lambda \mapsto M_{\sigma \lambda}) \) be a functor from \(\Sigma \) to \(\mathcal{C}^\Lambda \). Then a map \(\sigma \to \tau \) in \(\Sigma \) yields a natural transformation from \(\lambda \mapsto M_{\sigma \lambda} \) to \(\lambda \mapsto M_{\tau \lambda} \). So a map \(\lambda \mapsto \mu \) in \(\Lambda \) yields a commutative square

\[
\begin{array}{ccc}
M_{\sigma \lambda} & \xrightarrow{M_{\sigma \mu}} & M_{\sigma \mu} \\
\downarrow{M_{\tau \lambda}} & & \downarrow{M_{\tau \mu}} \\
M_{\tau \lambda} & \xrightarrow{M_{\tau \mu}} & M_{\tau \mu}
\end{array}
\]

However, given the \(\beta_\Lambda \), there is a unique \(\beta \) by the UMP of \(\lim_M \).

□

Theorem (6.10). — Let \(\mathcal{C} \) be a category, \(\Lambda \) and \(\Sigma \) small categories. Assume \(\mathcal{C} \) has direct limits indexed by \(\Sigma \). Then the functor category \(\mathcal{C}^\Lambda \) does too.

Proof: Let \(\sigma \mapsto (\lambda \mapsto M_{\sigma \lambda}) \) be a functor from \(\Sigma \) to \(\mathcal{C}^\Lambda \). Then a map \(\sigma \to \tau \) in \(\Sigma \) yields a natural transformation from \(\lambda \mapsto M_{\sigma \lambda} \) to \(\lambda \mapsto M_{\tau \lambda} \). So a map \(\lambda \mapsto \mu \) in \(\Lambda \) yields a commutative square

\[
\begin{array}{ccc}
M_{\sigma \lambda} & \xrightarrow{M_{\sigma \mu}} & M_{\sigma \mu} \\
\downarrow{M_{\tau \lambda}} & & \downarrow{M_{\tau \mu}} \\
M_{\tau \lambda} & \xrightarrow{M_{\tau \mu}} & M_{\tau \mu}
\end{array}
\]
in a manner compatible with composition in Σ. Hence, with λ fixed, the rule
\[\sigma \mapsto M_{\sigma \lambda} \] is a functor from Σ to \(\mathcal{C} \).

By hypothesis, \(\lim_{\sigma \in \Sigma} M_{\sigma \lambda} \) exists. So \(\lambda \mapsto \lim_{\sigma \in \Sigma} M_{\sigma \lambda} \) is a functor from Σ to \(\mathcal{C} \). Further, as \(\tau \in \Sigma \) varies, there are compatible natural transformations from the \(\lambda \mapsto M_{\tau \lambda} \) to \(\lambda \mapsto \lim_{\sigma \in \Sigma} M_{\sigma \lambda} \). Finally, the latter is the direct limit of the functor \(\tau \mapsto (\lambda \mapsto M_{\tau \lambda}) \) from \(\Sigma \) to \(\mathcal{C}^{\lambda} \), because, given any functor \(\lambda \mapsto P_{\lambda} \) from Σ to \(\mathcal{C} \) equipped with, for \(\tau \in \Sigma \), compatible natural transformations from the \(\lambda \mapsto M_{\tau \lambda} \) to \(\lambda \mapsto P_{\lambda} \), there are, for \(\lambda \in \Lambda \), compatible unique maps \(\lim_{\sigma \in \Sigma} M_{\sigma \lambda} \to P_{\lambda} \).

\[\square \]

Theorem (6.11) (Direct limits commute). — Let \(\mathcal{C} \) be a category with direct limits indexed by small categories \(\Sigma \) and \(\Lambda \). Let \(\sigma \mapsto (\lambda \mapsto M_{\sigma \lambda}) \) be a functor from \(\Sigma \) to \(\mathcal{C}^{\lambda} \). Then
\[
\lim_{\tau \in \Sigma} \lim_{\lambda \in \Lambda} M_{\sigma \lambda} = \lim_{\lambda \in \Lambda} \lim_{\sigma \in \Sigma} M_{\sigma \lambda}.
\]

Proof: By (6.4), the functor \(\lim_{\lambda \in \Lambda} : \mathcal{C}^{\lambda} \to \mathcal{C} \) is a left adjoint. By (6.10), the category \(\mathcal{C}^{\lambda} \) has direct limits indexed by \(\Sigma \). So (6.9) yields the assertion. \(\square \)

Corollary (6.12). — Let \(\Lambda \) be a small category, \(R \) a ring, and \(\mathcal{C} \) either ((Sets)) or ((R-mod)). Then functor \(\lim_{\lambda} : \mathcal{C}^{\lambda} \to \mathcal{C} \) preserves coproducts and coequalizers.

Proof: By (6.5) and (6.6), both coproducts and coequalizers are special cases of direct limits, and \(\mathcal{C} \) has them. So (6.11) yields the assertion. \(\square \)

B. Exercises

Exercise (6.13). — (1) Show that the condition (6.2)(1) is equivalent to the commutativity of the corresponding diagram:
\[
\begin{array}{ccc}
\text{Hom}_\mathcal{C}(B, C) & \rightarrow & \text{Hom}_\mathcal{C}(F(B), F(C)) \\
\downarrow & & \downarrow \\
\text{Hom}_\mathcal{C}(A, C) & \rightarrow & \text{Hom}_\mathcal{C}(F(A), F(C))
\end{array}
\]
\[
(6.13.1)
\]

(2) Given \(\gamma : C \to D \), show (6.2)(1) yields the commutativity of this diagram:
\[
\begin{array}{ccc}
\text{Hom}_\mathcal{C}(B, C) & \rightarrow & \text{Hom}_\mathcal{C}(F(B), F(C)) \\
\downarrow & & \downarrow \\
\text{Hom}_\mathcal{C}(A, D) & \rightarrow & \text{Hom}_\mathcal{C}(F(A), F(D))
\end{array}
\]

Exercise (6.14). — Let \(\mathcal{C} \) and \(\mathcal{C}' \) be categories, \(F : \mathcal{C} \to \mathcal{C}' \) and \(F' : \mathcal{C}' \to \mathcal{C} \) an adjoint pair. Let \(\varphi_{A, A'} : \text{Hom}_\mathcal{C}(FA, A') \to \text{Hom}_\mathcal{C}(A, F'A') \) denote the natural bijection, and set \(\eta_A := \varphi_{A, FA}(1_{FA}) \). Do the following:

(1) Prove \(\eta_A \) is natural in \(A \); that is, given \(g : A \to B \), the induced square
\[
\begin{array}{ccc}
A & \xrightarrow{\eta_A} & FA \\
\downarrow{g} & & \downarrow{F'Fg} \\
B & \xrightarrow{\eta_B} & F'FB
\end{array}
\]
is commutative. We call the natural transformation \(A \mapsto \eta_A \) the **unit** of \((F, F') \).

(2) Given \(f' : FA \to A' \), prove \(\varphi_{A, A'}(f') = F'f' \circ \eta_A \).
(3) Prove the canonical map \(\eta_A : A \to F'FA \) is universal from \(A \) to \(F' \); that is, given \(f : A \to F'A' \), there is a unique map \(f' : FA \to A' \) with \(F'f' \circ \eta_A = f \).

(4) Conversely, instead of assuming \((F, F') \) is an adjoint pair, assume given a natural transformation \(\eta : 1 \to F'F \) satisfying (1) and (3). Prove the equation in (2) defines a natural bijection making \((F, F') \) an adjoint pair, whose unit is \(\eta \).

(5) Identify the units in the two examples in (6.3): the “free module” functor and the “polynomial ring” functor.

(Dually, we can define a counit \(\varepsilon : FF' \to 1_{c'} \), and prove analogous statements.)

Exercise (6.15). — Let \(\Lambda, \mathcal{C}, \mathcal{C}' \) be categories with \(\Lambda \) small. Let \(F, F' : \mathcal{C} \rightleftharpoons \mathcal{C}' \) be functors, and \(\theta : F \to F' \) a natural transformation. Let \(\lambda \mapsto M_\lambda \) be a functor from \(\Lambda \) to \(\mathcal{C} \); assume \(\lim_{\rightarrow} M_\lambda, \lim_{\rightarrow} F(M_\lambda) \) exist; and form this diagram:

\[
\begin{array}{ccc}
\lim_{\rightarrow} F(M_\lambda) & \xrightarrow{\varphi_F} & F(\lim_{\rightarrow} M_\lambda) \\
\lim_{\rightarrow} \theta(M_\lambda) \downarrow & & \downarrow \theta(\lim_{\rightarrow} M_\lambda) \\
\lim_{\rightarrow} F'(M_\lambda) & \xrightarrow{\varphi'_{F'}} & F'(\lim_{\rightarrow} M_\lambda)
\end{array}
\]

Assuming \(\varphi_{F'} \) is an isomorphism, show the diagram is commutative.

Exercise (6.16). — Let \(\alpha : L \to M \) and \(\beta : L \to N \) be two maps in a category \(\mathcal{C} \). Their pushout is defined as the object of \(\mathcal{C} \) universal among objects \(P \) equipped with a pair of maps \(\gamma : M \to P \) and \(\delta : N \to P \) such that \(\gamma \alpha = \delta \beta \). Express the pushout as a direct limit. Show that, in (\(\text{Sets} \)), the pushout is the disjoint union \(M \sqcup N \) modulo the smallest equivalence relation \(\sim \) with \(m \sim n \) if there is \(\ell \in L \) with \(\alpha(\ell) = m \) and \(\beta(\ell) = n \). Show that, in (\(\text{R-mod} \)), the pushout is equal to the direct sum \(M \oplus N \) modulo the image of \(L \) under the map \((\alpha, -\beta) \).

Exercise (6.17). — Let \(R \) be a ring, \(M \) a module, \(N \) a submodule, \(X \) a set of variable. Prove \(M \mapsto M[X] \) is the left adjoint of the restriction of scalars from \(R[X] \) to \(R \). As a consequence, reprove the equation \((M/N)[X] = M[X]/N[X] \).

Exercise (6.18). — Let \(\mathcal{C} \) be a category, \(\Sigma \) and \(\Lambda \) small categories. Prove:

1. Then \(\mathcal{C}^{\Sigma \times \Lambda} = (\mathcal{C}^\Lambda)^\Sigma \) with \((\sigma, \lambda) \mapsto M_{\sigma, \lambda} \) corresponding to \(\sigma \mapsto (\lambda \mapsto M_{\sigma, \lambda}) \).

2. Assume \(\mathcal{C} \) has direct limits indexed by \(\Sigma \) and by \(\Lambda \). Then \(\mathcal{C} \) has direct limits indexed by \(\Sigma \times \Lambda \), and \(\lim_{\rightarrow} M \mapsto \lim_{\rightarrow} \lim_{\rightarrow} = \lim_{\rightarrow} \lim_{\rightarrow} \).

Exercise (6.19). — Let \(\lambda \mapsto M_\lambda \) and \(\lambda \mapsto N_\lambda \) be two functors from a small category \(\Lambda \) to (\(\text{R-mod} \)), and \(\{\theta_\lambda : M_\lambda \to N_\lambda\} \) a natural transformation. Show

\[
\lim_{\rightarrow} \text{Coker}(\theta_\lambda) = \text{Coker}(\lim_{\rightarrow} M_\lambda \to \lim_{\rightarrow} N_\lambda).
\]

Show that the analogous statement for kernels can be false by constructing a counterexample using the following commutative diagram with exact rows:

\[
\begin{array}{c}
\mathbb{Z} \xrightarrow{\mu_2} \mathbb{Z} \to \mathbb{Z}/\langle 2 \rangle \to 0 \\
\downarrow \mu_2 \downarrow \mu_2 \downarrow \mu_2 \\
\mathbb{Z} \xrightarrow{\mu_2} \mathbb{Z} \to \mathbb{Z}/\langle 2 \rangle \to 0
\end{array}
\]

50
Exercise (6.20). — Let R be a ring, M a module. Define the map

$$D(M): M \to \text{Hom}(\text{Hom}(M, R), R)$$

by $$(D(M)(m))(\alpha) := \alpha(m).$$

If $D(M)$ is an isomorphism, call M reflexive. Show:

1. $D : 1_{(\text{R-mod})} \to \text{Hom}(\text{Hom}(\bullet, R), R)$ is a natural transformation.
2. Let M_i for $1 \leq i \leq n$ be modules. Then $D(\bigoplus_{i=1}^n M_i) = \bigoplus_{i=1}^n D(M_i)$.
3. Assume M is finitely generated and projective. Then M is reflexive.
7. Filtered Direct Limits

Filtered direct limits are direct limits indexed by a filtered category, which is a more traditional sort of index set. After making the definitions, we study an instructive example where the limit is \(\mathbb{Q} \). Then we develop an alternative construction of filtered direct limits for modules. We conclude that forming them preserves exact sequences, and so commutes with forming the module of homomorphisms out of a fixed finitely presented source.

A. Text

(7.1) (Filtered categories). — We call a small category \(\Lambda \) filtered if

1. given two objects \(\kappa \) and \(\lambda \), for some \(\mu \) there are maps \(\kappa \to \mu \) and \(\lambda \to \mu \),
2. given two maps \(\sigma, \tau : \eta \to \kappa \) with the same source and the same target, for some \(\mu \) there is a map \(\varphi : \kappa \to \mu \) such that \(\varphi \sigma = \varphi \tau \).

Given a category \(\mathcal{C} \), we say a functor \(\lambda \to M_\lambda \) from \(\Lambda \) to \(\mathcal{C} \) is filtered if \(\Lambda \) is filtered. If so, then we say the direct limit \(\lim \) of \(M_\lambda \) is filtered if it exists.

For example, let \(\Lambda \) be a partially ordered set. Suppose \(\Lambda \) is directed; that is, given \(\kappa, \lambda \in \Lambda \), there is a \(\mu \) with \(\kappa \leq \mu \) and \(\lambda \leq \mu \). Regard \(\Lambda \) as a category whose objects are its elements and whose sets \(\text{Hom}(\kappa, \lambda) \) consist of a single element if \(\kappa \leq \lambda \), and are empty if not; morphisms can be composed, because the ordering is transitive. Clearly, the category \(\Lambda \) is filtered.

Exercise (7.2). — Let \(R \) be a ring, \(M \) a module, \(\Lambda \) a set, \(M_\lambda \) a submodule for each \(\lambda \in \Lambda \). Assume \(\bigcup M_\lambda = M \). Assume, given \(\lambda, \mu \in \Lambda \), there is \(\nu \in \Lambda \) such that \(M_\lambda, M_\mu \subset M_\nu \). Order \(\Lambda \) by inclusion: \(\lambda \leq \mu \) if \(M_\lambda \subset M_\mu \). Prove \(M = \lim M_\lambda \).

Example (7.3). — Let \(\Lambda \) be the set of all positive integers, and for each \(n \in \Lambda \), set \(M_n := \{ r/n \mid r \in \mathbb{Z} \} \subset \mathbb{Q} \). Then \(\bigcup M_n = \mathbb{Q} \) and \(M_m, M_n \subset M_{mn} \). Then (7.2) yields \(\mathbb{Q} = \lim M_n \) where \(\Lambda \) is ordered by inclusion of the \(M_n \).

However, \(\overline{M_m} \subset M_n \) if and only if \(1/m = s/n \) for some \(s \), if and only if \(m \mid n \). Thus we may view \(\Lambda \) as ordered by divisibility of the \(n \in \Lambda \).

For each \(n \in \Lambda \), set \(R_n := \mathbb{Z} \), and define \(\beta_n : R_n \to M_n \) by \(\beta_n(r) := r/n \). Clearly, \(\beta_n \) is a \(\mathbb{Z} \)-module isomorphism. And if \(n = ms \), then this diagram is commutative:

\[
\begin{array}{ccc}
R_m & \xrightarrow{\mu_s} & R_n \\
\beta_m & \Downarrow & \beta_n \\
M_m & \xrightarrow{i_m^s} & M_n
\end{array}
\]

(7.3.1)

where \(\mu_s \) is the map of multiplication by \(s \) and \(i_m^s \) is the inclusion. Thus \(\mathbb{Q} = \lim R_n \) where the transition maps are the \(\mu_s \).

Theorem (7.4). — Let \(\Lambda \) be a filtered category, \(R \) a ring, and \(\mathcal{C} \) either \(((\text{Sets})) \) or \(((\text{R-mod})) \) or \(((\text{R-alg})) \). Let \(\lambda \to M_\lambda \) be a functor from \(\Lambda \) to \(\mathcal{C} \). Define a relation \(\sim \) on the set-theoretic disjoint union \(\bigsqcup M_\lambda \) as follows: \(m_1 \sim m_2 \) for \(m_i \in M_\lambda \), if there are transition maps \(\alpha^\lambda_{m_i} : M_\lambda \to M_\mu \) such that \(\alpha^\lambda_{m_2} m_1 = \alpha^\lambda_{m_1} m_2 \). Then \(\sim \) is an equivalence relation. Set \(M := (\bigsqcup M_\lambda)/\sim \). Then \(M = \lim M_\lambda \), and for each \(\mu \), the canonical map \(\alpha_\mu : M_\mu \to M \) is equal to the insertion map \(M_\mu \to \lim M_\lambda \).
Filtered Direct Limits (7.5) / (7.5) Text

Proof: Clearly \(\sim \) is reflexive and symmetric. Let’s show it is transitive. Given \(m_i \in M_\lambda \) for \(i = 1, 2, 3 \) with \(m_1 \sim m_2 \) and \(m_2 \sim m_3 \), there are \(\lambda_i \) for \(i = 1, 2 \) and \(\mu_i \) for \(i = 2, 3 \) with \(\lambda_i m_1 = \mu_i m_2 \) and \(\mu_i m_2 = \lambda_i m_3 \). Then \((7.1)\) yields \(\lambda_i \) and \(\mu_i \). Possibly, \(\mu_i \lambda_i \neq \mu_i \lambda_i \), but in any case, \((7.1) \) yields \(\lambda_i \) with \(\lambda_i \mu \) \(\lambda_i \mu \). In sum, we have this diagram of indices:

\[
\begin{array}{ccc}
\lambda_1 & \xrightarrow{\mu} & \lambda_2 \\
\lambda_2 & \xrightarrow{\nu} & \rho \rightarrow \sigma \\
\end{array}
\]

Hence, \((\lambda_i \mu \lambda_i) \lambda_i m_1 = (\lambda_i \mu \lambda_i) \lambda_i m_3 \). Thus \(m_1 \sim m_3 \).

If \(C = ((R-\text{mod}) \) define addition in \(M \) as follows. Given \(m_1 \in M_\lambda \) for \(i = 1, 2 \), there are \(\mu_i \lambda_i \) by \((7.1)\). Set

\[
\lambda_i m_1 + \lambda_i m_2 := \lambda_i (\mu_i \lambda_i m_1 + \mu_i \lambda_i m_2).
\]

We must check that this addition is well defined.

First, consider \(\mu \). Suppose there are \(\mu_i \lambda_i \) too. Then \((7.1)\) yields \(\mu_i \lambda_i \) and \(\mu_i \). Possibly, \(\mu_i \lambda_i \neq \mu_i \lambda_i \), but \(\mu_i \lambda_i \) yields \(\lambda_i \mu \) \(\lambda_i \mu \) and then \(\lambda_i \mu \) \(\lambda_i \mu \). In sum, we have this diagram:

\[
\begin{array}{ccc}
\lambda_1 & \xrightarrow{\mu} & \lambda_2 \\
\lambda_2 & \xrightarrow{\nu} & \rho \rightarrow \sigma \rightarrow \tau \\
\end{array}
\]

Therefore, \((\lambda_i \mu \lambda_i) \lambda_i m_1 + \lambda_i m_2 = (\lambda_i \mu \lambda_i) \lambda_i m_1 + \lambda_i m_2 \). Thus both \(\mu_i \lambda_i \) and \(\nu \) yield the same value for \(\lambda_i m_1 + \lambda_i m_2 \).

Second, suppose \(m_1 \sim m_2 \in M_\lambda \). Then a similar argument yields \(\lambda_i m_1 + \lambda_i m_2 = \lambda_i m_1 + \lambda_i m_2 \). Thus addition is well defined on \(M \).

Define scalar multiplication on \(M \) similarly. Then clearly \(M \) is an \(R \)-module.

If \(\mathcal{C} = ((R-\text{alg}) \), then we can see similarly that \(M \) is canonically an \(R \)-algebra.

Finally, let \(\beta_\lambda : M_\lambda \rightarrow \mathbb{N} \) be maps with \(\beta_\lambda \lambda = \beta_\lambda \) for all \(\lambda_i \). Then \(\beta_\lambda \) induce a map \(\bigsqcup M_\lambda \rightarrow \mathbb{N} \). Suppose \(m_1 \sim m_2 \) for \(m_i \in M_\lambda \), that is, \(\lambda_i m_1 = \lambda_i m_2 \) for some \(\lambda_i \). Then \(\lambda_i m_1 = \lambda_i m_2 \) as \(\lambda_i \mu \lambda_i = \lambda_i \). So there is a unique map \(\beta : M \rightarrow \mathbb{N} \) with \(\beta \lambda = \beta_\lambda \) for all \(\lambda_i \). Further, if \(\mathcal{C} = ((R-\text{mod}) \) or \(\mathcal{C} = ((R-\text{alg}) \), then clearly \(\beta \) is a homomorphism. The proof is now complete.

Corollary (7.5). — Preserve the conditions of (7.4).

1. Given \(m \in \varprojlim M_\lambda \), there are \(\lambda \) and \(m_\lambda \in M_\lambda \) such that \(m = \lambda m_\lambda \).
2. Given \(m_i \in M_\lambda \) for \(i = 1, 2 \) such that \(\lambda_1 m_1 = \lambda_2 m_2 \), there are \(\mu_i \lambda_i \) such that \(\lambda_i m_1 = \lambda_i m_2 \).
3. Suppose \(\mathcal{C} = ((R-\text{mod}) \) or \(\mathcal{C} = ((R-\text{alg}) \). Then given \(\lambda \) and \(m_\lambda \in M_\lambda \) such that \(\lambda m_\lambda = 0 \), there is \(\mu_\lambda \) such that \(\mu_\lambda m_\lambda = 0 \).

Proof: The assertions follow directly from (7.4). Specifically, (1) holds, since \(\varprojlim M_\lambda \) is a quotient of the disjoint union \(\bigsqcup M_\lambda \). Further, (2) holds owing to the definition of the equivalence relation involved. Finally, (3) is the special case of (2) where \(m_1 := m_\lambda \) and \(m_2 = 0 \).
Definition (7.6). — Let R be a ring. We say an algebra R' is finitely presented if $R' \cong R/X_1, \ldots, X_r]/a$ for some variables X_i and finitely generated ideal a.

Proposition (7.7). — Let Λ be a filtered category, R a ring, C either (R-mod) or (R-alg), $\lambda : M_\Lambda$ a functor from Λ to C. Given $N \in C$, form the map (6.4.1), $\theta : \lim \text{Hom}(N, M_\lambda) \to \text{Hom}(N, \lim M_\lambda)$.

1. If N is finitely generated, then θ is injective.
2. The following conditions are equivalent:
 a. N is finitely presented;
 b. θ is bijective for all filtered categories Λ and all functors $\lambda : M_\Lambda$;
 c. θ is surjective for all directed sets Λ and all $\lambda : M_\Lambda$.

Proof: Given a transition map $\alpha^\lambda_\mu : M_\lambda \to M_\mu$, set $\beta^\lambda_\mu := \text{Hom}(N, \alpha^\lambda_\mu)$. Then the β^λ_μ are the transition maps of $\lim \text{Hom}(N, M_\lambda)$. Denote by α and β the insertions of $\text{lim} M_\lambda$ and $\text{lim} \text{Hom}(N, M_\lambda)$.

For (1), let n_1, \ldots, n_r generate N. Given φ and φ' in $\lim \text{Hom}(N, M_\lambda)$ with $\theta(\varphi) = \theta(\varphi')$, note that (7.5) yields $\lambda' : N \to \text{lim} M_\lambda$ and $\varphi', \varphi' : N \to M_\mu$ with $\beta\lambda(\varphi) = \varphi$ and $\beta\mu(\varphi') = \varphi'$. Then $\theta(\varphi) = \alpha\lambda\varphi\lambda$ and $\theta(\varphi') = \alpha\mu\varphi\mu$ by construction of θ. Hence $\alpha\lambda\varphi\lambda = \alpha\mu\varphi\mu$. So $\alpha\lambda\varphi\lambda(n_i) = \alpha\mu\varphi\mu(n_i)$ for all i. So (7.5)(2) yields λ_i and λ^λ_i and λ^μ_i such that $\lambda^\lambda_i \varphi\lambda(n_i) = \lambda^\mu_i \varphi\mu(n_i)$ for all i.

Consider this commutative diagram, in which ν and the α^ν_i are to be constructed:

$$
\begin{array}{ccc}
N & \xrightarrow{\varphi} & M_\lambda \\
\downarrow{\varphi'} & \quad & \downarrow{\alpha^\lambda} \\
M_\mu & \xrightarrow{\alpha^\mu} & \text{lim} M_\lambda \\
\downarrow{\alpha^\nu} & \quad & \downarrow{\alpha^\nu} \\
M_\nu & \xrightarrow{\alpha^\nu} & \text{lim} M_\nu
\end{array}
$$

Let's prove, by induction on i, that there are ν_i and maps α^λ_i and α^ν_i such that $\alpha^\lambda_i \varphi\lambda(n_i) = \alpha^\nu_i \varphi\nu(n_i)$ for $1 \leq j \leq i$. Indeed, given ν_{i-1} and α^λ_{i-1} and α^ν_{i-1}, by (7.1)(1), there are ρ_i and α^ν_i such that $\alpha^\lambda_i \varphi\lambda(n_i) = \alpha^\nu_i \varphi\nu(n_i)$ for $1 \leq j \leq i$. Hence $\alpha^\lambda_i \varphi\lambda(n_i) = \alpha^\nu_i \varphi\nu(n_i)$ for $1 \leq j \leq i$, as desired.

Set $\nu := \nu_r$. Then $\alpha^\lambda_\nu \varphi\lambda(n_i) = \alpha^\nu_\nu \varphi\nu(n_i)$ for all i. Hence $\alpha^\lambda_\nu \varphi\lambda = \alpha^\nu_\nu \varphi\nu$. But $\varphi = \beta\lambda(\varphi\lambda) = \beta\nu(\alpha^\nu_\nu \varphi\nu)$. Hence $\varphi = \varphi'$. Thus θ is injective. Notice that this proof works equally well for (R-mod) and (R-alg). Thus (1) holds.

For (2), let's treat the case $C = \text{(R-mod)}$ first. Assume (a). Say $N \cong F/N'$ where $F := R^r$ and N' is finitely generated, say by n'_1, \ldots, n'_r. Let n_i be the image in N of the ith standard basis vector e_i of F. For all j, there's a linear polynomial L_j with $L_j(0, \ldots, 0) = 0$ and $L_j(e_1, \ldots, e_r) = n'_j$. So $L_j(n_1, \ldots, n_r) = 0$.

Given $\varphi : N \to \text{lim} M_\lambda$, set $m_i := \varphi(n_i)$ for $1 \leq i \leq r$. Repeated use of (7.5)(1) and (7.1)(1) yields λ and $m_{\lambda_i} \in M_\lambda$ with $\alpha\lambda m_{\lambda_i} = m_i$ for all i. So for all j,

$$
\alpha\lambda L_j(m_{\lambda_1}, \ldots, m_{\lambda_r}) = L_j(m_1, \ldots, m_r) = \varphi(L_j(n_1, \ldots, n_r)) = 0.
$$

Hence repeated use of (7.5)(2) and (7.1)(1),(2) yields μ and α^μ_ν with, for all j,

$$
\alpha^\lambda_\mu(L_j(m_{\lambda_1}, \ldots, m_{\lambda_r})) = 0.
$$
Therefore, there is $\varphi_\mu : N \rightarrow M_\mu$ with $\varphi_\mu(n_i) = \alpha_\mu^\lambda(m_{\lambda i})$ by (4.10) and (4.6). Set $\psi := \beta_\mu(\varphi_\mu)$. Then $\theta(\psi) = \alpha_\lambda\varphi_\mu$. Hence $\theta(\psi)(n_i) = m_i := \varphi(n_i)$ for all i. So $\theta(\psi) = \varphi$. Thus θ is surjective. So (1) implies θ is bijective. Thus (b) holds.

Trivially (b) implies (c).

Finally, assume (c). Take Λ to be the directed set of finitely generated submodules N_λ of N. Then $N = \varinjlim N_\lambda$ by (7.2). However, θ is surjective. So there is $\psi \in \varinjlim \text{Hom}(N, N_\lambda)$ with $\theta(\psi) = 1_N$. So (7.5)(1) yields λ and $\psi_\lambda \in \text{Hom}(N, N_\lambda)$ with $\beta_\lambda^\psi(\psi_\lambda) = \psi$. Hence $\alpha_\lambda\psi_\lambda = \theta(\psi)$. So $\alpha_\lambda\psi_\lambda = 1_N$. So α_λ is surjective. But $\alpha_\lambda : N_\lambda \rightarrow N$ is the inclusion. So $N_\lambda = N$. Thus N is finitely generated. Say n_1, \ldots, n_r generate N. Set $F := R^r$ and let e_i be the ith standard basis vector.

Define $\kappa : F \rightarrow N$ by $\kappa(e_i) := n_i$ for all i. Set $N' := \ker(\kappa)$. Then $F/N' \rightarrowtail N$.

Let’s show N' is finitely generated.

Take Λ to be the directed set of finitely generated submodules N'_λ of N'. Then $N' = \varinjlim N'_\lambda$ by (7.2). Set $N'_\lambda := F/N'_\lambda$. Then $N = \varinjlim N'_\lambda$ by (6.19). Here the α_μ^λ and the α_λ are the quotient maps. Since θ is surjective, there is $\psi \in \text{Hom}(N, N_\lambda)$ with $\theta(\psi) = 1_N$. So (7.5)(1) yields λ and $\psi_\lambda \in \text{Hom}(N, N_\lambda)$ with $\beta_\lambda^\psi(\psi_\lambda) = \psi$. Hence $\alpha_\psi\psi_\lambda = \theta(\psi)$. So $\alpha_\lambda\psi_\lambda = 1_N$. Set $\mu := \alpha_\lambda^\psi\psi_\lambda$ for all μ; note ψ_μ is well defined as λ is directed. Then $\alpha_\mu\psi_\mu = \alpha_\lambda\psi_\lambda = 1_N$ for all μ. Let’s show there is μ with $\psi_\mu\alpha_\mu = 1_{N'_\mu}$.

For all μ and i, let $n_{\mu i}$ be the image in N_μ of e_i. Then $\alpha_\mu\alpha_\lambda n_{\lambda i} = \alpha_\lambda(\psi_\lambda\alpha_\lambda n_{\lambda i})$ as $\alpha_\lambda\psi_\lambda = 1_N$. Hence repeated use of (7.5)(2) and (7.1)(1) yields μ such that $\alpha_\mu^\lambda n_{\lambda i} = \alpha_\lambda^\psi(\psi_\lambda\alpha_\lambda n_{\lambda i})$ for all i. Hence $M_{\mu i} = (\psi_\mu(\mu)\alpha_\mu)n_{\mu i}$. But the $n_{\mu i}$ generate N_μ for all i. So $1_{N'_\mu} = \psi_\mu\alpha_\mu$, as desired.

So $\alpha_\mu : N_\mu \rightarrow N$ is an isomorphism. So $N'_\mu = N'$. Thus N' is finitely generated. Thus (a) holds for $((R,\text{-alg}))$.

In the case $C = ((R,\text{-alg}))$, replace F by a polynomial ring $R[X_1, \ldots, X_r]$, the submodule N' by the appropriate ideal a, and the f_j by polynomials that generate a. With these replacements, the above proof shows (a) implies (b). As to (c) implies (a), first take the N_λ to be the finitely generated subalgebras; then the above proof of finite generation works equally well as is. The rest of the proof works after we replace F by a polynomial ring, the e_i by the variables, N' by the appropriate ideal, and the N'_λ by the finitely generated subideals.

(7.8) (Finite presentations). — Let R be a ring, R' a finitely presented algebra. The proof of (7.7)(2) shows that, for any presentation $R[X_1, \ldots, X_r]/a$ of R', where $R[X_1, \ldots, X_r]$ is a polynomial ring and a is an ideal, necessarily a is finitely generated. Similarly, for a finitely presented module M, that proof gives another solution to (5.18), one not requiring Schanuel’s Lemma.

Theorem (7.9) (Exactness of Filtered Direct Limits). — Let R be a ring, Λ a filtered category. Let C be the category of 3-term exact sequences of R-modules: its objects are the 3-term exact sequences, and its maps are the commutative diagrams

$$
\begin{array}{ccc}
L & \rightarrow & M \\
\downarrow & & \downarrow \\
L' & \rightarrow & M' \rightarrow N'
\end{array}
$$

Then, for any functor $\lambda \mapsto (L_\lambda \xrightarrow{\beta_\lambda} M_\lambda \xrightarrow{\gamma_\lambda} N_\lambda)$ from Λ to C, the induced sequence $\varinjlim L_\lambda \xrightarrow{\beta} \varinjlim M_\lambda \xrightarrow{\gamma} \varinjlim N_\lambda$ is exact.
Filtered Direct Limits

\textbf{Proof:} Abusing notation, in all three cases denote by α_λ^ℓ the transition maps and by α_λ the insertions. Then given $\ell \in \varprojlim L_\lambda$, there is $\ell_\lambda \in L_\lambda$ with $\alpha_\lambda \ell_\lambda = \ell$ by (7.5)(1). By hypothesis, $\gamma_\lambda \beta_\lambda \ell_\lambda = 0$; so $\gamma \beta \ell = 0$. In sum, we have the figure below. Thus $\text{Im}(\beta) \subseteq \text{ker}(\gamma)$.

For the opposite inclusion, take $m \in \varinjlim M_\lambda$ with $\gamma m = 0$. By (7.5)(1), there is $m_\lambda \in M_\lambda$ with $\alpha_\lambda m_\lambda = m$. Now, $\alpha_\lambda \gamma_\lambda m_\lambda = 0$ by commutativity. So by (7.5)(3), there is α_μ^ℓ with $\alpha_\mu^\gamma_\lambda m_\lambda = 0$. So $\gamma_\mu \alpha_\mu^\gamma m_\lambda = 0$ by commutativity. Hence there is $\ell_\mu \in L_\mu$ with $\beta_\mu \ell_\mu = \alpha_\mu^\gamma m_\lambda$ by exactness. Apply α_μ to get

$$\beta_\mu \ell_\mu = \alpha_\mu \beta_\mu \ell_\mu = \alpha_\mu \alpha_\mu^\gamma m_\lambda = m.$$

In sum, we have this figure:

Thus $\text{ker}(\gamma) \subseteq \text{Im}(\beta)$. So $\text{ker}(\gamma) = \text{Im}(\beta)$ as asserted. \hfill \square

\textbf{(7.10) (Hom and direct limits again).} Let Λ a filtered category, R a ring, N a module, and $\lambda \mapsto M_\lambda$ a functor from Λ to $(\text{mod-}R)$. Here is an alternative proof that the map $\theta(N)$ of (6.4.1) is injective if N is finitely generated and bijective if N is finitely presented.

If $N := R$, then $\theta(N)$ is bijective by (4.3). Assume N is finitely generated, and take a presentation $R^\oplus \Sigma \to R^n \to N \to 0$ with Σ finite if N is finitely presented. It induces the following commutative diagram:

The rows are exact owing to (5.11), the left exactness of Hom, and to (7.9), the exactness of filtered direct limits. Now, Hom preserves finite direct sums by (4.13), and direct limit does so by (6.12) and (6.5); hence, $\theta(R^n)$ is bijective, and $\theta(R^\oplus \Sigma)$ is bijective if Σ is finite. A diagram chase yields the assertion.
B. Exercises

Exercise (7.11). — Show that every module M is the filtered direct limit of its finitely generated submodules.

Exercise (7.12). — Show that every direct sum of modules is the filtered direct limit of its finite direct subsums.

Exercise (7.13). — Keep the setup of (7.3). For each $n \in \Lambda$, set $N_n := \mathbb{Z}/(n)$; if $n = ms$, define $\alpha_n^m : N_m \to N_n$ by $\alpha_n^m(x) := xs \pmod{n}$. Show $\lim\limits_n N_n = \mathbb{Q}/\mathbb{Z}$.

Exercise (7.14). — Let $M := \lim\limits_{\mu} M_\mu$ be a filtered direct limit of modules, with transition maps $\alpha_\mu^\lambda : M_\lambda \to M_\mu$ and insertions $\alpha_\lambda : M_\lambda \to M$.

(1) Prove that all α_λ are injective if and only if all α_μ^λ are. What if $\lim\limits_{\mu} M_\mu$ isn’t filtered?

(2) Assume that all α_λ are injective. Prove $M = \bigcup \alpha_\lambda M_\lambda$.

Exercise (7.15). — Let R be a ring, a a finitely generated ideal, M a module. Show $\Gamma_a(M) = \lim\limits_n \text{Hom}(R/a^n, M)$.

Exercise (7.16). — Let $R := \lim\limits_{\lambda} R_\lambda$ be a filtered direct limit of rings. Show:

(1) Then $R = 0$ if and only if $R_\lambda = 0$ for some λ.

(2) Assume each R_λ is a domain. Then R is a domain.

(3) Assume each R_λ is a field. Then each insertion $\alpha_\lambda : R_\lambda \to R$ is injective, $R = \bigcup \alpha_\lambda R_\lambda$, and R is a field.

Exercise (7.17). — Let $M := \lim\limits_{\lambda} M_\lambda$ be a filtered direct limit of modules, with transition maps $\alpha_\mu^\lambda : M_\lambda \to M_\mu$ and insertions $\alpha_\lambda : M_\lambda \to M$. For each λ, let $N_\lambda \subset M_\lambda$ be a submodule, and let $N \subset M$ be a submodule. Show $N_\lambda = \alpha_\lambda^{-1}N$ for all λ if and only if (a) $N_\lambda = (\alpha_\mu^\lambda)^{-1}N_\mu$ for all α_μ^λ and (b) $\bigcup \alpha_\lambda N_\lambda = N$.

Exercise (7.18). — Let $R := \lim\limits_{\lambda} R_\lambda$ be a filtered direct limit of rings, $a_\lambda \subset R_\lambda$ an ideal for each λ. Assume $\alpha_\mu^\lambda a_\lambda \subset a_\mu$ for each transition map α_μ^λ. Set $a := \lim\limits_{\lambda} a_\lambda$. If each a_λ is prime, show a is prime. If each a_λ is maximal, show a is maximal.

Exercise (7.19). — Let $M := \lim\limits_{\lambda} M_\lambda$ be a filtered direct limit of modules, with transition maps $\alpha_\mu^\lambda : M_\lambda \to M_\mu$ and insertions $\alpha_\lambda : M_\lambda \to M$. Let $N_\lambda \subset M_\lambda$ be a submodule for all λ. Assume $\alpha_\mu^\lambda N_\lambda \subset N_\mu$ for all α_μ^λ. Prove $\lim\limits_{\lambda} N_\lambda = \bigcup \alpha_\lambda N_\lambda$.

Exercise (7.20). — Let $R := \lim\limits_{\lambda} R_\lambda$ be a filtered direct limit of rings. Prove that $\lim\limits_{\lambda} \text{nil}(R_\lambda) = \text{nil}(R)$.

Exercise (7.21). — Let $R := \lim\limits_{\lambda} R_\lambda$ be a filtered direct limit of rings. Assume each ring R_λ is local, say with maximal ideal m_λ, and assume each transition map $\alpha_\mu^\lambda : R_\lambda \to R_\mu$ is local. Set $m := \lim\limits_{\lambda} m_\lambda$. Prove that R is local with maximal ideal m and that each insertion $\alpha_\lambda : R_\lambda \to R$ is local.

Exercise (7.22). — Let A and A' be small categories, $C : A' \to A$ a functor. Assume A' is filtered. Assume C is cofinal; that is,

(1) given $\lambda \in A$, there is a map $\lambda \to C\lambda'$ for some $\lambda' \in A'$, and

(2) given $\psi, \varphi : \lambda \Rightarrow C\lambda'$, there is $\chi : \lambda' \to \lambda'$ with $(C\chi)\psi = (C\chi)\varphi$.

57
Let \(\lambda \mapsto M_\lambda \) be a functor from \(\Lambda \) to \(\mathcal{C} \) whose direct limit exists. Show that
\[
\varprojlim_{\lambda' \in \Lambda'} M_{\lambda'} = \varprojlim_{\lambda \in \Lambda} M_\lambda;
\]
more precisely, show that the right side has the UMP characterizing the left.

Exercise (7.23). — Show that every \(R \)-module \(M \) is the filtered direct limit over a directed set of finitely presented modules.
8. Tensor Products

Given two modules, their tensor product is the target of the universal bilinear map. We construct the product, and establish various properties: bifunctoriality, commutativity, associativity, cancellation, and most importantly, adjoint associativity; the latter relates the product to the module of homomorphisms. With one factor fixed, tensor product becomes a linear functor. We prove Watt’s Theorem; it characterizes “tensor-product” functors as those linear functors that commute with direct sums and cokernels. Lastly, we discuss the tensor product of algebras.

A. Text

(8.1) (Bilinear maps). — Let R a ring, and M, N, P modules. We call a map $\alpha : M \times N \to P$ bilinear if it is linear in each variable; that is, given $m \in M$ and $n \in N$, the maps $m' \mapsto \alpha(m', n)$ and $n' \mapsto \alpha(m, n')$ are R-linear. Denote the set of all these maps by $\text{Bil}_R(M; N; P)$. It is clearly an R-module, with sum and scalar multiplication performed valuewise.

(8.2) (Tensor product). — Let R be a ring, and M, N modules. Their tensor product, denoted $M \otimes_R N$ or simply $M \otimes N$, is constructed as the quotient of the free module $R^{\oplus(M \times N)}$ modulo the submodule generated by the following elements, where (m, n) stands for the standard basis element $e_{(m, n)}$:

\[
\begin{align*}
(m + m', n) - (m, n) - (m', n) & \quad \text{and} \quad (m, n + n') - (m, n) - (m, n'), \\
(xm, n) - x(m, n) & \quad \text{and} \quad (m, xn) - x(m, n)
\end{align*}
\]

(8.2.1) for all $m, m' \in M$ and $n, n' \in N$ and $x \in R$.

The above construction yields a canonical bilinear map $\beta : M \times N \to M \otimes N$.

Set $m \otimes n := \beta(m, n)$.

Theorem (8.3) (UMP of tensor product). — Let R be a ring, M, N modules. Then $\beta : M \times N \to M \otimes N$ is the universal bilinear map with source $M \times N$; in fact, β induces, not simply a bijection, but a module isomorphism,

\[
\theta : \text{Hom}_R(M \otimes_R N, P) \cong \text{Bil}_R(M, N; P).
\]

(8.3.1)

Proof: Note that, if we follow any bilinear map with any linear map, then the result is bilinear; hence, θ is well defined. Clearly, θ is a module homomorphism. Further, θ is injective since $M \otimes_R N$ is generated by the image of β. Finally, given any bilinear map $\alpha : M \times N \to P$, by (4.10) it extends to a map $\alpha' : R^{\oplus(M \times N)} \to P$, and α' carries all the elements in (8.2.1) to 0; hence, α' factors through β. Thus θ is also surjective, so an isomorphism, as asserted.

□
(8.4) (Bifunctoriality). — Let R be a ring, $\alpha: M \to M'$ and $\alpha': N \to N'$ module homomorphisms. Then there is a canonical commutative diagram:

$$
\begin{array}{c}
M \times N \xrightarrow{\alpha \times \alpha'} M' \times N' \\
\downarrow \beta \quad \quad \quad \downarrow \beta' \\
M \otimes N \xrightarrow{\alpha \otimes \alpha'} M' \otimes N'
\end{array}
$$

Indeed, $\beta' \circ (\alpha \times \alpha')$ is clearly bilinear; so the UMP (8.3) yields $\alpha \otimes \alpha'$. Thus $\bullet \otimes N$ and $M \otimes \bullet$ are commuting linear functors—that is, linear on maps, see (8.12).

Proposition (8.5). — Let R be a ring, M and N modules.

1. Then the switch map $(m,n) \mapsto (n,m)$ induces an isomorphism
 $$M \otimes_R N = N \otimes_R M.$$
 \hspace{1cm} (commutative law)

2. Then multiplication of R on M induces an isomorphism
 $$R \otimes_R M = M.$$
 \hspace{1cm} (unitary law)

Proof: The switch map induces an isomorphism $R^{\otimes (M \times N)} \cong R^{(N \times M)}$, and it preserves the elements of (8.2.1). Thus (1) holds.

Define $\beta: R \times M \to M$ by $\beta(x,m) := xm$. Clearly β is bilinear. Let’s check β has the requisite UMP. Given a bilinear map $\alpha: R \times M \to P$, define $\gamma: M \to P$ by $\gamma(m) := \alpha(1,m)$. Then γ is linear as α is bilinear. Also, $\alpha = \gamma \beta$ as

$$\alpha(x,m) = x\alpha(1,m) = \alpha(1,xm) = \gamma(xm) = \beta(x,m).$$

Further, γ is unique as β is surjective. Thus β has the UMP, so (2) holds. □

(8.6) (Bimodules). — Let R and R' be rings. An abelian group N is an (R,R')-bimodule if it is both an R-module and an R'-module and if $x(x'n) = x'(xn)$ for all $x \in R$, all $x' \in R'$, and all $n \in N$. At times, we think of N as a left R-module, with multiplication xn, and as a right R'-module, with multiplication nx'. Then the compatibility condition becomes the associative law: $x(nx') = (xn)x'$. A (R,R')-homomorphism of bimodules is a map that is both R-linear and R'-linear.

Let M be an R-module, and let N be an (R,R')-bimodule. Then $M \otimes_R N$ is an (R,R')-bimodule with R-structure as usual and with R'-structure defined by $x'(m \otimes n) := m \otimes (x'n)$ for all $x' \in R'$, all $m \in M$, and all $n \in N$. The latter multiplication is well defined and the two multiplications commute because of bifunctoriality (8.4) with $\alpha := \mu_\sigma$ and $\alpha' := \mu_{\sigma'}$.

For instance, suppose R' is an R-algebra. Then R' is an (R,R')-bimodule. So $M \otimes_R R'$ is an R'-module. It is said to be obtained by extension of scalars.

In general, it is easy to check that $\text{Hom}_R(M,N)$ is an (R,R')-bimodule under valuewise multiplication by elements of R'. Further, given an R'-module P, it is easy to check that $\text{Hom}_R(M,N)$ is an (R,R')-bimodule under sourcewise multiplication by elements of R.

Exercise (8.7). — Let R be a ring, R' an R-algebra, and M, N two R'-modules.

1. Show that there is a canonical R-linear map $\tau: M \otimes_R N \to M \otimes_R N$.

2. Let $K \subset M \otimes_R N$ denote the R-submodule generated by all the differences $(x'm) \otimes n - m \otimes (x'n)$ for $x' \in R'$ and $m \in M$ and $n \in N$. Show that $K = \text{Ker}(\tau)$ and that τ is surjective.

3. Suppose that R' is a quotient of R. Show that τ is an isomorphism.

4. Let $\{t_\alpha\}$ be a set of algebra generators of R' over R. Let $\{m_\mu\}$ and $\{n_\nu\}$
be sets of generators of M and N over R'. Regard $M \otimes_R N$ as an $(R' \otimes_R R')$-module. Let K' denote the $(R' \otimes_R R')$-submodule generated by all differences $(t_m \otimes n) - m \otimes (t_n)$. Show that $K' = K$.

Theorem (8.8). — Let R and R' be rings, M an R-module, P an R'-module, N an (R, R')-bimodule. Then there are two canonical (R, R')-isomorphisms:

$$M \otimes_R (N \otimes_{R'} P) = (M \otimes_R N) \otimes_{R'} P, \quad \text{(associative law)}$$

$$\text{Hom}_{R'}(M \otimes_R N, P) = \text{Hom}_R(M, \text{Hom}_{R'}(N, P)). \quad \text{(adjoint associativity)}$$

Proof: Note that $M \otimes_R (N \otimes_{R'} P)$ and $(M \otimes_R N) \otimes_{R'} P$ are (R, R')-bimodules. For each (R, R')-bimodule Q, call a map $\tau: M \times N \times P \to Q$ trilinear if it is R-bilinear in $M \times N$ and R'-bilinear in $N \times P$. Denote the set of all these τ by $\text{Tril}_{(R, R')}(M, N, P; Q)$. It is, clearly, an (R, R')-bimodule.

A trilinear map τ yields an R-bilinear map $M \times (N \otimes_{R'} P) \to Q$, whence a map $M \otimes_R (N \otimes_{R'} P) \to Q$, which is both R-linear and R'-linear, and vice versa. Thus

$$\text{Tril}_{(R, R')}(M, N, P; Q) = \text{Hom}(M \otimes_R (N \otimes_{R'} P), Q).$$

Similarly, there is a canonical isomorphism of (R, R')-bimodules

$$\text{Tril}_{(R, R')}(M, N, P; Q) = \text{Hom}((M \otimes_R N) \otimes_{R'} P, Q).$$

Hence each of $M \otimes_R (N \otimes_{R'} P)$ and $(M \otimes_R N) \otimes_{R'} P$ is the universal target of a trilinear map with source $M \times N \times P$. Thus they are equal, as asserted.

To establish the isomorphism of adjoint associativity, define a map

$$\alpha: \text{Hom}_{R'}(M \otimes_R N, P) \to \text{Hom}_R(M, \text{Hom}_{R'}(N, P)) \quad \text{by} \quad (\alpha(\gamma))(m)(n) := \gamma(m \otimes n).$$

Let’s check α is well defined. First, $\alpha(\gamma)(m)$ is R'-linear, because given $x' \in R'$,

$$\gamma(m \otimes (x'n)) = \gamma((x'm \otimes n)) = x' \gamma(m \otimes n)$$

since γ is R'-linear. Further, $\alpha(\gamma)$ is R-linear, because given $x \in R$,

$$(xm) \otimes n = m \otimes (xn) \quad \text{and so} \quad (\alpha(\gamma)(xm))(n) = (\alpha(\gamma)(m))(xn).$$

Thus $\alpha(\gamma) \in \text{Hom}_R(M, \text{Hom}_{R'}(N, P))$. Clearly, α is an (R, R')-homomorphism.

To obtain an inverse to α, given $\eta \in \text{Hom}_R(M, \text{Hom}_{R'}(N, P))$, define a map $\zeta: M \times N \to P$ by $\zeta(m, n) := (\eta(m))(n)$. Clearly, ζ is \mathbb{Z}-bilinear, so ζ induces a \mathbb{Z}-linear map $\delta: M \otimes_{\mathbb{Z}} N \to P$. Given $x \in R$, clearly $(\eta(xm))(n) = (\eta(m))(xn)$; so $\delta((xm) \otimes n) = \delta(m \otimes (xn))$. Hence, δ induces a \mathbb{Z}-linear map $\beta(\eta): M \otimes_R N \to P$ owing to (8.7) with \mathbb{Z} for R and with R for R'. Clearly, $\beta(\eta)$ is R'-linear as $\eta(m)$ is so. Finally, it is easy to verify that $\alpha(\beta(\eta)) = \eta$ and $\beta(\alpha(\gamma)) = \gamma$, as desired. □

Corollary (8.9). — Let R be a ring, and R' an algebra. First, let M be an R-module, and P an R'-module. Then there are two canonical R'-isomorphisms:

$$(M \otimes_R R') \otimes_{R'} P = M \otimes_R P, \quad \text{(cancellation law)}$$

$$\text{Hom}_{R'}(M \otimes_R R', P) = \text{Hom}_R(M, P). \quad \text{(left adjoint)}$$

Instead, let M be an R'-module, and P an R-module. Then there is a canonical R'-isomorphism:

$$\text{Hom}_R(M, P) = \text{Hom}_{R'}(M, \text{Hom}_R(R', P)). \quad \text{(right adjoint)}$$

In other words, $\bullet \otimes_R R'$ is the left adjoint of restriction of scalars from R' to R.

61
The cancellation law results from the associative and unitary laws; the adjoint isomorphisms, from adjoint associativity, (4.3) and the unitary law. □

Corollary (8.10). — Let R, R' be rings, N a bimodule. Then the functor $\cdot \otimes_R N$ preserves direct limits, or equivalently, direct sums and cokernels.

Proof: By adjoint associativity, $\cdot \otimes_R N$ is the left adjoint of $\text{Hom}_{R'}(N, \cdot)$. Thus the assertion results from (6.9) and (6.7). □

Example (8.11). — Tensor product does not preserve kernels, nor even injections. Indeed, consider the injection $\mu_2 : \mathbb{Z} \to \mathbb{Z}$. Tensor it with $N := \mathbb{Z}/(2)$, obtaining $\mu_2 : N \to N$. This map is zero, but not injective as $N \neq 0$.

Exercise (8.14). — Let $F : ((R\text{-mod})) \to ((R'\text{-mod}))$ be a linear functor, and \mathcal{C} the category of finitely generated modules. Show that F always preserves finite direct sums. Show that $\theta(M) : M \otimes F(R) \to F(M)$ is surjective if F preserves surjections in \mathcal{C} and M is finitely generated, and that $\theta(M)$ is an isomorphism if F preserves cokernels in \mathcal{C} and M is finitely presented.
(8.15) (Additive functors). — Let R be a ring, M a module, and form the diagram

\[M \xrightarrow{\delta_M} M \oplus M \xrightarrow{\pi_M} M \]

where $\delta_M := (1_M, 1_M)$ and $\sigma_M := 1_M + 1_M$.

Let $\alpha, \beta: M \to N$ be two maps of modules. Then

\[\sigma_N(\alpha + \beta)\delta_M = \alpha + \beta, \]

(8.15.1)

because, for any $m \in M$, we have

\[(\sigma_N(\alpha + \beta)\delta_M)(m) = \sigma_N(\alpha + \beta)(m, m) = \sigma_N(\alpha(m), \beta(m)) = \alpha(m) + \beta(m). \]

Let $F: ((R\text{-mod})) \to ((R\text{-mod}))$ be a functor that preserves finite direct sums. Then $F(\alpha + \beta) = F(\alpha) \oplus F(\beta)$. Also, $F(\delta_M) = \delta_{F(M)}$ and $F(\sigma_M) = \sigma_{F(M)}$ as $F(1_M) = 1_{F(M)}$. Hence $F(\alpha + \beta) = F(\alpha) + F(\beta)$ by (8.15.1). Thus F is additive, that is, \mathbb{Z}-linear.

Conversely, every additive functor preserves finite direct sums owing to (8.14).

However, not every additive functor is R-linear. For example, take $R := \mathbb{C}$. Define $F(M)$ to be M, but with the scalar product of $x \in \mathbb{C}$ and $m \in M$ to be $\overline{x}m$ where \overline{x} is the conjugate. Define $F(\alpha)$ to be α. Then F is additive, but not linear.

Lemma (8.16) (Equational Criterion for Vanishing). — Let R be a ring, M and N modules, and $\{n_\lambda\}_{\lambda \in \Lambda}$ a set of generators of N. Then any $t \in M \otimes N$ can be written as a finite sum $t = \sum m_\lambda \otimes n_\lambda$ with $m_\lambda \in M$. Further, $t = 0$ if and only if there are $m_\sigma \in M$ and $x_\lambda \in R$ for $\sigma \in \Sigma$ for some Σ such that

\[\sum_\sigma x_\lambda m_\sigma = m_\lambda \text{ for all } \lambda \text{ and } \sum_\lambda x_\lambda n_\sigma = 0 \text{ for all } \sigma. \]

Proof: Owing to (8.2), $M \otimes N$ is generated by all the $m \otimes n$ with $m \in M$ and $n \in N$, and if $n = \sum x_\lambda n_\lambda$ with $x_\lambda \in R$, then $m \otimes n = \sum (x_\lambda m_\lambda) \otimes n_\lambda$. It follows that t can be written as a finite sum $t = \sum m_\lambda \otimes n_\lambda$ with $m_\lambda \in M$.

Assume the m_σ and the $x_\lambda \sigma$ exist. Then

\[\sum m_\lambda \otimes n_\lambda = \sum_\lambda \left(\sum_\sigma x_\lambda m_\sigma \right) \otimes n_\lambda = \sum_\sigma \left(m_\sigma \otimes \sum_\lambda x_\lambda n_\lambda \right) = 0. \]

Conversely, by (5.13), there is a presentation $R^{\otimes \Sigma} \xrightarrow{\beta} R^{\otimes \Lambda} \xrightarrow{\alpha} N \to 0$ with $\alpha(e_\lambda) = n_\lambda$ for all λ where $\{e_\lambda\}$ is the standard basis of $R^{\otimes \Lambda}$. Then by (8.10) the following sequence is exact:

\[M \otimes R^{\otimes \Sigma} \xrightarrow{1 \otimes \beta} M \otimes R^{\otimes \Lambda} \xrightarrow{1 \otimes \alpha} M \otimes N \to 0. \]

Further, $(1 \otimes \alpha)(\sum m_\lambda \otimes e_\lambda) = 0$. So the exactness implies there is an element $s \in M \otimes R^{\otimes \Sigma}$ such that $(1 \otimes \beta)(s) = \sum m_\lambda \otimes e_\lambda$. Let $\{e_\sigma\}$ be the standard basis of $R^{\otimes \Sigma}$, and write $s = \sum m_\sigma \otimes e_\sigma$ with $m_\sigma \in M$. Write $\beta(e_\sigma) = \sum_\lambda x_\lambda e_\sigma$. Then clearly $0 = \alpha(\beta(e_\sigma)) = \sum_\lambda x_\lambda n_\lambda$, and

\[0 = \sum_\lambda m_\lambda \otimes e_\lambda - \sum_\sigma m_\sigma \otimes (\sum_\lambda x_\lambda e_\sigma) = \sum_\lambda (m_\lambda - \sum_\sigma x_\lambda m_\sigma) \otimes e_\lambda. \]

Since the e_λ are independent, $m_\lambda = \sum_\sigma x_\lambda m_\sigma$, as asserted. \hfill \Box

(8.17) (Algebras). — Let R be a ring, R_1 and R_2 algebras with structure maps $\sigma: R \to R_1$ and $\tau: R \to R_2$. Set

\[R' := R_1 \otimes_R R_2. \]

It is an R-module. Now, define $R_1 \times R_2 \times R_1 \times R_2 \to R'$ by $(s, t, s', t') \mapsto ss' \otimes tt'$. 63
This map is clearly linear in each factor. So it induces a bilinear map
\[\mu : R' \times R' \to R' \quad \text{with} \quad \mu(s \otimes t, s' \otimes t') = (ss' \otimes tt'). \]

It is easy to check that \(R' \) is a ring with \(\mu \) as product. In fact, \(R' \) is an \(R \)-algebra with structure map \(\omega \) given by \(\omega(r) := \sigma(r) \otimes 1 = 1 \otimes \tau(r) \), called the tensor product of \(R_1 \) and \(R_2 \) over \(R \).

Define \(\iota_1 : R_1 \to R' \) by \(\iota_{R_1}(s) := s \otimes 1 \). Clearly \(\iota_1 \) is an \(R \)-algebra homomorphism. Define \(\iota_2 : R_2 \to R_1 \otimes R_2 \) similarly. Given an \(R \)-algebra \(R'' \), define a map
\[\gamma : \text{Hom}_R(R'_1, R'') \times \text{Hom}_R(R'_2, R'') \to \text{Hom}_R(R'_1 \otimes R'_2, R''). \]

by \(\gamma(\psi) := (\psi_{\iota_1}, \psi_{\iota_2}) \). Conversely, given \(R \)-algebra homomorphisms \(\theta : R_1 \to R'' \) and \(\zeta : R_2 \to R'' \), define \(\eta : R_1 \times R_2 \to R'' \) by \(\eta(s, t) := \theta(s) \cdot \zeta(t) \). Then \(\eta \) is clearly bilinear, so it defines a linear map \(R \to R'' \). It is easy to see that the map \((\theta, \zeta) \mapsto \eta \) is an inverse to \(\gamma \). Thus \(\gamma \) is bijective.

In other words, \(R' := R_1 \otimes_R R_2 \) is the coproduct \(R_1 \coprod R_2 \) in \((R \text{-alg}) \):

\[\begin{array}{c}
R_1 \\
\downarrow \theta \quad \quad \quad \quad \downarrow \gamma \\
R_1 \otimes R_2 \\
\downarrow \iota_1 \quad \quad \quad \downarrow \iota_2 \\
\quad \quad \quad \quad R' \end{array} \]

Example (8.18). — Let \(R \) be a ring, \(R' \) an algebra, and \(\mathcal{X} := \{X_\lambda \} \) a set of variables. Let’s see that there is a canonical \(R' \)-algebra isomorphism
\[R' \otimes_R R[\mathcal{X}] = R'[\mathcal{X}]. \]

Given an \(R' \)-algebra homomorphism \(R' \to R'' \) and elements \(x_\lambda \) of \(R'' \), there is an \(R \)-algebra homomorphism \(R[\mathcal{X}] \to R'' \) by (1.3). So by (8.17), there is a unique \(R' \)-algebra homomorphism \(R' \otimes_R R[\mathcal{X}] \to R'' \). Thus both \(R' \otimes_R R[\mathcal{X}] \to R'' \) and \(R'[\mathcal{X}] \) have the same UMP. In particular, for another set of variables \(\mathcal{Y} \), we obtain
\[R[\mathcal{X}] \otimes_R R[\mathcal{Y}] = R[\mathcal{X}, \mathcal{Y}] = R[\mathcal{X}, \mathcal{Y}]. \]

However, for formal power series rings, the corresponding statements may fail. For example, let \(k \) be a field, and \(X, Y \) variables. Then the image \(T \) of \(k[[X]] \otimes k[[Y]] \) in \(k[[X, Y]] \) consists of the \(H \) of the form \(\sum g_i G_i \) for some \(n \) and \(F_i, G_i \in k[[X]] \). Say \(G_i = \sum_{j=0}^n g_{ij} Y^j \) with \(g_{ij} \in k \). Then \(F_i G_i = \sum_{j=0}^n F_i g_{ij} Y^j \). Say \(H = \sum_{j=0}^n H_j Y^j \) with \(H_j \in k[[X]] \). Then \(H_j = \sum_{i=1}^n F_i g_{ij} \). So all the \(H_j \) lie in the vector subspace of \(k[[X]] \) spanned by \(F_1, \ldots, F_n \). Now, 1, \(X, X^2, \ldots \) lie in no finite-dimensional subspace. Thus \(\sum X^i Y^j \notin T \).

(8.19) (Diagonal Ideal). — Let \(R \) be a ring, \(R' \) an algebra, \(\mu : R' \otimes_R R' \to R' \) the multiplication map. Call \(\text{Ker}(\mu) \) the diagonal ideal of \(R' \), and denote it by \(\mathfrak{d}_{R'} \).

For example, take \(R' \) to be the polynomial ring in a set of variables \(\mathcal{X} := \{X_\lambda\} \). Then (8.18) yields \(R' \otimes_R R' = R'[\mathcal{T} \cup \mathcal{U}] \) where \(T := \{T_\lambda\} \) with \(T_\lambda := X_\lambda \otimes 1 \) and \(\mathcal{U} := \{U_\lambda\} \) with \(U_\lambda := 1 \otimes X_\lambda \) for all \(\lambda \). Plainly \(\mu(U_\lambda - T_\lambda) = 0 \). Further, (1.17)(3) with \(R[\mathcal{T}] \) for \(R \) yields \(R[\mathcal{T}][\mathcal{U}] / \langle \{U_\lambda - T_\lambda\} \rangle = R[\mathcal{T}] \). Thus \(\mathfrak{d}_{R'} = \langle \{U_\lambda - T_\lambda\} \rangle \).

More generally, let \(\mathcal{G} \) be a set of generators of \(R' \) as an \(R \)-algebra, and \(\mathfrak{d} \) the ideal of \(R' \otimes_R R' \) generated by the elements \(g \otimes 1 - 1 \otimes g \) for \(g \in \mathcal{G} \). Then \(\mathfrak{d} = \mathfrak{d}_{R'} \) by (8.7)(4) with \(M := N := R' := R' \), because \(R \otimes_R R = R \) by (8.5)(2).
B. Exercises

Exercise (8.20). — Let R be a ring, R' and R'' algebras, M' an R'-module and M'' an R''-module. Say $\{m'_\lambda\}$ generates M' over R' and $\{m''_\mu\}$ generates M'' over R''. Show $\{m'_\lambda \otimes m''_\mu\}$ generates $M' \otimes_R M''$ over $R' \otimes_R R''$.

Exercise (8.21). — Let R be a ring, R' an R- algebra, and M an R'-module. Set $M' := R' \otimes_R M$. Define $\alpha : M \to M'$ by $\alpha m := 1 \otimes m$, and $\rho : M' \to M$ by $\rho(x \otimes m) := xm$. Prove M is a direct summand of M' with $\alpha = \iota_M$ and $\rho = \pi_M$.

Exercise (8.22). — Let R be a domain, a a nonzero ideal. Set $K := \text{Frac}(R)$. Show that $a \otimes_R K = K$.

Exercise (8.23). — In the setup of (8.9), find the unit η_M of each adjunction.

Exercise (8.24). — Let M and N be nonzero k-vector spaces. Prove $M \otimes N \neq 0$.

Exercise (8.25). — Let R be a nonzero ring. Show

1. Assume there is a surjective map $\alpha : R^n \to R^m$. Then $n \geq m$.
2. Assume $R^n \cong R^m$. Then $n = m$.

Exercise (8.26). — Under the conditions of (5.41)(1), set $K := \text{Frac}(R)$. Show $\text{rank}(F) = \dim_K(M \otimes K)$.

Exercise (8.27). — Let R be a ring, a and b ideals, and M a module.

1. Use (8.10) to show that $(R/a) \otimes M = M/aM$.
2. Use (1) and (4.21) to show that $(R/a) \otimes (M/bM) = M/(a+b)M$.

Exercise (8.28). — Let R be a ring, B an algebra, B' and B'' algebras over B. Regard B as an $(B \otimes_R B)$-algebra via the multiplication map. Set $C := B' \otimes_R B''$. Prove these formulas: (1) $B' \otimes_B B'' = C/\mathfrak{d}_B C$ and (2) $B' \otimes_B B'' = B \otimes_{B \otimes_R B} C$.

Exercise (8.29). — Show $\mathbb{Z}/(m) \otimes \mathbb{Z}/(n) = 0$ if m and n are relatively prime.

Exercise (8.30). — Let R be a ring, R' and R'' algebras, $a' \subset R'$ and $a'' \subset R''$ ideals. Let $b \subset R' \otimes_R R''$ denote the ideal generated by a' and a''. Show that $(R' \otimes_R R'')/b = (R'/a') \otimes_R (R''/a'')$.

Exercise (8.31). — Let R be a ring, M a module, \mathcal{X} a set of variables. Prove the equation $M \otimes_R R[\mathcal{X}] = M[\mathcal{X}]$.

Exercise (8.32). — Generalize (4.20) to several variables X_1, \ldots, X_r via this standard device: reduce to the case of one variable Y by taking a suitably large d and defining $\varphi : R[X_1, \ldots, X_r] \to R[Y]$ by $\varphi(X_i) := Y^d$ and setting $\alpha := 1_M \otimes \varphi$.

Exercise (8.33). — Let R be a ring, R_{σ} for $\sigma \in \Sigma$ algebras. For each finite subset J of Σ, let R_J be the tensor product of the R_{σ} for $\sigma \in J$. Prove that the assignment $J \mapsto R_J$ extends to a filtered direct system and that $\lim_{\to} R_J$ exists and is the coproduct $\coprod_{J \in \Sigma} R_{\sigma}$.

Exercise (8.34). — Let X be a variable, ω a complex cube root of 1, and $\sqrt[3]{2}$ the real cube root of 2. Set $k := \mathbb{Q}(\omega)$ and $K := k(\sqrt[3]{2})$. Show $K = k[X]/(X^3 - 2)$ and then $K \otimes_k K = K \times K \times K$.

65
9. Flatness

A module is called flat if tensor product with it is an exact functor, faithfully flat if this functor is also faithful—that is, carries nonzero maps to nonzero maps.

First, we study exact functors, then flat and faithfully flat modules. Notably, we prove Lazard’s Theorem, which characterizes flat modules as filtered direct limits of free modules of finite rank. Lazard’s Theorem yields the Ideal Criterion, which characterizes the flat modules as those whose tensor product with any finitely generated ideal is equal to the ordinary product.

A. Text

Lemma (9.1). — Let R be a ring, $\alpha : M \to N$ a homomorphism of modules. Then there is a commutative diagram with two short exact sequences involving N'

$$
\begin{array}{c}
0 \\ \\
\downarrow \\
M' \\
\downarrow \\
\downarrow \alpha' \\
M \\
\downarrow \alpha \\
N \\
\downarrow \\
N'' \\
\downarrow \\
0
\end{array}
\quad (9.1.1)
$$

if and only if $M' = \text{Ker}(\alpha)$ and $N' = \text{Im}(\alpha)$ and $N'' = \text{Coker}(\alpha)$.

Proof: If the equations hold, then the second short sequence is exact owing to the definitions, and the first is exact since $\text{Coim}(\alpha) \to \text{Im}(\alpha)$ by (4.9).

Conversely, given the commutative diagram with two short exact sequences, α'' is injective. So $\text{Ker}(\alpha) = \text{Ker}(\alpha')$. So $M' = \text{Ker}(\alpha)$. So $N' = \text{Coim}(\alpha)$ as α' is surjective. So $N'' = \text{Coker}(\alpha)$. Thus the equations hold. □

(9.2) (Exact Functors). — Let R be a ring, R' an algebra, F a linear functor from $((R\text{-mod}))$ to $((R'\text{-mod}))$. Call F faithful if the associated map

$$
\text{Hom}_R(M, N) \to \text{Hom}_{R'}(FM, FN)
$$

is injective, or equivalently, if $F\alpha = 0$ implies $\alpha = 0$.

Call F exact if it preserves exact sequences. For example, $\text{Hom}(P, \bullet)$ is exact if and only if P is projective by (5.16).

Call F left exact if it preserves kernels. When F is contravariant, call F left exact if it takes cokernels to kernels. For example, $\text{Hom}(N, \bullet)$ and $\text{Hom}(\bullet, N)$ are left exact covariant and contravariant functors.

Call F right exact if it preserves cokernels. Thus $M \otimes \bullet$ is right exact by (8.10).

Proposition (9.3). — Let R be a ring, R' an algebra, F an R-linear functor from $((R\text{-mod}))$ to $((R'\text{-mod}))$. Then the following conditions are equivalent:

1. F preserves exact sequences; that is, F is exact.
2. F preserves short exact sequences.
3. F preserves kernels and surjections.
4. F preserves cokernels and surjections.
5. F preserves kernels and images.
(9.4) (Flatness). — We say an R-module M is flat over R or is R-flat if the functor $M \otimes_R \bullet$ is exact. It is equivalent by (9.3) that $M \otimes_R \bullet$ preserve injections since it preserves cokernels by (8.10).

We say M is faithfully flat if $M \otimes_R \bullet$ is exact and faithful.

We say an R-algebra is flat or faithfully flat if it is so as an R-module.

Lemma (9.5). — A direct sum $M := \bigoplus M_\lambda$ is flat if and only if every M_λ is flat. Further, M is faithfully flat if every M_λ is flat and at least one is faithfully flat.

Proof: Let $\beta : N' \rightarrow N$ be an injective map. Then (8.10) yields
\[
(\bigoplus M_\lambda) \otimes \beta = \bigoplus (M_\lambda \otimes \beta);
\]
see the end of the proof of (8.13), taking $T(M) := M \otimes N'$ and $U(M) := M \otimes N$. But the map $\bigoplus (M_\lambda \otimes \beta)$ is injective if and only if each summand $M_\lambda \otimes \beta$ is injective by (5.4). The first assertion follows.

Further, $M \otimes N = \bigoplus (M_\lambda \otimes N)$ by (8.10). So if $M \otimes N = 0$, then $M_\lambda \otimes N = 0$ for all λ. If also at least one M_λ is faithfully flat, then $N = 0$, as desired. \(\square\)

Proposition (9.6). — A nonzero free module is faithfully flat. Every projective module is flat.

Proof: It’s easy to extend the unitary law to maps; in other words, $R \otimes \bullet = 1$. So R is faithfully flat over R. Thus a nonzero free module is faithfully flat by (9.5).

Every projective module is a direct summand of a free module by (5.16), and so is flat by (9.5). \(\square\)

Example (9.7). — In (9.5), consider the second assertion. Its converse needn’t hold. For example, take a product ring $R := R_1 \times R_2$ with $R_1 \neq 0$. By (9.6), R is faithfully flat over R. But neither R_i is so, as $R_1 \otimes R_2 = R_1 \otimes (R/R_1) = R_1/R_1^2 = 0$.

Proposition (9.8). — Let R be a ring, $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ an exact sequence of modules. Assume M'' is flat.

(1) Then $0 \rightarrow M' \otimes N \rightarrow M \otimes N \rightarrow M'' \otimes N \rightarrow 0$ is exact for any module N.

(2) Then M is flat if and only if M' is flat.

Proof: By (5.13), there is an exact sequence $0 \rightarrow K \rightarrow R^\otimes \Lambda \rightarrow N \rightarrow 0$. Tensor
it with the given sequence to obtain the following commutative diagram:

\[
\begin{array}{c}
0 \\
M' \otimes K \longrightarrow M \otimes K \longrightarrow M'' \otimes K \rightarrow 0 \\
\alpha \\
0 \rightarrow M' \otimes R^{\oplus \Lambda} \longrightarrow M \otimes R^{\oplus \Lambda} \longrightarrow M'' \otimes R^{\oplus \Lambda} \\
\gamma \\
M' \otimes N \longrightarrow M \otimes N \\
0 \\
0
\end{array}
\]

Here \(\alpha\) and \(\beta\) are injective by Definition (9.4), as \(M''\) and \(R^{\oplus \Lambda}\) are flat by hypothesis and by (9.6). So the rows and columns are exact, as tensor product is right exact. Finally, the Snake Lemma, (5.10), implies \(\gamma\) is injective. Thus (1) holds.

To prove (2), take an injection \(N' \to N\), and form this commutative diagram:

\[
\begin{array}{c}
0 \\
0 \rightarrow M' \otimes N' \rightarrow M \otimes N' \rightarrow M'' \otimes N' \rightarrow 0 \\
\alpha' \\
0 \rightarrow M' \otimes N \rightarrow M \otimes N \rightarrow M'' \otimes N \rightarrow 0
\end{array}
\]

Its rows are exact by (1).

Assume \(M\) is flat. Then \(\alpha\) is injective. Hence \(\alpha'\) is too. Thus \(M'\) is flat.

Conversely, assume \(M'\) is flat. Then \(\alpha'\) is injective. But \(\alpha''\) is injective as \(M''\) is flat. Hence \(\alpha\) is injective by the Snake lemma. Thus \(M\) is flat. Thus (2) holds. \(\square\)

Proposition (9.9). — A filtered direct limit of flat modules \(\varinjlim M_\lambda\) is flat.

Proof: Let \(\beta\): \(N' \to N\) be injective. Then \(M_\lambda \otimes \beta\) is injective for each \(\lambda\) since \(M_\lambda\) is flat. So \(\varinjlim (M_\lambda \otimes \beta)\) is injective by the exactness of filtered direct limits, (7.9). So \((\varinjlim M_\lambda) \otimes \beta\) is injective by (8.10). Thus \(\varinjlim M_\lambda\) is flat. \(\square\)

Proposition (9.10). — Let \(R\) and \(R'\) be rings, \(M\) an \(R\)-module, \(N\) an \((R, R')\)-bimodule, and \(P\) an \(R'\)-module. Then there is a canonical \(R'\)-homomorphism

\[
\theta: \Hom_R(M, N) \otimes_{R'} P \to \Hom_R(M, N \otimes_{R'} P).
\]

Assume \(P\) is flat. If \(M\) is finitely generated, then \(\theta\) is injective; if \(M\) is finitely presented, then \(\theta\) is an isomorphism.

Proof: The map \(\theta\) exists by Watts’s Theorem, (8.13), with \(R'\) for \(R\), applied to \(\Hom_R(M, N \otimes_{R'} \bullet)\). Explicitly, \(\theta(\varphi \otimes p)(m) = \varphi(m) \otimes p\).

Clearly, \(\theta\) is bijective if \(M = R\). So \(\theta\) is bijective if \(M = R^n\) for any \(n\), as \(\Hom_R(\bullet, Q)\) preserves finite direct sums for any \(Q\) by (4.13).

Assume that \(M\) is finitely generated. Then from (5.13), we obtain a presentation \(R^{\oplus \Sigma} \to R^n \to M \to 0\), with \(\Sigma\) finite if \(M\) is finitely presented. Since \(\theta\) is natural, it yields this commutative diagram:

\[
\begin{array}{c}
0 \to \Hom_R(M, N) \otimes_{R'} P \to \Hom_R(R^n, N) \otimes_{R'} P \to \Hom_R(R^{\oplus \Sigma}, N) \otimes_{R'} P \\
\theta \\
\simeq \\
0 \to \Hom_R(M, N \otimes_{R'} P) \to \Hom_R(R^n, N \otimes_{R'} P) \to \Hom_R(R^{\oplus \Sigma}, N \otimes_{R'} P)
\end{array}
\]
Given an \(M \) a module. Let \(\Lambda_M \) be the category whose objects are the pairs \((R^m, \alpha) \) where \(\alpha: R^m \to M \) is a homomorphism, and whose maps \((R^m, \alpha) \to (R^n, \beta) \) are the homomorphisms \(\varphi: R^m \to R^n \) with \(\beta \varphi = \alpha \).

Proposition (9.12). — Let \(R \) be a ring, \(M \) a module, and \((R^m, \alpha) \to R^m \) the forgetful functor from \(\Lambda_M \) to \(((R\text{-mod})) \). Then \(M = \lim_{\rightarrow y} (R^m, \alpha) \in \Lambda_M \).

Proof: By the UMP, the \(\alpha: R^m \to M \) induce a map \(\zeta: \lim R^m \to M \). Let's show \(\zeta \) is surjective. First, \(\zeta \) is surjective, because each \(x \in M \) is in the image of \((R, \alpha_2) \) where \(\alpha_2(x) := r \).

For injectivity, let \(y \in \text{Ker}(\zeta) \). By construction, \(\bigoplus_{(R^m, \alpha)} R^m \to \lim R^m \) is surjective; see the proof of (6.7). So \(y \) is in the image of some finite sum \(\bigoplus_{(R^m, \alpha)} R^m \). Set \(m := \sum \alpha_i \). Then \(\bigoplus R^m = R^m \). Set \(\alpha := \sum \alpha_i \). Then \(y \) is the image of some \(y' \in R^m \) under the insertion \(i_m: R^m \to \lim R^m \) but \(y \in \text{Ker}(\zeta) \). So \(\alpha(y') = 0 \).

Let \(\theta, \varphi: R \rightarrowtail R^m \) be the homomorphisms with \(\theta(1) := y' \) and \(\varphi(1) := 0 \). They yield maps in \(\Lambda_M \). So, by definition of direct limit, they have the same compositions with the insertion \(i_m \). Hence \(y = i_m(y') = 0 \). Thus \(\zeta \) is injective, so surjective.

Theorem (9.13) (Lazard). — Let \(R \) be a ring, \(M \) a module. Then the following conditions are equivalent:

1. \(M \) is flat.
2. Given a finitely presented module \(P \), this version of (9.10.1) is surjective:
 \[\text{Hom}(P, R) \otimes_R M \to \text{Hom}(P, M) \]
3. Given a finitely presented module \(P \) and a map \(\beta: P \to M \), there exists a factorization \(\beta: P \to R^n \to M \);
4. Given an \(\alpha: R^m \to M \) and a \(k \in \text{Ker}(\alpha) \), there exists a factorization \(\alpha: R^m \to R^n \to M \) such that \(\varphi(k) = 0 \).
5. Given an \(\alpha: R^m \to M \) and \(k_1, \ldots, k_r \in \text{Ker}(\alpha) \) there exists a factorization \(\alpha: R^m \to R^n \to M \) such that \(\varphi(k_i) = 0 \) for \(i = 1, \ldots, r \).
6. Given \(R^r \to R^m \) \(\alpha \) there exists a factorization \(\alpha: R^m \to R^n \to M \) such that \(\alpha \varphi = 0 \).
7. \(\Lambda_M \) is filtered.
8. \(M \) is a filtered direct limit of free modules of finite rank.

Proof: Assume (1). Then (9.10) yields (2).

Assume (2). Consider (3). There are \(\gamma_1, \ldots, \gamma_n \in \text{Hom}(P, R) \) and \(x_1, \ldots, x_n \in M \) with \(\beta(p) = \sum \gamma_i(p)x_i \); by (2). Let \(\gamma: P \to R^n \) be \((\gamma_1, \ldots, \gamma_n) \), and let \(\alpha: R^n \to M \) be given by \(\alpha(r_1, \ldots, r_n) = \sum r_i x_i \). Then \(\beta = \alpha \gamma \), just as (3) requires.

Assume (3), and consider (4). Set \(P := R^m / Rk \), and let \(\kappa: R^m \to P \) denote the quotient map. Then \(P \) is finitely presented, and there is \(\beta: P \to M \) such that \(\beta \kappa = \alpha \). By (3), there is a factorization \(\beta: P \to R^n \to M \). Set \(\varphi := \gamma \kappa \). Then \(\alpha: R^m \to R^n \to M \) is a factorization, and \(\varphi(k) = 0 \), just as (4) requires.

Assume (4), and consider (5). Set \(m_0 := m \) and \(\alpha_0 = \alpha \). Inductively, (4) yields \(\alpha_{i-1}: R^{m_{i-1}} \to R^m \to M \) for \(i = 1, \ldots, r \)

such that \(\varphi_1 \cdots \varphi_1(k_i) = 0 \). Set \(\varphi := \varphi_r \cdots \varphi_1 \) and \(n := m_r \). Then (5) holds.
Let A module F.

In any case, let $\alpha(k_i) = 0$. So (5) yields a factorization $\alpha: R^m \to R^n \to M$ such that $\varphi(k_i) = 0$. Then $\varphi = 0$, as required by (6).

Assume (6). Given (R^m,α_1) and (R^m,α_2) in Λ_M, set $m := m_1 + m_2$ and $\alpha := \alpha_1 + \alpha_2$. Then the inclusions $R^m \to R^m$ induce maps in Λ_M. Thus the first condition of (7.1) is satisfied.

Given $\sigma, \tau: (R^m,\alpha) \to (R^m,\alpha)$ in Λ_M, set $\rho := \sigma - \tau$. Then $\alpha\rho = 0$. So (6) yields a factorization $\alpha: R^m \to R^n \to M$ with $\varphi = 0$. Then φ is a map of Λ_M, and $\varphi\rho = \varphi\tau$. Hence the second condition of (7.1) is satisfied. Thus (7) holds.

If (7) holds, then (8) does too, since $M = \lim_{\longrightarrow}(R^m,\alpha) \in \Lambda_M$ by (9.12).

Assume (8). Say $M = \lim_{\longrightarrow}M_\lambda$ with the M_λ free. Each M_λ is flat by (9.6), and a filtered direct limit of flat modules is flat by (9.9). Thus M is flat, or (1) holds. □

Exercise (9.14) (Equational Criterion for Flatness). — Prove that Condition (9.13)(4) can be reformulated as follows: Given any relation $\sum_{i=1}^nx_im_i = 0$ with $x_i \in R$ and $m_i \in M$, there are $x_i \in R$ and $m_i' \in M$ such that
\[
\sum_{j}x_{ij}m_{ij}' = m_i \text{ for all } i \text{ and } \sum_{i}x_{ij}x_i = 0 \text{ for all } j.
\]

(9.14.1)

Lemma (9.15) (Ideal Criterion for Flatness). — A module M is flat if and only if, given any finitely generated ideal a, the inclusion $a \otimes M \to M$, or equivalently, an isomorphism $a \otimes M \cong aM$.

Proof: In any case, (8.5)(2) implies $R \otimes M \to M$ with $a \otimes m \to am$. So the inclusion induces a map $\alpha: a \otimes M \to M$, with $\text{Im}(\alpha) = aM$. Thus the two conditions are equivalent, and they hold if M is flat, as then α is injective.

To prove the converse, let’s check (9.14). Given $\sum_{i=1}^nx_im_i = 0$ with $x_i \in R$ and $m_i \in M$, set $a := (x_1,\ldots,x_n)$. If $a \otimes M \cong aM$, then $\sum_{i}x_i \otimes m_i = 0$; so (8.5)(1) and the Equational Criterion for Vanishing (8.16) yield (9.14.1). □

Example (9.16). — Let R be a domain, and set $K := \text{Frac}(R)$. Then K is flat, but K is not projective unless $R = K$. Indeed, (8.22) says $a \otimes_R K = K$, with $a \otimes x = ax$, for any ideal a of R. So K is flat by (9.15).

Suppose K is projective. Then $K \cong R^\Lambda$ for some Λ by (5.16). So there is a nonzero map $\alpha: K \to R$. So there is an $x \in K$ with $\alpha(x) \neq 0$. Set $a := \alpha(x)$. Take any nonzero $b \in R$. Then $ab \cdot \alpha(x/ab) = \alpha(x) = a$. Since R is a domain, $b \cdot \alpha(x/ab) = 1$. Hence $b \in R^\times$. Thus R is a field. So (2.3) yields $R = K$.

B. Exercises

Exercise (9.17). — Let R be a ring, a an ideal. Show $\Gamma_a(\bullet)$ is a left exact functor.

Exercise (9.18). — Let R be a ring, N a module, N_1 and N_2 submodules, R' an algebra, F an exact R-linear functor from $((R\text{-mod}))$ to $((R'\text{-mod}))$. Prove:
\[
F(N_1 \cap N_2) = F(N_1) \cap F(N_2) \quad \text{and} \quad F(N_1 + N_2) = F(N_1) + F(N_2).
\]

Exercise (9.19). — Let R be a ring, R' an algebra, F an R-linear functor from $((R\text{-mod}))$ to $((R'\text{-mod}))$. Assume F is exact. Prove the following equivalent:
(1) F is faithful.
(2) An R-module M vanishes if FM does.
(3) \(F(R/m) \neq 0 \) for every maximal ideal \(m \) of \(R \).

(4) A sequence \(M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \) is exact if \(FM' \xrightarrow{F\alpha} FM \xrightarrow{F\beta} FM'' \) is.

Exercise (9.20). — Show that a ring of polynomials \(P \) is faithfully flat.

Exercise (9.21). — Let \(R \) be a ring, \(M \) and \(N \) flat modules. Show that \(M \otimes_R N \) is flat. What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.22). — Let \(R \) be a ring, \(M \) a flat module, \(R' \) an algebra. Show that \(M \otimes_R R' \) is flat over \(R' \). What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.23). — Let \(R \) be a ring, \(R' \) a flat algebra, \(M \) a flat \(R' \)-module. Show that \(M \) is flat over \(R \). What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.24). — Let \(R \) be a ring, \(R' \) and \(R'' \) algebras, \(M' \) a flat \(R' \)-module, and \(M'' \) a flat \(R'' \)-module. Show that \(M' \otimes_R M'' \) is a flat \((R' \otimes_R R'') \)-module. What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.25). — Let \(R \) be a ring, \(R' \) an algebra, and \(M \) an \(R' \)-module. Assume that \(M \) is flat over \(R \) and faithfully flat over \(R' \). Show that \(R' \) is flat over \(R \).

Exercise (9.26). — Let \(R \) be a ring, \(R' \) an algebra, \(R'' \) an \(R' \)-algebra, and \(M \) an \(R'' \)-module. Assume that \(R'' \) is flat over \(R' \) and that \(M \) is flat over \(R \). Show that \(R'' \otimes_{R'} M \) is flat over \(R \). Conversely, assume that \(R'' \) is faithfully flat over \(R' \) and that \(R'' \otimes_{R'} M \) is flat over \(R \). Show that \(M \) is flat over \(R \).

Exercise (9.27). — Let \(R \) be a ring, \(a \) an ideal. Assume \(R/a \) is flat. Show \(a = a^2 \).

Exercise (9.28). — Let \(R \) be a ring, \(R' \) a flat algebra. Prove equivalent:

1. \(R' \) is faithfully flat over \(R \).
2. For every \(R \)-module \(M \), the map \(M \xrightarrow{\alpha} M \otimes_R R' \) by \(\alpha m = m \otimes 1 \) is injective.
3. Every ideal \(a \) of \(R \) is the contraction of its extension, or \(a = (aR')^c \).
4. Every prime \(p \) of \(R \) is the contraction of some prime \(q \) of \(R' \), or \(p = q' \).
5. Every maximal ideal \(m \) of \(R \) extends to a proper ideal, or \(mR' \neq R' \).
6. Every nonzero \(R \)-module \(M \) extends to a nonzero module, or \(M \otimes_R R' \neq 0 \).

Exercise (9.29). — Let \(R \) be a ring, \(R' \) a faithfully flat algebra. Assume \(R' \) is local. Prove \(R \) is local too.

Exercise (9.30). — Let \(R \) be a ring, \(0 \rightarrow M' \xrightarrow{\alpha} M \rightarrow M'' \rightarrow 0 \) an exact sequence with \(M \) flat. Assume \(N \otimes M' \xrightarrow{\times \alpha} N \otimes M \) is injective for all \(N \). Prove \(M'' \) is flat.

Exercise (9.31). — Prove that an \(R \)-algebra \(R' \) is faithfully flat if and only if the structure map \(\varphi : R \rightarrow R' \) is injective and the quotient \(R'/\varphi R \) is flat over \(R \).

Exercise (9.32). — Let \(R \) be a ring, \(0 \rightarrow M_n \rightarrow \cdots \rightarrow M_1 \rightarrow 0 \) an exact sequence of flat modules, and \(N \) any module. Then the following sequence is exact:

\[
0 \rightarrow M_n \otimes N \rightarrow \cdots \rightarrow M_1 \otimes N \rightarrow 0.
\]

Exercise (9.33). — Let \(R \) be a ring, \(R' \) an algebra, \(M \) and \(N \) modules.

1. Show that there is a canonical \(R' \)-homomorphism \(\sigma : \text{Hom}_R(M, N) \otimes_R R' \rightarrow \text{Hom}_{R'}(M \otimes_R R', N \otimes_R R') \).
2. Assume \(M \) is finitely generated and projective. Show that \(\sigma \) is bijective.
3. Assume \(R' \) is flat over \(R \). Show that if \(M \) is finitely presented, then \(\sigma \) is bijective.
Exercises (9.34) — Let R be a ring, M a module, and R' an algebra. Prove $\text{Ann}(M)R' \subset \text{Ann}(M \otimes_R R')$, with equality if M is finitely generated and R' is flat.

Exercises (9.35) — Let R be a ring, M a module. Prove (1) if M is flat, then for $x \in R$ and $m \in M$ with $xm = 0$, necessarily $m \in \text{Ann}(x)M$, and (2) the converse holds if R is a Principal Ideal Ring (PIR); that is, every ideal a is principal.
10. Cayley–Hamilton Theorem

The Cayley–Hamilton Theorem says that a matrix satisfies its own characteristic polynomial. We prove it via a useful equivalent form, known as the “Determinant Trick.” Using the Trick, we obtain various results, including the uniqueness of the rank of a finitely generated free module. We also obtain and apply Nakayama’s Lemma, which asserts that a finitely generated module must vanish if it is equal to its product with any ideal lying in every maximal ideal containing its annihilator.

Then we turn to two important notions for an algebra: integral dependence, where every element of the algebra satisfies a monic polynomial equation, and module finiteness, where the algebra is a finitely generated module. Using the Trick, we relate these notions to each other, and study their properties. We end with a discussion of normal domains; they contain every element of their fraction field satisfying a monic polynomial equation.

A. Text

(10.1) (Cayley–Hamilton Theorem). — Let R be a ring, and $M := (a_{ij})$ an $n \times n$ matrix with $a_{ij} \in R$. Let I_n be the $n \times n$ identity matrix, and T a variable. The characteristic polynomial of M is the following polynomial:

$$P_M(T) := T^n + a_1 T^{n-1} + \cdots + a_n := \det(TI_n - M).$$

Let a be an ideal. If $a_{ij} \in a$ for all i, j, then clearly $a_k \in a^k$ for all k.

The Cayley–Hamilton Theorem asserts that, in the ring of matrices,

$$P_M(M) = 0.$$

It is a special case of (10.2) below; indeed, take $M := R^n$, take m_1, \ldots, m_n to be the standard basis, and take φ to be the endomorphism defined by M.

Conversely, given the setup of (10.2), form the surjection $\alpha: R^n \to M$ taking the ith standard basis element e_i to m_i, and form the map $\Phi: R^n \to R^n$ associated to the matrix M. Then $\varphi \alpha = \alpha \Phi$. Hence, given any polynomial $F(T)$, we have $F(\varphi) \alpha = \alpha F(\Phi)$. Hence, if $F(\Phi) = 0$, then $F(\varphi) = 0$ as α is surjective. Thus the Cayley–Hamilton Theorem and the Determinant Trick (10.2) are equivalent.

Theorem (10.2) (Determinant Trick). — Let M be an R-module generated by m_1, \ldots, m_n, and $\varphi: M \to M$ an endomorphism. Say $\varphi(m_i) := \sum_{j=1}^n a_{ij} m_j$ with $a_{ij} \in R$, and form the matrix $M := (a_{ij})$. Then $P_M(\varphi) = 0$ in $\text{End}(M)$.

Proof: Let δ_{ij} be the Kronecker delta function, $\mu_{a_{ij}}$ the multiplication map. Let Δ stand for the matrix $(\delta_{ij} \varphi - \mu_{a_{ij}})$ with entries in the commutative subring $R[\varphi]$ of $\text{End}(M)$, and X for the column vector (m_j). Clearly $\Delta X = 0$. Multiply on the left by the matrix of cofactors Γ of Δ: the (i, j)th entry of Γ is $(-1)^{i+j}$ times the determinant of the matrix obtained by deleting the jth row and the ith column of Δ. Then $\Gamma \Delta X = 0$. But $\Gamma \Delta = \det(\Delta) I_n$. So $\det(\Delta) m_j = 0$ for all j. Hence $\det(\Delta) = 0$. But $\det(\Delta) = P_M(\varphi)$. Thus $P_M(\varphi) = 0$. \Box

Proposition (10.3). — Let M be a finitely generated module, a an ideal. Then $M = aM$ if and only if there exists $a \in a$ such that $(1 + a)M = 0$.

73
Proof: Assume \(M = aM \). Say \(m_1, \ldots, m_n \) generate \(M \), and \(m_i = \sum_{j=1}^{n} a_{ij} m_j \) with \(a_{ij} \in a \). Set \(M := (a_{ij}) \). Say \(P_{M}(T) = T^n + a_1 T^{n-1} + \cdots + a_n \). Set \(a := a_1 + \cdots + a_n \in a \). Then \((1 + a)M = 0\) by (10.2) with \(\varphi := 1_M \).

Conversely, if there exists \(a \in a \) such that \((1 + a)M = 0\), then \(m = -am \) for all \(m \in M \). So \(M \subseteq aM \subseteq M \). Thus \(M = aM \).

\[\square \]

Corollary (10.4). — Let \(R \) be a ring, \(M \) a finitely generated module, and \(\varphi \) an endomorphism of \(M \). If \(\varphi \) is surjective, then \(\varphi \) is an isomorphism.

Proof: Let \(P := R[X] \) be the polynomial ring in one variable. By the UMP of \(P \), there is an \(R \)-algebra homomorphism \(\mu: P \to \text{End}(M) \) with \(\mu(X) = \varphi \). So \(M \) is a \(P \)-module such that \(F(X)M = F(\varphi)M \) for any \(F(X) \in P \) by (4.4). Set \(a := \langle X \rangle \).

Since \(\varphi \) is surjective, \(M = aM \). By (10.3), there is \(a \in a \) with \((1 + a)M = 0\). Say \(a = XG(X) \) for some polynomial \(G(X) \). Then \(1_M + \varphi G(\varphi) = 0 \). Set \(\psi = -G(\varphi) \). Then \(\varphi \psi = 1_M \) and \(\psi \varphi = 1_M \). Thus \(\varphi \) is an isomorphism.

\[\square \]

Corollary (10.5). — Let \(R \) be a nonzero ring, \(m \) and \(n \) positive integers.

(1) If \(R^n \cong R^n \), then \(m = n \).

(2) If \(R^m \cong R^n \), then \(m = n \).

Proof: Form the surjection \(\varphi: R^n \to R^n \) taking the \(i \)th standard basis element to \(v_i \). Then \(\varphi \) is an isomorphism by (10.4). So the \(v_i \) form a free basis by (4.10)(3).

To prove (2), say \(m \leq n \). Then \(R^m \) has \(m \) generators. Add to them \(n - m \) zeros. The result is a free basis by (1); so it can contain no zeros. Thus \(n - m = 0 \).

\[\square \]

Lemma (10.6) (Nakayama’s). — Let \(R \) be a ring, \(M \) a module, \(m \subseteq \text{rad}(M) \) an ideal. Assume \(M \) is finitely generated and \(M = mM \). Then \(M = 0 \).

Proof: By (10.3), there’s \(a \in m \) with \((1 + a)M = 0 \). But \(m \subseteq \text{rad}(M) \). Thus (4.15) implies \(M = 0 \).

Alternatively, suppose \(M \neq 0 \). Say \(m_1, \ldots, m_n \) generate \(M \) with \(n \) minimal. Then \(n \geq 1 \) and \(m_1 = a_1 m_1 + \cdots + a_n m_n \) with \(a_i \in m \). Set \(M' := M/(a_2, \ldots, a_n) M \), and let \(m_1' \in M' \) be the residue of \(m_1 \). Then \(m_1' \neq 0 \) as \(n \) is minimal. But \((1 - a_1)m_1' = 0 \) and \(a_1 \in \text{rad}(M) \subset \text{rad}(M') \), contradicting (4.15).

\[\square \]

Example (10.7). — Nakayama’s Lemma (10.6) may fail if the module is not finitely generated. For example, let \(A \) be a local domain, \(m \) the maximal ideal, and \(K \) the fraction field. Assume \(A \) is not a field, so that there’s a nonzero \(x \in m \). Then any \(z \in K \) can be written in the form \(z = x(z/x) \). Thus \(K = mK \), but \(K \neq 0 \).

However, there are important cases where it does hold even if the module is not, a priori, finitely generated. See (3.31), (20.29), and (22.69).

Proposition (10.8). — Let \(R \) be a ring, \(N \subseteq M \) modules, \(m \subseteq \text{rad}(M) \) an ideal.

(1) If \(M/N \) is finitely generated and if \(N + mM = M \), then \(N = M \).

(2) Assume \(M \) is finitely generated. Then \(m_1, \ldots, m_n \in M \) generate \(M \) if and only if their images \(m_1', \ldots, m_n' \) generate \(M' := M/mM \).

Proof: For (1), note \(N + mM = M \) if and only if \(m(M/N) = M/N \). Also \(\text{Ann}(M/N) \supset \text{Ann}(M) \); so \(\text{rad}(M/N) \supset \text{rad}(M) \). But \(\text{rad}(M) \supset m \). Apply (10.6) with \(M/N \) for \(M \) to conclude \(M/N = 0 \). Thus (1) holds.

For (2), let \(N \) be the submodule generated by \(m_1, \ldots, m_n \). Since \(M \) is finitely generated, so is \(M/N \). Thus \(N = M \) if the \(m_i' \) generate \(M/mM \) by (1). The converse is obvious. Thus (2) holds.

\[\square \]
Exercise (10.9). — Let A be a local ring, m the maximal ideal, M a finitely generated A-module, and $m_1, \ldots, m_n \in M$. Set $k := A/m$ and $M' := M/mM$, and write m_i' for the image of m_i in M'. Prove that m_1', \ldots, m_n' form a basis of the k-vector space M' if and only if m_1, \ldots, m_n form a minimal generating set of M (that is, no proper subset generates M), and prove that every minimal generating set of M has the same number of elements.

Exercise (10.10). — Let A be a local ring, k its residue field, M and N finitely generated modules. (1) Show that $M = 0$ if and only if $M \otimes_A k = 0$. (2) Show that $M \otimes_A N \neq 0$ if $M \neq 0$ and $N \neq 0$.

(10.11) (Local Homomorphisms). — Let $\varphi: A \to B$ be a map of local rings, m and n their maximal ideals. Then the following three conditions are equivalent:

\begin{align*}
(1) \quad & \varphi^{-1}n = m; \quad (2) \quad 1 \notin mB; \quad (3) \quad mB \subset n.
\end{align*}

(10.11.1)

Indeed, if (1) holds, then $mB = (\varphi^{-1}n)B \subset n$; so (2) holds. If (2) holds, then mB lies is some maximal ideal, but n is the only one; thus (3) holds. If (3) holds, then $m \subset \varphi^{-1}(mB) \subset \varphi^{-1}n$; whence, (1) holds as m is maximal.

If the above conditions hold, then $\varphi: A \to B$ is called a local homomorphism.

Proposition (10.12). — Consider these conditions on an R-module P:

(1) P is free and of finite rank;
(2) P is projective and finitely generated;
(3) P is flat and finitely presented.

Then (1) implies (2), and (2) implies (3); all three are equivalent if R is local.

Proof: A free module is always projective by (5.15), and a projective module is always flat by (9.6). Further, all of (1)–(3) require P to be finitely generated; so assume it is. Thus (1) implies (2).

Let $p_1, \ldots, p_n \in P$ generate, and let $0 \to L \to R^n \to P \to 0$ be the short exact sequence defined by sending the ith standard basis element to p_i. Set $F := R^n$.

Assume P is projective. Then the sequence splits by (5.16). So (5.8) yields a surjection $p: F \to L$. Hence L is finitely generated. Thus (2) implies (3).

Assume P is flat and R is local. Denote the residue field of R by k. Then, by (9.8)(1), the sequence $0 \to L \otimes k \to F \otimes k \to P \otimes k \to 0$ is exact. Now, $F \otimes k = (R \otimes k)^n = k^n$ by (8.10) and the unitary law; so $\dim_k F \otimes k = n$. Finally, rechoose the p_i so that n is minimal. Then $\dim_k P \otimes k = n$, because the $p_i \otimes 1$ form a basis by (10.9). Therefore, $\dim_k L \otimes k = 0$; so $L \otimes k = 0$.

Assume P is finitely presented. Then L is finitely generated by (5.18). Hence $L = 0$ by (10.10)(1). So $F = P$. Thus (3) implies (1).

Definition (10.13). — Let R be a ring, R' an R-algebra. Then R' is said to be module finite over R if R' is a finitely generated R-module.

An element $x \in R'$ is said to be integral over R or integrally dependent on R if there exist a positive integer n and elements $a_i \in R$ such that

$$x^n + a_1x^{n-1} + \cdots + a_n = 0.$$ \hspace{1cm} (10.13.1)

Such an equation is called an equation of integral dependence of degree n.

If every $x \in R'$ is integral over R, then R' is said to be integral over R.

Proposition (10.14). — Let R be a ring, R' an R-algebra, n a positive integer, and $x \in R'$. Then the following conditions are equivalent:
Let s be a faithful R-module map, and set R^n be the R-module generated by x^1, \ldots, x^n.

For $m \geq n$, clearly $x^m - x^{m-n}F(x)$ is in M_{m-1}. But $F(x) = 0$. So also $x^m \in M_{m-1}$.

Thus by induction, $M_m = M_{n-1}$. Hence $M_{n-1} = R[x]$. Thus (2) holds.

Proof: Assume (1) holds. Say $F(x)$ is a monic polynomial of degree n with $F(x) = 0$. For any m, let $M_m \subset R[x]$ be the R-submodule generated by $1, \ldots, x^m$.

For $m \geq n$, clearly $x^m - x^{m-n}F(x)$ is in M_{m-1}. But $F(x) = 0$. So also $x^m \in M_{m-1}$.

Thus by induction, $M_m = M_{n-1}$. Hence $M_{n-1} = R[x]$. Thus (2) holds.

If (2) holds, then trivially (3) holds with $R'' := R[x]$.

If (3) holds, then (4) holds with $M := R''$, as $xM = 0$ implies $x = x \cdot 1 = 0$.

Assume (4) holds. In (10.14), take $\varphi := \mu_x$. We obtain a monic polynomial F of degree n with $F(x)M = 0$. Since M is faithful, $F(x) = 0$. Thus (1) holds.

Corollary (10.15). — Let R be a ring, $P := R[x]$ the polynomial ring in one variable X, and $\mathfrak{A} \subset P$ an ideal. Set $R' := P/\mathfrak{A}$, let $\kappa: P \to R'$ be the canonical map, and set $x := \kappa(X)$. Fix $n \geq 1$. Then these conditions are equivalent:

1. $\mathfrak{A} = (F)$ where F is a monic polynomial of degree n.
2. Set $M := \sum_{i=0}^{n-1} RX^i \subset P$ and $\varphi := \kappa[M]$. Then $\varphi: M \to R'$ is bijective.
3. x, x^2, \ldots, x^{n-1} form a free basis of R' over R.
4. R' is a free R-module of rank n.

Proof: Assume (1) holds. Then $F(x) = 0$ is an equation of integral dependence of degree n. So $1, \ldots, x^{n-1}$ generate R' by (1)⇒(2) of (10.14). Thus φ is surjective.

Given $G \in \ker \varphi$, note $G \in \mathfrak{A}$. So $G = HF$ for some $H \in P$. But F is monic of degree n, whereas G is of degree less than n. So $G = 0$. Thus (2) holds.

In (2), note $1, \ldots, X^{n-1}$ form a free basis of M. Thus (2) implies (3).

Trivially, (3) implies (4).

Finally, assume (4) holds. Then (4)⇒(1) of (10.14) yields a monic polynomial $F \in \mathfrak{A}$ of degree n. Form the induced homomorphism $\psi: P/(F) \to R'$. It is obviously surjective. Since (1) implies (4), the quotient $P/(F)$ is free of rank n. So ψ is an isomorphism by (10.4). Hence $(F) = \mathfrak{A}$. Thus (1) holds.

Lemma (10.16). — Let R be a ring, R' a module-finite R-algebra, and M a finitely generated R'-module. Then M is a finitely generated R-module.

Proof: Say elements x_i generate R' as a module over R, and m_i generate M over R'. Given $m \in M$, say $m = \sum a_i m_j$ with $a_j \in R'$, and say $a_j = \sum b_{i,j}x_i$ with $b_{i,j} \in R$. Then $m = \sum b_{i,j}x_i m_j$. Thus the $x_i m_j$ generate M over R.

If $m = 0$, then $\sum_j (\sum_i b_{i,j}x_i)m_j = 0$. So if also the m_j are free over R', then $\sum_i b_{i,j}x_i = 0$ for all i. If in addition the x_i are free over R, then $b_{i,j} = 0$ for all i, j. Thus the $x_i m_j$ are free over R.

Theorem (10.17) (Tower Laws). — Let R be a ring, R' an algebra, R'' an R'-algebra, and $x \in R''$.

1. If x is integral over R', and R' is integral over R, then x is integral over R.
2. If R'' is integral over R', and R' is so over R, then R'' is so over R.
3. If R'' is module finite over R', and R' is so over R, then R'' is so over R.
Proof: For (1), say \(x^n + a_1x^{n-1} + \cdots + a_n = 0 \) with \(a_i \in \mathbb{R} \). For \(m = 1, \ldots, n \), set \(R_m := R[\{a_1, \ldots, a_m\}] \subset \mathbb{R}^n \). Then \(R_m \) is module finite over \(R_{m-1} \) by (1)⇒(2) of \((10.14)\). So \(R_m \) is module finite over \(R \) by \((10.16)\) and induction on \(m \).

Moreover, \(x \) is integral over \(R_n \). So \(R_n[x] \) is module finite over \(R_n \) by (1)⇒(2) of \((10.14)\). Hence \(R_n[x] \) is module finite over \(R \) by \((10.14)\). So \(x \) is integral over \(R \) by (3)⇒(1) of \((10.14)\). Thus (1) holds.

Notice (2) is an immediate consequence of (1).

Notice (3) is a special case of \((10.16)\). \(\square \)

Theorem \((10.18)\). — Let \(R \) be a ring, and \(R' \) an \(R \)-algebra. Then the following conditions are equivalent:

1. \(R' \) is algebra finite and integral over \(R \).
2. \(R' = R[x_1, \ldots, x_n] \) with all \(x_i \) integral over \(R \).
3. \(R' \) is module finite over \(R \).

Proof: Trivially, (1) implies (2).

Assume (2) holds. To prove (3), set \(R'' := R[x_1] \subset R' \). Then \(R'' \) is module finite over \(R \) by (1)⇒(2) of \((10.14)\). We may assume \(R' \) is module finite over \(R'' \) by induction on \(n \). So \((10.16)\) yields (3).

If (3) holds, then \(R' \) is integral over \(R \) by (3)⇒(1) of \((10.14)\); so (1) holds. \(\square \)

Definition \((10.19)\). — Let \(R \) be a ring, \(R' \) an algebra. The integral closure or normalization of \(R \) in \(R' \) is the subset \(\overline{R} \) of elements that are integral over \(R \). If \(R \subset R' \) and \(R = \overline{R} \), then \(R \) is said to be integrally closed in \(R' \).

If \(R \) is a domain, then its integral closure \(\overline{R} \) in its fraction field \(\text{Frac}(R) \) is called simply its normalization, and \(R \) is said to be normal if \(R = \overline{R} \).

Theorem \((10.20)\). — Let \(R \) be a ring, \(R' \) an \(R \)-algebra, \(\overline{R} \) the integral closure of \(R \) in \(R' \). Then \(\overline{R} \) is an \(R \)-algebra, and is integrally closed in \(R' \).

Proof: Take \(a \in R \) and \(x, y \in \overline{R} \). Then the ring \(R[x, y] \) is integral over \(R \) by (2)⇒(1) of \((10.18)\). So \(ax \) and \(x + y \) and \(xy \) are integral over \(R \). Thus \(\overline{R} \) is an \(R \)-algebra. Finally, \(\overline{R} \) is integrally closed in \(R' \) owing to \((10.17)\). \(\square \)

Theorem \((10.21)\) (Gauss). — A UFD is normal.

Proof: Let \(R \) be the UFD. Given \(x \in \text{Frac}(R) \), say \(x = r/s \) with \(r, s \in R \) relatively prime. Suppose \(x \) satisfies \((10.13.1)\). Then

\[
n^a = -(a_1r^{n-1} + \cdots + a_ns^{n-1})s.
\]

So any prime element dividing \(s \) also divides \(r \). Hence \(s \) is a unit. Thus \(x \in R \). \(\square \)

Example \((10.22)\). — (1) A polynomial ring in \(n \) variables over a field is a UFD, so normal by \((10.21)\).

2. The ring \(R := \mathbb{Z}[\sqrt{5}] \) is not a UFD, since

\[
(1 + \sqrt{5})(1 - \sqrt{5}) = -4 = -2 \cdot 2,
\]

and \(1 + \sqrt{5} \) and \(1 - \sqrt{5} \) and \(2 \) are irreducible, but not associates. However, set \(\tau := (1 + \sqrt{5})/2 \), the “golden ratio.” The ring \(\mathbb{Z}[\tau] \) is known to be a PID; see \([17, p. 292]\). Hence, \(\mathbb{Z}[\tau] \) is a UFD, so normal by \((10.21)\); hence, \(\mathbb{Z}[\tau] \) contains the normalization \(\overline{R} \) of \(R \). On the other hand, \(\tau^2 - \tau - 1 = 0 \); hence, \(\mathbb{Z}[\tau] \subset \overline{R} \). Thus \(\mathbb{Z}[\tau] = \overline{R} \).
Let \(d \in \mathbb{Z} \) be square-free. In the field \(K := \mathbb{Q}(\sqrt{d}) \), form \(R := \mathbb{Z} + \mathbb{Z}\delta \) where
\[
\delta := \begin{cases}
(1 + \sqrt{d})/2, & \text{if } d \equiv 1 \pmod{4}; \\
\sqrt{d}, & \text{if not}.
\end{cases}
\]
Then \(R \) is the normalization \(\overline{\mathbb{Z}} \) of \(\mathbb{Z} \) in \(K \); see [3, pp. 412–3].

(4) Let \(k \) be a field, \(k[T] \) the polynomial ring in one variable. Set \(R := k[T^2, T^3] \). Then \(\text{Frac}(R) = k(T) \). Further, \(T \) is integral over \(R \) as \(T \) satisfies \(X^2 - T^2 = 0 \); hence, \(k[T] \subset \overline{R} \). However, \(k[T] \) is normal by (1); hence, \(k[T] \supset \overline{R} \), thus \(k[T] = \overline{R} \).

Let \(k[X,Y] \) be the polynomial ring in two variables, and \(\varphi : k[X,Y] \to R \) the \(k \)-algebra homomorphism defined by \(\varphi(X) := T^2 \) and \(\varphi(Y) := T^3 \). Clearly \(\varphi \) is surjective. Set \(p := \ker \varphi \). Since \(R \) is a domain, but not a field, \(p \) is prime by (2.8), but not maximal by (2.13). Clearly \(p \supset \langle Y^2 - X^3 \rangle \). Since \(Y^2 - X^3 \) is irreducible, (2.20) implies that \(p = \langle Y^2 - X^3 \rangle \). So \(k[X,Y]/\langle Y^2 - X^3 \rangle \twoheadrightarrow R \), which provides us with another description of \(R \).

B. Exercises

Exercise (10.23) . — Let \(R \) be a ring, \(a \) an ideal. Assume \(a \) is finitely generated and idempotent (or \(a = a^2 \)). Prove there is a unique idempotent \(e \) with \(\langle e \rangle = a \).

Exercise (10.24) . — Let \(R \) be a ring, \(a \) an ideal. Prove the following conditions are equivalent:

1. \(R/a \) is projective over \(R \).
2. \(R/a \) is flat over \(R \), and \(a \) is finitely generated.
3. \(a \) is finitely generated and idempotent.
4. \(a \) is generated by an idempotent.
5. \(a \) is a direct summand of \(R \).

Exercise (10.25) . — Prove the following conditions on a ring \(R \) are equivalent:

1. \(R \) is absolutely flat; that is, every module is flat.
2. Every finitely generated ideal is a direct summand of \(R \).
3. Every finitely generated ideal is idempotent.
4. Every principal ideal is idempotent.

Exercise (10.26) . — Let \(R \) be a ring. Prove the following statements:

1. Assume \(R \) is Boolean. Then \(R \) is absolutely flat.
2. Assume \(R \) is absolutely flat. Then any quotient ring \(R'/R \) is absolutely flat.
3. Assume \(R \) is absolutely flat. Then every nonunit \(x \) is a zerodivisor.
4. Assume \(R \) is absolutely flat and local. Then \(R \) is a field.

Exercise (10.27) . — Let \(R \) be a ring, \(\alpha : M \to N \) a map of modules, \(m \) an ideal. Assume that \(m \subset \text{rad}(N) \), that \(N \) is finitely generated, and that the induced map \(\alpha : M/mM \to N/mN \) is surjective. Show that \(\alpha \) is surjective too.

Exercise (10.28) . — Let \(R \) be a ring, \(m \) an ideal, \(E \) a module, \(M, N \) submodules. Assume \(N \) is finitely generated, \(m \subset \text{rad}(N) \), and \(N \subset M + mN \). Show \(N \subset M \).

Exercise (10.29) . — Let \(R \) be a ring, \(m \) an ideal, and \(\alpha, \beta : M \rightrightarrows N \) two maps of finitely generated modules. Assume \(\alpha \) is an isomorphism, \(m \subset \text{rad}(N) \), and \(\beta(M) \subset mN \). Set \(\gamma := \alpha + \beta \). Show \(\gamma \) is an isomorphism.
Exercise (10.30). — Let $A \to B$ be a local homomorphism, M a finitely generated B-module. Prove that M is faithfully flat over A if and only if M is flat over A and nonzero. Conclude that, if B is flat over A, then B is faithfully flat over A.

Exercise (10.31). — Let $A \to B$ be a flat local homomorphism, M a finitely generated A-module. Set $N := M \otimes B$. Assume N is cyclic. Show M is cyclic too. Conclude that an ideal a of A is principal if its extension aB is so.

Exercise (10.32). — Let R be a ring, X a variable, R' an algebra, $n \geq 0$. Assume R' is a free R-module of rank n. Set $m := \text{rad}(R)$ and $k := R/m$. Given a k-isomorphism $\varphi: k[X]/\langle F \rangle \to R'/\mathfrak{m}R'$ with \bar{F} monic, show we can lift φ to an R-isomorphism $\phi: R[X]/\langle F \rangle \to R'$ with F monic. Show F must then lift \bar{F}.

Exercise (10.33). — Let R be a ring, a an ideal, $P := R[X]$ the polynomial ring in one variable X, and $G_1, G_2, H \in P$ with G_1 monic of degree n. Show:

1. Assume G_1 and G_2 are coprime. Then there are unique $H_1, H_2 \in P$ with $H = H_1G_1 + H_2G_2$ and $\deg(H_2) < n$.
2. Assume the images of G_1 and G_2 are coprime in $(R/a)[X]$ and $a \subset \text{rad}(R)$.

Then G_1 and G_2 are coprime.

Exercise (10.34). — Let R be a ring, $a \subset \text{rad}(R)$ an ideal, $P := R[X]$ the polynomial ring in one variable X, and $F, G, H \in P$. Assume that $F \equiv GH$ (mod aP), that G and H are coprime, and that G is monic, say of degree n. Show that there are coprime polynomials $G', H' \in P$ with G' monic of degree n, with $\deg(H') \leq \max\{\deg(H), \deg(F) - n\}$, and with

$G \equiv G'$ and $H \equiv H' \pmod{aP}$ and $F \equiv G'H' \pmod{a^2P}$.

Exercise (10.35). — Let G be a finite group acting on a ring R. Show that every $x \in R$ is integral over R^G, in fact, over its subring R' generated by the elementary symmetric functions in the conjugates gx for $g \in G$.

Exercise (10.36). — Let R be a ring, R' an algebra, G a group that acts on R'/R, and \overline{R} the integral closure of R in R'. Show that G acts canonically on \overline{R}/R.

Exercise (10.37). — Let R be a normal domain, K its fraction field, L/K a Galois extension with group G, and \overline{R} the integral closure of R in L. (By definition, G is the group of automorphisms of L/K and $K = L^G$.) Show $R = \overline{R}^G$.

Exercise (10.38). — Let R'/R be an extension of rings. Assume $R' - R$ is closed under multiplication. Show that R is integrally closed in R'.

Exercise (10.39). — Let R be a ring; C, R' two R-algebras; R'' an R'-algebra. If R'' is either (1) integral over R', or (2) module finite over R', or (3) algebra finite over R', show $R'' \otimes_R C$ is so over $R' \otimes_R C$.

Exercise (10.40). — Let k be a field, $P := k[X]$ the polynomial ring in one variable, $F \in P$. Set $R := k[X^2] \subset P$. Using the free basis $1, X$ of P over R, find an explicit equation of integral dependence of degree 2 on R for F.

Exercise (10.41). — Let R_1, \ldots, R_n be R-algebras, integral over R. Show that their product $\prod R_i$ is integral over R.

79
Exercise (10.42). — For $1 \leq i \leq r$, let R_i be a ring, R'_i an extension of R_i, and $x_i \in R'_i$. Set $R := \prod R_i$, set $R' := \prod R'_i$, and set $x := (x_1, \ldots, x_r)$. Prove

1. x is integral over R if and only if x_i is integral over R_i for each i;
2. R is integrally closed in R' if and only if each R_i is integrally closed in R'_i.

Exercise (10.43). — Let k be a field, X and Y variables. Set

$$R := k[X, Y]/\langle Y^2 - X^2 - X^3 \rangle,$$

and let $x, y \in R$ be the residues of X, Y. Prove that R is a domain, but not a field. Set $t := y/x \in \text{Frac}(R)$. Prove that $k[t]$ is the integral closure of R in $\text{Frac}(R)$.

80
11. Localization of Rings

Localization generalizes construction of the fraction field of a domain. We localize an arbitrary ring using as denominators the elements of any given multiplicative subset. The result is universal among algebras rendering all these elements units. When the multiplicative subset is the complement of a prime ideal, we obtain a local ring. We relate the ideals in the original ring to those in the localized ring. Lastly, we localize algebras, vary the set of denominators, and discuss decomposable rings, which are the finite products of local rings.

A. Text

(11.1) (Localization). — Let \(R \) be a ring, and \(S \) a multiplicative subset. Define a relation on \(R \times S \) by \((x, s) \sim (y, t)\) if there is \(u \in S \) such that \(x tu = y su \).

This relation is an equivalence relation. Indeed, it is reflexive as \(1 \in S \) and is universally asymmetric. As to transitivity, let \((y, t) \sim (z, r)\). Say \(y rv = z t v \) with \(v \in S \). Then \(x tu v = y su rv = z t su v \). Thus \((x, s) \sim (z, r)\).

Denote by \(S^{-1}R \) the set of equivalence classes, and by \(x/s \) the class of \((x, s)\).

Define \(x/s \cdot y/t := xy/st \). This product is well defined. Indeed, say \(y/t = z/r \). Then there is \(v \in S \) such that \(y rv = z t v \). So \(x sy rv = xs z t v \). Thus \(xy/st = xz/sr \).

Define \(x/s + y/t := (tx + sy)/(st) \). Then, similarly, this sum is well defined.

It is easy to check that \(S^{-1}R \) is a set, with \(0/1 \) and \(1/1 \) for \(1 \). It is called the ring of fractions with respect to \(S \) or the localization at \(S \).

Let \(\varphi_S : R \to S^{-1}R \) be the map given by \(\varphi_S(x) := x/1 \). Then \(\varphi_S \) is a ring map, and it carries elements of \(S \) to units in \(S^{-1}R \) as \(s/1 \cdot 1/s = 1 \).

(11.2) (Total quotient rings). — Let \(R \) be a ring. The set of nonzero divisors \(S_0 \) is a saturated multiplicative subset, as noted in (3.11). The map \(\varphi_{S_0} : R \to S_0^{-1}R \) is injective, because if \(\varphi_{S_0} x = 0 \), then \(sx = 0 \) for some \(s \in S_0 \), and so \(x = 0 \). We call \(S_0^{-1}R \) the total quotient ring of \(R \), and view \(R \) as a subring.

Let \(S \subseteq S_0 \) be a multiplicative subset. Clearly, \(R \subseteq S^{-1}R \subseteq S_0^{-1}R \).

Suppose \(R \) is a domain. Then \(S_0 = R \setminus \{0\} \); so the total quotient ring is just the fraction field \(\text{Frac}(R) \), and \(\varphi_{S_0} \) is just the natural inclusion of \(R \) into \(\text{Frac}(R) \). Further, \(S^{-1}R \) is a domain by (2.3) as \(S^{-1}R \subseteq S_0^{-1}R = \text{Frac}(R) \).

Theorem (11.3) (UMP). — Let \(R \) be a ring, \(S \) a multiplicative subset. Then \(S^{-1}R \) is the \(R \)-algebra universal among algebras rendering all the \(s \in S \) units. In fact, given a ring map \(\psi : R \to R' \), then \(\psi(S) \subseteq R'^{\times} \) if and only if there exists a ring map \(\rho : S^{-1}R \to R' \) with \(\rho \varphi_S = \psi \); that is, this diagram commutes:

\[
\begin{array}{ccc}
R & \xrightarrow{\varphi_S} & S^{-1}R \\
\downarrow \psi & & \downarrow \rho \\
R' & & R'
\end{array}
\]

If so, \(\rho \) is unique, and \(\text{Ker}(\rho) = \text{Ker}(\psi)S^{-1}R \). Finally, \(R' \) can be noncommutative.

Proof: First, suppose that \(\rho \) exists. Let \(s \in S \). Then \(\psi(s) = \rho(s/1) \). Hence \(\psi(s) \rho(1/s) = \rho(s/1 \cdot 1/s) = 1 \). Thus \(\psi(S) \subseteq R'^{\times} \).

81
Next, note that \(\rho \) is determined by \(\psi \) as follows:
\[
\rho(x/s) = \rho(x/1)\rho(1/s) = \psi(x)\psi(s)^{-1}.
\]

Conversely, suppose \(\psi(S) \subset R^\times \). Set \(\rho(x/s) := \psi(s)^{-1}\psi(x) \). Let’s check that \(\rho \) is well defined. Say \(x/s = y/t \). Then there is \(u \in S \) such that \(xtu = ysu \). Hence
\[
\psi(x)\psi(t)\psi(u) = \psi(y)\psi(s)\psi(u).
\]
Since \(\psi(u) \) is a unit, \(\psi(x)\psi(t) = \psi(y)\psi(s) \). But \(st = ts \); so
\[
\psi(t)^{-1}\psi(s)^{-1} = \psi(s)^{-1}\psi(t)^{-1},
\]
even if \(R' \) is noncommutative. Hence \(\psi(x)\psi(s)^{-1} = \psi(y)\psi(t)^{-1} \). Thus \(\rho \) is well defined. Plainly, \(\rho \) is a ring map. Plainly, \(\psi = \rho \varphi \).

Plainly, \(\text{Ker}(\rho) \supset \text{Ker}(\psi) S^{-1}R \). Conversely, given \(x/s \in \text{Ker}(\rho) \), note that \(\psi(x)\psi(s)^{-1} = 0 \). So \(\psi(x) = 0 \). So \(x \in \text{Ker}(\psi) \). Thus \(x/s \in \text{Ker}(\psi) S^{-1}R \).

\begin{proof}
If \(\varphi_S \) is an isomorphism, then \(S \) consists of units, because \(\varphi_S(S) \) does so. Conversely, if \(S \) consists of units, then the identity map \(R \to R \) has the UMP that characterizes \(\varphi_S \); whence, \(\varphi_S \) is an isomorphism.
\end{proof}

Exercise (11.5). — Let \(R' \) and \(R'' \) be rings. Consider \(R := R' \times R'' \) and set \(S := \{ (1,1), (1,0) \} \). Prove \(R' = S^{-1}R \).

Definition (11.6). — Let \(R \) be a ring, \(f \in R \). Set \(S_f := \{ f^n \mid n \geq 0 \} \). We call the ring \(S_f^{-1}R \) the localization of \(R \) at \(f \), and set \(R_f := S^{-1}R \) and \(\varphi_f := \varphi_{S_f} \).

Proposition (11.7). — Let \(R \) be a ring, \(f \in R \), and \(X \) a variable. Then
\[
R_f = R[X]/(1 - fX).
\]

\begin{proof}
Set \(R' := R[X]/(1 - fX) \), and let \(\varphi : R \to R' \) be the canonical map. Let’s show that \(R' \) has the UMP characterizing localization (11.3).

First, let \(x \in R' \) be the residue of \(X \). Then \(1 - xf(0) = 0 \). So \(\varphi(f) \) is a unit. So \(\varphi(f^n) \) is a unit for \(n \geq 0 \).

Second, let \(\psi : R \to R'' \) be a homomorphism carrying \(f \) to a unit. Define \(\theta : R[X] \to R'' \) by \(\theta|R = \psi \) and \(\theta X = \psi(f)^{-1} \). Then \(\theta(1 - fX) = 0 \). So \(\theta \) factors via a homomorphism \(\rho : R' \to R'' \), and \(\psi = \rho \varphi \). Further, \(\rho \) is unique, since every element of \(R' \) is a polynomial in \(x \) and since \(\rho x = \psi(f)^{-1} \) as \(1 - (\rho x)(\rho f) = 0 \).
\end{proof}

Proposition (11.8). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(a \) an ideal.

1. Then \(aS^{-1}R = \{ a/s \in S^{-1}R \mid a \in a \) and \(s \in S \} \).
2. Then \(a \cap S \neq \emptyset \) if and only if \(aS^{-1}R = S^{-1}R \) if and only if \(\varphi_S^{-1}(aS^{-1}R) = R \).

\begin{proof}
Let \(a, b \in a \) and \(x/s, y/t \in S^{-1}R \). Then \(ax/s + by/t = (axt + bys)/st \); further, \(ax + bys \in a \) and \(st \in S \). So \(aS^{-1}R \subset \{ a/s \mid a \in a \) and \(s \in S \} \). But the opposite inclusion is trivial. Thus (1) holds.

As to (2), if \(a \cap S \supset s \), then \(aS^{-1}R \supset s/s = 1 \), so \(aS^{-1}R = S^{-1}R \); whence, \(\varphi_S^{-1}(aS^{-1}R) = R \). Finally, suppose \(\varphi_S^{-1}(aS^{-1}R) = R \). Then \(aS^{-1}R \supset 1 \). So (1) yields \(a \in a \) and \(s \in S \) such that \(a/s = 1 \). So there exists \(t \in S \) such that \(at = st \). But \(at \in a \) and \(st \in S \). So \(a \cap S \neq \emptyset \). Thus (2) holds.
\end{proof}
Definition (11.9). — Let R be a ring, S a multiplicative subset, a a subset of R. The saturation of a with respect to S is the set denoted by a^S and defined by $$a^S := \{ a \in R \mid \text{there is } s \in S \text{ with } as \in a \}.$$ If $a = a^S$, then we say a is saturated.

Proposition (11.10). — Let R be a ring, S a multiplicative subset, a an ideal.

1. Then $\ker(\varphi_S) = (0)^S$.
2. Then $a \subseteq a^S$.
3. Then a^S is an ideal.

Proof: Clearly, (1) holds, for $a/1 = 0$ if and only if there is $s \in S$ with $as = 0$. Clearly, (2) holds as $1 \in S$. Clearly, (3) holds, for as, $bt \in a$, then $(a + b)st \in a$, and if $x \in R$, then $xas \in a$.

Proposition (11.11). — Let R be a ring, S a multiplicative subset.

1. Let b be an ideal of $S^{-1}R$. Then

 (a) $\varphi_S^{-1}b = (\varphi_S^{-1}b)^S$ and
 (b) $b = (\varphi_S^{-1}b)(S^{-1}R)$.

2. Let a be an ideal of R. Then

 (a) $aS^{-1}R = a^S S^{-1}R$ and
 (b) $\varphi_S^{-1}(aS^{-1}R) = a^S$.

3. Let p be a prime ideal of R, and assume $p \cap S = \emptyset$. Then

 (a) $p = p^S$ and
 (b) $p S^{-1}R$ is prime.

Proof: To prove (1)(a), take $a \in R$ and $s \in S$ with $as \in \varphi_S^{-1}b$. Then $as/1 \in b$; so $a/1 \in b$ because $1/s \in S^{-1}R$. Hence $a \in \varphi_S^{-1}b$. Therefore, $(\varphi_S^{-1}b)^S \subseteq \varphi_S^{-1}b$. The opposite inclusion holds as $1 \in S$. Thus (1)(a) holds.

To prove (1)(b), take $a/s \in b$. Then $a/1 \in b$. So $a \in \varphi_S^{-1}b$. Hence $a/1 \cdot 1/s$ is in $(\varphi_S^{-1}b)(S^{-1}R)$. Thus $b \subseteq (\varphi_S^{-1}b)(S^{-1}R)$. Now, take $a \notin \varphi_S^{-1}b$. Then $a/1 \notin b$. So $b \supseteq (\varphi_S^{-1}b)(S^{-1}R)$. Thus (1)(b) holds too.

To prove (2), take $a \in a^S$. Then there is $s \in S$ with $as \in a$. But $a/1 \notin as/1 \cdot 1/s$. So $a/1 \in aS^{-1}R$. Thus $aS^{-1}R \supseteq a^S S^{-1}R$ and $\varphi_S^{-1}(aS^{-1}R) \supseteq a^S$.

Conversely, trivially $aS^{-1}R \subseteq a^S S^{-1}R$. Thus (2)(a) holds.

Take $x \in \varphi_S^{-1}(aS^{-1}R)$. Then $x/1 = a/s$ with $a \in a$ and $s \in S$ by (11.8)(1). So there’s $t \in S$ with $xt = at \in a$. So $x \in a^S$. So $\varphi_S^{-1}(aS^{-1}R) \subseteq a^S$. Thus (2) holds.

To prove (3), note $p \subseteq p^S$ as $1 \in S$. Conversely, if $sa \in p$ with $s \in S \subseteq R \setminus p$, then $a \in p$ as p is prime. Thus (a) holds.

As for (b), first note $pS^{-1}R \neq S^{-1}R$ as $\varphi_S^{-1}(pS^{-1}R) = p^S = p$ by (2) and (3)(a) and as $1 \notin p$. Second, say $a/s \cdot b/t \in pS^{-1}R$. Then $ab \in \varphi_S^{-1}(pS^{-1}R)$, and the latter is equal to p^S by (2), so to p by (a). Hence $ab \in p$, so either $a \in p$ or $b \in p$.

So either $a/s \in pS^{-1}R$ or $b/t \in pS^{-1}R$. Thus $pS^{-1}R$ is prime. Thus (3) holds.

Corollary (11.12). — Let R be a ring, S a multiplicative subset.

1. Then $a \mapsto aS^{-1}R$ is an inclusion-preserving bijection from the (set of all) ideals a of R with $a = a^S$ to the ideals b of $S^{-1}R$. The inverse is $b \mapsto \varphi_S^{-1}b$.

2. Then $p \mapsto pS^{-1}R$ is an inclusion-preserving bijection from the primes p of R with $p \cap S = \emptyset$ to the primes q of $S^{-1}R$. The inverse is $q \mapsto \varphi_S^{-1}q$.

Proof: In (1), the maps are inverses by (11.11)(1), (2); clearly, they preserve inclusions. Further, (1) implies (2) by (11.11)(3), by (2.7), and by (11.8)(2).

Definition (11.13). — Let R be a ring, p a prime. Set $S_p := R \setminus p$. We call the ring $S_p^{-1}R$ the localization of R at p, and set $R_p := S_p^{-1}R$ and $\varphi_p := \varphi_{S_p}$.
Localization of Rings (11.14) / (11.16) Text

Proposition (11.14). — Let \(R \) be a ring, \(p \) a prime ideal. Then \(R_p \) is local with maximal ideal \(pR_p \).

Proof: Let \(b \) be a proper ideal of \(R_p \). Then \(\varphi_p^{-1}b \subset p \) owing to (11.8)(2). Hence (11.12)(1) yields \(b \subset pR_p \). Thus \(pR_p \) is a maximal ideal, and the only one.

Alternatively, let \(x/s \in R_p \). Suppose \(x/s \) is a unit. Then there is a \(y/t \) with \(xy/st = 1 \). So there is a \(u \notin p \) with \(xuy = stu \). But \(stu \notin p \). Hence \(x \notin p \).

Conversely, let \(x \notin p \). Then \(s/x \in R_p \). So \(x/s \) is a unit in \(R_p \) if and only if \(x \notin p \), so if and only if \(x/s \notin pR_p \). Thus by (11.8)(1), the nonunits of \(R_p \) form \(pR_p \), which is an ideal. Hence (3.5) yields the assertion.

(11.15) **(Algebras).** — Let \(R \) be a ring, \(S \) a multiplicative subset, \(R' \) an \(R \)-algebra. It is easy to generalize (11.1) as follows. Define a relation on \(R' \times S \) by \((x, s) \sim (y, t) \) if there is \(u \in S \) with \(xtu = ysu \). It is easy to check, as in (11.1), that this relation is an equivalence relation.

Denote by \(S^{-1}R' \) the set of equivalence classes, and by \(x/s \) the class of \((x, s) \). Clearly, \(S^{-1}R' \) is an \(S^{-1}R \)-algebra with addition and multiplication given by

\[
x/s + y/t := (xt + ys)/(st) \quad \text{and} \quad x/s \cdot y/t := xy/st.
\]

We call \(S^{-1}R' \) the **localization of \(R' \) with respect to \(S \)**.

Let \(\varphi_S : R' \to S^{-1}R' \) be the map given by \(\varphi_S(x) := x/1 \). Then \(\varphi_S \) makes \(S^{-1}R' \) into an \(R' \)-algebra, so also into an \(R \)-algebra, and \(\varphi_S \) is an \(R \)-algebra map.

Note that elements of \(S \) become units in \(S^{-1}R' \). Moreover, it is easy to check, as in (11.3), that \(S^{-1}R' \) has the following UMP: \(\varphi_S \) is an algebra map, and elements of \(S \) become units in \(S^{-1}R' \); further, given an algebra map \(\psi : R' \to R'' \) such that elements of \(S \) become units in \(R'' \), there is a unique \(R \)-algebra map \(\rho : S^{-1}R' \to R'' \) such that \(\rho \varphi_S = \psi \); that is, the following diagram is commutative:

\[
\begin{array}{ccc}
R' & \xrightarrow{\varphi_S} & S^{-1}R' \\
\downarrow{\psi} & & \downarrow{\rho} \\
R'' & & \\
\end{array}
\]

In other words, \(S^{-1}R' \) is universal among \(R' \)-algebras rendering the \(s \in S \) units.

Let \(\tau : R' \to R'' \) be an \(R \)-algebra map. Then there is a commutative diagram of \(R \)-algebra maps

\[
\begin{array}{ccc}
R' & \xrightarrow{\varphi_S} & S^{-1}R' \\
\downarrow{\tau} & & \downarrow{\varphi''} \\
S^{-1}R' & \xrightarrow{\tau^{-1}} & S^{-1}R'' \\
\end{array}
\]

Further, \(S^{-1}R \) is an \(S^{-1}R \)-algebra map.

Let \(T \subset R' \) be the image of \(S \subset R \). Then \(T \) is multiplicative. Further,

\[
S^{-1}R' = T^{-1}R', \quad (11.15.1)
\]

even though \(R' \times S \) and \(R' \times T \) are rarely equal, because the two UMPs are essentially the same; indeed, any ring map \(R' \to R'' \) may be viewed as an \(R \)-algebra map, and trivially the elements of \(S \) become units in \(R'' \) if and only if the elements of \(T \) do.

Proposition (11.16). — Let \(R \) be a ring, \(S \) a multiplicative subset. Let \(T' \) be a multiplicative subset of \(S^{-1}R \), and set \(T := \varphi_S^{-1}(T') \). Assume \(S \subset T \). Then

\[
(T')^{-1}(S^{-1}R) = T^{-1}R.
\]
Proof: Let’s check $\left(T' \right)^{-1}(S^{-1}R)$ has the UMP characterizing $T^{-1}R$. Clearly $\varphi_{T'}\varphi_S$ carries T into $\left(\left(T' \right)^{-1}(S^{-1}R) \right)^{\times}$. Next, let $\psi: R \to R'$ be a map carrying T into R'^{\times}. We must show ψ factors uniquely through $\left(T' \right)^{-1}(S^{-1}R)$.

First, ψ carries S into R'^{\times} since $S \subseteq T$. So ψ factors through a unique map $\rho: S^{-1}R \to R'$. Now, given $r \in T'$, write $r = x/s$. Then $x/s = s/1 \cdot r \in T$ since $S \subseteq T$. So $x \in T$. Hence $\rho(r) = \psi(x) \cdot \rho(1/s) \in (R')^{\times}$. So ρ factors through a unique map $\rho': \left(T' \right)^{-1}(S^{-1}R) \to R'$. Hence $\psi = \rho' \varphi_{T'}\varphi_S$, and ρ' is clearly unique, as required.

Definition (11.17). We call a ring decomposable if it’s a finite product of local rings.

Proposition (11.18). Let R be a ring, $\{ m_{\lambda} \}$ its set of maximal ideals. Assume R is decomposable; say $R = \prod_{i=1}^{n} R_i$ with all R_i local. Then R is semilocal with n maximal ideals, and after reindexing, $R_i = R_{m_i}$ for all i.

Proof: Set $e_i := (\delta_{ij}) \in \prod R_j$ where δ_{ij} is the Kronecker delta. Then $R_i = R e_i$. Let n_i be the maximal ideal of R_i. Set $m'_i := n_i \times \prod_{j \neq i} R_j$. Then m'_i is maximal, and every maximal ideal of R has this form owing to (1.23). Thus R is semilocal with n maximal ideals.

Reindex the m_{λ} so that $m_i = m'_i$. Set $S_i := \{ 1, e_i \}$. Then $S_i^{-1}R = R_i$ by (11.5). Also, the localization map $\varphi_{S_i}: R \to R_i$ is the projection. So $\varphi_{S_i}^{-1}(R_i - n_i) = R - m_i$. So $R_{m_i} = (R_i)_{n_i}$ by (11.16). But $(R_i)_{n_i} = R_i$ by (11.4).

B. Exercises

Exercise (11.19). Let R be a ring, S a multiplicative subset. Prove $S^{-1}R = 0$ if and only if S contains a nilpotent element.

Exercise (11.20). Find all intermediate rings $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$, and describe each R as a localization of \mathbb{Z}. As a starter, prove $\mathbb{Z}[2/3] = S_3^{-1}\mathbb{Z}$ where $S_3 := \{ 3^i \mid i \geq 0 \}$.

Exercise (11.21). Take R and S as in (11.5). On $R \times S$, impose this relation:

$$(x, s) \sim (y, t) \quad \text{if} \quad xt = ys.$$

Show that it is not an equivalence relation.

Exercise (11.22). Let R be a ring, S a multiplicative subset, G be a group acting on R, Assume $g(S) \subseteq S$ for all $g \in G$. Set $S^G := S \cap R^G$. Show:

1. The group G acts canonically on $S^{-1}R$.

2. If G is finite, there’s a canonical isomorphism $\rho: \left(S^G \right)^{-1}R^G \xrightarrow{\sim} \left(S^{-1}R \right)^G$.

Exercise (11.23). Let R be a ring, $S \subseteq T$ a multiplicative subsets, \mathcal{S} and \mathcal{T} their saturations; see (3.25). Set $U := \left(S^{-1}R \right)^{\times}$. Show the following:

1. $U = \{ x/s \mid x \in \mathcal{S} \text{ and } s \in S \}.$

2. $\varphi_{\mathcal{S}}^{-1}U = \mathcal{S}$.

3. $S^{-1}R = T^{-1}R$ if and only if $\mathcal{S} = \mathcal{T}$.

4. $\mathcal{S}^{-1}R = S^{-1}R$.

Exercise (11.24). Let R be a ring, $S \subseteq T \subseteq U$ and W multiplicative subsets.

1. Show there’s a unique R-algebra map $\varphi_{\mathcal{S}}: S^{-1}R \to T^{-1}R$ and $\varphi_{\mathcal{U}}\varphi_{\mathcal{S}}^T = \varphi_{\mathcal{W}}^T$.

2. Given a map $\varphi: S^{-1}R \to W^{-1}R$, show $S \subseteq \mathcal{S} \subseteq \mathcal{W}$ and $\varphi = \varphi_{\mathcal{W}}^S$.

85
Exercises (11.25). — Let $R = \lim R_\lambda$ be a filtered direct limit of rings with transitions maps $\varphi^\lambda_\mu: R_\lambda \to R_\mu$ and insertions $\varphi^\mu_\mu: R_\mu \to R$. For all λ, let $S_\lambda \subset R_\lambda$ be a multiplicative subset. For all φ^λ_μ, assume $\varphi^\lambda_\mu(S_\lambda) \subset S_\mu$. Set $S := \bigcup \varphi_\lambda S_\lambda$. Then $\lim \varphi_\lambda^{-1} R_\lambda = S^{-1} R$.

Exercises (11.26). — Let R be a ring, S_0 the set of nonzerodivisors. Show:

1. Then S_0 is the largest multiplicative subset S with $\varphi_S: R \to S^{-1} R$ injective.
2. Every element x/s of $S_0^{-1} R$ is either a zerodivisor or a unit.
3. Suppose every element of R is either a zerodivisor or a unit. Then $R = S_0^{-1} R$.

Exercises (11.27). — Let R be a ring, S a multiplicative subset, a and b ideals. Show: (1) if $a \subset b$, then $a^S \subset b^S$; (2) $(a^S)^S = a^S$; and (3) $(a^S b^S)^S = (ab)^S$.

Exercises (11.28). — Let R be a ring, S a multiplicative subset. Prove that $\text{nil}(R)(S^{-1} R) = \text{nil}(S^{-1} R)$.

Exercises (11.29). — Let R be a ring, S a multiplicative subset, R' an algebra. Assume R' is integral over R. Show $S^{-1} R'$ is integral over $S^{-1} R$.

Exercises (11.30). — Let R be a domain, K its fraction field, L a finite extension field, and \overline{R} the integral closure of R in L. Show $L = \text{Frac}(\overline{R})$. Show every element of L can, in fact, be expressed as a fraction b/a with $b \in \overline{R}$ and $a \in R$.

Exercises (11.31). — Let $R \subset R'$ be domains, K and L their fraction fields. Assume that R' is a finitely generated R-algebra, and that L is a finite dimensional K-vector space. Find an $f \in R$ such that R'_f is module finite over R_f.

Exercises (11.32) (Localization and normalization commute). — Given a domain R and a multiplicative subset S with $0 \notin S$. Show that the localization of the normalization $S^{-1} \overline{R}$ is equal to the normalization of the localization $S^{-1} \overline{R}$.

Exercises (11.33). — Let k be a field, A a local k-algebra with maximal ideal m. Assume that A is a localization of a k-algebra R and that $A/m = k$. Find a maximal ideal n of R with $R_n = A$.

Exercises (11.34). — Let R be a ring, $p \subset q$ primes, S a multiplicative subset with $S \cap p = \emptyset$. Show that R_p is the localization of $S^{-1} R$ at the prime $pS^{-1} R$, and that in particular, R_p is the localization of R_q at pR_q.

Exercises (11.35). — Let R be a ring, S a multiplicative subset, $X := \{X_\lambda\}$ a set of variables. Show $(S^{-1} R)[X] = S^{-1} (R[X])$.

Exercises (11.36). — Let R be a ring, S a multiplicative subset, X a set of variables, p an ideal of $R[X]$. Set $R' := S^{-1} R$, and let $\varphi: R[X] \to R'[X]$ be the canonical map. Show p is prime and $p \cap S = \emptyset$ if and only if $pR'[X]$ is prime and $p = \varphi^{-1}(pR'[X])$.

Exercises (11.25) / (11.36)
12. Localization of Modules

Formally, we localize a module just as we do a ring. The result is a module over the localized ring, and comes equipped with a linear map from the original module; in fact, the result is universal among modules with those two properties. Consequently, Localization is a functor; in fact, it is the left adjoint of Restriction of Scalars from the localized ring to the base ring. So Localization preserves direct limits, or equivalently, direct sums and cokernels. Further, by uniqueness of left adjoints or by Watts’s Theorem, Localization is naturally isomorphic to Tensor Product with the localized ring. Moreover, Localization is exact; so the localized ring is flat. We end the chapter by discussing various compatibilities and examples.

A. Text

Proposition (12.1). — Let R be a ring, S a multiplicative subset. Then a module M has a compatible $S^{-1}R$-module structure if and only if, for all s ∈ S, the multiplication map $\mu_s: M \to M$ is bijective; if so, then the $S^{-1}R$-structure is unique.

Proof: Assume M has a compatible $S^{-1}R$-structure, and take $s \in S$. Then $\mu_s = \mu_{s/1}$. So $\mu_s \cdot \mu_{t/s} = \mu_{(s/t)(1/s)} = 1$. Similarly, $\mu_{1/s} \cdot \mu_s = 1$. So μ_s is bijective.

Conversely, assume μ_s is bijective for all $s \in S$. Then $\mu_R: R \to \text{End}_Z(M)$ sends S into the units of $\text{End}_Z(M)$. Hence μ_R factors through a unique ring map $\mu_{S^{-1}R}: S^{-1}R \to \text{End}_Z(M)$ by (11.3). Thus M has a unique compatible $S^{-1}R$-structure by (4.5).

(12.2) (Localization of modules). — Let R be a ring, S a multiplicative subset, M a module. Define a relation on $M \times S$ by $(m, s) \sim (n,t)$ if there is $u \in S$ such that $utm = usn$. As in (11.1), this relation is an equivalence relation.

Denote by $S^{-1}M$ the set of equivalence classes, and by m/s the class of (m,s). Then $S^{-1}M$ is an $S^{-1}R$-module with addition given by $m/s + n/t := (tm + sn)/st$ and scalar multiplication by $a/s \cdot m/t := am/st$ similar to (11.1). We call $S^{-1}M$ the localization of M at S.

For example, let a be an ideal. Then $S^{-1}a = aS^{-1}R$ by (11.8)(1). Similarly, $S^{-1}(aM) = S^{-1}aS^{-1}M = aS^{-1}M$. Further, given an R-algebra R', the $S^{-1}R$-module $S^{-1}R'$ constructed here underlies the $S^{-1}R$-algebra $S^{-1}R'$ of (11.15).

Define $\varphi_S: M \to S^{-1}M$ by $\varphi_S(m) := m/1$. Clearly, φ_S is R-linear.

Note that $\mu_s: S^{-1}M \to S^{-1}M$ is bijective for all $s \in S$ by (12.1).

Given $f \in R$, we call $S_f^{-1}M$ the localization of M at f, and set $M_f := S_f^{-1}M$ and $\varphi_f := \varphi_S$.

Similarly, given a prime p, we call $S_p^{-1}M$ the localization of M at p, and set $M_p := S_p^{-1}M$ and $\varphi_p := \varphi_S$.

Theorem (12.3) (UMP). — Let R be a ring, S a multiplicative subset, and M a module. Then $S^{-1}M$ is universal among $S^{-1}R$-modules equipped with an R-linear map from M.

Proof: The proof is like that of (11.3): given an R-linear map $\psi: M \to N$ where N is an $S^{-1}R$-module, it is easy to prove that ψ factors uniquely via the $S^{-1}R$-linear map $\rho: S^{-1}M \to N$ well defined by $\rho(m/s) := 1/s \cdot \psi(m)$. □
Exercise (12.4). — Let R be a ring, S a multiplicative subset, and M a module. Show that $M = S^{-1}M$ if and only if M is an $S^{-1}R$-module.

Exercise (12.5). — Let R be a ring, $S \subset T$ multiplicative subsets, M a module. Set $T_1 := \varphi_S(T) \subset S^{-1}R$. Show $T^{-1}M = T^{-1}(S^{-1}M) = T_1^{-1}(S^{-1}M)$.

Exercise (12.6). — Let R be a ring, S a multiplicative subset. Show that S becomes a filtered category when equipped as follows: given $s, t \in S$, set

$$\operatorname{Hom}(s, t) := \{ x \in R \mid xs = t \}.$$

Given a module M, define a functor $S \rightarrow ((R\text{-mod}))$ as follows: for $s \in S$, set $M_s := M$; to each $x \in \operatorname{Hom}(s, t)$, associate $\mu_x : M_s \rightarrow M_t$. Define $\beta_s : M_s \rightarrow S^{-1}M$ by $\beta_s(m) := m/s$. Show the β_s induce an isomorphism $\lim \rightarrow M_s \cong S^{-1}M$.

(12.7) (Functoriality). — Let R be a ring, S a multiplicative subset, $\alpha : M \rightarrow N$ an R-linear map. Then $\varphi_S \alpha$ carries M to the $S^{-1}R$-module $S^{-1}N$. So (12.3) yields a unique $S^{-1}R$-linear map $S^{-1}\alpha$ making the following diagram commutative:

$$
\begin{array}{ccc}
M & \xrightarrow{\varphi_S} & S^{-1}M \\
\downarrow{\alpha} & & \downarrow{S^{-1}\alpha} \\
N & \xrightarrow{\varphi_S} & S^{-1}N
\end{array}
$$

The construction in the proof of (12.3) yields

$$ (S^{-1}\alpha)(m/s) = \alpha(m)/s. \quad (12.7.1) $$

Thus, canonically, we obtain the following map, and clearly, it is R-linear:

$$ \operatorname{Hom}_R(M, N) \rightarrow \operatorname{Hom}_{S^{-1}R}(S^{-1}M, S^{-1}N). \quad (12.7.2) $$

Any R-linear map $\beta : N \rightarrow P$ yields $S^{-1}(\beta \alpha) = (S^{-1}\beta)(S^{-1}\alpha)$ owing to uniqueness or to (12.7.1). Thus $S^{-1}(\bullet)$ is a linear functor from $((R\text{-mod}))$ to $((S^{-1}R\text{-mod}))$.

Theorem (12.8). — Let R be a ring, S a multiplicative subset. Then the functor $S^{-1}(\bullet)$ is the left adjoint of the functor of restriction of scalars.

Proof: Let N be an $S^{-1}R$-module. Then $N = S^{-1}N$ by (12.4), and the map (12.7.2) is bijective with inverse taking $\beta : S^{-1}M \rightarrow N$ to $\beta \varphi_S : M \rightarrow N$. And (12.7.2) is natural in M and N by (6.13). Thus the assertion holds. □

Corollary (12.9). — Let R be a ring, S a multiplicative subset. Then the functor $S^{-1}(\bullet)$ preserves direct limits, or equivalently, direct sums and cokernels.

Proof: By (12.8), the functor is a left adjoint. Hence it preserves direct limits by (6.9); equivalently, it preserves direct sums and cokernels by (6.7). □

Corollary (12.10). — Let R be a ring, S a multiplicative subset. Then the functors $S^{-1}(\bullet)$ and $S^{-1}R \otimes_R \bullet$ are canonically isomorphic.

Proof: As $S^{-1}(\bullet)$ preserves direct sums and cokernels by (12.9), the assertion is an immediate consequence of Watts Theorem (8.13). Alternatively, both functors are left adjoints of the same functor by (12.8) and by (8.9). So they are canonically isomorphic by (6.3). □
(12.11) (Saturation). — Let R be a ring, S a multiplicative subset, M a module. Given a submodule N, its **saturation** N^S is defined by
\[N^S := \{ m \in M \mid \text{there is } s \in S \text{ with } sm \in N \}. \]

Note $N \subseteq N^S$ as $1 \in S$. If $N = N^S$, then we say N is **saturated**.

Proposition (12.12). — Let R be a ring, M a module, N and P submodules. Let S, and T be multiplicative subsets, and K an $S^{-1}R$-submodule of $S^{-1}M$.

1. Then (a) N^S is a submodule of M, and (b) $S^{-1}N$ is a submodule of $S^{-1}M$.
2. Then (a) $\varphi_S^{-1}K = (\varphi_S^{-1}K)^S$ and (b) $K = S^{-1}(\varphi_S^{-1}K)$.
3. Then (a) $\varphi_S^{-1}(S^{-1}N) = N^S$; so $\ker(\varphi_S) = 0^S$. And (b) $S^{-1}N = S^{-1}N^S$.
4. Then (a) $(N^S)^T = N^{ST}$ and (b) $S^{-1}(S^{-1}N) = S^{-1}N$.
5. Assume $N \subseteq P$. Then (a) $N^S \subseteq P^S$ and (b) $S^{-1}N \subseteq S^{-1}P$.
6. Then (a) $(N \cap P)^S = N^S \cap P^S$ and (b) $S^{-1}(N \cap P) = S^{-1}N \cap S^{-1}P$.
7. Then (a) $(N + P)^S \supset N^S + P^S$ and (b) $S^{-1}(N + P) = S^{-1}N + S^{-1}P$.
8. Assume $S \subseteq T$. Then $N^S \subseteq N^T$.

Proof: For (1)(a), (2), (3), argue much as for (11.10)(3) and (11.11)(1), (2).

For (1)(b), note $N \times S$ lies in $M \times S$ and has the induced equivalence relation.

For (4)(a), note $n \in (N^S)^T$ if and only if there exist $t \in T$ and $s \in S$ with $s(tn) = (st)n \in N$, so if and only if $n \in N^{ST}$.

For (4)(b), take $M := S^{-1}N$ in (12.4).

For (5)(a), given $n \in N^S$, there’s $s \in S$ with $sn \in N$. So $sn \in P$. Thus $n \in P^S$.

For (5)(b), take $M := P$ in (1)(b).

For (6)(a), note $(N \cap P)^S \subseteq N^S \cap P^S$. Conversely, given $n \in N^S \cap P^S$, there are $s, t \in S$ with $sn \in N$ and $tn \in P$. So $sn + tM$ is a submodule of M with $utn = usp \in N \cap P$.

Thus $utn = usp = s(tn) = (st)n \in N^S \cap P^S$. Thus (6)(b) holds.

For (7)(a), given $n \in N^S$ and $p \in P^S$, there are $s, t \in S$ with $sn \in N$ and $tp \in P$. Then $sn + tM$ is a submodule of M with $stn \in N \cap P$.

Thus (7)(a) holds.

For (7)(b), note $N, P \supset N \cap P$. So (1)(b) yields $S^{-1}(N \cap P) \supset S^{-1}N \cap S^{-1}P$.

But the opposite inclusion holds if $n \in (N \cap P)^S$.

For (8), given $n \in N^S$, there’s $s \in S$ with $sn \in N$. But $s \in T$. Thus $n \in N^T$. □

Theorem (12.13) (Exactness of Localization). — Let R be a ring, and S a multiplicative subset. Then the functor $S^{-1}(\bullet)$ is exact.

Proof: As $S^{-1}(\bullet)$ preserves injections by (12.12)(1) and cokernels by (12.9), it is exact by (9.3).

Alternatively, given an exact sequence $M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$, for each $s \in S$, take a copy $M'_s \to M_s \to M''_s$. Using (12.6), make S into a filtered category, and make these copies into a functor from S to the category of 3-term exact sequences; its limit is the following sequence, which is exact by (7.9), as desired:

\[S^{-1}M' \xrightarrow{\alpha} S^{-1}M \xrightarrow{\beta} S^{-1}M''. \]

The latter argument can be made more direct as follows. Since $\beta \alpha = 0$, we have $(S^{-1}\beta)(S^{-1}\alpha) = S^{-1}(\beta \alpha) = 0$. Hence $\ker(S^{-1}\beta) \supset \text{im}(S^{-1}\alpha)$. Conversely, given $m/s \in \ker(S^{-1}\beta)$, there is $t \in S$ with $t\beta(m) = 0$. So $\beta(tm) = 0$. So exactness yields $m' \in M'$ with $\alpha(m') = tm$. So $(S^{-1}\alpha)(m'/ts) = m/s$. Hence
Ker$(S^{-1}\beta) \subseteq \text{Im}(S^{-1}\alpha)$. Thus Ker$(S^{-1}\beta) = \text{Im}(S^{-1}\alpha)$, as desired.

Corollary (12.14). — Let R be a ring, S a subset multiplicative. Then $S^{-1}R$ is flat over R.

Proof: The functor $S^{-1}(\bullet)$ is exact by (12.13), and is isomorphic to $S^{-1}R \otimes_R (\bullet)$ by (12.10). Thus $S^{-1}R$ is flat.

Alternatively, using (12.6), write $S^{-1}R$ as a filtered direct limit of copies of R. But R is flat by (9.6). Thus $S^{-1}R$ is flat by (9.9).

Corollary (12.15). — Let R be a ring, S a multiplicative subset, a an ideal, and M a module. Then $S^{-1}(M/aM) = S^{-1}M/S^{-1}(aM) = S^{-1}M/aS^{-1}M$.

Proof: The assertion results from (12.13) and (12.2).

Proof: We have $\text{Frac}(R/p) = (R/p)_p = R_p/pR_p$ by (11.15) and (12.15).

Exercise (12.17). — Let R be a ring, S a multiplicative subset, M a module. Show: (1) $S^{-1}\text{Ann}(M) \subseteq \text{Ann}(S^{-1}M)$, with equality if M is finitely generated;

(2) $S^{-1}M = 0$ if $\text{Ann}(M) \cap S \neq \emptyset$, and conversely if M is finitely generated.

Proposition (12.18). — Let R be a ring, M a module, S a multiplicative subset.

(1) Let $m_1, \ldots, m_n \in M$. If M is finitely generated and if the $m_i/1 \in S^{-1}M$ generate over $S^{-1}R$, then there’s $f \in S$ so that the $m_i/1 \in M_f$ generate over R_f.

(2) Assume M is finitely presented and $S^{-1}M$ is a free $S^{-1}R$-module of rank n. Then there is $h \in S$ such that M_h is a free R_h-module of rank n.

Proof: To prove (1), define $\alpha : R^n \rightarrow M$ by $\alpha(e_i) := m_i$ with e_i the ith standard basis vector. Set $C := \text{Coker}(\alpha)$. Then $S^{-1}C = \text{Coker}(S^{-1}\alpha)$ by (12.9). Assume the $m_i/1 \in S^{-1}M$ generate over $S^{-1}R$. Then $S^{-1}\alpha$ is surjective by (4.10)(1) as $S^{-1}(R^n) = (S^{-1}R)^n$ by (12.9). Hence $S^{-1}C = 0$.

In addition, assume M is finitely generated. Then so is C. Hence, (12.17)(2) yields $f \in S$ such that $C_f = 0$. Hence α_f is surjective. So the $m_i/1$ generate M_f over R_f again by (4.10)(1). Thus (1) holds.

For (2), let $m_1/s_1, \ldots, m_n/s_n$ be a free basis of $S^{-1}M$ over $S^{-1}R$. Then so is $m_1/1, \ldots, m_n/1$ as the $1/s_i$ are units. Form α and C as above, and set $K := \text{Ker}(\alpha)$. Then (12.13) yields $S^{-1}K = \text{Ker}(S^{-1}\alpha)$ and $S^{-1}C = \text{Coker}(S^{-1}\alpha)$. But $S^{-1}\alpha$ is bijective. Hence $S^{-1}K = 0$ and $S^{-1}C = 0$.

Since M is finitely generated, C is too. Hence, as above, there is $f \in S$ such that $C_f = 0$. Then $0 \rightarrow K_f \rightarrow R_f^0 \xrightarrow{\alpha_f} M_f \rightarrow 0$ is exact by (12.13). Take a finite presentation $R^n \rightarrow R^0 \rightarrow M \rightarrow 0$. By (12.13), it yields a finite presentation $R^n_f \rightarrow R^0_f \rightarrow M_f \rightarrow 0$. Hence K_f is a finitely generated R_f-module by (5.18).

Let $S_1 \subseteq R_f$ be the image of S. Then (12.5) yields $S_1^{-1}(K_f) = S^{-1}K$. But $S^{-1}K = 0$. Hence there is $g/1 \in S_1$ such that $(K_f)_{g/1} = 0$. Set $h := fg$. Let’s show $K_h = 0$. Let $x \in K$. Then there is a such that $(g^ax)/1 = 0$ in K_f. Hence there is b such that $f^bg^ax = 0$ in K. Take $c \geq a, b$. Then $h^cx = 0$. Thus $K_h = 0$. But $C_f = 0$ implies $C_h = 0$. Hence $\alpha_h : R^n_h \rightarrow R^n_h$ is an isomorphism, as desired.
Localization of Modules \(\text{(12.19) / (12.28)} \) \quad \text{Exercises}

Proposition (12.19). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(M \) and \(N \) modules. Then there is a canonical homomorphism

\[
\sigma : S^{-1}/\text{Hom}_R(M,N) \to \text{Hom}_{S^{-1}R}(S^{-1}M,S^{-1}N).
\]

Further, \(\sigma \) is injective if \(M \) is finitely generated, and \(\sigma \) is an isomorphism if \(M \) is finitely presented.

Proof: The assertions result from \((9.33)\) with \(R' := S^{-1}R \), since \(S^{-1}R \) is flat by \((12.14)\) and since \(S^{-1}R \otimes P = S^{-1}P \) for every \(R \)-module \(P \) by \((12.10)\). \(\square \)

Example (12.20). — Set \(R := \mathbb{Z} \) and \(M := \mathbb{Q}/\mathbb{Z} \), and recall \(S_0 := \mathbb{Z} - \langle 0 \rangle \). Then \(M \) is faithful, as \(z \in S_0 \) implies \(z \cdot (1/2z) = 1/2 \neq 0 \); thus, \(R: R \to \text{Hom}_R(M,M) \) is injective. But \(S_0^{-1}R = \mathbb{Q} \). So \((12.13)\) yields \(S_0^{-1}\text{Hom}_R(M,M) \neq 0 \). On the other hand, \(S_0^{-1}M = 0 \) as \(s \cdot r/s = 0 \) for any \(r/s \in M \). So the map \(\sigma(M,M) \) of \((12.19)\) is not injective. Thus \((12.19)(2)\) can fail if \(M \) is not finitely generated.

Example (12.21). — Set \(R := \mathbb{Z} \), recall \(S_0 := \mathbb{Z} - \langle 0 \rangle \), and set \(M_n := \mathbb{Z}/n\mathbb{Z} \) for \(n \geq 2 \). Then \(S_0^{-1}M_n = 0 \) for all \(n \) as \(nm \equiv 0 \) (mod \(n \)) for all \(m \). On the other hand, \((1,1,\ldots)/1\) is nonzero in \(S_0^{-1}(\prod M_n) \) as the \(k \)-th component of \(m \cdot (1,1,\ldots) \) is nonzero in \(\prod M_n \) for \(k > |m| \) if \(m \) is nonzero. Thus \(S_0^{-1}(\prod M_n) \neq \prod (S_0^{-1}M_n) \).

Also \(S_0^{-1}Z = \mathbb{Q} \). So \((12.10)\) yields \(\mathbb{Q} \otimes (\prod M_n) \neq \prod (\mathbb{Q} \otimes M_n) \), whereas \((8.10)\) yields \(\mathbb{Q} \otimes (\bigoplus M_n) = \bigoplus (\mathbb{Q} \otimes M_n) \).

Proposition (12.22) (Nilpotents). — Let \(R \) be a ring, \(x \in R \). We say \(x \) is nilpotent on a module \(M \) if there is \(n \geq 1 \) with \(x^n m = 0 \) for all \(m \in M \); that is, \(x \in \sqrt{\text{Ann}(M)} \).

We denote the set of nilpotents on \(M \) by \(\text{nil}(M) \); that is, \(\text{nil}(M) := \sqrt{\text{Ann}(M)} \).

Notice that, if \(M = R \), then we recover the notions of nilpotent element and of nil(\(R \)) of \((3.13)\). Moreover, given an ideal \(a \subset R \), we have \(\text{nil}(R/a) = \sqrt{a} \).

Proposition (12.23). — Let \(S \) be a multiplicatively closed subset, and \(Q \subset M \) modules. Set \(p := \text{nil}(M/Q) \); assume \(S \cap p \neq \emptyset \). Then \(Q^S = M \) and \(S^{-1}Q = S^{-1}M \).

Proof: Say \(s \in S \cap p \). Then there’s \(n \geq 0 \) with \(s^n M \subset Q \). But \(s^n \in S \). Thus \(Q^S = M \). Now, \(S^{-1}Q = S^{-1}Q^S \) by \((12.12)(3)(b)\). Thus \(S^{-1}Q = S^{-1}M \). \(\square \)

B. Exercises

Exercise (12.24). — Let \(R \) be a ring, \(M \) a finitely generated module, \(a \) an ideal.

1. Set \(S := 1 + a \). Show that \(S^{-1}a \) lies in the radical of \(S^{-1}R \).

2. Use (1), Nakayama’s Lemma \((10.6)\) and \((12.17)(2)\), but not the determinant trick \((10.2)\), to prove this part of \((10.3)\): if \(M = aM \), then \(sM = 0 \) for an \(s \in S \).

Exercise (12.25). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(a \) an ideal, \(M \) a module, \(N \) a submodule. Prove \((aN)^S = (aS^N)^S \).

Exercise (12.26). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(P \) a projective module. Then \(S^{-1}P \) is a projective \(S^{-1}R \)-module.

Exercise (12.27). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(M, N \) modules. Show \(S^{-1}(M \otimes_R N) = S^{-1}M \otimes_R S^{-1}N = S^{-1}M \otimes_{S^{-1}R} S^{-1}N = S^{-1}M \otimes_R S^{-1}N \).

Exercise (12.28). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(X \) a set of variables, and \(M \) a module. Prove \((S^{-1}M)[X] = S^{-1}(M[X]) \).
Localization of Modules \protect\((12.29) / (12.38)\) Exercises

Exercise \((12.29)\) . — Let \(R\) be a ring, \(M\) a module, \(S, T\) multiplicative subsets.
(1) Set \(T' := \varphi_S(T)\) and assume \(S \subset T\). Prove
\[
T'^{-1}(S^{-1}M) = T^{-1}M.
\] (12.29.1)
(2) Set \(U := ST := \{st \in R \mid s \in S\text{ and } t \in T\}\). Prove
\[
(ST)^{-1}M = T^{-1}(S^{-1}M) = S^{-1}(T^{-1}M).
\] (12.29.2)
(3) Let \(\varphi : R \to R'\) be a map of rings, \(M'\) an \(R'\)-module. Prove
\[
(\varphi S)^{-1}M' = S^{-1}M'.
\] (12.29.3)

Exercise \((12.30)\) . — Let \(R\) be a ring, \(S\) a multiplicative subset. For \(i = 1, 2\), let \(\varphi_i : R \to R_i\) be a ring map, \(S_i \subset R_i\) a multiplicative subset with \(\varphi_i S \subset S_i\), and \(M_i\) an \(R_i\)-module. Set \(T := \{s_1 \otimes s_2 \mid s_1 \in S_1\} \subset R_1 \otimes_R R_2\). Prove
\[
S_1^{-1}M_1 \otimes_{S_1^{-1}R} S_2^{-1}M_2 = S_1^{-1}M_1 \otimes_R S_2^{-1}M_2 = T^{-1}(M_1 \otimes_R M_2).
\]

Exercise \((12.31)\) . — Let \(R\) be a ring, \(m\) a maximal ideal, \(n \geq 1\), and \(M\) a module. Show \(M/m^nM = M/mM/m^{n-1}M\).

Exercise \((12.32)\) . — Let \(k\) be a field. For \(i = 1, 2\), let \(R_i\) be an algebra, and \(n_i \subset R_i\) a maximal ideal with \(R_i/n_i = k\). Let \(n \subset R_1 \otimes_k R_2\) denote the ideal generated by \(n_1\) and \(n_2\). Set \(A := (R_1)_{n_1}\) and \(m := n(A_1 \otimes_k A_2)\). Prove that both \(n\) and \(m\) are maximal with \(k\) as residue field and that \((A_1 \otimes_k A_2)m = (R_1 \otimes_k R_2)n\).

Exercise \((12.33)\) . — Let \(R\) be a ring, \(R'\) an algebra, \(S\) a multiplicative subset, \(M\) a finitely presented module. Prove these properties of the \(r\)th Fitting ideal:
\[
F_r(M \otimes_R R') = F_r(M)R' \quad \text{and} \quad F_r(S^{-1}M) = F_r(M)S^{-1}R = S^{-1}F_r(M).
\]

Exercise \((12.34)\) . — Let \(R\) be a ring, \(S\) a multiplicative subset. Prove this:
(1) Let \(M_1 \twoheadrightarrow M_2\) be a map of modules, which restricts to a map \(N_1 \to N_2\) of submodules. Then \(\alpha(N_1^S) \subset N_2^S\); that is, there is an induced map \(N_1^S \to N_2^S\).
(2) Let \(0 \to M_1 \twoheadrightarrow M_2 \twoheadrightarrow M_3\) be a left exact sequence, which restricts to a left exact sequence \(0 \to N_1 \to N_2 \to N_3\) of submodules. Then there is an induced left exact sequence of saturations: \(0 \to N_1^S \to N_2^S \to N_3^S\).

Exercise \((12.35)\) . — Let \(R\) be a ring, \(M\) a module, and \(S\) a multiplicative subset. Set \(T^S M := \langle 0 \rangle^S\). We call it the \(S\)-torsion submodule of \(M\). Prove the following:
(1) \(T^S(M/T^S M) = 0\). \quad (2) \(T^S M = \text{Ker}(\varphi_S)\).
(3) Let \(\alpha : M \to N\) be a map. Then \(\alpha(T^S M) \subset T^S N\).
(4) Let \(0 \to M' \to M \to M''\) be exact. Then so is \(0 \to T^S M' \to T^S M \to T^S M''\).
(5) Let \(S_1 \subset S\) be a multiplicative subset. Then \(T^S(S_1^{-1}M) = S_1^{-1}(T^S M)\).

Exercise \((12.36)\) . — Set \(R := \mathbb{Z}\) and \(S := S_0 := \mathbb{Z} - \langle 0 \rangle\). Set \(M := \bigoplus_{n \geq 2} \mathbb{Z}/\langle n \rangle\) and \(N := M\). Show that the map \(\sigma\) of \((12.19)\) is not injective.

Exercise \((12.37)\) . — Let \(R\) be a ring, \(S\) a multiplicative subset, \(M\) a module. Show that \(S^{-1}\text{nil}(M) \subset \text{nil}(S^{-1}M)\), with equality if \(M\) is finitely generated.

Exercise \((12.38)\) . — Let \(R\) be a ring, \(S\) a multiplicative subset, \(a\) an ideal, \(M\) a module, and \(N\) a submodule. Set \(n := \text{nil}(M/N)\). Show:
(1) Then \(n \cap S \neq \emptyset\) if and only if \(n^S = R\).
(2) Assume \(n \cap S \neq \emptyset\). Then \(S^{-1}N = S^{-1}M\) and \(N^S = M\).
(3) Then \(n^S \subset \text{nil}(M/N^S)\), with equality if \(M\) is finitely generated.
Exercise (12.39). — Let R be a ring, M a module, N, N' submodules. Show:

1. $\sqrt{\text{nil}(M)} = \text{nil}(M)$.
2. $\text{nil}(M/(N \cap N')) = \text{nil}(M/N) \cap \text{nil}(M/N')$.
3. $\text{nil}(M/N) = R$ if and only if $N = M$.
4. $\text{nil}(M/(N + N')) \supseteq \sqrt{\text{nil}(M/N) + \text{nil}(M/N')}$.

Find an example where equality fails in (4), yet R is a field.
13. Support

The spectrum of a ring is the following topological space: its points are the prime ideals, and each closed set consists of those primes containing a given ideal. The support of a module is the following subset: its points are the primes at which the localized module is nonzero. We relate the support to the closed set of the annihilator. We prove that a sequence is exact if and only if it is exact after localizing at every maximal ideal. We end this chapter by proving that the following conditions on a module are equivalent: it is finitely generated and projective; it is finitely presented and \mathfrak{n}-at; and it is locally free of finite rank.

A. Text

(13.1) (Spectrum of a ring). — Let R be a ring. Its set of prime ideals is denoted $\text{Spec}(R)$, and is called the (prime) spectrum of R.

Let \mathfrak{a} be an ideal. Let $V(\mathfrak{a})$ denote the subset of $\text{Spec}(R)$ consisting of those primes that contain \mathfrak{a}. We call $V(\mathfrak{a})$ the variety of \mathfrak{a}.

Let \mathfrak{b} be a second ideal. Obviously, if $\mathfrak{a} \subseteq \mathfrak{b}$, then $V(\mathfrak{b}) \subseteq V(\mathfrak{a})$. Conversely, if $V(\mathfrak{b}) \subseteq V(\mathfrak{a})$, then $\mathfrak{a} \subseteq \sqrt{\mathfrak{b}}$, owing to the Scheinnullstellensatz (3.14). Therefore, $V(\mathfrak{a}) = V(\mathfrak{b})$ if and only if $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{b}}$. Further, (2.23) yields $V(\mathfrak{a}) \cup V(\mathfrak{b}) = V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{ab})$.

A prime ideal \mathfrak{p} contains the ideals \mathfrak{a}_λ in an arbitrary collection if and only if \mathfrak{p} contains their sum $\sum \mathfrak{a}_\lambda$; hence,

$$\bigcap V(\mathfrak{a}_\lambda) = V(\sum \mathfrak{a}_\lambda). \quad (13.1.1)$$

Finally, $V(\mathfrak{0}) = \emptyset$, and $V(\mathfrak{a}) \subseteq \text{Spec}(R)$. Thus the subsets $V(\mathfrak{a})$ of $\text{Spec}(R)$ are the closed sets of a topology; it is called the Zariski topology. Moreover, $\mathfrak{a} \mapsto V(\mathfrak{a})$ is a lattice-inverting bijection from the radical ideals to the closed sets.

Given an element $f \in R$, we call the open set

$$D(f) := \text{Spec}(R) - V(\langle f \rangle) \quad (13.1.2)$$

a principal open set. These sets form a basis for the topology of $\text{Spec}(R)$; indeed, given any prime $\mathfrak{p} \not\supset \mathfrak{a}$, there is an $f \in \mathfrak{a} - \mathfrak{p}$, and so $\mathfrak{p} \in D(f) \subset \text{Spec}(R) - V(\mathfrak{a})$. Further, $f, g \not\in \mathfrak{p}$ if and only if $fg \not\in \mathfrak{p}$, for any $f, g \in R$ and prime \mathfrak{p}; in other words,

$$D(f) \cap D(g) = D(fg). \quad (13.1.3)$$

A ring map $\varphi: R \to R'$ induces a set map

$$\text{Spec}(\varphi): \text{Spec}(R') \to \text{Spec}(R) \quad \text{by} \quad \text{Spec}(\varphi)(\mathfrak{p}') := \varphi^{-1}(\mathfrak{p}'). \quad (13.1.4)$$

Notice $\varphi^{-1}(\mathfrak{p}') \supset \mathfrak{a}$ if and only if $\mathfrak{p}' \supset aR'$; so $\text{Spec}(\varphi)^{-1} V(\mathfrak{a}) = V(\mathfrak{a}R')$ and

$$\text{Spec}(\varphi)^{-1} D(g) = D(\varphi(g)). \quad (13.1.5)$$

Hence $\text{Spec}(\varphi)$ is continuous. Given another ring map $\varphi': R' \to R''$, plainly

$$\text{Spec}(\varphi) \text{Spec}(\varphi') = \text{Spec}(\varphi' \varphi). \quad (13.1.6)$$

Moreover, $\text{Spec}(1_R) = 1_{\text{Spec}(R)}$. Thus $\text{Spec}(\bullet)$ is a contravariant functor from $((\text{Rings}))$ to the category of topological spaces and continuous maps.
Let \(\text{Spec}(R/a) \hookrightarrow \text{V}(a) \hookrightarrow \text{Spec}(R) \). \hfill (13.1.7)

Owing to (11.12), the localization map \(R \to R_f \) induces a topological embedding
\[
\text{Spec}(R_f) \leftrightarrow D(f) \hookrightarrow \text{Spec}(R). \hfill (13.1.8)
\]

Proposition (13.2). Let \(R \) be a ring, \(X := \text{Spec}(R) \). Then \(X \) is quasi-compact: if \(X = \bigcup_{\lambda \in \Lambda} U_\lambda \) with \(U_\lambda \) open, then \(X = \bigcup_{i=1}^{n} U_\lambda \), for some \(\lambda_i \in \Lambda \).

Proof: Say \(U_\lambda = X \smallsetminus \text{V}(a_\lambda) \). As \(X = \bigcup_{\lambda \in \Lambda} U_\lambda \), then \(\emptyset = \bigcap \text{V}(a_\lambda) = \text{V}(\sum a_\lambda) \). So \(\sum a_\lambda \) lies in no prime ideal. Hence there are \(\lambda_1, \ldots, \lambda_n \in \Lambda \) and \(f_\lambda \in a_\lambda \) with \(1 = \sum f_\lambda \). So \(R = \sum a_\lambda \). So \(\emptyset = \bigcap \text{V}(a_\lambda) = \text{V}(\sum a_\lambda) \). Thus \(X = \bigcup U_\lambda \). \(\square \)

Definition (13.3). Let \(R \) be a ring, \(M \) a module. Its support is the set
\[
\text{Supp}(M) := \text{Supp}_R(M) := \{ p \in \text{Spec}(R) \mid M_p \neq 0 \}. \]

Proposition (13.4). Let \(R \) be a ring, \(M \) a module.

1. Let \(0 \to L \to M \to N \to 0 \) be exact. Then \(\text{Supp}(L) \cup \text{Supp}(N) = \text{Supp}(M) \).
2. Let \(M_\lambda \) be submodules with \(\sum M_\lambda = M \). Then \(\bigcup \text{Supp}(M_\lambda) = \text{Supp}(M) \).
3. Then \(\text{Supp}(M) \subset \text{V}(\text{Ann}(M)) \), with equality if \(M \) is finitely generated.
4. Then \(\text{rad}(M) \) is contained in the intersection of all the maximal ideals in \(\text{Supp}(M) \), with equality if \(M \) is finitely generated.

Proof: Consider (1). For every prime \(p \), the sequence \(0 \to L_p \to M_p \to N_p \to 0 \) is exact by (12.13). So \(M_p \neq 0 \) if and only if \(L_p \neq 0 \) or \(N_p \neq 0 \). Thus (1) holds.

In (2), \(M_\lambda \subset M \). So (1) yields \(\bigcup \text{Supp}(M_\lambda) \subset \text{Supp}(M) \). To prove the opposite inclusion, take \(p \notin \bigcup \text{Supp}(M_\lambda) \). Then \((M_\lambda)_p = 0 \) for all \(\lambda \). By hypothesis, the natural map \(\bigoplus M_\lambda \to M \) is surjective. So \(\bigoplus (M_\lambda)_p \to M_p \) is surjective by (12.9). Hence \(M_p = 0 \). Alternatively, given \(m/s \in M_p \), express \(m \) as a finite sum \(m = \sum m_\lambda \) with \(m_\lambda \in M_\lambda \). For each such \(\lambda \), there is \(t_\lambda \in R - p \) with \(t_\lambda m_\lambda = 0 \). Set \(t := \prod t_\lambda \). Then \(tm = 0 \) and \(t \notin p \). So \(m/s = 0 \) in \(M_p \). Hence again, \(M_p = 0 \).

Thus \(p \notin \text{Supp}(M) \), and so (2) holds.

Consider (3). Let \(p \) be a prime. By (12.17)(2), \(M_p = 0 \) if \(\text{Ann}(M) \cap (R - p) \neq \emptyset \), and the converse holds if \(M \) is finitely generated. But \(\text{Ann}(M) \cap (R - p) \neq \emptyset \) if and only if \(\text{Ann}(M) \not\subset p \). Thus (3) holds.

For (4), recall from (4.1) that \(\text{rad}(M) \) is defined as the intersection of all the maximal ideals containing \(\text{Ann}(M) \). Thus (3) yields (4). \(\square \)

Proposition (13.6). Let \(R \) be a ring, \(M \) a finitely generated module. Then
\[
\text{nil}(M) = \bigcap_{p \in \text{Supp}(M)} p. \]

Warning: For every prime \(p \), we mean not those of \(M \) viewed as an abstract module, but rather those of \(R/a \); however, by the minimal primes of \(R \), we mean those of \(R \) viewed as an abstract module; compare (3.17).
Proposition (13.7). — Let R be a ring, M and N modules. Then

\[\text{Supp}(M \otimes_R N) \subseteq \text{Supp}(M) \cap \text{Supp}(N), \]

with equality if M and N are finitely generated.

Proof: First, $\text{nil}(M) = \bigcap_{p \supset \text{Ann}(M)} p$ by the Scheinnullstellensatz (3.14). But $p \supset \text{Ann}(M)$ if and only if $p \in \text{Supp}(M)$ by (13.4)(3). \square

Exercise (13.10). — Let R be a ring, M a module. Then M is flat over R if and only if, at every maximal ideal m, the fractions m/M are finitely generated.

Proof: If M is flat over R, then $M \otimes_R R_m$ is flat over R_m by (9.22). But $M \otimes_R R_m = M_m$ by (12.10). Thus M_m is flat over R_m.

Conversely, assume M_m is flat over R_m for every m. Let $\alpha : N' \rightarrow N$ be an injection of R-modules. Then α_m is injective by (13.9). Hence $M_m \otimes_{R_m} \alpha_m$ is injective. But that map is equal to $(M \otimes \alpha)_m$ by (12.27). So $(M \otimes \alpha)_m$ is injective, hence $M \otimes \alpha$ is injective by (13.9). Thus M is flat over R. \square

Proposition (13.9). — A sequence of modules $L \xrightarrow{\alpha} M \xrightarrow{\beta} N$ is exact if and only if its localization $L_m \xrightarrow{\alpha_m} M_m \xrightarrow{\beta_m} N_m$ is exact at each maximal ideal m.

Proof: If the sequence is exact, then so is its localization by (12.13). Consequently, $\text{Im}(\beta_m \alpha_m) = 0$. But $\text{Im}(\beta_m \alpha_m) = (\text{Im}(\beta \alpha))_m$ by (12.13) and (9.3). So $\text{Im}(\beta \alpha) = 0$ by (13.8). Hence $\text{Im}(\alpha) \subseteq \text{Ker}(\beta)$. Thus $\text{Im}(\alpha) = 0$.

Set $H := \text{Ker}(\beta)/\text{Im}(\alpha)$. Then $H_m = \text{Ker}(\beta_m)/\text{Im}(\alpha_m)$ by (12.13) and (9.3). So $H_m = 0$ owing to the hypothesis. Hence $H = 0$ by (13.8), as required. \square

Proposition (13.11). — Let A be a semilocal ring, m_1, \ldots, m_n its maximal ideals, M, N finitely presented modules. Assume $M_{m_i} \cong N_{m_i}$ for each i. Then $M \cong N$.

Proof: For each i, take an isomorphism $\psi_i : M_{m_i} \rightarrow N_{m_i}$. Then (12.19) yields $s_i \in A - m_i$ and $\varphi_i : M \rightarrow N$ with $(\varphi_i)_{m_i} = s_i \psi_i$. But $\bigcap_{j \neq i} m_j \notin m_i$ by (2.23); so there's $x_i \in \bigcap_{j \neq i} m_j$ with $x_i \notin m_i$. Set $\gamma := \sum_i x_i \varphi_i$, so $\gamma : M \rightarrow N$.

For each j, set $\alpha_j := x_j \varphi_j$. Then $\alpha_{m_j} : M_{m_j} \rightarrow N_{m_j}$ as x_j and s_j are units. Set $\beta_j := \sum_{i \neq j} \alpha_i$. Then $\beta_j(M_{m_j}) \subseteq m_j N_{m_j}$ as $x_i \in m_j$ for $i \neq j$. Further, $\gamma = \alpha_j + \beta_j$. So γ_{m_j} is an isomorphism by (10.29). Hence (13.9) implies $\gamma : M \rightarrow N$. \square

Exercise (13.12). — Let R be a ring, M a module. Then M is flat over R if and only if, at every maximal ideal m, the localization M_m is flat over R_m.
Definition (13.13). — Let \(R \) be a ring, \(M \) a module. We say \(M \) is \textit{locally finitely generated} if each \(p \in \text{Spec}(R) \) has a neighborhood on which \(M \) becomes finitely generated; more precisely, there exists \(f \in R - p \) such that \(M_f \) is finitely generated over \(R_f \). It is enough that an \(f \) exist for each maximal ideal \(m \) as every \(p \) lies in some \(m \) by (2.21). Similarly, we define the properties \textit{locally finitely presented}, \textit{locally free of finite rank}, and \textit{locally free of rank} \(n \).

Proposition (13.14). — Let \(R \) be a ring, \(M \) a module.

1. If \(M \) is locally finitely generated, then it is finitely generated.
2. If \(M \) is locally finitely presented, then it is finitely presented.

Proof: By (13.2), there are \(f_1, \ldots, f_n \in R \) with \(\bigcup \text{D}(f_i) = \text{Spec}(R) \) and finitely many \(m_{i,j} \in M \) such that, for some \(n_{i,j} \geq 0 \), the \(m_{i,j}/f_i^{n_{i,j}} \) generate \(M_{f_i} \). Clearly, for each \(i \), the \(m_{i,j}/1 \) also generate \(M_{f_i} \).

Given any maximal ideal \(m \), there is \(i \) such that \(f_i \notin m \). Let \(S_i \) be the image of \(S_m := R - m \) in \(R_{f_i} \). Then (12.5) yields \(M_m = S_i^{-1}(M_{f_i}) \). Hence the \(m_{i,j}/1 \) generate \(M_m \). Thus (13.10) yields (1).

Assume \(M \) is locally finitely presented. Then \(M \) is finitely generated by (1). So there is a surjection \(R^k \to M \). Let \(K \) be its kernel. Then \(K \) is locally finitely generated owing to (5.18). Hence \(K \) too is finitely generated by (1). So there is a surjection \(R^k \to K \). It yields the desired finite presentation \(R^k \to R^k \to M \to 0 \). Thus (2) holds.

Theorem (13.15). — These conditions on an \(R \)-module \(P \) are equivalent:

1. \(P \) is finitely generated and projective.
2. \(P \) is finitely presented and flat.
3. \(P \) is finitely presented, and \(P_m \) is free over \(R_m \) at each maximal ideal \(m \).
4. \(P \) is locally free of finite rank.
5. \(P \) is finitely generated, and for each \(p \in \text{Spec}(R) \), there are \(f \) and \(n \) such that \(p \in \text{D}(f) \) and \(P_q \) is free of rank \(n \) over \(R_q \) at each \(q \in \text{D}(f) \).

Proof: Condition (1) implies (2) by (10.12).

Let \(m \) be a maximal ideal. Then \(R_m \) is local by (11.14). If \(P \) is finitely presented, then \(P_m \) is finitely presented, because localization preserves direct sums and cokernels by (12.9).

Assume (2). Then \(P_m \) is flat by (13.12), so free by (10.12). Thus (3) holds.

Assume (3). Fix a surjective map \(\alpha: M \to N \). Then \(\alpha_m: M_m \to N_m \) is surjective. So \(\text{Hom}(P_m, \alpha_m): \text{Hom}(P_m, M_m) \to \text{Hom}(P_m, N_m) \) is surjective by (5.16) and (5.15). But \(\text{Hom}(P_m, \alpha_m) = \text{Hom}(P, \alpha)_m \) by (12.19) as \(P \) is finitely presented. Further, \(m \) is arbitrary. Hence \(\text{Hom}(P, \alpha) \) is surjective by (13.9). Therefore, \(P \) is projective by (5.16). Thus (1) holds.

Again assume (3). Given any prime \(p \), take a maximal ideal \(m \) containing it. By hypothesis, \(P_m \) is free; its rank is finite as \(P_m \) is finitely generated. By (12.18)(2), there is \(f \in S_m := R - m \) such that \(P_f \) is free of finite rank over \(R_f \). Thus (4) holds.

Assume (4). Then \(P \) is locally finitely presented. So \(P \) is finitely presented by (13.14)(2). Further, given \(p \in \text{Spec}(R) \), there are \(f \in S_p := R - p \) and \(n \) such that \(P_f \) is free of rank \(n \) over \(R_f \). Given \(q \in \text{D}(f) \), let \(S \) be the image of \(S_q := R - q \) in \(R_f \). Then (12.5) yields \(P_q = S^{-1}(P_f) \). Hence \(P_q \) is free of rank \(n \) over \(R_q \). Thus (5) holds. Further, (3) results from taking \(p := m \) and \(q := m \).
Finally, assume (5), and let’s prove (4). Given \(p \in \text{Spec}(R) \), let \(f \) and \(n \) be provided by (5). Take a free basis \(p_n/f^{k_1}, \ldots, p_n/f^{k_n} \) of \(P_p \) over \(R_p \). The \(p_i \) define a map \(\alpha : R^n \to P \), and \(\alpha_p : R^n_p \to P_p \) is bijective, in particular, surjective.

As \(P \) is finitely generated, (12.18)(1) provides \(g \in S_p \) such that \(\alpha_g : R^n_p \to P_g \) is surjective. It follows that \(\alpha_q : R^n_q \to P_q \) is surjective for every \(q \in D(g) \). If also \(q \in D(f) \), then by hypothesis \(P_q \cong R^n_q \). So \(\alpha_q \) is bijective by (10.4).

Set \(h := fg \). Clearly, \(D(f) \cap D(g) = D(h) \). By (13.1), \(D(h) = \text{Spec}(R_h) \). Clearly, \(\alpha_q = (\alpha_h)_q(R_h) \) for all \(q \in D(h) \). Hence \(\alpha_h : R^n_h \to P_h \) is bijective owing to (13.9) with \(R_h \) for \(R \). Thus (4) holds. \(\square \)

B. Exercises

Exercise (13.16). — Let \(R \) be a ring, \(X := \text{Spec}(R) \), and \(p, q \in X \). Show:

1. The closure \(\overline{\{ p \}} \) of \(p \) is equal to \(V(p) \); that is, \(q \in \overline{\{ p \}} \) if and only if \(p \subset q \).
2. Then \(p \) is a closed point, that is, \(\{ p \} = \overline{\{ p \}} \), if and only if \(p \) is maximal.
3. Then \(X \) is \(T_0 \); that is, if \(p \neq q \) but every neighborhood of \(p \) contains \(q \), then some neighborhood of \(q \) doesn’t contain \(p \).

Exercise (13.17). — Describe \(\text{Spec}(\mathbb{R}) \), \(\text{Spec}(\mathbb{Z}) \), \(\text{Spec}(\mathbb{C}[X]) \), and \(\text{Spec}(\mathbb{R}[X]) \).

Exercise (13.18). — Let \(R \) be a ring, and set \(X := \text{Spec}(R) \). Let \(X_1, X_2 \subset X \) be closed subsets. Show that the following four statements are equivalent:

1. Then \(X_1 \cup X_2 = X \); that is, \(X_1 \cup X_2 = X \) and \(X_1 \cap X_2 = \emptyset \).
2. There are complementary idempotents \(e_1, e_2 \in R \) with \(V((e_i)) = X_i \).
3. There are comaximal ideals \(a_1, a_2 \subset R \) with \(a_1a_2 = 0 \) and \(V(a_i) = X_i \).
4. There are ideals \(a_1, a_2 \subset R \) with \(a_1 \oplus a_2 = R \) and \(V(a_i) = X_i \).

Finally, given any \(e_i \) and \(a_i \) satisfying (2) and either (3) or (4), necessarily \(e_i \in a_i \).

Exercise (13.19). — Let \(R \) be a ring, \(a \) an ideal, and \(M \) a module. Show:

1. Then \(\Gamma_a(M) = \{ m \in M \mid \text{Supp}(Rm) \subset V(a) \} \).
2. Then \(\Gamma_a(M) = \{ m \in M \mid m/1 = 0 \text{ in } M_p \text{ for all primes } p \not\supset a \} \).
3. Then \(\Gamma_a(M) = M \) if and only if \(\text{Supp}(M) \subset V(a) \).

Exercise (13.20). — Let \(R \) be a ring, \(0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0 \) a short exact sequence of finitely generated modules, and \(a \) a finitely generated ideal. Assume \(\text{Supp}(M') \subset V(a) \). Show that \(0 \to \Gamma_a(M') \to \Gamma_a(M) \to \Gamma_a(M'') \to 0 \) is exact.

Exercise (13.21). — Let \(R \) be a ring, \(S \) a multiplicative subset. Prove this:

1. Assume \(R \) is absolutely flat. Then \(S^{-1}R \) is absolutely flat.
2. Then \(R \) is absolutely flat if and only if \(R_m \) is a field for each maximal \(m \).

Exercise (13.22). — Let \(R \) be a ring; set \(X := \text{Spec}(R) \). Prove that the four following conditions are equivalent:

1. \(R/\text{nil}(R) \) is absolutely flat.
2. \(X \) is Hausdorff.
3. \(X \) is \(T_1 \); that is, every point is closed.
4. Every prime \(p \) of \(R \) is maximal.

Assume (1) holds. Prove that \(X \) is **totally disconnected**: namely, no two distinct points lie in the same connected component.
Support \((13.23)/(13.33)\)

Exercises

Exercise (13.23). — Let \(R \) be a ring, and \(a \) an ideal. Assume \(a \subset \text{nil}(R) \). Set \(X := \text{Spec}(R) \). Show that the following three statements are equivalent:

1. Then \(R \) is decomposable.
2. Then \(R/a \) is decomposable.
3. Then \(X = \bigsqcup_{i=1}^n X_i \), where \(X_i \subset X \) is closed and has a unique closed point.

Exercise (13.24). — Let \(\varphi: R \to R' \) be a map of rings, \(a \) an ideal of \(R \), and \(b \) an ideal of \(R' \). Set \(\varphi^*: := \text{Spec}(\varphi) \). Prove these two statements:

1. Every prime of \(R \) is the contraction of a prime if and only if \(\varphi^* \) is surjective.
2. If every prime of \(R' \) is the extension of a prime, then \(\varphi^* \) is injective.

Is the converse of (2) true?

Exercise (13.25). — Let \(R \) be a ring, and \(S \) a multiplicative subset of \(R \). Set \(X := \text{Spec}(R) \) and \(Y := \text{Spec}(S^{-1}R) \). Set \(\varphi_S^* := \text{Spec}(\varphi_S) \) and \(S^{-1}X := \text{Im} \varphi_S^* \) in \(X \). Show (1) that \(S^{-1}X \) consists of the primes \(p \) of \(R \) with \(p \cap S = \emptyset \) and (2) that \(\varphi_S^* \) is a homeomorphism of \(Y \) onto \(S^{-1}X \).

Exercise (13.26). — Let \(\theta: R \to R' \) be a ring map, \(S \subset R \) a multiplicative subset. Set \(X := \text{Spec}(R) \) and \(Y := \text{Spec}(R') \). Then \(\text{Spec}(R') = \text{Spec}((R')_\theta) \). Via (13.25) and \((11.15) \), identify \(\text{Spec}(S^{-1}R) \) and \(\text{Spec}(S^{-1}R') \) with their images \(S^{-1}X \subset X \) and \(S^{-1}Y \subset Y \). Show (1) \(S^{-1}Y = \theta^{-1}(S^{-1}X) \) and (2) \(\text{Spec}(S^{-1}\theta) = \theta^*|S^{-1}Y) \).

Exercise (13.27). — Let \(\theta: R \to R' \) be a ring map, \(a \subset R \) an ideal. Set \(b := aR' \). Let \(\overline{\theta}: R/a \to R'/b \) be the induced map. Set \(X := \text{Spec}(R) \) and \(Y := \text{Spec}(R') \). Set \(\theta^* := \text{Spec}(\theta) \) and \(\overline{\theta}^* := \text{Spec}(\overline{\theta}) \). Via (13.1), identify \(\text{Spec}(R/a) \) and \(\text{Spec}(R'/b) \) with \(V(a) \subset X \) and \(V(b) \subset Y \). Show (1) \(V(b) = \theta^{-1}(V(a)) \) and (2) \(\overline{\theta}^* = \theta^*|V(b) \).

Exercise (13.28). — Let \(\theta: R \to R' \) be a ring map, \(p \subset R \) a prime, \(k \) the residue field of \(R_p \). Set \(\theta^* := \text{Spec}(\theta) \). Show (1) \(\theta^*^{-1}(p) \) is canonically homeomorphic to \(\text{Spec}(R'_p/pR'_p) \) and to \(\text{Spec}(k \otimes_R R') \) and (2) \(\overline{p} \in \text{Spec}\theta^* \text{ if and only if } k \otimes_R R' \neq 0 \).

Exercise (13.29). — Let \(R \) be a ring, \(p \) a prime ideal. Show that the image of \(\text{Spec}(R_p) \) in \(\text{Spec}(R) \) is the intersection of all open neighborhoods of \(p \) in \(\text{Spec}(R) \).

Exercise (13.30). — Let \(\varphi: R \to R' \) and \(\psi: R \to R'' \) be ring maps, and define \(\theta: R \to R' \otimes_R R'' \) by \(\theta(x) := \varphi(x) \otimes_R \psi(x) \). Show

\[
\text{Im}\text{Spec}(\theta) = \text{Im}\text{Spec}(\varphi) \cap \text{Im}\text{Spec}(\psi).
\]

Exercise (13.31). — Let \(R \) be a filtered direct limit of rings \(R_\lambda \) with transition maps \(\alpha^\lambda_\mu \) and insertions \(\alpha_\lambda \). For each \(\lambda \), let \(\varphi_\lambda: R' \to R_\lambda \) be a ring map with \(\varphi_\mu = \alpha^\lambda_\mu \varphi_\lambda \) for all \(\alpha_\lambda \), so that \(\varphi := \alpha_\lambda \varphi_\lambda \) is independent of \(\lambda \). Show

\[
\text{Im}\text{Spec}(\varphi) = \bigcap_\lambda \text{Im}\text{Spec}(\varphi_\lambda).
\]

Exercise (13.32). — Let \(R \) be a ring, \(\varphi_\sigma: R \to R_\sigma \) for \(\sigma \in \Sigma \) ring maps. Let \(\gamma_\Sigma: R \to \prod R_\sigma \) and \(\pi_\Sigma: R \to \prod R_\sigma \) be the induced maps. Set \(X := \text{Spec}(R) \). Show:

1. Then \(\text{Im}\text{Spec}(\gamma_\Sigma) = \bigcap \text{Im}\text{Spec}(\varphi_\sigma) \).
2. Assume \(\Sigma \) is finite. Then \(\text{Im}\text{Spec}(\pi_\Sigma) = \bigcup \text{Im}\text{Spec}(\varphi_\sigma) \).
3. The subsets of \(X \) of the form \(\text{Im}\text{Spec}(\varphi) \), where \(\varphi: R \to R' \) is a ring map, are the closed sets of a topology, known as the **constructible topology**. It refines the Zariski topology.
4. In the constructible topology, \(X \) is quasi-compact.

Exercise (13.33). — Let \(R \) be a ring, \(X := \text{Spec}(R) \). Show:
(1) Given \(g \in R \), the set \(D(g) \) is open and closed in the constructible topology.

(2) On \(X \), any topology with all \(D(g) \) open and closed is Hausdorff and totally disconnected.

(3) On any set, nested topologies \(\mathcal{T} \supseteq \mathcal{S} \) coincide if \(\mathcal{T} \) is quasi-compact and \(\mathcal{S} \) is Hausdorff.

(4) On \(X \), the constructible and the Zariski topologies coincide if and only if the Zariski topology is Hausdorff, if and only if \(R/\text{nil}(R) \) is absolutely flat.

(5) On \(X \), the constructible topology is smallest with all \(D(g) \) open and closed.

(6) On \(X \), the constructible open sets are the arbitrary unions \(U \) of the finite intersections of the \(D(g) \) and the \(X - D(g) \).

Exercise (13.34). — Let \(\varphi : R \to R' \) be a ring map. Show, in the constructible topology, \(\text{Spec}(\varphi) : \text{Spec}(R') \to \text{Spec}(R) \) is continuous and closed.

Exercise (13.35). — Let \(R \) be a domain with just one nonzero prime \(p \). Set \(K := \text{Frac}(A) \) and \(R := (A/p) \times K \). Define \(\varphi : A \to R \) by \(\varphi(x) := (x', x) \) with \(x' \) the residue of \(x \). Set \(\varphi^* := \text{Spec}(\varphi) \). Show \(\varphi^* \) is bijective, but not a homeomorphism.

Exercise (13.36). — Let \(\varphi : R \to R' \) be a ring map, and \(b \) an ideal of \(R' \). Set \(\varphi^* := \text{Spec}(\varphi) \). Show (1) that the closure \(\varphi^*(\mathcal{V}(b)) \in \text{Spec}(R) \) is equal to \(\mathcal{V}(\varphi^{-1}b) \) and (2) that \(\varphi^*(\text{Spec}(R')) \) is dense in \(\text{Spec}(R) \) if and only if \(\ker(\varphi) \subset \text{nil}(R) \).

Exercise (13.37). — Let \(\varphi : R \to R' \) be a ring map. Consider these statements:

1. The map \(\varphi \) has the **Going-up Property**: given primes \(q' \subset R' \) and \(p \subset R \) with \(p \supseteq \varphi^{-1}(q') \), there is a prime \(p' \subset R' \) with \(\varphi^{-1}(p') = p \) and \(p' \supseteq q' \).
2. Given a prime \(q' \) of \(R' \), set \(q := \varphi^{-1}(q') \). Then \(\text{Spec}(R'/q') \to \text{Spec}(R/q) \) is surjective.
3. The map \(\text{Spec}(\varphi) \) is **closed**: it maps closed sets to closed sets.

Prove that (1) and (2) are equivalent, and are implied by (3).

Exercise (13.38). — Let \(\varphi : R \to R' \) be a ring map. Consider these statements:

1. The map \(\varphi \) has the **Going-down Property**: given primes \(q' \subset R' \) and \(p \subset R \) with \(p \subset \varphi^{-1}(q') \), there is a prime \(p' \subset R' \) with \(\varphi^{-1}(p') = p \) and \(p' \subset q' \).
2. Given a prime \(q' \) of \(R' \), set \(q := \varphi^{-1}(q') \). Then \(\text{Spec}(R'/q') \to \text{Spec}(R/q) \) is surjective.
3. The map \(\text{Spec}(\varphi) \) is **open**: it maps open sets to open sets.

Prove (1) and (2) are equivalent; using (13.31), prove they’re implied by (3).

Exercise (13.39). — Let \(R \) be a ring; \(f, g \in R \). Prove (1)–(8) are equivalent:

1. \(D(g) \subset D(f) \).
2. \(\mathcal{V}(\langle g \rangle) \supset \mathcal{V}(\langle f \rangle) \).
3. \(\sqrt{\langle g \rangle} \subset \sqrt{\langle f \rangle} \).
4. \(S_f \subset S_g \).
5. \(g \in \sqrt{\langle f \rangle} \).
6. \(f \in \sqrt{\langle g \rangle} \).
7. There is a unique \(R \)-algebra map \(\varphi_f : S_f^{-1} R \to S_g^{-1} R \).
8. There is an \(R \)-algebra map \(R_f \to R_g \).

If these conditions hold, prove the map in (8) is equal to \(\varphi_g ^f \).

Exercise (13.40). — Let \(R \) be a ring. Prove these statements:

1. \(D(f) \to R_f \) is a well-defined contravariant functor from the category of principal open sets and inclusions to \(\text{((R-alg))} \).
2. Given \(p \in \text{Spec}(R) \), then \(\lim_{\mathcal{D}(f)_{\neq p}} R_f = R_p \).
Exercises (13.41). — Let R be a ring, $X := \text{Spec}(R)$, and U an open subset. Show U is quasi-compact if and only if $X - U = \mathbf{V}(a)$ where a is finitely generated.

Exercises (13.42). — Let R be a ring, M a module. Set $X := \text{Spec}(R)$. Assume $X = \bigcup_{\alpha \in A} \text{D}(f_{\alpha})$ for some set A and some $f_{\alpha} \in R$.

1. Given $m \in M$, assume $m/1 = 0$ in $M_{f_{\alpha}}$ for all α. Show $m = 0$.
2. Given $m_{\alpha} \in M_{f_{\alpha}}$ for each α, assume the images of m_{α} and m_{β} in $M_{f_{\alpha}f_{\beta}}$ are equal. Show there is a unique $m \in M$ whose image in $M_{f_{\alpha}}$ is m_{α} for all α.
First assume A is finite.

Exercises (13.43). — Let B be a Boolean ring, and set $X := \text{Spec}(B)$. Show a subset $U \subset X$ is both open and closed if and only if $U = \text{D}(f)$ for some $f \in B$. Further, show X is a compact Hausdorff space. (Following Bourbaki, we shorten “quasi-compact” to “compact” when the space is Hausdorff.)

Exercises (13.44) (Stone’s Theorem). — Show every Boolean ring B is isomorphic to the ring of continuous functions from a compact Hausdorff space X to \mathbb{F}_2 with the discrete topology. Equivalently, show B is isomorphic to the ring R of open and closed subsets of X; in fact, $X := \text{Spec}(B)$, and $B \xrightarrow{\sim} R$ is given by $f \mapsto \text{D}(f)$.

Exercises (13.45). — Let L be a Boolean lattice. Show that L is isomorphic to the lattice of open and closed subsets of a compact Hausdorff space.

Exercises (13.46). — Let R be a ring, q an ideal, M a module. Show:
1. $\text{Supp}(M/qM) \subset \text{Supp}(M) \cap \mathbf{V}(q)$, with equality if M is finitely generated.
2. Assume M is finitely generated. Then $\mathbf{V}(q + \text{Ann}(M)) = \text{Supp}(M/qM) = \mathbf{V}([\text{Ann}(M)/qM])$.

Exercises (13.47). — Let $\varphi : R \to R'$ be a ring map, M' a finitely generated R'-module. Set $\varphi^* := \text{Spec}(\varphi)$. Assume M' is flat over R. Then M' is faithfully flat if and only if $\varphi^* \text{Supp}(M') = \text{Spec}(R)$.

Exercises (13.48). — Let $\varphi : R \to R'$ be a ring map, M' a finitely generated R'-module, and $q \in \text{Supp}(M')$. Assume that M' is flat over R. Set $p := \varphi^{-1}(q)$. Show that φ induces a surjection $\text{Supp}(M'_q) \to \text{Spec}(R_p)$.

Exercises (13.49). — Let $\varphi : R \to R'$ be a map of rings, M an R-module. Prove $\text{Supp}(M \otimes_R R') \subset \text{Spec}(\varphi)^{-1}(\text{Supp}(M))$, with equality if M is finitely generated.

Exercises (13.50). — Let R be a ring, M a module, $p \in \text{Supp}(M)$. Prove $\mathbf{V}(p) \subset \text{Supp}(M)$.

Exercises (13.51). — Set $M := \mathbb{Q}/\mathbb{Z}$. Find $\text{Supp}(M)$, and show it’s not Zariski closed in $\text{Spec}(\mathbb{Z})$. Is $\text{Supp}(M) = \mathbf{V}(\text{Ann}(M))$? What about (13.4)(3)?

Exercises (13.52). — Let R be a domain, M a module. Set $T(M) := T^{S_0}(M)$. Call $T(M)$ the torsion submodule of M, and M torsionfree if $T(M) = 0$.
Prove M is torsionfree if and only if M_m is torsionfree for all maximal ideals m.

Exercises (13.53). — Let R be a ring, P a module, M, N submodules. Assume $M_m = N_m$ for every maximal ideal m. Show $M = N$. First assume $M \subset N$.

101
Support (13.54) / (13.64)

Exercises

Exercise (13.54). — Let R be a ring, M a module, and \mathfrak{a} an ideal. Suppose
$M_m = 0$ for all maximal ideals $\mathfrak{m} \supset \mathfrak{a}$. Show that $M = \mathfrak{a}M$.

Exercise (13.55). — Let R be a ring, P a module, M a submodule, and $p \in P$ an
element. Assume $p/1 \in M_m$ for every maximal ideal m. Show $p \in M$.

Exercise (13.56). — Let R be a domain, x an ideal. Show $x = \bigcap_m xR_m$ where m runs
through the maximal ideals and the intersection takes place in $\text{Frac}(R)$.

Exercise (13.57). — Prove these three conditions on a ring R are equivalent:

1. R is reduced.
2. $S^{-1}R$ is reduced for all multiplicative subsets S.
3. R_m is reduced for all maximal ideals m.

Exercise (13.58). — Let R be a ring, Σ the set of minimal primes. Prove this:

1. If R_p is a domain for any prime p, then the $p \in \Sigma$ are pairwise comaximal.
2. $R = \prod_{i=1}^n R_i$ where R_i is a domain if and only if R_p is a domain for any
prime p and Σ is finite. If so, then $R_i = R/p_i$ with $\{p_1, \ldots, p_n\} = \Sigma$.

If R_m is a domain for all maximal ideals m, is R necessarily a domain?

Exercise (13.59). — Let R be a ring, M a module. Assume that there are only
finitely many maximal ideals m_i with $M_{m_i} \neq 0$. Show that the canonical map
$\alpha: M \to \prod M_{m_i}$ is bijective if and only if $(M_{m_i})_{m_j} = 0$ whenever $i \neq j$.

Exercise (13.60). — Let R be a ring, R' a flat algebra, p' a prime in R', and p its
contraction in R. Prove that R'_p is a faithfully flat R_p-algebra.

Exercise (13.61). — Let R be an absolutely flat ring, p a prime. Show p is
maximal, R_p is a field, and R is reduced.

Exercise (13.62). — Given n, prove an R-module P is locally free of rank n if
and only if P is finitely generated and $P_m \cong \mathbb{R}$ holds at each maximal ideal m.

Exercise (13.63). — Let A be a semilocal ring, P a locally free module of rank n.
Show that P is free of rank n.

Exercise (13.64). — Let R be a ring, M a finitely presented module, $n \geq 0$. Show
that M is locally free of rank n if and only if $F_{n-1}(M) = \langle 0 \rangle$ and $F_n(M) = R$.

102

Cohen–Seidenberg Theory relates the prime ideals in a ring to those in an integral extension. We prove each prime has at least one prime lying over it—that is, contracting to it. The overprime can be taken to contain any ideal that contracts to an ideal contained in the given prime; this stronger statement is known as the Going-up Theorem. Further, one prime is maximal if and only if the other is, and two overprimes cannot be nested. On the other hand, the Going-down Theorem asserts that, given nested primes in the subring and a prime lying over the larger, there is a subprime lying over the smaller, either if the subring is normal, the overring is a domain, and the extension is integral, or if simply the extension is flat.

A. Text

Lemma (14.1). — Let R' be an integral extension of domains. Then R' is a field if and only if R is.

Proof: First, suppose R' is a field. Let $x \in R$ be nonzero. Then $1/x \in R'$, so satisfies an equation of integral dependence:

$$\frac{1}{x}^n + a_1 \frac{1}{x}^{n-1} + \cdots + a_n = 0$$

with $n \geq 1$ and $a_i \in R$. Multiplying the equation by x^{n-1}, we obtain

$$1/x = -(a_1 + a_{n-2}x + \cdots + a_n x^{n-1}) \in R.$$

Conversely, suppose R is a field. Let $y \in R'$ be nonzero. Then y satisfies an equation of integral dependence

$$y^n + a_1 y^{n-1} + \cdots + a_{n-1} y + a_n = 0$$

with $n \geq 1$ and $a_i \in R$. Rewriting the equation, we obtain

$$y(y^{n-1} + \cdots + a_{n-1}) = -a_n.$$

Take n minimal. Then $a_n \neq 0$ as R' is a domain. So dividing by $-a_n y$, we obtain

$$1/y = (-1/a_n)(y^{n-1} + \cdots + a_{n-1}) \in R'.$$

□

Definition (14.2). — Let R be a ring, R' an R-algebra, p a prime of R, and p' a prime of R'. We say p' lies over p if p' contracts to p; that is, $p' \cap R = p$.

Theorem (14.3). — Let R'/R be an integral extension of rings, p a prime of R. Let $p' \subset q'$ be nested primes of R', and a' an arbitrary ideal of R'.

1. (Maximality) Suppose p' lies over p. Then p' is maximal if and only if p is.
2. (Incomparability) Suppose both p' and q' lie over p. Then $p' = q'$.
3. (Lying over) Then there is a prime r' of R' lying over p.
4. (Going-up) Suppose $a' \cap R \subset p$. Then in (3) we can take r' to contain a'.

Proof: Assertion (1) follows from (14.1) applied to the extension $R/p \hookrightarrow R'/p'$, which is integral as $R \hookrightarrow R'$ is, since, if $y \in R'$ satisfies $y^n + a_1 y^{n-1} + \cdots + a_n = 0$, then reduction modulo p' yields an equation of integral dependence over R/p.

103
Cohen–Seidenberg Theory (14.4) / (14.6)

To prove (2), localize at \(R - p \), and form this commutative diagram:

\[
\begin{array}{c}
\begin{array}{c}
R' \\
\downarrow
\end{array}
\rightarrow
\begin{array}{c}
R'_p \\
\downarrow
\end{array}
\rightarrow
\begin{array}{c}
R \\
\rightarrow
\end{array}
\end{array}
\]

Here \(R_p \to R'_p \) is injective by (12.12)(1), and the extension is integral by (11.29).

Here \(p'R'_p \) and \(q'R'_p \) are prime ideals of \(R'_p \) by (11.12)(2). By the same token, both lie over \(pR_p \), because both their contractions in \(R_p \) contract to \(p \) in \(R \). Thus we may replace \(R \) by \(R_p \) and \(R' \) by \(R'_p \), and so assume \(R \) is local with \(p \) as maximal ideal by (11.14). Then \(p' \) is maximal by (1); whence, \(p' = q' \).

To prove (3), again we may replace \(R \) by \(R_p \) and \(R' \) by \(R'_p \); if \(t'' \) is a prime ideal of \(R'_p \) lying over \(pR_p \), then the contraction \(t' \) of \(t'' \) in \(R' \) lies over \(p \). So we may assume \(R \) is local with \(p \) as unique maximal ideal. Now, \(R' \) has a maximal ideal \(t' \) by 2.21; further, \(t' \) contracts to a maximal ideal \(r \) of \(R \) by (1). Thus \(r = p \).

Finally, (4) follows from (3) applied to the extension \(R/(a' \cap R) \hookrightarrow R'/a' \). \(\square \)

Lemma (14.4). — Let \(R'/R \) be an extension of rings, \(x \) a variable, and \(F \in R[X] \) a monic polynomial. Assume \(F = GH \) with \(G, H \in R'[X] \) and \(G \) monic.

(1) Then there’s an extension \(R'' \) of \(R \) with \(F(X) = \prod_{i=1}^{d} (X - x_i) \) in \(R''[X] \). Moreover, \(R'' \) is a free \(R \)-module of rank \(d \) where \(d := \deg(F) \).

(2) Then \(H \) is monic, and the coefficients of \(G \) and \(H \) are integral over \(R \).

Proof: For (1), set \(R_1 := R'[X]/(F) \). Let \(x_1 \) be the residue of \(X \). As \(F \) is monic, \(1, x_1, \ldots, x_1^{d-1} \) form a free basis of \(R_1 \) over \(R \) by (10.15); note \(R_1 \supset R \). Now, \(F(x_1) = 0 \); so \(F = (X - x_1)F_1 \) with \(F_1 \in R_1[X] \) by (1.19); note \(F_1 \) is monic and \(\deg(F_1) = d - 1 \). Induction on \(d \) yields an extension \(R'' \) of \(R_1 \) free of degree \((d - 1)! \) with \(F_1 = \prod_{i=2}^{d} (X - x_i) \). Then \(R'' \) is free over \(R \) of degree \(d \!) by (10.16). Thus (1) holds.

In (2), \(G \) is monic. So the leading coefficient of \(F \) is equal to that of \(H \). But \(F \) is monic. Thus \(H \) is monic too.

Next, (1) yields an extension \(R'' \) of \(R' \) with \(G(X) = \prod(X - x_i) \) in \(R''[X] \), and an extension \(R''' \) of \(R'' \) with \(H(X) = \prod(X - y_j) \) in \(R'''[X] \). The \(x_i \) and \(y_j \) are integral over \(R \) as they are roots of \(F \). But the coefficients of \(G \) and \(H \) are polynomials in the \(x_i \) and \(y_j \); so they too are integral over \(R \) owing to (10.20). \(\square \)

Proposition (14.5). — Let \(R \) be a normal domain, \(K := \text{Frac}(R) \), and \(L/K \) a field extension. Let \(y \in L \) be integral over \(R \), and \(F \in K[X] \) its monic minimal polynomial. Then \(F \in R[X] \), and so \(F(y) = 0 \) is an equation of integral dependence.

Proof: Since \(y \) is integral, there is a monic polynomial \(G \in R[X] \) with \(G(y) = 0 \). Write \(G = FH \) with \(H \in K[X] \). Then by (14.4) the coefficients of \(F \) are integral over \(R \), so in \(R \) since \(R \) is normal. \(\square \)

Theorem (14.6) (Going-down for integral extensions). — Let \(R'/R \) be an integral extension of domains with \(R \) normal, \(p \subseteq q \) nested primes of \(R \), and \(q' \subseteq p' \) a prime of \(R' \) lying over \(q \). Then there is a prime \(p' \subseteq q' \) lying over \(p \) and contained in \(q' \).

Proof: First, let’s show \(pR'_q \cap R = p \). Given \(y \in pR'_q \cap R \) with \(y \notin p \), say \(y = x/s \) with \(x \in pR' \) and \(s \in R' - q' \). Say \(x = \sum_{i=1}^{m} y_i x_i \) with \(y_i \in p \) and \(x_i \in R' \), and set \(R'' := R[x_1, \ldots, x_m] \). Then \(R'' \) is module finite by (10.18) and \(xR'' \subseteq pR'' \). Let
An arbitrary ring

Then \(a_i \in p' \subseteq p \) by (10.1), and \(F(x) = 0 \) by (10.2).

Set \(K := \text{Frac}(R) \). Say \(F = GH \) with \(G, H \in K[X] \) monic. By (14.4) the coefficients of \(G, H \) lie in \(R \) as \(R \) is normal. Further, \(F \equiv X^n \) (mod \(p \)). So \(G \equiv X' \) (mod \(p \)) and \(H \equiv X^{n-r} \) (mod \(p \)) for some \(r \) by unique factorization in \(\text{Frac}(R/p)[X] \). Hence \(G \) and \(H \) have all nonleading coefficients in \(p \). Replace \(F \) by a monic factor of minimal degree. Then \(F \) is the minimal polynomial of \(x \) over \(K \).

Recall \(s \equiv x/y \). So \(s \) satisfies the equation

\[
s^n + b_1 s^{n-1} + \cdots + b_n = 0 \quad \text{with} \quad b_i := a_i/y^i \in K. \tag{14.6.1}
\]

Conversely, any such equation yields one of the same degree for \(x \) as \(y \in R \subseteq K \). So (14.6.1) is the minimal polynomial of \(s \) over \(K \). So all \(b_i \) are in \(R \) by (14.5).

Recall \(y \notin p \). Then \(b_i \in p \) as \(a_i = b_i y^i \in p \). So \(s^n \in p R' \subseteq qR' \subseteq q' \). So \(s \in q' \), a contradiction. Hence \(y \in p \). Thus \(pR'_q \cap R \subseteq p \). But the opposite inclusion holds trivially. Thus \(pR'_q \cap R = p \).

Hence, there is a prime \(p'' \) of \(R'_q \) with \(p'' \cap R = p \) by (3.10). Then \(p'' \) lies in \(q' R'_q \), as it is the only maximal ideal. Set \(p' := p'' \cap R' \). Then \(p' \cap R = p \), and \(p' \subseteq q \) by (11.12)(2), as desired. \(\square \)

Lemma (14.7). — Always, a minimal prime consists entirely of zerodivisors.

Proof: Let \(R \) be the ring, \(p \) the minimal prime. Then \(R_p \) has only one prime \(p_R \) by (11.12)(2). So by the Scheinnullstellenatz (3.14), \(p_R \) consists entirely of nilpotents. Hence, given \(x \in p \), there is \(s \in R - p \) with \(sx^n = 0 \) for some \(n \geq 1 \). Take \(n \) minimal. Then \(sx^{n-1} \neq 0 \), but \((sx^{n-1})x = 0 \). Thus \(x \) is a zerodivisor. \(\square \)

Theorem (14.8) (Going-down for flat modules). — Let \(R \to R' \) be a map of rings, \(M' \) a finitely generated \(R' \)-module, \(p \subseteq q \) nested primes of \(R \), and \(q' \) a prime of \(\text{Supp}(M') \) lying over \(q \). Assume \(M' \) is flat over \(R \). Then there is a prime \(p' \subseteq \text{Supp}(M') \) lying over \(p \) and contained in \(q' \).

Proof: By (13.48), the map \(\text{Supp}(M'_q) \to \text{Spec}(R_q) \) is surjective. But \(p R_q \) is prime and lies over \(p \) by (11.12)(2). Thus there’s \(p' \subseteq \text{Supp}(M'_q) \) lying over \(p \).

However, \(M'_q = M' \otimes_R R'_q \) by (12.10). Also \(\text{Spec}(R'_q) \) is equal to the set of primes contained in \(q' \) by (13.25). So \(\text{Supp}(M'_q) = \text{Supp}(M') \cap \text{Spec}(R'_q) \) by (13.49). Thus \(p' \subseteq \text{Supp}(M') \) and \(p' \subseteq q' \), as desired.

Alternatively, \(M' \otimes_R (R/p) \) is flat over \(R/p \) by (9.22). Also, (8.27)(1) yields \(M' \otimes_R (R/p) = M'/pM' \). So replacing \(R \) by \(R/p \) and \(M' \) by \(M'/pM' \), we may assume \(R \) is a domain and \(p = (0) \). By (13.5), \(q' \) contains a minimal prime \(p' \subseteq \text{Supp}(M') = \text{V}(\text{Ann}(M')) \). It suffices show that \(p' \) lies over \((0) \) in \(R \).

Replace \(R' \) by \(R'/\text{Ann}(M') \). Then \(p' \) is a minimal prime \(R' \). Say \(m'_1, \ldots, m'_n \) generate \(M' \). Define a map \(\alpha : R' \to M'^n \) by \(\alpha(x') := (x'm'_1, \ldots, x'm'_n) \). Then \(\alpha \) is injective as \(\text{Ann}(M') = (0) \).

Given \(x \in R \) nonzero, note \(\mu_x : R \to R \) is injective. Since \(M' \) is flat, \(\mu_x : M' \to M' \) is also injective. So \(\mu_x : M'^n \to M'^n \) is injective too. Hence \(\mu_x : R' \to R' \) is injective. So \(x \notin \text{p' } \) by (14.7). Thus \(p' \) lies over \((0) \) in \(R \), as desired. \(\square \)

Theorem (14.9) (Arbitrary normal rings). — An arbitrary ring \(R \) is said to be **normal** if \(R_p \) is a normal domain for any prime \(p \). If \(R \) is a domain, then this definition recovers that in (10.19). Indeed, if \(R \) is normal, then \(R_p \) is too for all \(p \), as localization commutes with normalization by (11.32). Conversely, say \(R' \) is the normalization
of \(R \). Then \((R'/R)_p = 0 \) for all \(p \) by \((12.13)\). So \(R'/R = 0 \) by \((13.8)\).

B. Exercises

Exercise \((14.10)\) . — Let \(R'/R \) be an integral extension of rings, \(x \in R \). Show:

1. if \(x \in R'^\times \), then \(x \in R^\times \) and
2. \(\text{rad}(R) = \text{rad}(R') \cap R \).

Exercise \((14.11)\) . — Let \(\varphi : R \to R' \) be a map of rings. Assume \(R' \) is integral over \(R \). Show the map \(\text{Spec}(\varphi) : \text{Spec}(R') \to \text{Spec}(R) \) is closed.

Exercise \((14.12)\) . — Let \(R'/R \) be an integral extension of rings, \(\rho : R \to \Omega \) a map to an algebraically closed field. Show \(\rho \) extends to a map \(\rho' : R' \to \Omega \). First, assume \(R'/R \) is an algebraic extension of fields \(K/k \), and use Zorn’s lemma on the set \(S \) of all extensions \(\lambda : L \to \Omega \) of \(\rho \) where \(L \subset K \) is a subfield containing \(k \).

Exercise \((14.13)\) (E. Artin) . — Form the algebraic closure of a field \(k \) as follows:

1. Let \(X \) be a variable, \(S \) the set of all monic \(F \in k[X] \), and \(X_F \) a variable for each \(F \in S \). Set \(P := \{\{X_F\}\} \) and \(a := \{\{F(X_F)\}\} \). Show \(1 \notin a \). Conclude \(k \) has an algebraic extension \(k_1 \) in which each \(F \in S \) has a root.
2. Apply (1) repeatedly to obtain a chain \(k_0 := k \subset k_1 \subset k_2 \subset \cdots \) such that every monic polynomial with coefficients in \(k_n \) has a root in \(k_{n+1} \) for all \(n \).
 Set \(K := \lim k_n \). Show \(K \) is an algebraic closure of \(k \).
3. Using \((14.12)\), show any two algebraic closures \(K_1, K_2 \) are \(k \)-isomorphic.

Exercise \((14.14)\) . — Let \(R \) be a domain, \(\overline{R} \) its integral closure, \(K := \text{Frac}(R) \). Let \(L/K \) be a field extension, \(y \in L \) algebraic with monic minimal polynomial \(G(X) \in K[X] \). Show that \(y \) is integral over \(R \) if and only if \(G \in \overline{R}[X] \).

Exercise \((14.15)\) . — Let \(R'/R \) be an integral extension of rings, \(p \) a prime of \(R \). Assume \(R' \) has just one prime \(p' \) over \(p \). Show (1) that \(p'R'_p \) is the only maximal ideal of \(R'_p \); (2) that \(R'_p = R'_p \); and (3) that \(R'_p \) is integral over \(R_p \).

Exercise \((14.16)\) . — Let \(R'/R \) be an integral extension of rings, \(p \subset R \) a prime, \(p', q' \subset R' \) two distinct primes lying over \(p \). Assume \(R' \) is a domain, or simply, \(R'_p \subset R'_p \). Show that \(R'_p \) is not integral over \(R_p \). Show that, in fact, given \(y \in q' - p' \), then \(1/y \in R'_p \) is not integral over \(R_p \).

Exercise \((14.17)\) . — Let \(k \) be a field, and \(X \) an indeterminate. Set \(R' := k[X] \), and \(Y := X^2 \), and \(R := k[Y] \). Set \(p := (Y - 1)R \) and \(p' := (X - 1)R' \). Is \(R'_p \) integral over \(R_p \)? Treat the case \(\text{char}(k) = 2 \) separately. Explain.

Exercise \((14.18)\) . — Let \(R \) be a ring, \(G \) be a finite group acting on \(R \), and \(p \) a prime of \(R^G \). Let \(\mathcal{P} \) denote the set of primes \(\mathfrak{p} \) of \(R \) whose contraction in \(R^G \) is \(p \). Prove: (1) \(G \) acts transitively on \(\mathcal{P} \); and (2) \(\mathcal{P} \) is nonempty and finite.

Exercise \((14.19)\) . — Let \(R \) be a normal domain, \(K \) its fraction field, \(L/K \) a finite field extension, \(\overline{R} \) the integral closure of \(R \) in \(L \). Prove that only finitely many primes \(\mathfrak{p} \) of \(\overline{R} \) lie over a given prime \(p \) of \(R \) as follows.

First, assume \(L/K \) is separable, and use \((14.18)\). Next, assume \(L/K \) is purely inseparable, and show that \(\mathfrak{p} \) is unique; in fact, \(\mathfrak{p} = \{x \in \overline{R} \mid xp^n \in p \text{ for some } n\} \) where \(p \) denotes the characteristic of \(K \). Finally, do the general case.
Cohen–Seidenberg Theory \((14.20) / (14.26)\) Exercises

Exercise (14.20). — Let \(R\) be a ring. For \(i = 1, 2\), let \(R_i\) be an algebra, \(P_i \subseteq R_i\) a subalgebra. Assume \(P_1, P_2, R_1, R_2\) are \(R\)-flat domains. Denote their fraction fields by \(L_1, L_2, K_1, K_2\). Form the following diagram, induced by the inclusions:

\[
\begin{array}{ccc}
L_1 \otimes_R L_2 & \to & K_1 \otimes_R K_2 \\
\alpha \downarrow & & \beta \\
P_1 \otimes_R P_2 & \to & R_1 \otimes_R R_2
\end{array}
\]

1. Show \(K_1 \otimes K_2\) is flat over \(P_1 \otimes P_2\).
2. Show \(\beta\) is injective.
3. Given a minimal prime \(p\) of \(R_1 \otimes R_2\), show \(\alpha^{-1}p = 0\) if \(P_1 \otimes P_2\) is a domain.

Exercise (14.21). — Let \(R\) be a reduced ring, \(\Sigma\) the set of minimal primes. Prove that \(z.\text{div}(R) = \bigcup_{p \in \Sigma} p\) and that \(R_p = \text{Frac}(R/p)\) for any \(p \in \Sigma\).

Exercise (14.22). — Let \(R\) be a ring, \(\Sigma\) the set of minimal primes, and \(K\) the total quotient ring. Assume \(\Sigma\) is finite. Prove these three conditions are equivalent:

1. \(R\) is reduced.
2. \(z.\text{div}(R) = \bigcup_{p \in \Sigma} p\), and \(R_p = \text{Frac}(R/p)\) for each \(p \in \Sigma\).
3. \(K/pK = \text{Frac}(R/p)\) for each \(p \in \Sigma\), and \(K = \prod_{p \in \Sigma} K/pK\).

Exercise (14.23). — Let \(A\) be a reduced local ring with residue field \(k\) and finite set \(\Sigma\) of minimal primes. For each \(p \in \Sigma\), set \(K(p) := \text{Frac}(A/p)\). Let \(P\) be a \(k\)-generated module. Show that \(P\) is free of rank \(r\) if and only if \(\dim_k(P \otimes_A k) = r\) and \(\dim_{K(p)}(P \otimes_A K(p)) = r\) for each \(p \in \Sigma\).

Exercise (14.24). — Let \(A\) be a reduced local ring with residue field \(k\) and a finite set of minimal primes. Let \(P\) be a \(k\)-generated module, \(B\) an \(A\)-algebra with \(\text{Spec}(B) \to \text{Spec}(A)\) surjective. Show that \(P\) is a free \(A\)-module of rank \(r\) if and only if \(P \otimes B\) is a free \(B\)-module of rank \(r\).

Exercise (14.25). — Let \(R\) be a ring, \(p_1, \ldots, p_r\) all its minimal primes, and \(K\) the total quotient ring. Prove that these three conditions are equivalent:

1. \(R\) is normal.
2. \(R\) is reduced and integrally closed in \(K\).
3. \(R\) is a finite product of normal domains \(R_i\).

Assume the conditions hold. Prove the \(R_i\) are equal to the \(R/p_j\) in some order.

Exercise (14.26). — Let \(X\) be a nonempty compact Hausdorff space, \(R\) the ring of \(\mathbb{R}\)-valued continuous functions on \(X\), and \(\bar{X} \subset \text{Spec}(R)\) the set of maximal ideals. Give \(\bar{X}\) the induced topology. For all \(x \in X\), set \(m_x := \{f \in R \mid f(x) = 0\}\). Show:

1. Given a maximal ideal \(m\), set \(V := \{x \in X \mid f(x) = 0\text{ for all } f \in m\}\). Then \(V \neq \emptyset\); otherwise, there’s a contradiction. Moreover, \(m = m_x\) for any \(x \in V\).
2. Urysohn’s Lemma [15, Thm. 3.1, p. 207] implies \(m_x \neq m_y\) if \(x \neq y\).
3. For any \(f \in R\), set \(U_f = \{x \in X \mid f(x) \neq 0\}\) and \(\overline{U}_f = \{m \in \bar{X} \mid f \notin m\}\).

Then \(m_x \in \overline{U}_f\) for any \(x \in X\), and \(x \in U_f\) if and only if \(m_x \in U_f\); moreover, the \(U_f\) and, by Urysohn’s Lemma, the \(\overline{U}_f\) form bases of the topologies.
4. Define \(\varphi : X \to \bar{X}\) by \(\varphi(x) = m_x\). Then \(\varphi\) is a well-defined homeomorphism.
15. Noether Normalization

The Noether Normalization Lemma describes the basic structure of a finitely generated algebra over a field; namely, given a chain of ideals, there is a polynomial subring over which the algebra is module finite, and the ideals contract to ideals generated by initial segments of variables. After proving this lemma, we derive several versions of the Nullstellensatz. The most famous is Hilbert’s; namely, the radical of any ideal is the intersection of all the maximal ideals containing it.

Then we study the (Krull) dimension: the maximal length of any chain of primes. We prove our algebra is catenary; that is, if two chains have the same ends and maximal lengths, then the lengths are the same. Further, if the algebra is a domain, then its dimension is equal to the transcendence degree of its fraction field.

In an appendix, we give a simple direct proof of the Hilbert Nullstellensatz. At the same time, we prove it in significantly greater generality: for Jacobson rings.

A. Text

Lemma (15.1) (Noether Normalization). — Let \(k \) be a field, \(R := k[x_1, \ldots, x_n] \) a nonzero finitely generated \(k \)-algebra, \(a_1 \subset \cdots \subset a_r \) nested proper ideals of \(R \). Then there are algebraically independent elements \(t_1, \ldots, t_r \in R \) with \(R \subseteq F \subseteq R \) such that

1. \(R \) is module finite over \(P := k[t_1, \ldots, t_r] \) and
2. for \(i = 1, \ldots, r \), there is an \(h_i \) such that \(a_i \cap P = (t_1, \ldots, t_{h_i}) \).

Proof: Let \(R' := k[X_1, \ldots, X_n] \) be the polynomial ring, and \(\varphi : R' \rightarrow R \) the \(k \)-algebra map with \(\varphi X_i := x_i \). Set \(a'_0 := \ker \varphi \) and \(a'_i := \varphi^{-1} a_i \) for \(i = 1, \ldots, r \). It suffices to prove the lemma for \(R' \) and \(a'_0 \subset \cdots \subset a'_r \); if \(t'_i \in R' \) and \(h'_i \) work here, then \(t_i := \varphi(t'_{i+1})h'_i \) and \(h_i := h'_i - h'_0 \) work for \(R \) and the \(a_i \), because the \(t_i \) are algebraically independent by (1.17)(4), and clearly (1), (2), and \(\nu \leq n \) hold. Thus we may assume the \(x_i \) are algebraically independent.

The proof proceeds by induction on \(r \), and shows \(\nu \) works now.

First, assume \(r = 1 \) and \(a_1 = t_1 R \) for some nonzero \(t_1 \). Then \(t_1 \notin k \) because \(a_1 \) is proper. Suppose we have found \(t_2, \ldots, t_n \in R \) so that \(x_1 \) is integral over \(P := k[t_1, t_2, \ldots, t_n] \) and so that \(P[x_1] = R \). Then (10.18) yields (1).

Further, by the theory of transcendence bases [3, (8.3), p. 526], [14, Thm. 1.1, p. 356], the elements \(t_1, \ldots, t_n \) are algebraically independent. Now, take \(x \in a_1 \cap P \). Then \(x = t_1 x' \) where \(x' \in R \cap \text{Frac}(P) \). Also, \(R \cap \text{Frac}(P) = P \), for \(P \) is normal by (10.22) as \(P \) is a polynomial algebra. Hence \(a_1 \cap P = t_1 P \). Thus (2) holds too.

To find \(t_2, \ldots, t_n \), we are going to choose \(\ell_i \) and set \(t_i := x_i - x_1^{\ell_i} \). Then clearly \(P[x_1] = R \). Now, say \(t_1 = \sum a_{(j)} x_1^{\ell_1(j)} \cdots x_n^{\ell_n(j)} \) with \((j) := (j_1, \ldots, j_n) \) and \(a_{(j)} \in k \).

Recall \(t_1 \notin k \), and note that \(x_1 \) satisfies this equation:

\[
\sum a_{(j)} x_1^{\ell_1(j)} (t_2 + x_1^{\ell_2})^{\ell_2} \cdots (t_n + x_1^{\ell_n})^{\ell_n} = t_1.
\]

Set \(\epsilon(j) := j_1 + \ell_2 j_2 + \cdots + \ell_n j_n \). Take \(\ell > \max \{ j_i \} \) and \(\ell_i := \ell_i \). Then \(\epsilon(j) \) are distinct. Let \(\epsilon(j') \) be largest among the \(\epsilon(j) \) with \(a_{(j)} \neq 0 \). Then \(\epsilon(j') > 0 \), and the above equation may be rewritten as follows:

\[
a_{(j')} x_1^{\epsilon(j')} + \sum_{e < \epsilon(j')} p_e x_1^{e} = 0
\]
where \(p_i \in P \). Thus \(x_1 \) is integral over \(P \), as desired.

Second, assume \(r = 1 \) and \(a_1 \) is arbitrary. We may assume \(a_1 \neq 0 \). The proof proceeds by induction on \(n \). The case \(n = 1 \) follows from the first case (but is simpler) because \(k[x_1] \) is a PID. Let \(t_1 \in a_1 \) be nonzero. By the first case, there exist elements \(u_2, \ldots, u_n \) such that \(t_1, u_2, \ldots, u_n \) are algebraically independent and satisfy (1) and (2) with respect to \(R \) and \(t_1R \). By induction, there are \(t_2, \ldots, t_n \) satisfying (1) and (2) with respect to \(k[u_2, \ldots, u_n] \) and \(a_1 \cap k[u_2, \ldots, u_n] \).

Set \(P := k[t_1, \ldots, t_n] \). Since \(R \) is module finite over \(k[t_1, u_2, \ldots, u_n] \) and the latter is so over \(P \), the former is so over \(P \) by (10.17)(3). Thus (1) holds, and so \(t_1, \ldots, t_n \) are algebraically independent. Further, by assumption,

\[
a_1 \cap k[t_2, \ldots, t_n] = \langle t_2, \ldots, t_h \rangle
\]

for some \(h \). But \(t_1 \in a_1 \). So \(a_1 \cap P \supset \langle t_1, \ldots, t_h \rangle \).

Conversely, given \(x \in a_1 \cap P \), say \(x = \sum_{i=0}^d f_i t_i^i \) with \(f_i \in k[t_2, \ldots, t_n] \). Since \(t_i \in a_1 \), we have \(f_0 \in a_1 \cap k[t_2, \ldots, t_n] \); so \(f_0 \in \langle t_2, \ldots, t_h \rangle \). Hence \(x \in \langle t_1, \ldots, t_h \rangle \). Thus \(a_1 \cap P = \langle t_1, \ldots, t_h \rangle \). Thus (2) holds for \(r = 1 \).

Finally, assume the lemma holds for \(r - 1 \). Let \(u_1, \ldots, u_n \in R \) be algebraically independent elements satisfying (1) and (2) for the sequence \(a_1 \subset \cdots \subset a_r \), and set \(h := h_{r-1} \). By the second case, there exist elements \(t_{h+1}, \ldots, t_n \) satisfying (1) and (2) for \(k[u_{h+1}, \ldots, u_n] \) and \(a_r \cap k[u_{h+1}, \ldots, u_n] \). Then, for some \(h_r \),

\[
a_r \cap k[t_{h+1}, \ldots, t_n] = \langle t_{h+1}, \ldots, t_{h_r} \rangle.
\]

Set \(t_i := u_i \) for \(1 \leq i \leq h \). Set \(P := k[t_1, \ldots, t_n] \). Then, by assumption, \(R \) is module finite over \(k[u_1, \ldots, u_n] \), and \(k[u_1, \ldots, u_n] \) is so over \(P \); thus \(R \) is so over \(P \) by (10.17)(3). Thus (1) holds, and \(t_1, \ldots, t_n \) are algebraically independent over \(k \).

Fix \(i \) with \(1 \leq i \leq r \). Let \(m := h_i \). Then \(t_1, \ldots, t_m \in a_i \). Given \(x \in a_i \cap P \), say \(x = \sum f(v) t_1^m \) with \(f(v) = (v_1, \ldots, v_m) \) and \(f(v) \in k[t_{m+1}, \ldots, t_n] \). Then \(f(0) \) lies in \(a_i \cap k[t_{m+1}, \ldots, t_n] \). Let’s see the latter intersection is equal to \(\langle 0 \rangle \). It is so if \(i \leq r - 1 \) because it lies in \(a_i \cap k[u_{m+1}, \ldots, u_n] \), which is equal to \(\langle 0 \rangle \). Further, if \(i = r \), then, by assumption, \(a_i \cap k[t_{m+1}, \ldots, t_n] = \langle t_{m+1}, \ldots, t_m \rangle = 0 \).

Thus \(f(0) = 0 \). Hence \(x \in \langle t_1, \ldots, t_{h_i} \rangle \). Thus \(a_i \cap P \subset \langle t_1, \ldots, t_{h_i} \rangle \). So the two are equal. Thus (2) holds, and the proof is complete.

Remark (15.2) (Noether Normalization over an infinite field). — In (15.1), let’s assume \(k \) is infinite, and let’s see we can take \(t_1, \ldots, t_r \) to be linear combinations of \(x_1, \ldots, x_n \) so that (1) still holds, although (2) need not.

To prove (1), induct on \(n \). If \(n = 0 \), then (1) is trivial.

So assume \(n \geq 1 \). If \(x_1, \ldots, x_n \) are algebraically independent over \(k \), then (1) holds with \(\nu := n \) and \(t_i := x_i \) for all \(i \).

So assume there’s a nonzero \(F \in k[X_1, \ldots, X_n] \) with \(F(x_1, \ldots, x_n) = 0 \). Say \(F = F_d + \cdots + F_0 \) where \(F_d \neq 0 \) and where each \(F_i \) is homogeneous of degree \(i \); that is, \(F_i \) is a linear combination of monomials of degree \(i \). Then \(d > 0 \). But \(k \) is infinite. So by (3.28)(1) with \(S = k^\times \), there are \(a_i \in k^\times \) with \(F_d(a_1, a_2, \ldots, a_n) \neq 0 \). Since \(F_d \) is homogeneous, we may replace \(a_i \) by \(a_i/\alpha_i \). Set \(a_i := F_d(1, a_2, \ldots, a_n) \).

Set \(y_i := x_i - a_i x_1 \) for \(2 \leq i \leq n \), and set \(R' := k[y_2, \ldots, y_n] \). Then

\[
0 = F(x_1, x_2, \ldots, x_n) = F(x_1, y_2 + a_2 x_1, \ldots, y_n + a_n x_1)
= a_1 x_1^2 + A_1 x_1^{d-2} + \cdots + A_d \text{ with } 0 \neq a \in k \text{ and each } A_i \in R'.
\]

So \(x_1 \) is integral over \(R' \). But \(R'[x_1] = R \). So \(R \) is module finite over \(R' \) by (10.14).
By induction, there are linear combinations \(t_1, \ldots, t_\nu \) of \(y_2, \ldots, y_n \) such that \(R' \) is module finite over \(P := k[t_1, \ldots, t_\nu] \). So \(R \) is module finite over \(P \) by (10.18)(3). And plainly, the \(t_i \) are linear combinations of the \(x_i \). Thus (1) holds.

Here’s a simple example, due to P. Etingof, where (1) holds, but (2) doesn’t. Let \(x \) be transcendental over \(k \). Set \(a := \langle x^2 \rangle \). Then any “linear combination” \(t \) of \(x \) is of the form \(t = ax \). As (1) holds, \(a \neq 0 \). So \(t \notin a \). Thus (2) doesn’t hold.

Proposition (15.3). — Let \(R \) be a domain, \(R' \) an algebra-finite extension. Then there are a nonzero \(f \in R \) and algebraically independent \(x_1, \ldots, x_n \) in \(R' \) such that \(R' \) is a module-finite and integral extension of \(R[x_1, \ldots, x_n] \).

Proof: Set \(K := \text{Frac}(R) \). Then \(K = S_0^{-1} R \). Say \(R' = R[z_1, \ldots, z_m] \). Then \(S_0^{-1} R' = K[z_1/1, \ldots, z_m/1] \). So by (15.1) there are \(y_1, \ldots, y_n \in S_0^{-1} R' \) that are algebraically independent over \(K \) and such that \(S_0^{-1} R' \) is module finite over \(K[y_1, \ldots, y_n] \). Say \(y_i = x_i/g \) with \(x_i \in R' \) and \(g \in S_0 \).

Suppose \(\sum a_p M_p(x_1, \ldots, x_n) = 0 \) in \(R' \) with \(a_p \in R \) and \(M_p \) a monomial. Set \(d_p := \deg M_p \). Then \(\sum_p a_p g^{d_p} M_p(y_1, \ldots, y_n) = 0 \) in \(S_0^{-1} R' \). However, \(y_1, \ldots, y_n \) are algebraically independent over \(K \). So \(a_p g^{d_p} = 0 \). So \(a_p = 0 \). Thus \(x_1, \ldots, x_n \) are algebraically independent over \(R \).

Each \(z_j/1 \in S_0^{-1} R' \) is integral over \(K[y_1, \ldots, y_n] \) by (10.18). Say

\[
(z_j/1)^{n_j} + A_{j,1}(z_j/1)^{n_j-1} + \cdots + A_{j,n_j} = 0 \quad \text{with} \quad A_{j,k} \in K[y_1, \ldots, y_n].
\]

But \(K = S_0^{-1} R \) and \(y_i = x_i/g \). So \(A_{j,k} = B_{j,k}/h \) for some \(B_{j,k} \in R[x_1, \ldots, x_n] \) and \(h \in S_0 \). So \(h(z_j/1)^{n_j} + (B_{j,1}/1)(z_j/1)^{n_j-1} + \cdots + (B_{j,n_j}/1) = 0 \) in \(S_0^{-1} R' \). So there’s \(h' \in S_0 \) with \(h'(B_{j,1} z_j^{n_j-1} + \cdots + B_{j,n_j}) = 0 \) in \(R' \).

Set \(f := h' h \). Then \(R[x_1, \ldots, x_n]_f \subset R'_f \) by (12.12)(5)(b). Further, in \(R'_f \),

\[
(z_j/1)^{n_j} + (h'B_{j,1}/f)(z_j/1)^{n_j-1} + \cdots + (h'B_{j,n_j}/f) = 0.
\]

But \(R' = R[z_1, \ldots, z_m] \), so \(R'_f = R[z_1, \ldots, z_m]_f \). And double inclusion shows \(R[z_1, \ldots, z_m]_f = R'[z_1/1, \ldots, z_m/1] \). Thus (10.18) implies \(R'_f \) is module finite and integral over \(R[x_1, \ldots, x_n]_f \). \(\square \)

Theorem (15.4) (Zariski Nullstellensatz). — Let \(k \) be a field, \(R \) an algebra-finite extension. Assume \(R \) is a field. Then \(R/k \) is a finite algebraic extension.

Proof: By the Noether Normalization Lemma (15.1)(1), \(R \) is module finite over a polynomial subring \(P := k[t_1, \ldots, t_\nu] \). Then \(R/P \) is integral by (10.14). As \(R \) is a field, so is \(P \) by (14.1). So \(\nu = 0 \). So \(P = k \). Thus \(R/k \) is finite, as asserted.

Alternatively, here’s a short proof, not using (15.1). Say \(R = k[x_1, \ldots, x_n] \). Set \(P := k[x_1] \) and \(K := \text{Frac}(P) \). Then \(R = K[x_2, \ldots, x_n] \). By induction on \(n \), assume \(R/K \) is finite. Suppose \(x_1 \) is transcendental over \(k \), so \(P \) is a polynomial ring.

Note \(R = P[x_2, \ldots, x_n] \). Hence (11.31) yields \(f \in P \) with \(R_f/P_f \) module finite, so integral by (10.18). But \(R_f = R \). Thus \(P_f \) is a field by (14.1). So \(f \notin k \).

Set \(g := 1 + f \). Then \(1/g \in P_f \). So \(1/g = h/f' \) for some \(h \in P \) and \(r \geq 1 \). Then \(f' = gh \). But \(f \) and \(g \) are relatively prime, a contradiction. Thus \(x_1 \) is algebraic over \(k \). Hence \(P = K \), and \(K/k \) is finite. But \(R/K \) is finite. Thus \(R/k \) is too. \(\square \)

Corollary (15.5). — Let \(k \) be a field, \(R := k[x_1, \ldots, x_n] \) an algebra-finite extension, and \(\mathfrak{m} \) a maximal ideal of \(R \). Assume \(k \) is algebraically closed. Then there are \(a_1, \ldots, a_n \in k \) such that \(\mathfrak{m} = \langle x_1 - a_1, \ldots, x_n - a_n \rangle \).
Proof: Set $K := R/\mathfrak{m}$. Then K is a finite extension field of k by the Zariski Nullstellensatz (15.4). But k is algebraically closed. Hence $k = K$. Let $a_i \in k$ be the residue of x_i, and set $n := (x_1 - a_1, \ldots, x_n - a_n)$. Then $n \subseteq \mathfrak{m}$.

Let $R' := k[X_1, \ldots, X_n]$ be the polynomial ring, and $\varphi: R' \to R$ the k-algebra map with $\varphi X_i := x_i$. Set $n' := (X_1 - a_1, \ldots, X_n - a_n)$. Then $\varphi(n') = n$. But n' is maximal by (2.14). So n is maximal. Hence $n = m$, as desired. \hfill \Box

Corollary (15.6). — Let k be any field, $P := k[X_1, \ldots, X_n]$ the polynomial ring, and m a maximal ideal of P. Then m is generated by n elements.

Proof: Set $K := P/m$. Then K is a field. So K/k is finite by (15.4).

Induct on n. If $n = 0$, then $m = 0$. Suppose $n \geq 1$. Set $R := k[X_1]$ and $p := m \cap R$. Then $p = \langle F_1 \rangle$ for some $F_1 \in R$ as R is a PID. Set $k_1 := R/p$. Then k_1 is isomorphic to the image of R in K. But K is a finite-dimensional k-vector space. So k_1 is too. So k_1/k is an integral extension by (10.14). Since k is a field, so is k_1 by (14.1).

Note $P/pP = k_1[X_2, \ldots, X_n]$ by (1.16). But m/p is a maximal ideal. So by induction m/p is generated by $n - 1$ elements, say the residues of $F_2, \ldots, F_n \in m$. Then $m = \langle F_1, \ldots, F_n \rangle$, as desired. \hfill \Box

Theorem (15.7) (Hilbert Nullstellensatz). — Let k be a field, and R a finitely generated k-algebra. Let a be a proper ideal of R. Then

$$\sqrt{a} = \bigcap_{m \supseteq a} m$$

where m runs through all maximal ideals containing a.

Proof: We may assume $a = 0$ by replacing R by R/a. Clearly $\sqrt{0} \subseteq \bigcap m$. Conversely, take $f \notin \sqrt{0}$. Then $R_f \neq 0$ by (11.19). So R_f has a maximal ideal n by (2.21). Let m be its contraction in R. Now, R is a finitely generated k-algebra by hypothesis; hence, R_f is one too owing to (11.7). Therefore, by the Zariski Nullstellensatz (15.4), R_f/n is a finite extension field of k.

Set $K := R/m$. By construction, K is a k-subalgebra of R_f/n. Therefore, K is a finite-dimensional k-vector space. So K/k is an integral extension by (10.14).

Since k is a field, so is K by (14.1). Thus m is maximal. But $f/1$ is a unit in R_f; so $f/1 \notin n$. Hence $f \notin m$. So $f \notin \bigcap m$. Thus $\sqrt{0} = \bigcap m$. \hfill \Box

Lemma (15.8). — Let k be a field, R a finitely generated k-algebra. Assume R is a domain. Let $p_0 \not\subseteq \cdots \not\subseteq p_r$ be a chain of primes. Set $K := \text{Frac}(R)$ and $d := \text{tr.deg}_k K$. Then $r \leq d$, with equality if and only if the chain is maximal, that is, it is not a proper subchain of a longer chain.

Proof: By the Noether Normalization Lemma (15.1), R is module finite over a polynomial subring $P := k[t_1, \ldots, t_n]$ such that $p_i \cap P = \langle t_1, \ldots, t_{h_i} \rangle$ for suitable h_i. Set $L := \text{Frac}(P)$. Then $\nu = \text{tr.deg}_k L$. But R/P is an integral extension by (10.14). So K/L is algebraic. Hence $\nu = d$. Now, Incomparability (14.3)(2) yields $h_i < h_i+1$ for all i. Hence $r \leq h_r$. But $h_r \leq \nu$ and $\nu = d$. Thus $r \leq d$. \hfill 111
If \(r = d \), then \(r \) is maximal, as it was just proved that no chain can be longer. Conversely, assume \(r \) is maximal. Then \(p_0 = (0) \) since \(R \) is a domain. So \(h_0 = 0 \). Further, \(p_r \) is maximal since \(p_r \) is contained in some maximal ideal and it is prime. So \(p_r \cap P \) is maximal by Maximality (14.3)(1). Hence \(h_r = \nu \).

Suppose there is an \(i \) such that \(h_i + 1 < h_{i+1} \). Then

\[
(p_i \cap P) \subseteq (t_1, \ldots, t_{h_i+1}) \subseteq (p_{i+1} \cap P).
\]

But \(P/(p_i \cap P) \) is, by (1.17)(3), equal to \(k[t_{h_i+1}, \ldots, t_r] \), the latter is a polynomial ring, so normal by (10.22)(1). Also, the extension \(P/(p_i \cap P) \rightarrow R/p_i \) is integral as \(P \subset R \) is. Hence, the Going-down Theorem (14.6) yields a prime \(p \) with \(p_i \subseteq p \subseteq p_{i+1} \) and \(p \cap P = (t_1, \ldots, t_{h_i+1}) \). Then \(p_i \not\subseteq p \not\subseteq p_{i+1} \), contradicting the maximality of \(r \). Thus \(h_i + 1 = h_{i+1} \) for all \(i \). But \(h_0 = 0 \). Hence \(r = h_r \). But \(h_r = \nu \) and \(\nu = d \). Thus \(r = d \), as desired. \(\square \)

(15.9) (Krull Dimension). — Given a ring \(R \), its (Krull) dimension \(\dim(R) \) is the supremum of the lengths \(r \) of all strictly ascending chains of primes:

\[
\dim(R) := \sup \{ r \mid \text{there's a chain of primes } p_0 \subseteq \cdots \subseteq p_r \text{ in } R \}.
\]

For example, if \(R \) is a field, then \(\dim(R) = 0 \); more generally, \(\dim(R) = 0 \) if and only if every minimal prime is maximal. If \(R \) is a PID, but not a field, then \(\dim(R) = 1 \), as every nonzero prime is maximal by (2.17).

Theorem (15.10). — Let \(k \) be a field, \(R \) a finitely generated \(k \)-algebra. If \(R \) is a domain, then \(\dim(R) = \text{tr. deg}_k(\text{Frac}(R)) \).

Proof: The assertion is an immediate consequence of (15.8). \(\square \)

Example (15.11). — Let \(k \) be a field, \(P := k[X_1, \ldots, X_n] \), the polynomial \(k \)-algebra in \(n \) variables. Then the transcendence degree of \(k(X_1, \ldots, X_n) \) over \(k \) is equal to \(n \). So (15.10) yields \(\dim(P) = n \).

Let \(P' := k[Y_1, \ldots, Y_m] \) be the polynomial \(k \)-algebra in \(m \) variables. Then (8.18) yields \(P \otimes_k P' = k[X_1, \ldots, X_n, Y_1, \ldots, Y_m] \). So \(\dim(P \otimes_k P') = m + n \).

Theorem (15.12). — Let \(k \) be a field, \(R \) a finitely generated \(k \)-algebra, \(p \) a prime ideal, and \(m \) a maximal ideal. Suppose \(R \) is a domain. Then

\[
\dim(R_p) + \dim(R/p) = \dim(R) \quad \text{and} \quad \dim(R_m) = \dim(R).
\]

Proof: A chain of primes \(p_0 \subseteq \cdots \subseteq p \subseteq \cdots \subseteq p_r \) in \(R \) gives rise to a pair of chains of primes, one in \(R_p \) and one in \(R/p \),

\[
p_0 R_p \subseteq \cdots \subseteq p R_p \quad \text{and} \quad 0 = p/p \subseteq \cdots \subseteq p_r/p,
\]

owing to (11.12) and to (1.9) and (2.6); conversely, every such pair arises from a unique chain in \(R \) through \(p \). But by (15.8), every maximal strictly ascending chain through \(p \) is of length \(\dim(R) \). The first equation follows. Clearly \(\dim(R/m) = 0 \), and so \(\dim(R_m) = \dim(R) \). \(\square \)

(15.13) (Catenary modules and rings). — Let \(R \) be a ring, \(M \) a module. We call \(M \) catenary if, given any two nested primes containing \(\text{Ann}(M) \), all maximal chains of primes between the two primes have the same finite length. We call \(R \) catenary if \(R \) is catenary as an \(R \)-module.

Note that \(M \) is catenary if and only if the ring \(R/\text{Ann}(M) \) is catenary.

Assume \(M \) is catenary. Then so is any quotient \(N \) of \(M \) as \(\text{Ann}(M) \subset \text{Ann}(N) \). Further, so is the localization \(S^{-1}M \) for any multiplicative set \(S \), for this reason.
As $R/\text{Ann}(M)$ is catenary, so is $S^{-1}R/S^{-1}\text{Ann}(M)$ owing to (11.12)(2). But plainly $S^{-1}\text{Ann}(M) \subset \text{Ann}(S^{-1}M)$. Thus $S^{-1}R/\text{Ann}(S^{-1}M)$ is catenary.

Theorem (15.14). — *Over a field, a finitely generated algebra is catenary.*

Proof: Let R be the algebra, and $q \subseteq p$ two nested primes. Replacing R by R/q, we may assume R is a domain. Then the proof of (15.12) shows that any maximal chain of primes $\langle 0 \rangle \subseteq \cdots \subseteq p$ is of length $\dim(R) - \dim(R/p)$. □

B. Exercises

Exercise (15.15). — Let $k := \mathbb{F}_q$ be the finite field with q elements, and $k[X,Y]$ the polynomial ring. Set $F := X^qY - XY^q$ and $R := k[X,Y]/\langle F \rangle$. Let $x, y \in R$ be the residues of X, Y. For every $a \in k$, show that R is not module finite over $P := k[y-ax]$. (Thus, in (15.1), no k-linear combination works.) First, take $a = 0$.

Exercise (15.16). — Let k be a field, and X, Y, Z variables. Set $R := k[X, Y, Z]/\langle X^2 - Y^3 - 1, XZ - 1 \rangle$, and let $x, y, z \in R$ be the residues of X, Y, Z. Fix $a, b \in k$, and set $t := x + ay + bz$ and $P := k[t]$. Show that x and y are integral over P for any a, b and that z is integral over P if and only if $b \neq 0$.

Exercise (15.17). — Let R'/R be a ring extension, X a variable, \overline{R} the integral closure of R in R'. Show $\overline{R}[X]$ is the integral closure $R[X]$ of $R[X]$ in $R'[X]$.

Exercise (15.18). — Let R be a domain, $\varphi: R \rightarrow R'$ an algebraic-finite extension. Set $\varphi^*: \text{Spec}(R)$. Find a nonzero $f \in R$ such that $\varphi^*(\text{Spec}(R')) \supset \text{D}(f)$.

Exercise (15.19). — Let R be a domain, R' an algebraic-finite extension. Find a nonzero $f \in R$ such that, given an algebraically closed field Ω and a ring map $\varphi: R \rightarrow \Omega$ with $\varphi(f) \neq 0$, there’s an extension of φ to R'.

Exercise (15.20). — Let R be a domain, R' an algebraic-finite extension. Assume $\text{rad}(R) = \{0\}$. Prove $\text{rad}(R') = \text{nil}(R')$. First do the case where R is a domain by applying (15.19) with $R'_g := R'_g$ for any given nonzero $g \in R'$.

Exercise (15.21). — Let k be a field, K an algebraically closed extension field. Let $P := k[X_1, \ldots, X_n]$ be the polynomial ring, and $F, F_1, \ldots, F_r \in P$. Assume F vanishes at every zero in K^n of F_1, \ldots, F_r; that is, if $(a) := (a_1, \ldots, a_n) \in K^n$ and $F_1(a) = 0, \ldots, F_r(a) = 0$, then $F(a) = 0$ too. Prove that there are polynomials $G_1, \ldots, G_r \in P$ and an integer N such that $F^N = G_1F_1 + \cdots + G_rF_r$.

Exercise (15.22). — (1) Find an example where (15.21) fails if K isn’t required to be algebraically closed, say with $K := k := \mathbb{R}$ and $n := 1$ and $r := 1$.

(2) Find an example where (15.21) fails if the G_i are all required to be in k, say with $K := k := \mathbb{C}$ and $n := 1$ and $r := 2$.

Exercise (15.23). — Let k be an algebraically closed field, $P := k[X_1, \ldots, X_n]$ the polynomial ring in n variables X_i, and $V \subset k^n$ the set of common zeroes of a set of polynomials F_{μ}. Assume $V \neq \emptyset$. Show there exist a linear subspace $L \subset k^n$ and a linear map $\lambda: k^n \rightarrow L$ such that $\lambda(V) = L$. 113
Let \((15.27.1) \)

Let \((15.28.1) \)

Let \((15.32.1) \)

We call a ring \(\mathfrak{a} \) a **Jacobson ring** if, given any ideal \(\mathfrak{a} \), its radical is equal to the intersection of all maximal ideals containing it; that is,

\[
\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{m} \supseteq \mathfrak{a}} \mathfrak{m}.
\]

(15.32.1)

Plainly, the nilradical of a Jacobson ring is equal to its Jacobson radical. Also, any quotient ring of a Jacobson ring is Jacobson too. In fact, a ring is Jacobson if and only if the nilradical of every quotient ring is equal to its Jacobson radical.

In general, the right-hand side of (15.32.1) contains the left. So (15.32.1) holds if and only if every \(f \) outside \(\sqrt{\mathfrak{a}} \) lies outside some maximal ideal \(\mathfrak{m} \) containing \(\mathfrak{a} \).

Recall the Scheinnullstellensatz, (3.14): it says \(\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \supseteq \mathfrak{a}} \mathfrak{p} \) with \(\mathfrak{p} \) prime. Thus \(R \) is Jacobson if and only if \(\mathfrak{p} = \bigcap_{\mathfrak{m} \supseteq \mathfrak{p}} \mathfrak{m} \) for every prime \(\mathfrak{p} \).

For example, a field \(k \) is Jacobson; in fact, a local ring \(A \) is Jacobson if and only if its maximal ideal is its only prime. Further, a Boolean ring \(B \) is Jacobson, as every prime is maximal by (2.31), and so trivially \(\mathfrak{p} = \bigcap_{\mathfrak{m} \supseteq \mathfrak{p}} \mathfrak{m} \) for every prime \(\mathfrak{p} \).

Finally, a PID \(R \) is Jacobson if and only if it has infinitely many maximal ideals; in particular, \(\mathbb{Z} \) and a polynomial ring in one variable over a field are Jacobson. Indeed, \(R \) is a UFD, and by (15.9), every nonzero prime is maximal. Given a nonzero \(x \in R \), say \(x = \prod_{i=1}^{r} p_{i}^{n_{i}} \), then owing to (2.25)(1), the only maximal ideals containing \(x \) are the \(\langle p_{i} \rangle \). Thus the next lemma does the trick.
Lemma (15.33). — Let R be a 1-dimensional domain. $\{m_\lambda\}_{\lambda \in \Lambda}$ its set of maximal ideals. Assume every nonzero element lies in only finitely many m_λ. Then R is Jacobson if and only if Λ is infinite.

Proof: If Λ is finite, take a nonzero $x_\lambda \in m_\lambda$ for each λ, and set $x := \prod x_\lambda$. Then $x \neq 0$ and $x \in \bigcap m_\lambda$. But $\sqrt{(0)} = (0)$ as R is a domain. So $\sqrt{(0)} \neq \bigcap m_\lambda$. Thus R is not Jacobson.

If Λ is infinite, then $\bigcap m_\lambda = (0)$ by hypothesis. But every nonzero prime is maximal as R is 1-dimensional. Thus $p = \bigcap_{m_\lambda \ni p} m_\lambda$ for every prime p. \hfill \square

Proposition (15.34). — A ring R is Jacobson if and only if, for any nonmaximal prime p and any $f \notin p$, the extension pR_f is not maximal.

Proof: Assume R is Jacobson. Take a nonmaximal prime p and an $f \notin p$. Then $f \notin m$ for some maximal ideal m containing p. So pR_f is not maximal by (11.12).

Conversely, let a be an ideal, $f \notin \sqrt{a}$. Then $(R/a)_f \neq 0$. So there is a maximal ideal n in $(R/a)_f$. Let m be its contraction in R. Then $m \supset a$ and $f \notin m$. Further, (4.8) and (12.15) yield $R_f/mR_f = (R/a/m/a)_f = (R/a)_f/n$. Since n is maximal, R_f/mR_f is a field. So m is maximal by hypothesis. Thus R is Jacobson. \hfill \square

Lemma (15.35). — Let R'/R be an extension of domains. Assume $R' = R[x]$ for some $x \in R'$ and there is $y \in R'$ with R'_y a field. Then there is $z \in R$ with R_z a field and x algebraic over R_z.

Proof: Set $Q := \text{Frac}(R)$. Then $Q \subset R'_y$, so $R'_y = R'[x] = Q[x]_y \subset R'_y$. Hence $Q[x]_y = R'_y$. So $Q[x]_y$ is a field. Now, if x is transcendental over Q, then $Q[x]$ is a polynomial ring, so Jacobson by (15.32); whence, $Q[x]_y$ is not a field by (15.34), a contradiction. Thus x is algebraic over Q. Hence y is algebraic over Q too.

Let $a_0x^n + \cdots + a_n = 0$ and $b_0y^m + \cdots + b_m = 0$ be equations of minimal degree with $a_i, b_j \in R$. Set $z := a_0b_m$. Then $z \neq 0$. Further, $$1/y = -a_0(b_0y^{m-1} + \cdots + b_{m-1})/z \in R_z[x].$$ Hence $R[x]_y \subset R_z[x] \subset R'_y$. So $R_z[x] = R'_y$. Therefore $R_z[x]$ is a field too. But $x^n + (a_1b_m/z)x^{n-1} + \cdots + (a_nb_m/z) = 0$, so is an equation of integral dependence of x on R_z. So $R_z[x]$ is integral over R_z (10.18). Hence R_z is a field by (14.1).

Further, if R is Jacobson, then (0) is a maximal ideal by (15.34), and so R is a field. Hence $R = R'$. Thus R' is a field by (14.1). \hfill \square

Theorem (15.36) (Generalized Hilbert Nullstellensatz). — Let R be a Jacobson ring, R' an algebra-finite algebra, and m' a maximal ideal of R'. Set $m := m'^c$. Then (1) m is maximal, and R'/m' is finite over R/m, and (2) R' is Jacobson.

Proof: First, assume $R' = R[x]$ for some $x \in R'$. Given a prime $q \subset R'$ and a $y \in R' - q$, set $p := q'$ and $R_1 := R/p$ and $R'_1 := R/q$. Then R_1 is Jacobson by (15.32). Suppose $(R'_1)_{y'}$ is a field. Then by (15.35), R'_1/R_1 is a finite extension of fields. Thus q and p are maximal. To obtain (1), simply take $q := m'$ and $y := 1$. To obtain (2), take q nonmaximal, so R'_1 is not a field; conclude $(R'_1)_{y'}$ is not a field; whence, (15.34) yields (2).

Second, assume $R' = R[x_1, \ldots, x_n]$ with $n \geq 2$. Set $R'' := R[x_1, \ldots, x_{n-1}]$ and $m'' := m'^{c} \subset R''$. Then $R' = R''[x_n]$. By induction on n, we may assume (1) and (2) hold for R''/R. So the first case for R'/R'' yields (2) for R'; by the same token, m'' is maximal, and R'/m' is finite over R''/m''. Hence, m is maximal, and R'/m''
is finite over R/m by (1) for R''/R. Finally, (10.16) implies that R'/m' is finite over R/m, as desired.

Example (15.37). — Part (1) of (15.36) may fail if R is not Jacobson, even if $R' := R[Y]$ is the polynomial ring in one variable Y over R. For example, let k be a field, and $R := k[[X]]$ the formal power series ring. According to (3.8), the ideal $m' := \langle 1 - XY \rangle$ is maximal, but m'^c is $\langle 0 \rangle$, not $\langle X \rangle$.

D. Appendix: Exercises

Exercise (15.38). — Let X be a topological space. We say a subset Y is **locally closed** if Y is the intersection of an open set and a closed set; equivalently, Y is open in its closure \overline{Y}; equivalently, Y is closed in an open set containing it.

We say a subset X_0 of X is **very dense** if X_0 meets every nonempty locally closed subset Y. We say X is **Jacobson** if its set of closed points is very dense.

Show that the following conditions on a subset X_0 of X are equivalent:

1. X_0 is very dense.
2. Every closed set F of X satisfies $\overline{F \cap X_0} = F$.
3. The map $U \mapsto U \cap X_0$ from the open sets of X to those of X_0 is bijective.

Exercise (15.39). — Let R be a ring, $X := \text{Spec}(R)$, and X_0 the set of closed points of X. Show that the following conditions are equivalent:

1. R is a Jacobson ring.
2. X is a Jacobson space.
3. If $y \in X$ is a point such that $\{y\}$ is locally closed, then $y \in X_0$.

Exercise (15.40). — Why is a field K finite if it’s an algebra-finite \mathbb{Z}-algebra?

Exercise (15.41). — Let $P := \mathbb{Z}[X_1, \ldots, X_n]$ be the polynomial ring. Assume $F \in P$ vanishes at every zero in K^n of $F_1, \ldots, F_r \in P$ for every finite field K; that is, if $(a) := (a_1, \ldots, a_n) \in K^n$ and $F_1(a) = \cdots = F_r(a) = 0$ in K, then $F(a) = 0$ too. Prove there are $G_1, \ldots, G_r \in P$ and $N \geq 1$ with $F^N = G_1F_1 + \cdots + G_rF_r$.

Exercise (15.42). — Prove that a ring R is Jacobson if and only if each algebra-finite algebra R' that is a field is module finite over R.

Exercise (15.43). — Prove a ring R is Jacobson if and only if each nonmaximal prime p is the intersection of the primes that properly contain p.

Exercise (15.44). — Let R be a Jacobson ring, p a prime, $f \in R - p$. Prove that p is the intersection of all the maximal ideals containing p but not f.

Exercise (15.45). — Let R be a ring, R' an algebra. Prove that if R' is integral over R and R is Jacobson, then R' is Jacobson.

Exercise (15.46). — Let R be a Jacobson ring, S a multiplicative subset, $f \in R$. True or false: prove or give a counterexample to each of the following statements.

1. The localized ring R_f is Jacobson.
2. The localized ring $S^{-1}R$ is Jacobson.
3. The filtered direct limit $\varinjlim R_\lambda$ of Jacobson rings is Jacobson.
4. In a filtered direct limit of rings R_λ, necessarily $\varinjlim \text{rad}(R_\lambda) = \text{rad}(\varinjlim R_\lambda)$.
Exercise (15.47). — Let R be a reduced Jacobson ring with a finite set Σ of minimal primes, and P a finitely generated module. Show that P is locally free of rank r if and only if $\dim_{R/m}(P/mP) = r$ for any maximal ideal m.
16. Chain Conditions

Often in a ring, every ideal is finitely generated; if so, the ring is said to be Noetherian. Examples include any PID and any field. We characterize Noetherian rings as those in which every ascending chain of ideals stabilizes, or equivalently, in which every nonempty set of ideals has a member maximal under inclusion.

We prove the Hilbert Basis Theorem: if a ring is Noetherian, then so is any finitely generated algebra over it. We define and characterize Noetherian modules similarly, and we prove that, over a Noetherian ring, it is equivalent for a module to be Noetherian, to be finitely generated, or to be finitely presented. Conversely, given a Noetherian \(R \)-module \(M \), we prove \(R = \operatorname{Ann}(M) \) is a Noetherian ring, over which \(M \) is a finitely generated module. Lastly, we study Artinian rings and modules; in them, by definition, every descending chain of ideals or of submodules, stabilizes.

In an appendix, we discuss two types of topological spaces: irreducible and Noetherian. By definition, in the former, any two nonempty open sets meet, and in the latter, the open sets satisfy the acc. We prove that \(\operatorname{Spec}(R) \) is Noetherian if \(R \) is, and that its irreducible components are the \(V(p) \) with \(p \) a minimal prime.

Lastly, we prove Chevalley’s Theorem: given a map of rings, whose source is Noetherian and whose target is algebra finite over it, the induced map on their \(\operatorname{Spec}’s \) preserves the constructible sets, which are the finite unions of the subsets of the form the intersection of an open set and a closed set.

A. Text

(16.1) (Noetherian rings). — We call a ring Noetherian if every ideal is finitely generated. For example, a Principal Ideal Ring (PIR) is, trivially, Noetherian.

Here are two standard examples of non-Noetherian rings. More are given in (16.6), (16.56), (16.31), (16.66), (18.24), and (26.11)(2).

First, form the polynomial ring \(k[X_1, X_2, \ldots] \) in infinitely many variables. It is non-Noetherian as \(\langle X_1; X_2; \ldots \rangle \) is not finitely generated (but the ring is a UFD).

Second, in the polynomial ring \(k[X, Y] \), form this subring \(R \) and its ideal \(a \):

\[
R := \{ F := a + XG \mid a \in k \text{ and } G \in k[X, Y]\} \quad \text{and} \\
a := \langle X, XY, XY^2, \ldots \rangle.
\]

Then \(a \) is not generated by any \(F_1, \ldots, F_m \in a \). Indeed, let \(n \) be the highest power of \(Y \) occurring in any \(F_i \). Then \(XY^{n+1} \notin \langle F_1, \ldots, F_m \rangle \). Thus \(R \) is non-Noetherian.

Exercise (16.2). — Let \(M \) be a finitely generated module over an arbitrary ring. Show every set that generates \(M \) contains a finite subset that generates.

Definition (16.3). — Given a ring, we say the ascending chain condition (acc) is satisfied if every ascending chain of ideals \(a_0 \subset a_1 \subset \cdots \) stabilizes; that is, there is a \(j \geq 0 \) such that \(a_j = a_{j+1} = \cdots \).

We say the maximal condition (maxc) is satisfied if every nonempty set of ideals \(S \) contains ones maximal for inclusion, that is, properly contained in no other in \(S \).
Lemma (16.4). — In a ring, the acc is satisfied if and only if maxc is satisfied.

Proof: Let \(a_0 \subseteq a_1 \subseteq \cdots \) be a chain of ideals. If \(a_j \) is maximal, then trivially \(a_j = a_{j+1} = \cdots \). Thus maxc implies acc.

Conversely, given a nonempty set of ideals \(S \) with no maximal member, there’s \(a_0 \in S \); for each \(j \geq 0 \), there’s \(a_{j+1} \in S \) with \(a_j \nsubseteq a_{j+1} \). So the Axiom of Countable Choice provides an infinite chain \(a_0 \nsubseteq a_1 \nsubseteq \cdots \). Thus acc implies maxc. \(\square \)

Proposition (16.5). — The following conditions on a ring are equivalent:

1. The ring is Noetherian;
2. The acc is satisfied;
3. The maxc is satisfied.

Proof: Assume (1) holds. Let \(a_0 \subseteq a_1 \subseteq \cdots \) be a chain of ideals. Set \(a := \bigcup a_n \).

Clearly, \(a \) is an ideal. So by hypothesis, \(a \) is finitely generated, say by \(x_1, \ldots, x_r \).

For each \(i \), there is a \(j_i \) with \(x_i \in a_{j_i} \). Set \(j := \max \{ j_i \} \). Then \(x_i \in a_j \) for all \(i \). So \(a \subseteq a_j \subseteq a_{j+1} \subseteq \cdots \). Thus (2) holds.

Assume (2) holds. Then (3) holds by (16.4).

Assume (3) holds. Let \(\mathfrak{a} \) be an ideal, \(x_{\lambda} \) for \(\lambda \in \Lambda \) generators, \(\mathcal{S} \) the set of ideals generated by finitely many \(x_{\lambda} \). Let \(\mathfrak{b} \) be a maximal element of \(\mathcal{S} \); say \(\mathfrak{b} \) is generated by \(x_{\lambda_1}, \ldots, x_{\lambda_m} \).

Then \(\mathfrak{b} \subseteq \mathfrak{b} + \langle x_{\lambda} \rangle \) for any \(\lambda \). So by maximality, \(\mathfrak{b} = \mathfrak{b} + \langle x_{\lambda} \rangle \).

Hence \(x_{\lambda} \in \mathfrak{b} \). So \(\mathfrak{b} = \mathfrak{a} \); whence, \(\mathfrak{a} \) is finitely generated. Thus (1) holds. \(\square \)

Example (16.6). — In the field of rational functions \(k(X, Y) \), form this ring:

\[R := k[X, Y, X/Y, X/Y^2, X/Y^3, \ldots] \]

Then \(R \) is non-Noetherian by (16.5). Indeed, \(X \) does not factor into irreducibles:

\[X = (X/Y) \cdot Y \quad \text{and} \quad X/Y = (X/Y^2) \cdot Y \quad \text{and so on}. \]

Correspondingly, there is an ascending chain of ideals that does not stabilize:

\[(X) \subseteq (X/Y) \subseteq (X/Y^2) \subseteq \cdots. \]

Proposition (16.7). — Let \(R \) be a Noetherian ring, \(S \) a multiplicative subset, \(\mathfrak{a} \) an ideal. Then \(R/\mathfrak{a} \) and \(S^{-1}R \) are Noetherian.

Proof: If \(R \) satisfies the acc, so do \(R/\mathfrak{a} \) and \(S^{-1}R \) by (1.9) and by (11.12)(1).

Alternatively, any ideal \(\mathfrak{b}/\mathfrak{a} \) of \(R/\mathfrak{a} \) is, clearly, generated by the images of generators of \(\mathfrak{b} \). Similarly, any ideal \(\mathfrak{b} \) of \(S^{-1}R \) is generated by the images of generators of \(\mathfrak{b} \).

Proposition (16.8) (Cohen). — A ring \(R \) is Noetherian if every prime is finitely generated.

Proof: Suppose there are non-finitely-generated ideals. Given a nonempty set of them \(\{ a_{\lambda} \} \) that is linearly ordered by inclusion, set \(a := \bigcup a_{\lambda} \). If \(a \) is finitely generated, then all the generators lie in some \(a_{\lambda} \), so generate \(a_{\lambda} \); so \(a_{\lambda} = a \), a contradiction. Thus \(a \) is non-finitely-generated. Hence, by Zorn’s Lemma, there is a maximal non-finitely-generated ideal \(\mathfrak{p} \). In particular, \(\mathfrak{p} \neq R \).

Assume every prime is finitely generated. Then there are \(a, b \in R - \mathfrak{p} \) with \(ab \in \mathfrak{p} \).

So \(\mathfrak{p} + \langle a \rangle \) is finitely generated, say by \(x_1 + w_1 a, \ldots, x_n + w_n a \) with \(x_i \in \mathfrak{p} \). Then \(\{ x_1, \ldots, x_n, a \} \) generate \(\mathfrak{p} + \langle a \rangle \).

Set \(\mathfrak{b} := \operatorname{Ann}(\mathfrak{p} + \langle a \rangle)/\mathfrak{p} \). Then \(\mathfrak{b} \supseteq \mathfrak{p} + \langle b \rangle \) and \(b \notin \mathfrak{p} \). So \(\mathfrak{b} \) is finitely generated, say by \(y_1, \ldots, y_m \). Take \(z \in \mathfrak{p} \). Then \(z \in \mathfrak{p} + \langle a \rangle \), so write

\[z = a_1 x_1 + \cdots + a_n x_n + ya \]

with \(a_i, y \in \mathfrak{p} \). Then \(ya \in \mathfrak{p} \). So \(y \in \mathfrak{b} \). Hence \(y = b_1 y_1 + \cdots + b_m y_m \) with \(b_j \in R \).
Thus p is generated by $\{x_1, \ldots, x_n, ay_1, \ldots, ay_m\}$, a contradiction. Thus there are no non-finitely-generated ideals; in other words, R is Noetherian.

Lemma (16.9). — If a ring R is Noetherian, then so is the polynomial ring $R[X]$.

Proof: By way of contradiction, assume there is an ideal a of $R[X]$ that is not finitely generated. Set $a_0 := (0)$. For each $i \geq 1$, choose inductively $F_i \in a - a_{i-1}$ of least degree d_i. Set $a_i := \langle F_1, \ldots, F_i \rangle$. Let a_i be the leading coefficient of F_i, and b the ideal generated by all the a_i. As R is Noetherian, b is finitely generated. So $b = \langle a_1, \ldots, a_n \rangle$ for some n by (16.2). Thus $a_{n+1} = r_1a_1 + \cdots + r_na_n$ with $r_i \in R$.

By construction, $d_i \leq d_{i+1}$ for all i. Set

$$F := F_{n+1} - (r_1F_1X^{d_{n+1}-d_1} + \cdots + r_nF_nX^{d_{n+1}-d_n}).$$

Then $\deg(F) < d_{n+1}$, so $F \in a_n$. Therefore, $F_{n+1} \in a_n$, a contradiction.

Theorem (16.10) (Hilbert Basis). — Let R be a Noetherian ring, R' a finitely generated algebra. Then R' is Noetherian.

Proof: Say x_1, \ldots, x_r generate R' over R, and let $P := R[X_1, \ldots, X_r]$ be the polynomial ring in r variables. Then P is Noetherian by (16.9) and induction on r. Assigning x_i to X_i defines an R-algebra map $P \to R'$, and obviously, it is surjective. Hence R' is Noetherian by (16.7).

(16.11) (Noetherian modules). — We call a module M Noetherian if every submodule is finitely generated. In particular, a ring is Noetherian as a ring if and only if it is Noetherian as a module, because its submodules are just the ideals.

We say the ascending chain condition (acc) is satisfied in M if every ascending chain of submodules $M_0 \subset M_1 \subset \cdots$ stabilizes. We say the maximal condition (maxc) is satisfied in M if every nonempty set of submodules contains ones maximal under inclusion. It is simple to generalize (16.5): These conditions are equivalent:

1. M is Noetherian;
2. acc is satisfied in M;
3. maxc is satisfied in M.

Lemma (16.12). — Let R be a ring, M a module, and N a submodule. Nested submodules $M_1 \subset M_2$ of M are equal if both these equations hold:

$$M_1 \cap N = M_2 \cap N \quad \text{and} \quad (M_1 + N)/N = (M_2 + N)/N.$$

Proof: Given $m_2 \in M_2$, there is $m_1 \in M_1$ with $n := m_2 - m_1 \in N$. Then $n \in M_2 \cap N = M_1 \cap N$. Hence $m_2 \in M_1$. Thus $M_1 = M_2$.

Proposition (16.13). — Let R be a ring, M a module, N a submodule.

1. Then M is finitely generated if N and M/N are finitely generated.
2. Then M is Noetherian if and only if N and M/N are Noetherian.

Proof: Assertion (1) is equivalent to (5.5) owing to (5.2).

To prove (2), first assume M is Noetherian. A submodule N' of N is also a submodule of M, so N' is finitely generated; thus N is Noetherian. A submodule of M/N is finitely generated as its inverse image in M is so; thus M/N is Noetherian.

Conversely, assume N and M/N are Noetherian. Let P be a submodule of M. Then $P \cap N$ and $(P + N)/N$ are finitely generated. But $P/(P \cap N) \hookrightarrow (P + N)/N$ by (4.8.2). So (1) implies P is finitely generated. Thus M is Noetherian.

Here is a second proof of (2). First assume M is Noetherian. Then any ascending chain in N is also a chain in M, so it stabilizes. And any chain in M/N is the image of a chain in M, so it too stabilizes. Thus N and M/N are Noetherian.
Conversely, assume \(N \) and \(M/N \) are Noetherian. Given \(M_3 \subset M_2 \subset \cdots \subset M \), both \((M_1 \cap N) \subset (M_2 \cap N) \subset \cdots \) and \((M_1 + N)/N \subset (M_2 + N)/N \subset \cdots \) stabilize, say \(M_j \cap N = M_{j+1} \cap N = \cdots \) and \((M_j + N)/N = (M_{j+1} + N)/N = \cdots \). Then \(M_j = M_{j+1} = \cdots \) by (16.12). Thus \(M \) is Noetherian.

Corollary (16.14). — Modules \(M_1, \ldots, M_r \) are Noetherian if and only if their direct sum \(M_1 \oplus \cdots \oplus M_r \) is Noetherian.

Proof: The sequence \(0 \to M_1 \to M_1 \oplus (M_2 \oplus \cdots \oplus M_r) \to M_2 \oplus \cdots \oplus M_r \to 0 \) is exact. So the assertion results from (16.13)(2) by induction on \(r \).

Theorem (16.15). — Let \(R \) be a Noetherian ring, and \(M \) a module. Then the following conditions on \((16.17.1) \) are equivalent:

1. \(M \) is Noetherian;
2. \(M \) is finitely generated;
3. \(M \) is finitely presented.

Proof: Assume (2). Then there is an exact sequence \(0 \to K \to R^n \to M \to 0 \). Now, \(R^n \) is Noetherian by (16.14) and by (16.11). Hence \(K \) is finitely generated, so (3) holds; further, (1) holds by (16.13)(2). Trivially, (1) or (3) implies (2).

Theorem (16.16). — Let \(R \) be a ring, \(M \) a module. Set \(R' := R/\operatorname{Ann}(M) \). Then \(M \) is Noetherian if and only if \(R' \) is Noetherian and \(M \) is finitely generated.

Proof: First, assume \(M \) is Noetherian. Say \(m_1, \ldots, m_r \) generate \(M \). Define \(\alpha: R \to M^{\oplus r} \) by \(\alpha(x) := (xm_1, \ldots, xm_r) \). Plainly \(\operatorname{Ker}(\alpha) = \operatorname{Ann}(M) \). Hence \(\alpha \) induces an injection \(R' \to M^{\oplus r} \). But \(M^{\oplus r} \) is Noetherian by (16.14). Thus (16.13)(2) implies that \(R' \) is Noetherian. Trivially, \(M \) is finitely generated.

Conversely, assume \(R' \) is Noetherian and \(M \) is finitely generated. Apply (16.15) over \(R' \). Thus \(M \) is Noetherian.

Lemma (16.17) (Artin–Tate [2, Thm. 1]). — Let \(R'/R \) and \(R''/R' \) be extensions of rings. Assume that \(R \) is Noetherian, that \(R''/R \) is algebra finite, and that \(R''/R' \) either is module finite or is integral. Then \(R'/R \) is algebra finite.

Proof: Since \(R''/R \) is algebra finite, so is \(R''/R' \). Hence, the two conditions on \(R''/R' \) are equivalent by (10.18).

Say \(x_1, \ldots, x_m \) generate \(R'' \) as an \(R \)-algebra, and \(y_1, \ldots, y_n \) generate \(R'' \) as an \(R' \)-module. Then there exist \(z_{ij} \in R' \) with

\[
x_i = \sum_j z_{ij} y_j \quad \text{and} \quad y_i y_j = \sum_k z_{ijk} y_k.
\]

(16.17.1)

Set \(R_0' := R[[z_{ij}, z_{ijk}]] \subset R'' \). Since \(R \) is Noetherian, so is \(R_0' \) by (16.10).

Any \(x \in R'' \) is a polynomial in the \(x_i \) with coefficients in \(R \). So (16.17.1) implies \(x \) is a linear combination of the \(y_j \) with coefficients in \(R_0' \). Thus \(R''/R_0' \) is module finite. But \(R_0' \) is a Noetherian ring. So \(R'' \) is a Noetherian \(R_0' \)-module by (16.15), (2)\(\Rightarrow \) (1). But \(R' \) is an \(R_0' \)-submodule of \(R'' \). So \(R'/R_0' \) is module finite by (16.11).

So there are \(w_1, \ldots, w_p \in R' \) such that, if \(x \in R' \), then \(x = \sum a_k w_k \) with \(a_k \in R_0' \). But \(R_0' := R[[z_{ij}, z_{ijk}]] \subset R'' \). Thus \(R' = R[[z_{ij}, z_{ijk}, w_k]] \subset R'' \), as desired.

Theorem (16.18) (Noether on Invariants). — Let \(R \) be a Noetherian ring, \(R' \) an algebra-finite extension, and \(G \) a finite group of \(R \)-automorphisms of \(R' \). Then the subring of invariants \(R^G \) is also algebra finite; in other words, every invariant can be expressed as a polynomial in a certain finite number of “fundamental” invariants.

Proof: By (10.35), \(R' \) is integral over \(R^G \). So (16.17) yields the assertion.
(16.19) (Artin–Tate proof [2, Thm. 2 of the Zariski Nullstellensatz (15.4)]). — In the setup of (15.4), take a transcendence base \(x_1, \ldots, x_r \) of \(R/k \). Then \(R \) is integral over \(k(x_1, \ldots, x_r) \) by definition of transcendence basis [3, (8.3), p. 526]. So \(k(x_1, \ldots, x_r) \) is algebra finite over \(k \) by (16.17), say \(k(x_1, \ldots, x_r)k[y_1, \ldots, y_s] \).

Suppose \(r \geq 1 \). Write \(y_i = f_i/G_i \) with \(f_i, G_i \in k[x_1, \ldots, x_r] \). Let \(H \) be an irreducible factor of \(G_1 \cdots G_r + 1 \). Plainly \(H \nmid G_i \) for all \(i \).

Say \(H^{-1} = P(y_1, \ldots, y_s) \) where \(P \) is a polynomial. Then \(H^{-1} = Q/(G_1 \cdots G_s)^m \) for some \(Q \in k[x_1, \ldots, x_r] \) and \(m \geq 1 \). But \(H \nmid G_i \) for all \(i \), a contradiction. Thus \(r = 0 \). So (10.18) implies \(R/k \) is module finite, as desired.

Example (16.20). — Set \(\delta := \sqrt{-5} \), set \(R := \mathbb{Z}[\delta] \), and set \(p := (2, 1 + \delta) \). Let’s prove that \(p \) is finitely presented and that \(pR_q \) is free of rank 1 over \(R_q \) for every maximal ideal \(q \) of \(R \), but that \(p \) is not free. Thus the equivalent conditions of (13.15) do not imply that \(P \) is free.

Since \(\mathbb{Z} \) is Noetherian and since \(R \) is finitely generated over \(\mathbb{Z} \), the Hilbert Basis Theorem (16.10) yields that \(R \) is Noetherian. So since \(p \) is generated by two elements, (16.15) yields that \(p \) is finitely presented.

Recall from [3, pp. 417, 421, 425] that \(p \) is maximal in \(R \), but not principal. Now, \(3 \not\in p \); otherwise, \(1 \in p \) as \(2 \in p \), but \(p \neq R \). So \((1 - \delta)/3 \in R_p \). Hence \((1 + \delta)R_p \) contains \((1 + \delta)(1 - \delta)/3 \), or 2. So \((1 + \delta)R_p = pR_p \). Since \(R_p \) is a domain, the map \(\mu_1: R_p \to pR_p \) is injective, so bijective. Thus \(pR_q \) is free of rank 1.

Let \(q \) be a maximal ideal distinct from \(p \). Then \(p \cap (R - q) \neq \emptyset \); so, \(pR_q \cong R_q \) by (11.8)(2). Thus \(pR_q \) is free of rank 1.

Finally, suppose \(p \simeq R^n \). Set \(K := \text{Frac}(R) \). Then \(K = S_0^{-1}R \). So \(S_0^{-1}p \simeq K^n \).

But the inclusion \(p \hookrightarrow R \) yields an injection \(S_0^{-1}p \hookrightarrow K \). Also, \(S_0^{-1}p \) is a nonzero \(K \)-vector space. Hence \(S_0^{-1}p \hookrightarrow K \) injectively. Therefore, \(n = 1 \). So \(p \simeq R \). Hence \(p \) is generated by one element, so is principal, a contradiction. Thus \(p \) is not free.

Definition (16.21). — We say a module is Artinian or the descending chain condition (dcc) is satisfied if every descending chain of submodules stabilizes.

We say the ring itself is Artinian if it is an Artinian module.

We say the minimal condition (minc) is satisfied in a module if every nonempty set of submodules has a minimal member.

Proposition (16.22). — Let \(M_1, \ldots, M_r, M \) be modules, \(N \) a submodule of \(M \).

(1) Then \(M \) is Artinian if and only if minc is satisfied in \(M \).

(2) Then \(M \) is Artinian if and only if \(N \) and \(M/N \) are Artinian.

(3) Then \(M_1, \ldots, M_r \) are Artinian if and only if \(M_1 \oplus \cdots \oplus M_r \) is Artinian.

Proof: It is easy to adapt the proof of (16.4), the second proof of (16.13)(2), and the proof of (16.14). \(\square \)

B. Exercises

Exercise (16.23). — Let \(M \) be a module. Assume that every nonempty set of finitely generated submodules has a maximal element. Show \(M \) is Noetherian.

Exercise (16.24). — Let \(R \) be a Noetherian ring, \(\{F_\lambda\}_{\lambda \in \Lambda} \) a set of polynomials in variables \(X_1, \ldots, X_n \). Show there’s a finite subset \(\Lambda_0 \subseteq \Lambda \) such that the set \(V_0 \) of zeros in \(R^n \) of the \(F_\lambda \) for \(\lambda \in \Lambda_0 \) is precisely that \(V \) of the \(F_\lambda \) for \(\lambda \in \Lambda \).
Exercise (16.25). — Let R be a Noetherian ring, $F := \sum a_n X^n \in R[[X]]$ a power series in one variable. Show that F is nilpotent if and only if each a_n is too.

Exercise (16.26). — Let R be a ring, X a variable, $R[X]$ the polynomial ring. Prove this statement or find a counterexample: if $R[X]$ is Noetherian, then so is R.

Exercise (16.27). — Let R'/R be a ring extension with an R-linear retraction $\rho: R' \to R$. If R' is Noetherian, show R is too. What if R' is Artinian?

Exercise (16.28). — Let R be a ring, M a module, R' a faithfully flat algebra. If $M \otimes_R R'$ is Noetherian over R', show M is Noetherian over R. What if $M \otimes_R R'$ is Artinian over R'?

Exercise (16.29). — Let R be a ring. Assume that, for each maximal ideal m, the local ring R_m is Noetherian and that each nonzero $x \in R$ lies in only finitely many maximal ideals. Show R is Noetherian: use (13.10) to show any ideal is finitely generated; alternatively, use (13.9) to show any ascending chain stabilizes.

Exercise (16.30) (Nagata). — Let k be a field, $P := k[X_1, X_2, \ldots]$ a polynomial ring, $m_1 < m_2 < \cdots$ positive integers with $m_{i+1} - m_i > m_i - m_{i-1}$ for $i > 1$. Set $p_i := (X_{m_1+1}, \ldots, X_{m_i+1})$ and $S := P - \bigcup_{i \geq 1} p_i$. Show S is multiplicative, $S^{-1}P$ is Noetherian of infinite dimension, and the $S^{-1}p_i$ are the maximal ideals of $S^{-1}P$.

Exercise (16.31). — Let z be a complex variable. Determine which of these rings R are Noetherian:

1. the ring R of rational functions of z having no pole on the circle $|z| = 1$,
2. the ring R of power series in z having a positive radius of convergence,
3. the ring R of power series in z with an infinite radius of convergence,
4. the ring R of polynomials in z whose first k derivatives vanish at the origin,
5. the ring R of polynomials in two complex variables z, w whose first partial derivative with respect to w vanishes for $z = 0$.

Exercise (16.32). — Let R be a ring, M a Noetherian module. Adapt the proof of the Hilbert Basis Theorem (16.9) to prove $M[X]$ is a Noetherian $R[X]$-module.

Exercise (16.33). — Let R be a ring, S a multiplicative subset, M a Noetherian module. Show that $S^{-1}M$ is a Noetherian $S^{-1}R$-module.

Exercise (16.34). — For $i = 1, 2$, let R_i be a ring, M_i a Noetherian R_i-module. Set $R := R_1 \times R_2$ and $M := M_1 \times M_2$. Show that M is a Noetherian R-module.

Exercise (16.35). — Let $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ be a short exact sequence of R-modules, and M_1, M_2 two submodules of M. Prove or give a counterexample to this statement: if $\beta(M_1) = \beta(M_2)$ and $\alpha^{-1}(M_1) = \alpha^{-1}(M_2)$, then $M_1 = M_2$.

Exercise (16.36). — Let R be a ring, a_1, \ldots, a_r ideals such that each R/a_i is a Noetherian ring. Prove (1) that $\bigoplus R/a_i$ is a Noetherian R-module, and (2) that, if $\bigcap a_i = 0$, then R too is a Noetherian ring.

Exercise (16.37). — Let R be a ring, and M and N modules. Assume that N is Noetherian and that M is finitely generated. Show that $\text{Hom}(M, N)$ is Noetherian.

Exercise (16.38). — Let R be a ring, M a module. If R is Noetherian, and M finitely generated, show $S^{-1}D(M) = D(S^{-1}M)$.
Exercise (16.39). — Let R be a domain, R' an algebra, and set $K := \text{Frac}(R)$. Assume R is Noetherian. Prove the following statements.

1. [2, Thm. 3] Assume R' is a field containing R. Then R'/R is algebra finite if and only if K/R is algebra finite and R'/K is (module) finite.

2. [2, bot. p. 77] Let $K' \supset R$ be a field that embeds in R'. Assume R'/R is algebra finite. Then K/R is algebra finite and K'/K is finite.

Exercise (16.40). — Let R be a domain, $K := \text{Frac}(R)$, and $x \in K$. If x is integral over R, show there is a nonzero $d \in R$ such that $dx^n \in R$ for all $n \geq 0$. Conversely, if such a d exists and if R is Noetherian, show x is integral over R.

Exercise (16.41). — Let k be a field, R an algebra. Assume that R is finite dimensional as a k-vector space. Prove that R is Noetherian and Artinian.

Exercise (16.42). — Let R be a ring, and m_1, \ldots, m_n maximal ideals. Assume $m_1 \cdots m_n = 0$. Set $a_0 := R$, and for $1 \leq i \leq n$, set $a_i := m_1 \cdots m_i$ and $V_i := a_{i-1}/a_i$. Using the a_i and V_i, show that R is Artinian if and only if R is Noetherian.

Exercise (16.43). — Fix a prime number p. Set $M_n := \{ q \in \mathbb{Q}/\mathbb{Z} \mid p^nq = 0 \}$ for $n \geq 0$. Set $M := \bigcup M_n$. Find a canonical isomorphism $\mathbb{Z}/(p^n) \rightarrow M_n$. Given a proper \mathbb{Z}-submodule N of M, show $N = M_n$ for some n. Deduce M is Artinian, but not Noetherian. Find $\text{Ann}(M)$, and deduce $\mathbb{Z}/\text{Ann}(M)$ is not Artinian.

Exercise (16.44). — Let R be an Artinian ring. Prove that R is a field if it is a domain. Deduce that, in general, every prime ideal p of R is maximal.

Exercise (16.45). — Let R be a ring, M an Artinian module, $\alpha : M \rightarrow M$ an endomorphism. Assume α is injective. Show that α is an isomorphism.

Exercise (16.46). — Let R be a ring; M a module; N_1, N_2 submodules. If the M/N_i are Noetherian, show $M/(N_1 \cap N_2)$ is too. What if the M/N_i are Artinian?

C. Appendix: Noetherian Spaces

Definition (16.47). — We call a topological space irreducible if it is nonempty and if every pair of nonempty open subsets meet. A subspace is said to be an irreducible component if it is a maximal irreducible subspace.

Proposition (16.48). — Let R be a ring. Set $X := \text{Spec}(R)$ and $\mathfrak{n} := \text{nil}(R)$. Then X is irreducible if and only if \mathfrak{n} is prime.

Proof: Given $g \in R$, take $f := 0$. Plainly, $D(f) = \emptyset$; see (13.1). Thus, in (13.40), the equivalence of (1) and (5) means this: $D(g) = \emptyset$ if and only if $g \in \mathfrak{n}$.

Suppose \mathfrak{n} is not prime. Then there are $f, g \in R$ with $f, g \notin \mathfrak{n}$ but $fg \in \mathfrak{n}$. The above observation yields $D(f) \neq \emptyset$ and $D(g) \neq \emptyset$ but $D(fg) = \emptyset$. Further, $D(f) \cap D(g) = D(fg)$ by (13.1.3). Thus X is not irreducible.

Suppose X is not irreducible: say U, V are nonempty open sets with $U \cap V = \emptyset$. By (13.1), the $D(f)$ form a basis of the topology: fix f, g with $\emptyset \neq D(f) \subset U$ and $\emptyset \neq D(g) \subset V$. Then $D(f) \cap D(g) = \emptyset$. But $D(f) \cap D(g) = D(fg)$ by (13.1.3). Hence, the first observation implies $f, g \notin \mathfrak{n}$ but $fg \in \mathfrak{n}$. Thus \mathfrak{n} is not prime. □
Lemma (16.49). — Let \(X \) be a topological space, \(Y \) an irreducible subspace.

1. Assume \(Y = \bigcup_{i=1}^{n} Y_i \) with each \(Y_i \) closed in \(Y \). Then \(Y = Y_i \) for some \(i \).
2. Assume \(Y \subset \bigcup_{i=1}^{n} X_i \) with each \(X_i \) closed in \(X \). Then \(Y \subset X_i \) for some \(i \).
3. Then the closure \(\overline{Y} \) of \(Y \) is also irreducible.
4. Then \(Y \) lies in an irreducible component of \(X \).
5. Then the irreducible components of \(X \) are closed, and cover \(X \).

Proof: For (1), induct on \(n \). Assume \(Y \neq Y_1 \), else (1) holds. Then \(n \geq 2 \). Set \(U := Y - Y_1 \) and \(V := Y - \bigcup_{i=2}^{n} Y_i \). Then \(U \) and \(V \) are open in \(Y \), but don’t meet. Also \(U \neq \emptyset \). But \(Y \) is irreducible. So \(V = \emptyset \). So \(Y = \bigcup_{i=2}^{n} Y_i \). So by induction, \(Y = Y_i \) for some \(i \geq 2 \). Thus (1) holds.

For (2), set \(Y_i := Y \cap X_i \). Then each \(Y_i \) is closed in \(Y \), and \(Y = \bigcup_{i=1}^{n} Y_i \). So (1) implies \(Y = Y_i \) for some \(i \). Thus (2) holds.

For (3), let \(U, V \) be nonempty open sets of \(\overline{Y} \). Then \(U \cap Y \) and \(V \cap Y \) are open in \(Y \), and nonempty. But \(Y \) is irreducible. So \((U \cap Y) \cap (V \cap Y) = \emptyset \). So \(U \cap V \neq \emptyset \). Thus (3) holds.

For (4), let \(S \) be the set of irreducible subspaces containing \(Y \). Then \(Y \in S \), and \(S \) is partially ordered by inclusion. Given a totally ordered subset \(\{Y_\lambda\} \) of \(S \), set \(Y' := \bigcup_{\lambda} Y_\lambda \). Then \(Y' \) is irreducible; given nonempty open sets \(U, V \) of \(Y' \), there is \(\lambda \) with \(U \cap Y_\lambda \neq \emptyset \) and \(V \cap Y_\lambda \neq \emptyset \); so \((U \cap Y_\lambda) \cap (V \cap Y_\lambda) \neq \emptyset \) as \(Y_\lambda \) is irreducible; so \(U \cap V \neq \emptyset \). Thus Zorn’s Lemma yields (4).

For (5), note (3) implies the irreducible components are closed, as they’re maximal. And (4) implies they cover, as every point is irreducible. Thus (4) holds.

Exercise (16.50). — Let \(R \) be a ring. Prove the following statements:

1. \(a \mapsto V(a) = \text{Spec}(R/a) \) is an inclusion-reversing bijection \(\beta \) from the radical ideals \(a \) of \(R \) onto the closed subspaces of \(\text{Spec}(R) \).
2. \(\beta \) restricts to a bijection from the primes onto the irreducible closed subspaces.
3. \(\beta \) restricts further to a bijection from the minimal primes onto the irreducible components.

Definition (16.51). — A topological space is said to be Noetherian if its closed subsets satisfy the dcc, or equivalently, if its open subsets satisfy the acc.

Lemma (16.52). — Let \(X \) be a Noetherian space. Then \(X \) is quasi-compact, and every subspace \(Y \) is Noetherian.

Proof: Given \(X = \bigcup U_\lambda \) with the \(U_\lambda \) open, form the set of finite unions of the \(U_\lambda \). Each such union is open, and \(X \) is Noetherian. So an adaptation of (16.4) yields a maximal element \(V = \bigcup_{i=1}^{n} U_\lambda \). Then \(V \cup U_\lambda = V \) for any \(U_\lambda \). But every point of \(x \) lies in some \(U_\lambda \). Hence \(V = X \). Thus \(X \) is quasi-compact.

Let \(C_0 \supseteq C_1 \supseteq \cdots \) be a descending chain of closed subsets of \(Y \). Then their closures in \(X \) form a descending chain \(\overline{C_0} \supseteq \overline{C_1} \supseteq \cdots \). It stabilizes, as \(X \) is Noetherian. But \(\overline{C_n} \cap Y = C_n \) for all \(n \). So \(C_0 \supseteq C_1 \supseteq \cdots \) stabilizes too. Thus \(Y \) is Noetherian.

Lemma (16.53). — A nonempty Noetherian space \(X \) is the union of finitely many irreducible closed subspaces.
Proof (Noetherian induction): Let \mathcal{S} be the set of nonempty closed subspaces of X that are not the union of finitely many irreducible closed subspaces. Suppose $\mathcal{S} \neq \emptyset$. Since X is Noetherian, an adaptation of (16.4) yields a minimal element $Y \in \mathcal{S}$. Then Y is nonempty and reducible. So $Y = Y_1 \cup Y_2$ with each Y_i closed and $Y_i \not\subseteq Y$. By minimality, $Y_i \notin \mathcal{S}$. So Y_i is a finite union of irreducible closed subspaces. Hence Y is too, a contradiction. Thus $\mathcal{S} = \emptyset$, as desired.

Proposition (16.54). — Let X be a Noetherian space, X_λ for $\lambda \in \Lambda$ its distinct irreducible components, $\mu \in \Lambda$. Then Λ is finite, $X = \bigcup_{\lambda \in \Lambda} X_\lambda$, but $X \neq \bigcup_{\lambda \neq \mu} X_\lambda$.

Proof: By (16.53), $X = \bigcup_{i=1}^n Y_i$ with each Y_i irreducible. By (16.49) (4), each Y_i lies in an irreducible component X_{λ_i} of X. Thus $X = \bigcup_{i=1}^n X_{\lambda_i} = \bigcup_{\lambda \in \Lambda} X_\lambda$.

So $X_\mu \subseteq \bigcup_{i=1}^n X_{\lambda_i}$. But the X_{λ_i} are closed by (16.49) (5). Hence $X_\mu \subset X_{\lambda_i}$ for some i by (16.49) (2). But X_μ is maximal irreducible. So $X_\mu = X_{\lambda_i}$. Thus Λ has at most n elements.

Finally, if $X = \bigcup_{\lambda \neq \mu} X_\lambda$, then the above reasoning yields $X_\mu = X_\lambda$ for $\lambda \neq \mu$, a contradiction.

Exercise (16.55). — Let R be a ring. Prove the following statements:

1. Spec(R) is Noetherian if and only if the radical ideals satisfy the acc.
2. If Spec(R) is Noetherian, then the primes satisfy the acc.
3. If R is Noetherian, then Spec(R) is too.

Example (16.56). — In (16.55) (2), the converse is false.

For example, take $R := F_p^2$ where $\mathbb{N} := \{1, 2, 3, \ldots \}$. Then R is Boolean by (1.2), so absolutely flat by (10.26). So every prime is maximal by (13.61). Thus the primes trivially satisfy the acc.

Since R is Boolean, $f^n = f$ for all $f \in R$ and $n \geq 1$. So every ideal is radical. For each $m \in \mathbb{N}$, let (m) be the set of vectors (x_1, x_2, \ldots) with $x_n = 0$ for $n \geq m$. The (m) form an ascending chain of ideals, which doesn’t stabilize. Thus the radical ideals do not satisfy the acc. Thus by (16.55) (1), Spec(R) is not Noetherian.

Example (16.57). — In (16.55) (3), the converse is false.

For example, take a field k and an infinite set X of variables. Set $P := k[X]$ and $\mathfrak{m} := \{(X)\}$ and $R := P/\mathfrak{m}^2$. Given any prime p of R containing \mathfrak{m}^2, note $p \supset \mathfrak{m}$ by (2.23). But \mathfrak{m} is maximal by (2.32) with $R := k$ and $p := (0)$. So $p = \mathfrak{m}$. Thus $\mathfrak{m}/\mathfrak{m}^2$ is the only prime of R. Thus Spec(R) has one point, so is Noetherian.

However, $\mathfrak{m}/\mathfrak{m}^2$ is not finitely generated. Thus R is not Noetherian.

Proposition (16.58). — Let $\varphi : R \to R'$ be a ring map. Assume that Spec(R') is Noetherian. Then φ has the Going-up Property if and only if Spec(φ) is closed.

Proof: Set $\varphi^* := \text{Spec}(\varphi)$. Recall from (13.37) that, if φ^* is closed, then φ has the Going-up Property, even if Spec(R') is not Noetherian.

Conversely, assume φ has the Going-up Property. Given a closed subset Y of Spec(R'), we must show $\varphi^* Y$ is closed.

Since Spec(R') is Noetherian, Y is too by (16.52). So $Y = \bigcup_{i=1}^n Y_i$ for some n and irreducible closed Y_i by (16.53). Then $\varphi^* Y = \bigcup_{i=1}^n \varphi^* Y_i$. So it suffices to show each $\varphi^* Y_i$ is closed. Thus we may assume Y is irreducible and closed.

Then $Y = \text{Spec}(R'/q')$ for some prime q' of R' by (16.50) (2). Set $q := \varphi^{-1} q'$. Then $\varphi^* Y = \text{Spec}(R/q)$ by (13.37) (2). Thus $\varphi^* Y$ is closed by (13.1.7).

126
Definition (16.59). — A subset Y of a topological space is called constructible if $Y = \bigcup_{i=1}^{n}(U_i \cap C_i)$ for some n, open sets U_i, and closed sets C_i.

Exercise (16.60). — Let X be a topological space, Y and Z constructible subsets, $\varphi: X' \to X$ a continuous map, $A \subset Z$ an arbitrary subset. Prove the following:

1. Open and closed sets are constructible.
2. $Y \cup Z$ and $Y \cap Z$ are constructible.
3. $\varphi^{-1}Y$ is constructible in X'.
4. A is constructible in Z if and only if A is constructible in X.

Lemma (16.61). — Let X be a topological space, Y a constructible subset. Then its complement $X - Y$ is constructible.

Proof: Say $Y = \bigcup_{i=1}^{n}(U_i \cap C_i)$ with U_i open and C_i closed. Set $V_i := X - C_i$ and $D_i := X - U_i$. Then V_i is open, D_i is closed, and $X - Y = \bigcap_{i=1}^{n}(V_i \cup D_i)$.

Induct on n. If $n = 0$, then $X - Y = X$. But X is plainly constructible.

Assume $n \geq 1$. Set $A := \bigcap_{i=1}^{n-1}(V_i \cup D_i)$. By induction, A is constructible. Now, V_n and D_n are constructible by (16.60)(1); so $V_n \cup D_n$ is too by (16.60)(2). But $X - Y = A \cap (V_n \cup D_n)$. Thus (16.60)(2) implies $X - Y$ is constructible. □

Proposition (16.62). — Let X be a topological space, \mathcal{F} the smallest family of subsets that contains all open sets and that is stable under finite intersection and under complement in X. Then \mathcal{F} consists precisely of the constructible sets.

Proof: Let \mathcal{F}' be the family of all constructible sets. Then \mathcal{F}' contains all open sets by (16.60)(1). It is stable under finite intersection by (16.60)(2) and induction. It is stable under complement in X by (16.61). Thus $\mathcal{F}' \supset \mathcal{F}$.

Conversely, given $Y \in \mathcal{F}'$, say $Y = \bigcup_{i=1}^{n}(U_i \cap C_i)$ with U_i open and C_i closed. Set $Z_i := U_i \cap C_i$. Then $Y = X - \bigcup(X - Z_i)$. But U_i and $X - C_i$ are open, so lie in \mathcal{F}. So $C_i = X - (X - C_i) \in \mathcal{F}$. So $Z_i \in \mathcal{F}$. So $X - Z_i \in \mathcal{F}$. So $\bigcup(X - Z_i) \in \mathcal{F}$. Thus $Y \in \mathcal{F}$. Thus $\mathcal{F}' \subset \mathcal{F}$. Thus $\mathcal{F}' = \mathcal{F}$. □

Lemma (16.63). — Let X be an irreducible topological space, Y a constructible subset. Then Y is dense in X if and only if Y contains a nonempty open set.

Proof: First, assume Y contains a nonempty open set U. As X is irreducible, every nonempty open set V meets U. So V meets Y. Thus Y is dense in X.

Conversely, assume $Y = X$. Say $Y = \bigcup_{i=1}^{n}(U_i \cap C_i)$ with U_i open and C_i closed. As X is irreducible, $X \neq \emptyset$. So $Y \neq \emptyset$. Discard U_i if $U_i = \emptyset$. Then $U_i \neq \emptyset$ for all i.

Note $Y \subset \bigcup_{i=1}^{n}C_i$. Also $Y = X$, and X is irreducible. So $X = C_i$ for some i by (16.49)(1). Hence $Y \cup U_i \cap C_i = U_i$. Thus Y contains a nonempty open set. □

Lemma (16.64). — Let X be a Noetherian topological space. Then a subset Y is constructible if and only if this condition holds: given a closed irreducible subset Z of X, either $Y \cap Z$ isn’t dense in Z or it contains a nonempty set that’s open in Z.

Proof: Assume Y is constructible. Given a closed irreducible subset Z of X, note $Y \cap Z$ is constructible in Z by (16.60)(1),(2),(4). If $Y \cap Z$ is dense in Z, then it contains a nonempty set that’s open in Z by (16.63). Thus the condition holds.

Conversely, assume the condition holds. Use Noetherian induction: form the set S of closed sets C with $Y \cap C$ not constructible (in X). Assume $S \neq \emptyset$. As X is Noetherian, an adaptation of (16.4) yields a minimal element $Z \in S$.

Note that $Z \neq \emptyset$ as $Y \cap Z$ is not constructible.
Suppose $Z = Z_1 \cup Z_2$ with each Z_i closed and $Z_i \not\subseteq Z$. By minimality, $Z_i \not\in S$. So $Y \cap Z_i$ is constructible. But $Y \cap Z_i = (Y \cap Z_1) \cup (Y \cap Z_2)$. So $(16.60)(2)$ implies $Y \cap Z$ is constructible, a contradiction. Thus Z is irreducible.

Assume $Y \cap Z$ isn’t dense in Z, and let A be its closure. Then $A \subseteq Z$. So $A \not\in S$. So $Y \cap A$ is constructible. But $Y \cap Z \subseteq Y \cap A \subseteq Y \cap Z$, so $Y \cap A = Y \cap Z$. Thus $Y \cap Z$ is irreducible, a contradiction. Thus $Y \cap Z$ is dense in Z.

So by the condition, $Y \cap Z$ contains a nonempty set U that’s open in Z. So by definition of the topology on Z, we have $U = V \cap Z$ where V is open in X. But Z is closed in X. Thus U is constructible in X.

Set $B := Z - U$. Then B is closed in Z, so in X. Also $B \not\subseteq Z$. So $Y \cap B$ is constructible. But $Y \cap Z = (Y \cap B) \cup U$. So $(16.60)(2)$ implies $Y \cap Z$ is constructible, a contradiction. Thus $S = \emptyset$. Thus Y is constructible. \)

Theorem (16.65) (Chevalley’s). — Let $\varphi : R \to R'$ be a map of rings. Assume R is Noetherian and R' is algebra finite over R. Set $X := \text{Spec}(R)$ and $X' := \text{Spec}(R')$ and $\varphi^* := \text{Spec}(\varphi)$. Let $Y' \subset X'$ be constructible. Then $\varphi^*Y' \subset X$ is constructible.

Proof: Say that $Y' = \bigcup_{i=1}^n (U_i' \cap C_i')$ where U_i' is open and that C_i' is closed. Then $\varphi^*Y' = \bigcup_{i=1}^n (U_i' \cap C_i')$. So by $(16.60)(2)$ it suffices to show each $\varphi^*(U_i' \cap C_i')$ is constructible.

So assume $Y' = U' \cap C'$ with U' open and C' closed.

Since R is Noetherian and R' is algebra finite, R' is Noetherian by (16.10). Thus $(16.55)(3)$ implies X and X' are Noetherian.

Since X is Noetherian, let’s use (16.64) to show φ^*Y' is constructible. Given a closed irreducible subset Z of X such that $(\varphi^*Y') \cap Z$ is dense in Z, set $Z' := \varphi^{-1}Z$. Then $(\varphi^*Y') \cap Z = \varphi^*(Y' \cap Z')$. Set $D' := C' \cap Z'$. Then $Y' \cap Z' = U' \cap D'$. We have to see that $\varphi^*(U' \cap D')$ contains a nonempty set that’s open in Z.

Owing to $(16.50)(2), (1)$, there’s a prime p of R and a radical ideal a' of R' such that $Z = \mathcal{V}(p)$ and $D' = \mathcal{V}(a')$; moreover, p and a' are uniquely determined. Since $\varphi^*(U' \cap D')$ is dense in Z, so is φ^*D'. So $Z = \mathcal{V}((\varphi^{-1}a')$ owing to $(13.36)(1)$. But $\varphi^{-1}a'$ is radical. Thus $\varphi^{-1}a' = p$.

So φ induces an injection $\psi : R/p \to R'/a'$. Further, R/p is Noetherian by (16.7), and plainly, R'/a' is algebra finite over R/p. But $Z = \text{Spec}(R/p)$ and $D' = \text{Spec}(R'/a')$ by $(13.1.7)$. Replace φ and Y' by ψ and $U' \cap D'$. Then ψ is injective, R is a domain, and Y' is an open set of X' such that φ^*Y' is dense in X. We have to see that φ^*Y' contains a nonempty set that’s open in X.

By (13.1), the principal open sets $D(f')$ with $f' \in R'$ form a basis for the topology of X'. Since X' is Noetherian, Y' is too by (16.52); so Y' is quasi-compact again by (16.52). Thus $Y' = \bigcup_{j=1}^m D(f_j')$ for some m and $f_j' \in R'$. So $\varphi^*Y' = \bigcup_{j=1}^m \varphi^*D(f_j')$. But φ^*Y' is dense in X. Thus $\bigcup_{j=1}^m \varphi^*D(f_j') = X$.

However, X is irreducible. So $\varphi^*D(f_j') = X$ for some j by $(16.49)(1)$. But $D(f_j') = \text{Spec}(R_{f_j'})$ by $(13.1.8)$. So the composition $R \to R' \to R_{f_j'}$ is injective by $(13.36)(2)$. Plainly, $R_{f_j'}$ is algebra finite over R. Hence $\varphi^*D(f_j')$ contains a nonempty set V that’s open in X by (15.18). Then $V \subset \varphi^*Y'$, as desired. \)
D. Appendix: Exercises

Exercise (16.66). — Find a non-Noetherian ring R with R_p Noetherian for every prime p.

Exercise (16.67). — Describe $\text{Spec}(\mathbb{Z}[X])$.

Exercise (16.68). — What are the irreducible components of a Hausdorff space?

Exercise (16.69). — Are these conditions on a topological space X equivalent?
 1. X is Noetherian.
 2. Every subspace Y is quasi-compact.
 3. Every open subspace V is quasi-compact.

Exercise (16.70). — Let $\varphi: R \to R'$ a map of rings. Assume R' is algebra finite over R. Show that the fibers of $\text{Spec}(\varphi)$ are Noetherian subspaces of $\text{Spec}(R')$.

Exercise (16.71). — Let M be a Noetherian module over a ring R. Show that $\text{Supp}(M)$ is a closed Noetherian subspace of $\text{Spec}(R)$. Conclude that M has only finitely many minimal primes.

Exercise (16.72). — Let X be a Noetherian topological space. Then a subset U is open if and only if this condition holds: given a closed irreducible subset Z of X, either $U \cap Z$ is empty or it contains a nonempty subset that’s open in Z.

Exercise (16.73). — Let $\varphi: R \to R'$ a map of rings. Assume R is Noetherian and R' is algebra finite over R. Set $X := \text{Spec}(R)$, set $Y := \text{Spec}(R')$, and set $\varphi^* := \text{Spec}(\varphi)$. Prove that φ^* is open if and only if it has the Going-down Property.

Exercise (16.74). — Let $\varphi: R \to R'$ a map of rings, M' a finitely generated R'-module. Assume R is Noetherian, R' is algebra finite, and M' is flat over R. Show $\text{Spec}(\varphi)$ is open.
17. Associated Primes

Given a module, a prime is associated to it if the prime is equal to the annihilator of an element. Given a subset of the set of all associated primes, we prove there is a submodule whose own associated primes constitute that subset. If the ring is Noetherian, then the set of annihilators of elements has maximal members; we prove the latter are prime, so associated. Assume just the module is Noetherian. Then the union of all the associated primes is the set of zerodivisors on the module, and the intersection is the set of nilpotents. Furthermore, there is then a finite chain of submodules whose successive quotients are cyclic with prime annihilators; these primes include all associated primes, which are, therefore, finite in number.

A. Text

Definition (17.1). — Let R be a ring, M a module. A prime ideal p is said to be associated to M, or simply a prime of M, if there is a (nonzero) $m \in M$ with $p = \text{Ann}(m)$. The set of associated primes is denoted by $\text{Ass}(M)$ or $\text{Ass}_R(M)$.

A $p \in \text{Ass}(M)$ is said to be embedded if it properly contains a $q \in \text{Ass}(M)$.

Warning: following a old custom, by the associated primes of a proper ideal a, we mean not those of a viewed as an abstract module, but rather those of R/a; however, by the associated primes of R, we mean do mean those of R viewed as an abstract module.

Example (17.2). — Here’s an example of a local ring R whose maximal ideal m is an embedded (associated) prime. Let k be a field, and x, y variables. Set $P := k[[X, Y]]$ and $n := \langle X, Y \rangle$. By (3.7), P is a local ring with maximal ideal n.

Set $a := (XY, Y^2)$. Set $R := P/a$ and $m := n/a$. Then R is local with maximal ideal m. Let $x, y \in R$ be the residues of X, Y. Then $x, y \in \text{Ann}(y) \subseteq m = \langle x, y \rangle$. So $m = \text{Ann}(y)$. Thus $m \in \text{Ass}(R)$.

Note $y \in \text{Ann}(x)$. Given $\sum_{ij} a_{ij} x^i y^j \in \text{Ann}(x)$, note $\sum_i a_{i0} x^{i+1} = 0$. Hence $\sum_i a_{i0} x^{i+1} \in a$. So $\sum_i a_{i0} x^{i+1} = 0$. So $\sum_{ij} a_{ij} x^i y^j \in \langle y \rangle$. Thus $\langle y \rangle = \text{Ann}(x)$.

Plainly, $Y \in P$ is a prime element; so $\langle Y \rangle \subseteq P$ is a prime ideal by (2.5); so $\langle y \rangle \subseteq R$ is a prime ideal by (2.7). Thus $\langle y \rangle \in \text{Ass}(x)$. Thus m is embedded.

Proposition (17.3). — Let R be a ring, M a module, and p a prime ideal. Then $p \in \text{Ass}(M)$ if and only if there is an R-injection $R/p \hookrightarrow M$.

Proof: Assume $p = \text{Ann}(m)$ with $m \in M$. Define a map $R \to M$ by $x \mapsto xm$. This map induces an R-injection $R/p \hookrightarrow M$.

Conversely, suppose there is an R-injection $R/p \hookrightarrow M$, and let $m \in M$ be the image of 1. Then $p = \text{Ann}(m)$, so $p \in \text{Ass}(M)$. □

Exercise (17.4). — Let R be a ring, M a module, $a \subseteq \text{Ann}(M)$ an ideal. Set $R' := R/a$. Let $\kappa: R \to R'$ be the quotient map. Show that $p \mapsto p/a$ is a bijection from $\text{Ass}_R(M)$ to $\text{Ass}_{R'}(M)$ with inverse $p' \mapsto \kappa^{-1}(p')$.

Lemma (17.5). — Let R be a ring, p a prime ideal, $m \in R/p$ a nonzero element. Then (1) $\text{Ann}(m) = p$ and (2) $\text{Ass}(R/p) = \{p\}$. 130
Proof: To prove (1), say \(m \) is the residue of \(y \in R \). Let \(x \in R \). Then \(xm = 0 \) if and only if \(xy \in p \), so if and only if \(x \in p \), as \(p \) is prime and \(m \neq 0 \). Thus (1) holds. Trivially, (1) implies (2). □

Proposition (17.6). — Let \(M \) be a module, \(N \) a submodule. Then
\[
\text{Ass}(N) \subset \text{Ass}(M) \subset \text{Ass}(N) \cup \text{Ass}(M/N).
\]

Proof: Take \(m \in N \). Then the annihilator of \(m \) is the same whether \(m \) is regarded as an element of \(N \) or of \(M \). So \(\text{Ass}(N) \subset \text{Ass}(M) \).

Let \(p \in \text{Ass}(M) \). Then (17.3) yields an \(R \)-injection \(R/p \hookrightarrow M \). Denote its image by \(E \). If \(E \cap N = 0 \), then the composition \(R/p \to M \to M/N \) is injective; hence, \(p \in \text{Ass}(M/N) \) by (17.3). Else, take a nonzero \(m \in E \cap N \). Then \(\text{Ann}(m) = p \) by (17.5)(1). Thus \(p \in \text{Ass}(N) \).

Proposition (17.7). — Let \(M \) be a module, and \(\Psi \) a subset of \(\text{Ass}(M) \). Then there is a submodule \(N \) of \(M \) with \(\text{Ass}(M/N) = \Psi \) and \(\text{Ass}(N) = \text{Ass}(M) - \Psi \).

Proof: Given submodules \(N_\lambda \) of \(M \) totally ordered by inclusion, set \(N := \bigcup N_\lambda \). Given \(p \in \text{Ass}(N) \), say \(p = \text{Ann}(m) \). Then \(m \in N_\lambda \) for some \(\lambda \); so \(p \in \text{Ass}(N_\lambda) \).

Conversely, \(\text{Ass}(N_\lambda) \subset \text{Ass}(N) \) for all \(\lambda \) by (17.6). Thus \(\text{Ass}(N) = \bigcup \text{Ass}(N_\lambda) \).

So we may apply Zorn’s Lemma to obtain a submodule \(N \) of \(M \) that is maximal with \(\text{Ass}(N) \subset \text{Ass}(M) - \Psi \). By (17.6), it suffices to show that \(\text{Ass}(M/N) \subset \Psi \).

Take \(p \in \text{Ass}(M/N) \). Then \(M/N \) has a submodule \(N'/N \) isomorphic to \(R/p \) by (17.3). So \(\text{Ass}(N') \subset \text{Ass}(N) \cup \{p\} \) by (17.6) and (17.5)(2). Now, \(N' \supset N \) and \(N \) is maximal with \(\text{Ass}(N) \subset \text{Ass}(M) - \Psi \). Hence \(p \in \text{Ass}(N') \subset \text{Ass}(M) \), but \(p \notin \text{Ass}(M) - \Psi \). Thus \(p \in \Psi \). □

Proposition (17.8). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(M \) a module, and \(p \) a prime ideal. If \(p \cap S = \emptyset \) and \(p \in \text{Ass}(M) \), then \(S^{-1}p \in \text{Ass}(S^{-1}M) \); the converse holds if \(p \) is finitely generated modulo \(\text{Ann}(M) \).

Proof: Assume \(p \in \text{Ass}(M) \). Then (17.3) yields an injection \(R/p \hookrightarrow M \). It induces an injection \(S^{-1}(R/p) \hookrightarrow S^{-1}M \) by (12.13). But \(S^{-1}(R/p) = S^{-1}R/S^{-1}p \) by (12.15). Assume \(p \cap S = \emptyset \) also. Then \(pS^{-1}R \) is prime by (11.11)(3)(b). But \(pS^{-1}R = S^{-1}p \) by (12.2). Thus \(S^{-1}p \in \text{Ass}(S^{-1}M) \).

Conversely, assume \(S^{-1}p \in \text{Ass}(S^{-1}M) \). Then there are \(m \in M \) and \(t \in S \) with \(S^{-1}p = \text{Ann}(m/t) \). Set \(a := \text{Ann}(M) \). Assume there are \(x_1, \ldots, x_n \in p \) whose residues generate \((a + p)/a \). Fix \(i \). Then \(x_i m/t = 0 \). So there is \(s_i \in S \) with \(s_i x_i m = 0 \). Set \(s := \prod s_i \) and \(b := \text{Ann}(sm) \). Then \(x_i \in b \). Given \(x \in p \), say \(x = a + \sum a_i x_i \) with \(a \in a \) and \(a_i \in R \). Then \(a_i x_i \in b \). So \(x \in b \). Thus \(p \subseteq b \).

Take \(b \in b \). Then \(bsm/st = 0 \). So \(b/1 \in S^{-1}p \). So \(b \in p \) by (11.11)(1)(a) and (11.11)(3)(a). Thus \(p \supset b \). So \(p = b := \text{Ann}(sm) \). Thus \(p \in \text{Ass}(M) \).

Finally, \(p \cap S = \emptyset \) by (11.12)(2), as \(S^{-1}p \) is prime. □

Lemma (17.9). — Let \(R \) be a ring, \(M \) a module, and \(p \) an ideal. Suppose \(p \) is maximal in the set of annihilators of nonzero elements \(m \) of \(M \). Then \(p \in \text{Ass}(M) \).

Proof: Say \(p := \text{Ann}(m) \) with \(m \neq 0 \). Then \(1 \notin p \) as \(m \neq 0 \). Now, take \(b, c \in R \) with \(bc \in p \), but \(c \notin p \). Then \(bcm = 0 \), but \(cm \neq 0 \). Plainly, \(p \subset \text{Ann}(cm) \). So \(p = \text{Ann}(cm) \) by maximality. But \(b \in \text{Ann}(cm) \), so \(b \in p \). Thus \(p \) is prime. □

Proposition (17.10). — Let \(R \) be a ring, \(M \) a module. Assume \(R \) is Noetherian, or assume \(M \) is Noetherian. Then \(M = 0 \) if and only if \(\text{Ass}(M) = \emptyset \).
Associated Primes (17.11) (17.15) Text

Proof: Plainly, if \(M = 0 \), then \(\text{Ass}(M) = \emptyset \). For the converse, assume \(M \neq 0 \).

First, assume \(R \) is Noetherian. Let \(S \) be the set of annihilators of nonzero elements of \(M \). Then \(S \) has a maximal element \(p \) by (16.5). By (17.9), \(p \in \text{Ass}(M) \).

Second, assume \(M \) is Noetherian. Set \(R' := R/\text{Ann}(M) \). Then \(R' \) is Noetherian by (16.16). By the above, \(\text{Ass}_{R'}(M) \neq \emptyset \). So (17.4) yields \(\text{Ass}_R(M) \neq \emptyset \). \(\square \)

(17.11) (Zerodivisors). — Let \(R \) be a ring, \(M \) a module, \(x \in R \). We say \(x \) is a zerodivisor on \(M \) if there is a nonzero \(m \in M \) with \(xm = 0 \); otherwise, we say \(x \) is a nonzerodivisor.

Plainly the set of nonzerodivisors on \(M \) is a saturated multiplicative subset of \(R \).

Assume \(M \neq 0 \). Given \(x \in \text{nil}(M) \), take \(n \geq 1 \) minimal with \(x^n \in \text{Ann}(M) \). Then there’s \(m \in M \) with \(x^{n-1}m \neq 0 \). But \(x(x^{n-1}m) = 0 \). Thus \(\text{nil}(M) \subset \text{z.div}(M) \). \(\tag{17.11.1} \)

Proposition (17.12). — Let \(R \) be a ring, \(M \) a module. Assume \(R \) is Noetherian, or assume \(M \) is Noetherian. Then \(\text{z.div}(M) = \bigcup_{p \in \text{Ass}(M)} p \).

Proof: Given \(x \in \text{z.div}(M) \), there exists a nonzero \(m \in M \) with \(xm = 0 \). Then \(x \in \text{Ann}(m) \). Assume \(R \) is Noetherian. Then \(\text{Ann}(m) \) lies in an ideal \(p \) maximal among annihilators of nonzero elements because of (16.5); hence, \(p \in \text{Ass}(M) \) by (17.9). Thus \(\text{z.div}(M) \subset \bigcup p \). The opposite inclusion results from the definitions.

Assume instead \(M \) is Noetherian. By (16.16), \(R' := R/\text{Ann}(M) \) is Noetherian. So by the above, \(\text{z.div}_{R'}(M) = \bigcup_{p' \in \text{Ass}(M)} p' \). Let \(\kappa: R \to R' \) be the quotient map.

Given \(x \in R \) and \(m \in M \), note \(xm = \kappa(x)m \); so \(\kappa^{-1}(\text{z.div}_{R'}(M)) = \text{z.div}_{R}(M) \).

But \(\kappa^{-1}(\bigcup p' = \bigcup \kappa^{-1}p' \). Thus (17.4) yields \(\text{z.div}_{R}(M) = \bigcup_{p \in \text{Ass}(M)} p \). \(\square \)

Lemma (17.13). — Let \(M \) be a module. Then \(\text{Ass}(M) \subset \bigcup_{q \in \text{Ass}(M)} V(q) \subset \text{Supp}(M) \subset V(\text{Ann}(M)) \).

Proof: Fix \(q \in \text{Ass}(M) \) and \(p \in V(q) \). Say \(q = \text{Ann}(m) \). Then \(m/1 \neq 0 \) in \(M_p \); else, there’s \(x \in R - p \) with \(xm = 0 \), and so \(x \in \text{Ann}(m) = q \subset p \), a contradiction. Thus \(p \in \text{Supp}(M) \).

Finally, (13.4)(3) asserts \(\text{Supp}(M) \subset V(\text{Ann}(M)) \). \(\square \)

Theorem (17.14). — Let \(R \) be a ring, \(M \) a module, \(p \in \text{Supp}(M) \). Assume \(R \) is Noetherian, or assume \(M \) is Noetherian. Then \(p \) contains some \(q \in \text{Ass}(M) \); if \(p \) is minimal in \(\text{Supp}(M) \), then \(p \in \text{Ass}(M) \).

Proof: Assume \(R \) is Noetherian. Then \(R_p \) is too by (16.7). But \(M_p \neq 0 \). So there’s \(\Omega \in \text{Ass}_{R_p}(M_p) \) by (17.10). Set \(q := \varphi^{-1}\Omega \). Then \(qR_p = \Omega \) by (11.12)(2).

As \(R \) is Noetherian, \(q \) is finitely generated. So \(q \in \text{Ass}(M) \) by (17.8). But \(q \cap S_p = \emptyset \) and \(S_p := R - p \). Thus \(q \subset p \), as desired.

Assume instead \(M \) is Noetherian. Then \(M \) is finitely generated. So (13.4)(3) yields \(\text{Supp}_{R}(M) = V(\text{Ann}_{R}(M)) \). So \(p \subset \text{Ann}_{R}(M) \). Set \(p' := p/\text{Ann}_{R}(M) \).

Then \(p' \subset \text{Ann}_{R}(M) = 0 \). So (13.4)(3) yields \(p' \in \text{Supp}_{R}(M) \).

Set \(R' := R/\text{Ann}_{R}(M) \). Then \(R' \) is Noetherian by (16.16). So by the first paragraph, \(p' \) contains some \(q' \in \text{Ass}_{R'}(M) \). Let \(\kappa: R \to R' \) be the quotient map.

Set \(q := \kappa^{-1}q' \). Thus \(p \supset q \), and (17.4) yields \(q \in \text{Ass}(M) \), as desired.

Finally, \(q \in \text{Supp}(M) \) by (17.13). Thus \(p = q \in \text{Ass}(M) \) if \(p \) is minimal. \(\square \)

Theorem (17.15). — Let \(M \) be a Noetherian module. Then \(\text{nil}(M) = \bigcap_{p \in \text{Ass}(M)} p \).
Associated Primes

(17.16) / (17.18)

Text

Proof: Since M is finitely generated, $\text{nil}(M) = \bigcap_{p \in \text{Supp}(M)} p$ by (13.6). Since M is Noetherian, given $p \in \text{Supp}(M)$, there is $q \in \text{Ass}(M)$ with $q \subset p$ by (17.14). The assertion follows.

Lemma (17.16). — Let R be a ring, M a nonzero Noetherian module. Then there exists a finite chain of submodules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_{n-1} \subset M_n = M$$

with $M_i/M_{i-1} \cong R/p_i$ for some prime p_i for $i = 1, \ldots, n$. For any such chain,

$$\text{Ass}(M) \subset \{p_1, \ldots, p_n\} \subset \text{Supp}(M).$$ \hfill (17.16.1)

Proof: There are submodules of M having such a chain by (17.10). So there’s a maximal such submodule N by (16.11). Suppose $M/N \neq 0$. Then by (17.10), the quotient M/N contains a submodule N'/N isomorphic to R/p for some prime p. Then $N \subsetneq N'$, contradicting maximality. Hence $N = M$. Thus a chain exists.

The first inclusion of (17.16.1) follows by induction from (17.6) and (17.5)(2). Now, $p_i \in \text{Supp}(R/p_i)$ owing to (13.4)(3). Thus (13.4)(1) yields (17.16.1).

Theorem (17.17). — Let M be a Noetherian module. Then $\text{Ass}(M)$ is finite.

Proof: The assertion follows directly from (17.16).

Proposition (17.18). — Let R be a ring, M and N modules. Assume that M is Noetherian. Then $\text{Ass} (\text{Hom}(M,N)) = \text{Supp}(M) \bigcap \text{Ass}(N)$.

Proof: Set $a := \text{Ann}(M)$ and $N' := \{n \in N \mid an = 0\}$. Then $\text{Hom}(M,N')$ lies in $\text{Hom}(M,N)$. Conversely, given $\alpha: M \rightarrow N$ and $m \in M$, plainly $a(\alpha(m)) = 0$; so $\alpha(M) \subset N'$. Thus $\text{Hom}(M,N) = \text{Hom}(M,N')$.

Let’s see that $\text{Supp}(M) \bigcap \text{Ass}(N) = \text{Ass}(N')$ by double inclusion. First, given $p \in \text{Supp}(M) \bigcap \text{Ass}(N)$, say $p = \text{Ann}(n)$ for $n \in N$. But $\text{Supp}(M) \subset V(a)$ by (13.4)(3): so $p \supset a$. Hence $an = 0$. So $n \in N'$. Thus $p \in \text{Ass}(N')$.

Conversely, given $p \in \text{Ass}(N')$, say $p = \text{Ann}(n)$ for $n \in N'$. Then $an = 0$. So $p \supset a$. But $\text{Supp}(M) = V(a)$ by (13.4)(3) as M is Noetherian. So $p \in \text{Supp}(M)$. But $n \in N' \subset N$. Thus $p \in \text{Ass}(N)$. Thus $\text{Supp}(M) \bigcap \text{Ass}(N) = \text{Ass}(N')$.

Thus we have to prove

$$\text{Ass}(\text{Hom}(M,N')) = \text{Ass}(N').$$ \hfill (17.18.1)

Set $R' := R/a$. Plainly $\text{Hom}_{R'}(M,N') = \text{Hom}_R(M,N')$. Let $\kappa: R \rightarrow R'$ be the quotient map. Owing to (17.4), $p' \mapsto \kappa^{-1}(p')$ sets up two bijections: one from $\text{Ass}_{R'}(\text{Hom}_{R'}(M,N'))$ to $\text{Ass}_R(\text{Hom}_R(M,N'))$, and one from $\text{Ass}_{R'}(N')$ to $\text{Ass}_R(N')$. Thus we may replace R by R'. Then by (16.16), R is Noetherian.

Given $p \in \text{Ass}(\text{Hom}(M,N'))$, there’s an R-injection $R/p \hookrightarrow \text{Hom}(M,N')$ by (17.3). Set $k(p) := \text{Frac}(R/p)$. Then $k(p) = (R/p)R_p$ by (11.15). But, R is Noetherian, so M is finitely presented by (16.15); so by (12.19),

$$\text{Hom}_R(M,N')_p = \text{Hom}_{R_p}(M_p, N'_p).$$ \hfill (17.18.2)

Hence, by exactness, localizing yields an injection $\varphi: k(p) \hookrightarrow \text{Hom}_{R_p}(M_p, N'_p)$.

For any $m \in M_p$ with $\varphi(1)(m) \neq 0$, the map $k(p) \rightarrow N'_p$ given by $x \mapsto \varphi(x)(m)$ is nonzero, so an injection. But $k(p) = R_p/R_p$ by (12.15). Hence by (17.3), we have $pR_p \in \text{Ass}(N'_p)$. Thus by (17.8) also $p \in \text{Ass}(N')$.

Conversely, given $p \in \text{Ass}(N')$, recall from the third paragraph that $p \in \text{Supp}(M)$. So $M_p \neq 0$. So by Nakayama’s Lemma, M_p/pM_p is a nonzero vector space over
k(p). Take any nonzero R-map $M_p/pM_p \to k(p)$, precede it by the quotient map $M_p \to M_p/pM_p$, and follow it by an R-injection $k(p) \hookrightarrow N'_p$; the latter exists by (17.3) and (17.8) since $p \in \text{Ass}(N')$.

We obtain a nonzero element of $\text{Hom}_{R_p}(M_p, N'_p)$, annihilated by pR_p. But pR_p is maximal; so the annihilator is too. So $pR_p \in \text{Ass}(\text{Hom}_{R_p}(M_p, N'_p))$ by (17.9). So $p \in \text{Ass(}\text{Hom}(M, N'))$ by (17.18.2) and (17.8). Thus (17.18.1) holds. □

Proposition (17.19). — Let R be a ring, M a Noetherian module, p a prime, $x, y \in p - z.\text{div}(M)$. Assume $p \in \text{Ass}(M/xM)$. Then $p \in \text{Ass}(M/yM)$.

Proof: Form the sequence $0 \to K \to M/xM \xrightarrow{\mu_{x,y}} M/yM$ with $K := \text{Ker}(\mu_y)$. Apply the functor $\text{Hom}(R/p, \bullet)$ to that sequence, and get the following one:

$$0 \to \text{Hom}(R/p, K) \to \text{Hom}(R/p, M/xM) \xrightarrow{\mu_{x,y}} \text{Hom}(R/p, M/yM).$$

It is exact by (5.11). But $y \in p$; so the right-hand map vanishes. Thus

$$\text{Hom}(R/p, K) \hookrightarrow \text{Hom}(R/p, M/xM).$$

Form the following commutative diagram with exact rows:

$$
\begin{array}{ccc}
0 & \to & M \\
\mu_y & | & \mu_y \\
\downarrow & & \downarrow \\
0 & \to & M \\
\mu_{x,y} & | & \mu_{x,y} \\
\downarrow & & \downarrow \\
0 & \to & M/xM \\
\mu_{x,y} & | & \mu_{x,y} \\
\downarrow & & \downarrow \\
0 & \to & M/yM
\end{array}
$$

The Snake Lemma (5.10) yields an exact sequence $0 \to K \to M/yM \xrightarrow{\mu_{x,y}} M/yM$ as $\text{Ker}(\mu_y|M) = 0$. Hence, similarly, $\text{Hom}(R/p, K) \hookrightarrow \text{Hom}(R/p, M/yM)$. Hence,

$$\text{Hom}(R/p, M/yM) = \text{Hom}(R/p, M/xM).$$

(17.19.1)

Assume for a moment that R is Noetherian. Then (17.18) yields

$$\text{Ass(}\text{Hom}(R/p, M/xM)) = \text{Supp}(R/p) \bigcap \text{Ass}(M/xM).$$

(17.19.2)

But $p \in \text{Supp}(R/p)$ by (13.4)(3). Also $p \in \text{Ass}(M/xM)$ by hypothesis. So p lies in the left side of (17.19.2). So $p \in \text{Ass(}\text{Hom}(R/p, M/yM))$ by (17.19.1). But (17.19.2) holds with y in place of x. Thus $p \in \text{Ass}(M/yM)$ as desired.

In general, set $a := \text{Ann}_R(M)$ and $R' := R/a$. Then R' is Noetherian by (16.16). But $p \in \text{Ass}_{R}(M/xM)$. So (17.13) yields $p \supset \text{Ann}_R(M/xM)$. But $\text{Ann}_R(M/xM) \supset a$. Set $p' := p/a$. Then $p' \in \text{Ass}_{R'}(M/xM)$ by (17.4). Let $x', y' \in p'$ be the residues of x, y. Then $M/x'M = M/xM$ and $M/y'M = M/yM$. But R' is Noetherian. Hence the above argument yields $p' \in \text{Ass}_{R'}(M/yM)$. But $\text{Ann}(M/yM) \supset a$. Thus (17.4) yields $p \in \text{Ass}(M/yM)$ as desired. □

Proposition (17.20). — Let R be a ring, q an ideal, and M a Noetherian module. Then the following conditions are equivalent:

1. $V(q) \cap \text{Ass}(M) = \emptyset$.
2. $q \nsubseteq p$ for any $p \in \text{Ass}(M)$.
3. $q \nsubseteq z.\text{div}(M)$; that is, there is a nonzerodivisor x on M in q.
4. $\text{Hom}(N, M) = 0$ for all finitely generated modules N with $\text{Supp}(N) \subset V(q)$.
5. $\text{Hom}(N, M) = 0$ for some finitely generated module N with $\text{Supp}(N) = V(q)$.
Plainly (1) and (2) are equivalent.

Next, \(z.div(M) = \bigcup_{p \in \text{Ass}(M)} p\) by (17.12). So (3) implies (2). But \(\text{Ass}(M)\) is finite by (17.17); so (3.12) and (2) yield (3). Thus (2) and (3) are equivalent.

Note that (4) implies (5) with \(N := R/q\) as \(\text{Supp}(N) = V(q)\) by (13.46).

Thus it remains to prove that (1) implies (4) and that (5) implies (1).

Assume (1) and \(R\) is Noetherian. Given any module \(N\) with \(\text{Supp}(N) \subset V(q)\), then \(\text{Supp}(N) \cap \text{Ass}(M) = \emptyset\). Hence if \(N\) is finitely generated too, then (17.18) yields \(\text{Ass}(\text{Hom}(N, M)) = \emptyset\), and so \(\text{Hom}(N, M) = 0\) by (17.10). Thus (4) holds.

Assume (5) and \(R\) is Noetherian. Then \(\text{Ass}(\text{Hom}(N, M)) = \emptyset\) by (17.10). So \(V(q) \cap \text{Ass}(M) = \emptyset\) by (17.18). Thus (1) holds.

Set \(a := \text{Ann}(M)\) and \(R' := R/a\). Let \(\kappa: R \twoheadrightarrow R'\) be the quotient map, and set \(q' := \kappa(q)\). Let \((1')\), \((4')\), and \((5')\) stand for (1), (4), and (5) over \(R'\). By (16.16), \(R'\) is Noetherian; so by the above, \((1')\) implies \((4')\), and \((5')\) implies \((1')\).

Let’s see that (1) and \((1')\) are equivalent. Since \(\text{Ass}(M) \subset V(a)\) by (17.13), any \(p \in V(q) \cap \text{Ass}(M)\) contains \(q + a\). So \(\kappa(p) \in V(q')\). But \(\kappa\) carries \(\text{Ass}_R(M)\) bijectively onto \(\text{Ass}_R(M)\) by (17.4). Also, given \(p' \in V(q')\), plainly \(\kappa^{-1}(p') \in V(q)\).

Thus \(\kappa\) induces a bijection from \(V(q) \cap \text{Ass}(M)\) onto \(V(q') \cap \text{Ass}(M)\). Thus \(V(q) \cap \text{Ass}(M) = \emptyset\) if and only if \(V(q') \cap \text{Ass}(M) = \emptyset\), as desired.

Next, given a finitely generated \(R\)-module \(N\), set \(N' := N/aN\). Then (8.27)(1) yields \(N' \cong N \otimes_R R'\). So (8.9) yields

\[
\text{Hom}_R(N, M) = \text{Hom}_{R'}(N', M). \tag{17.20.1}
\]

Also, \(\text{Supp}_{R'}(N') = \text{Spec}(\kappa)^{-1} \text{Supp}_R(N)\) by (13.49). Hence, given \(p' \in \text{Spec}(R')\),

\[
p' \in \text{Supp}_{R'}(N') \quad \text{if and only if} \quad p := \kappa^{-1}(p') \in \text{Supp}_R(N).
\]

Plainly \(p' \in V(q')\) if and only if \(p \in V(q)\). Thus if \(\text{Supp}_R(N) \subset V(q)\), then \(\text{Supp}_{R'}(N') \subset V(q')\), since if \(p' \in \text{Supp}_{R'}(N')\), then \(p \in \text{Supp}_R(N)\), so \(p \in V(q)\), so \(p' \in V(q')\). Similarly, if \(\text{Supp}_R(N) \supset V(q)\), then \(\text{Supp}_{R'}(N') \supset V(q')\).

Assume \((4')\), and let’s prove \((4)\). Given a finitely generated \(R\)-module \(N\) with \(\text{Supp}_R(N) \subset V(q)\), set \(N' := N/aN\). By the above, \(\text{Supp}_{R'}(N') \subset V(q')\). So \(\text{Hom}_{R'}(N', M) = 0\) by (17.20.1). Thus (4) holds.

Assume (5); it provides an \(N\). Let’s prove \((5')\) with \(N' := N/aN\). Since \(\text{Supp}_R(N) = V(q)\), the above yields \(\text{Supp}_R(N') = V(q')\). Since \(\text{Hom}_{R'}(N', M) = 0\), also \(\text{Hom}_{R'}(N', M) = 0\) by (17.20.1). Thus (5') holds.

Summarizing, we’ve proved the following two chains of implications:

\[
(1) \Rightarrow (1') \Rightarrow (4') \Rightarrow (4) \quad \text{and} \quad (5) \Rightarrow (5') \Rightarrow (1') \Rightarrow (1).
\]

Thus \((1)\) implies \((4)\), and \((5)\) implies \((1)\), as desired. \(\square\)

B. Exercises

Exercise (17.21) . — Given modules \(M_1, \ldots, M_r\), set \(M := M_1 \oplus \cdots \oplus M_r\). Prove:

\[
\text{Ass}(M) = \text{Ass}(M_1) \cup \cdots \cup \text{Ass}(M_r).
\]

Exercise (17.22) . — Let \(R\) be a ring, \(M\) a module, \(M_\lambda\) for \(\lambda \in \Lambda\) submodules. Assume \(M = \bigcup M_\lambda\). Show \(\text{Ass}(M) = \bigcup \text{Ass}(M_\lambda)\).

Exercise (17.23) . — Take \(R := \mathbb{Z}\) and \(M := \mathbb{Z}/(2) \oplus \mathbb{Z}\). Find \(\text{Ass}(M)\) and find two submodules \(L, N \subset M\) with \(L + N = M\) but \(\text{Ass}(L) \cup \text{Ass}(N) \not\subset \text{Ass}(M)\).
Exercise (17.24). — If a prime \(p \) is sandwiched between two primes in \(\text{Ass}(M) \), is \(p \) necessarily in \(\text{Ass}(M) \) too?

Exercise (17.25). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(M \) a module, \(N \) a submodule. Prove \(\text{Ass}(M/N^S) \supset \{ p \in \text{Ass}(M/N) \mid p \cap S = \emptyset \} \), with equality if either \(R \) is Noetherian or \(M/N \) is Noetherian.

Exercise (17.26). — Let \(R \) be a ring, and suppose \(R_\pi \) is a domain for every prime \(\pi \). Prove every associated prime of \(R \) is minimal.

Exercise (17.27). — Let \(R \) be a ring, \(M \) a module, \(N \) a submodule, \(x \in R \). Assume that \(R \) is Noetherian or \(M/N \) is and that \(x \notin p \) for all \(p \in \text{Ass}(M/N) \). Show \(xM \cap N = xN \).

Exercise (17.28). — Let \(R \) be a ring, \(M \) a module, \(p \) a prime. Show (1)–(3) are equivalent if \(R \) is Noetherian, and (1)–(4) are equivalent if \(M \) is Noetherian:

1. \(p \) is a minimal prime of \(M \).
2. \(p \) is minimal in \(\text{Supp}(M) \).
3. \(p \) is minimal in \(\text{Ass}(M) \).
4. \(p \) is a minimal prime of \(\text{Ann}(M) \).

Exercise (17.29). — Let \(R \) be a ring, \(a \) an ideal. Assume \(R/a \) is Noetherian. Show the minimal primes of \(a \) are associated to \(a \), and they are finite in number.

Exercise (17.30). — Let \(M \) a Noetherian module. Show that \(\text{Supp}(M) \) has only finitely many irreducible components \(Y \).

Exercise (17.31). — Take \(R := \mathbb{Z} \) and \(M := \mathbb{Z} \) in (17.16). Determine when a chain \(0 \subset M_1 \subset \cdots \subset M \) is acceptable, that is a chain like the one in (17.16), and show that then \(p_2 \notin \text{Ass}(M) \).

Exercise (17.32). — Take \(R := \mathbb{Z} \) and \(M := \mathbb{Z}/(12) \) in (17.16). Find all three acceptable chains, and show that, in each case, \(\{p_i\} = \text{Ass}(M) \).

Exercise (17.33). — Let \(R \) be a ring, \(M \) a nonzero Noetherian module, \(x, y \in R \) and \(a \in \text{rad}(M) \). Assume \(a^r + x \in z \cdot \text{div}(M) \) for all \(r \geq 1 \). Show \(a + xy \in z \cdot \text{div}(M) \).

Exercise (17.34) (Grothendieck Group \(K_0(R) \)). — Let \(R \) be a ring, \(C \) a subcategory of \((R\text{-mod})\) such that the isomorphism classes of its objects form a set \(\Lambda \). Let \(C \) be the free Abelian group \(\mathbb{Z}^{\text{op}(\Lambda)} \). Given \(M \in C \), let \((M) \in \Lambda \) be its class. To each short exact sequence \(0 \to M_1 \to M_2 \to M_3 \to 0 \) in \(C \), associate the element \((M_2) - (M_1) - (M_3) \) of \(\Lambda \). Let \(D \subset C \) be the subcategory generated by all these elements. Set \(K(C) := C/D \), and let \(\gamma_C : C \to K(C) \) be the quotient map.

In particular, let \(N \) be the subcategory of all Noetherian modules and all linear maps between them; set \(K_0(R) := K(N) \) and \(\gamma_0 := \gamma_N \). Show:

1. Then \(K(C) \) has this UMP: for each Abelian group \(G \) and function \(\lambda : \Lambda \to G \) with \(\lambda(M_2) = \lambda(M_1) + \lambda(M_3) \) for all exact sequences as above, there’s an induced \(\mathbb{Z} \)-linear map \(\lambda_0 : K(C) \to G \) with \(\lambda(M) = \lambda_0(\gamma_C(M)) \) for all \(M \in C \).
2. Then \(K_0(R) \) is generated by the various elements \(\gamma_0(R/p) \) with \(p \) prime.
3. Assume \(R \) is a Noetherian domain. Find a surjective \(\mathbb{Z} \)-linear map \(\kappa : K_0(R) \to \mathbb{Z} \).
4. Assume \(R \) is a field or a PID. Then \(K_0(R) = \mathbb{Z} \).
5. Assume \(R \) is Noetherian. Let \(\varphi : R \to R' \) and \(\psi : R' \to R'' \) be module-finite maps of rings. Then (a) restriction of scalars gives rise to a \(\mathbb{Z} \)-linear map \(\varphi_1 : K_0(R') \to K_0(R) \), and (b) we have \((\psi \varphi)_1 = \varphi_1 \psi_1 \).
Exercise (17.35) (Grothendieck Group $K^0(R)$). — Keep the setup of (17.34).

Assume R is Noetherian. Let \mathcal{F} be the subcategory of ([R-mod]) of all finitely generated flat R-modules M and all linear maps between them; set $K^0(R) := K(\mathcal{F})$ and $\gamma^0 := \gamma^{\mathcal{F}}$. Let $\varphi : R \to R'$ and $\psi : R' \to R''$ be maps of Noetherian rings. Show:

1. Setting $\gamma^0(M)\gamma^0(N) := \gamma^0(M \otimes N)$ makes $K^0(R)$ a \mathbb{Z}-algebra with $\gamma^0(R) = 1$.
2. Setting $\gamma^0(M)\gamma_0(L) := \gamma_0(M \otimes L)$ makes $K_0(R)$ a $K^0(R)$-module.
3. Assume R is local. Then $K^0(R) = \mathbb{Z}$.
4. Setting $\varphi^! \gamma^0(M) := \gamma^0(M \otimes_R R')$ defines a ring map $\varphi^! : K^0(R) \to K^0(R')$.
 Moreover, $(\varphi^! \psi)^! = \varphi^! \psi^!$.
5. If $\varphi : R \to R'$ is module finite, then $\varphi_1 : K_0(R') \to K_0(R)$ is linear over $K^0(R)$.

18. Primary Decomposition

Primary decomposition of a submodule generalizes factorization of an integer into powers of primes. A proper submodule is called primary if the quotient module has only one associated prime. There’s an older notion, which we call old-primary; it requires that, given an element of the ring and one of the module whose product lies in the submodule, but whose second element doesn’t, then some power of the first annihilates the quotient of the module by the submodule.

The two notions coincide when the quotient is Noetherian. In this case, we characterize primary submodules in various ways, and we study primary decompositions, representations of an arbitrary submodule as a finite intersection of primary submodules. A decomposition is called irredundant, or minimal, if it cannot be shorthened. We consider several illustrative examples in a polynomial ring over a field. Then we prove the celebrated Lasker–Noether Theorem: every proper submodule with Noetherian quotient has an irredundant primary decomposition.

We prove two uniqueness theorems. The first asserts the uniqueness of the primes that arise; they are just the associated primes of the quotient. The second asserts the uniqueness of those primary components whose primes are minimal among these associated primes; the other primary components may vary. To prove it, we study the behavior of primary decomposition under localization. Lastly, we derive the important Krull Intersection Theorem: given an ideal \(a \) and a Noetherian module \(M \), the infinite intersection \(\bigcap_{n \geq 0} a^n M \) is annihilated by some \(y \) with \(y - 1 \in a \).

In an appendix, we study old-primary submodules further. In the Noetherian case, we thus obtain alternative proofs of some of the earlier results; also we obtain some new results about primary submodules.

A. Text

Definition (18.1). Let \(R \) be a ring, \(Q \triangleleft M \) modules. If \(\text{Ass}(M/Q) \) consists of a single prime \(p \), we say \(Q \) is primary or \(p \)-primary in \(M \). We say \(Q \) is old-primary if given \(x \in R \) and \(m \in M \) with \(xm \in Q \), either \(m \in Q \) or \(x \in \text{nil}(M/Q) \).

Example (18.2). A prime \(p \) is \(p \)-primary, as \(\text{Ass}(R/p) = \{p\} \) by (17.5)(2). Plainly, \(p \) is old-primary too.

Theorem (18.3). Let \(R \) be a ring, \(Q \triangleleft M \) modules. Set \(p := \text{nil}(M/Q) \).

1. Then \(Q \) is old-primary if and only if \(z \text{div}(M/Q) = p \).
2. If \(Q \) is old-primary, then \(p \) is the smallest prime containing \(\text{Ann}(M/Q) \).
3. If \(Q \) is old-primary and \(\text{Ass}(M/Q) \neq \emptyset \), then \(Q \) is \(p \)-primary.
4. If \(Q \) is old-primary, and if \(M/Q \) is Noetherian or \(R \) is, then \(Q \) is \(p \)-primary.
5. If \(Q \) is \(q \)-primary and \(M/Q \) is Noetherian, then \(q = p \) and \(Q \) is old-primary.

Proof: For (1), first assume \(Q \) is old-primary. Given \(x \in z \text{div}(M/Q) \), there’s \(m \in M - Q \) with \(xm \in Q \). So \(x \in p \). Thus \(z \text{div}(M/Q) \subset p \). But \(z \text{div}(M/Q) \supset p \) by (17.11.1). Thus \(z \text{div}(M/Q) = p \).

Conversely, assume \(z \text{div}(M/Q) = p \). Given \(x \in R \) and \(m \in M \) with \(xm \in Q \), but \(m \notin Q \), note \(x \in z \text{div}(M/Q) \). So \(x \in p \). So \(Q \) is old-primary. Thus (1) holds.
Let there's $n \geq 1$ with $(xy)^n M \subset Q$. As $y \notin p$, there’s $m \in M$ with $y^n m \notin Q$. But Q is old-primary. So $x^n \in p$. So $x \in p$. Thus p is prime.

Given a prime $q \supset \text{Ann}(M/Q)$ and $x \in p$, there's $n \geq 1$ with $x^n \in \text{Ann}(M/Q)$, so $x^n \in q$. So $x \in q$. Thus $q \supset p$. Thus (2) holds.

For (3), assume Q is old-primary, and say $q \in \text{Ass}(M/Q)$. Say $q = \text{Ann}(m)$ with $m \in M/Q$ nonzero. Then $\text{Ann}(M/Q) \subset q \subset \text{zdive}(M/Q)$. But $\text{zdive}(M/Q) = p$ by (1). Hence (2) gives $q = p$. Thus (3) holds.

For (4), note $M/Q \neq 0$. So if M/Q is Noetherian or R is, then $\text{Ass}(M/Q) \neq \emptyset$ by (17.10). Thus (3) yields (4).

For (5), note $p = \left\{q \in \text{Ass}(M/Q) \mid q \text{ prime} \right\}$ by (17.15) and $\text{zdive}(M/Q) = \bigcup_{q \in \text{Ass}(M/Q)} q$ by (17.12) if M/Q is Noetherian. Thus (1) yields (5).

Lemma (18.4). — Let R be a ring, N a Noetherian module. Set $n := \text{nil}(N)$. Then $n^n N = 0$ for some $n \geq 1$.

Proof: Set $a := \text{Ann}(N)$ and $R' := R/a$. Then $n := \sqrt{a}$, and R' is Noetherian by (16.16). Set $n' := n/a$. Then n' is finitely generated. So $n'^n = 0$ for some $n \geq 1$ by (3.38). So $n^n \subset a$. Thus $n^n N = 0$.

Proposition (18.5). — Let M be a module, Q a submodule. If Q is p-primary and M/Q is Noetherian, then $p = \text{nil}(M/Q)$ and $p^n(M/Q) = 0$ for some $n \geq 1$.

Proof: The assertion follows immediately from (17.15) and (18.4).

Exercise (18.6). — Let R be a ring, and $p = (p)$ a principal prime generated by a nonzero divisor p. Show every positive power p^n is old-primary and p-primary. Show conversely, an ideal q is equal to some p^n if either (1) q is old-primary and $\sqrt{q} = p$ or (2) R is Noetherian and q is p-primary.

Exercise (18.7). — Let $\varphi: R \to R'$ be a ring map, M an R-module, $Q' \subset M'$ R'-modules, $\alpha: M \to M'$ an R-map. Set $Q := \alpha^{-1}Q'$, and assume $Q \not\subset M$. Set $p := \text{nil}(M/Q)$ and $p' := \text{nil}(M'/Q')$. If Q' is old-primary, show Q is and $\varphi^{-1}p = p$.

Conversely, when φ and α are surjective, show Q' is old-primary if Q is.

Proposition (18.8). — Let R be a ring, m a maximal ideal, $Q \subset M$ modules.

1. Assume $\text{nil}(M/Q) = m$. Then Q is old-primary.

2. Assume $m^n(M/Q) = 0$ with $n \geq 1$. Then $\text{nil}(M/Q) = m$ and Q is m-primary.

Proof: Set $a := \text{Ann}(M/Q)$. Then $\sqrt{a} =: \text{nil}(M/Q)$.

For (1), fix $x \in R$ and $m \in M$ with $xm \in Q$, but $x \notin m$. As m is maximal, x is a unit mod a by (3.37)(3)⇒(2); so there’s $y \in R$ with $1 - xy \in a$. But $a(M/Q) = 0$. So $m - xym \in aM \subset Q$. But $xm \in Q$; so $xym \in Q$. Thus $m \in Q$. Thus (1) holds.

For (2), note $m^n \subset a$. So $m \subset \sqrt{a}$. But $Q \neq M$, so $\sqrt{a} \neq R$. But m is maximal. Thus $m = \sqrt{a} =: \text{nil}(M/Q)$. Thus (1) implies Q is old-primary.

Take $n \geq 1$ minimal with $m^n(M/Q) = 0$. Then there’s $m' \in m^{-1}(M/Q)$ with $m' \neq 0$ but $mm' = 0$. So $m \subset \text{Ann}(m) \not\subset R$. But m is maximal. So $m = \text{Ann}(m)$. Thus $m \in \text{Ass}(M)$. Thus (18.3)(3) yields that Q is m-primary. Thus (2) holds.

Corollary (18.9). — Let R be a ring, m and q ideals. Assume m is maximal, q is proper, and $m^n \subset q$ for some $n \geq 1$. Then $m = \sqrt{q}$, and q is old-primary and m-primary.

Proof: In (18.8)(2), just take $M := R$ and $Q := q$. □
Let N be a module. Assume M/Q is Noetherian. Then (1)–(3) are equivalent:

1. Q is m-primary;
2. $m = \text{nil}(M/Q)$;
3. $m^n(M/Q) = 0$ for some $n \geq 1$.

\textbf{Proof:} First, (1) implies (2) and (3) by (18.14.1). Second, (2) implies (3) by (18.4). Third, (3) implies (1) and (2) by (18.5)(2). \hfill \Box

\textbf{Corollary (18.11).} — Let R be a ring, m and q an ideals. Assume m is maximal, q is proper, and R/q is Noetherian. Then (1)–(3) are equivalent:

1. q is m-primary;
2. $m = \sqrt{q}$;
3. $m^n \subset q$ for some $n \geq 1$.

\textbf{Proof:} In (18.10), just take $M := R$ and $Q := q$. \hfill \Box

\textbf{Lemma (18.12).} — Let R be a ring, $Q_1, Q_2 \subseteq M$ modules. Set $Q_3 := Q_1 \cap Q_2$.

1. Set $p_1 := \text{nil}(M/Q_1)$. If Q_1, Q_2 are old-primary, and if $p_1 = p_2$, then $p_1 = p_2$ and Q_3 is old-primary.
2. If M/Q_3 is Noetherian or R is, and if Q_1, Q_2 are p-primary, then so is Q_3.

\textbf{Proof:} For (1), note $p_3 = p_1 \cap p_2$ by (12.39)(2). Thus if $p_1 = p_2$, then $p_3 = p_2$. Given $x \in R$ and $m \in M$ with $xm \in Q_3$ but $m \notin Q_3$, say $m \notin Q_1$. Then $x \in p_1$ if Q_1 is old-primary. But if $p_1 = p_2$, then $p_3 = p_2$. Thus (1) holds.

For (2), form the canonical map $M \to M/Q_1 \oplus M/Q_2$. Its kernel is Q_3. So it induces an injection $M/Q_3 \hookrightarrow M/Q_1 \oplus M/Q_2$. Assume M/Q_3 is Noetherian or R is. Then (17.10) and (17.6) yield

\[\emptyset \neq \text{Ass}(M/Q_3) \subseteq \text{Ass}(M/Q_1) \cup \text{Ass}(M/Q_2). \]

If the latter two sets are each equal to \{p\}, then so is $\text{Ass}(M/Q_3)$, as desired. \hfill \Box

\textbf{(18.13) (Primary decomposition).} — Let R be a ring, M a module, and N a submodule. A \textbf{primary decomposition} of N is a decomposition

\[N = Q_1 \cap \cdots \cap Q_r \text{ with the } Q_i \text{ primary.} \]

We call the decomposition irredundant or \textbf{minimal} if these conditions hold:

1. $N \neq \bigcap_{i \neq j} Q_i$, or equivalently, $\bigcap_{i \neq j} Q_i \nsubseteq Q_j$ for $j = 1, \ldots, r$.
2. Set $p_i := \text{Ann}(M/Q_i)$ for $i = 1, \ldots, r$. Then p_1, \ldots, p_r are distinct.

If so, then we call Q_i the \textbf{primary component} of the decomposition.

Assume M/N is Noetherian or R is. If M/N is Noetherian, so is M/Q for any $N \subset Q \subset M$ by (18.13)(2). Hence, any primary decomposition of N can be made irredundant owing to (18.12): simply intersect all the primary submodules with the same prime, and then repeatedly discard the first unnecessary component.

\textbf{Example (18.14).} — Let k be a field, $R := k[X,Y]$ the polynomial ring. Set $a := \langle X^2, XY \rangle$. Below, it is proved that, for any $n \geq 1$,

\[a = \langle X \rangle \cap \langle X^2, XY, Y^n \rangle = \langle X \rangle \cap \langle X^2, Y \rangle. \quad (18.14.1) \]

Here $\langle X^2, XY, Y^n \rangle$ and $\langle X^2, Y \rangle$ contain $\langle X, Y \rangle^n$; so they are $\langle X, Y \rangle$-primary by (18.9). Thus (18.14.1) gives infinitely many primary decompositions of a. They are clearly irredundant. Note: the $\langle X, Y \rangle$-primary component is not unique!

Plainly, $a \subset \langle X \rangle$ and $a \subset \langle X^2, XY, Y^n \rangle \subset \langle X^2, Y \rangle$. To see $a \supset \langle X \rangle \cap \langle X^2, Y \rangle$, take $F \in \langle X \rangle \cap \langle X^2, Y \rangle$. Then $F = GX = AX^2 + BY$ where $A, B, G \in R$. Then $X(G - AX) = BY$. So $X | B$. Say $B = B'X$. Then $F = AX^2 + B'XY \in a$.

\[140 \]
Example (18.15). — Let k be a field, $R := k[X, Y]$ the polynomial ring, $a \in k$. Set $a := (X^2, XY)$. Define an automorphism α of R by $X \mapsto X$ and $Y \mapsto aX + Y$. Then α preserves a and $\langle X \rangle$, and carries $\langle X^2, Y \rangle$ onto $\langle X^2, aX + Y \rangle$. So (18.14) implies that $a = \langle X \rangle \cap \langle X^2, aX + Y \rangle$ is an irredundant primary decomposition. Moreover, if $a \neq b$, then $\langle X^2, aX + Y, bX + Y \rangle = \langle X, Y \rangle$. Thus two $\langle X, Y \rangle$-primary components are not always contained in a third, although their intersection is one by (18.12).

Example (18.16). — Let k be a field, $P := k[X, Y, Z]$ the polynomial ring. Set $R := P/(XZ - Y^2)$. Let x, y, z be the residues of X, Y, Z in R. Set $p := \langle x, y \rangle$. Clearly $p^2 = \langle x^2, xy, y^2 \rangle = \langle x, y, z \rangle$. Let’s show that $p^2 = \langle x \rangle \cap \langle x^2, y, z \rangle$ is an irredundant primary decomposition.

First note the inclusions $x(x, y, z) \subset \langle x \rangle \cap \langle x, y, z \rangle^2 \subset \langle x \rangle \cap \langle x^2, y, z \rangle$.

Conversely, given $f \in \langle x \rangle \cap \langle x^2, y, z \rangle$, represent f by GX with $G \in P$. Then

$$GX = AX^2 + BY + CZ + D(XZ - Y^2) \quad \text{with} \quad A, B, C, D \in P.$$

So $(G - AX)X = B'Y + C'Z$ with $B', C' \in P$. Say $G - AX = A'' + B''Y + C''Z$ with $A'' \in k[X]$ and $B'', C'' \in P$. Then

$$A''X = -B''XY - C''XZ + B'Y + C'Z = (B' - B''X)Y + (C' - C''X)Z;$$

whence, $A'' = 0$. Therefore, $GX \in X \langle X, Y, Z \rangle$. Thus $p^2 = \langle x \rangle \cap \langle x^2, y, z \rangle$.

The ideal (x) is $\langle x, y \rangle$-primary in R by (18.7). Indeed, the preimage in P of $\langle x \rangle$ is $\langle X, Y^2 \rangle$ and of $\langle x, y \rangle$ is $\langle X, Y \rangle$. Further, $\langle X, Y^2 \rangle$ is (X, Y)-primary, as under the map $\varphi: P \to k[Y, Z]$ with $\varphi(X) = 0$, clearly $\langle X, Y^2 \rangle = \varphi^{-1}(Y^2)$ and $\langle X, Y \rangle = \varphi^{-1}(Y)$; moreover, (Y^2) is (Y)-primary by (18.6).

Finally $\langle x, y, z \rangle^2 \subset \langle x^2, y, z \rangle \subset \langle x, y, z \rangle$ and $\langle x, y, z \rangle$ is maximal. So $\langle x^2, y, z \rangle$ is $\langle x, y, z \rangle$-primary by (18.9).

Thus $p^2 = \langle x \rangle \cap \langle x^2, y, z \rangle$ is a primary decomposition. It is clearly irredundant. Moreover, $\langle x \rangle$ is the p-primary component of p^2.

Lemma (18.17). — Let R be a ring, $N = Q_1 \cap \cdots \cap Q_r$ a primary decomposition in a module M. Say Q_i is p_i-primary for all i. Then

$$\text{Ass}(M/N) \subseteq \{ p_1, \ldots, p_r \}. \quad (18.17.1)$$

If equality holds and if p_1, \ldots, p_r are distinct, then the decomposition is irredundant; the converse holds if R is Noetherian or if M/N is Noetherian.

Proof: Since $N = \bigcap Q_i$, the canonical map is injective: $M/N \hookrightarrow \bigoplus M/Q_i$. So (17.6) and (17.21) yield $\text{Ass}(M/N) \subseteq \bigcup \text{Ass}(M/Q_i)$. Thus (18.17.1) holds.

If $N = Q_2 \cap \cdots \cap Q_r$, then $\text{Ass}(M/N) \subseteq \{ p_2, \ldots, p_r \}$ too. Thus if equality holds in (18.17.1) and if p_1, \ldots, p_r are distinct, then $N = Q_1 \cap \cdots \cap Q_r$ is irredundant.

Conversely, assume $N = Q_1 \cap \cdots \cap Q_r$ is irredundant. Given i, set $P_i := \bigcap_{j \neq i} Q_j$. Then $P_i \cap Q_i = N$ and $P_i/N \neq 0$. Consider these two canonical injections:

$$P_i/N \hookrightarrow M/Q_i \quad \text{and} \quad P_i/N \hookrightarrow M/N.$$

Assume R is Noetherian or M/N is Noetherian. If M/N is Noetherian, so is P_i/N by (16.13)(2). So in both cases $\text{Ass}(P_i/N) \neq \emptyset$ by (17.10). So the first injection yields $\text{Ass}(P_i/N) = \{ p_i \}$ by (17.6); then the second yields $p_i \in \text{Ass}(M/N)$. Thus $\text{Ass}(M/N) \supseteq \{ p_1, \ldots, p_r \}$, and (18.17.1) yields equality, as desired. \hfill \square

141
Theorem (18.18) (First Uniqueness). — Let R be a ring, $N = Q_1 \cap \cdots \cap Q_r$ an irredundant primary decomposition in a module M. Say Q_i is p_i-primary for all i. Assume R is Noetherian or M/N is Noetherian. Then p_1, \ldots, p_r are uniquely determined; in fact, they are just the distinct associated primes of M/N.

Proof: The assertion is just part of (18.17).

Theorem (18.19) (Lasker–Noether). — A proper submodule N of a module M has an irredundant primary decomposition if M/N is Noetherian.

Proof: First, M/N has finitely many distinct associated primes, say p_1, \ldots, p_r, by (17.17). But by (17.7), for each i, there is a p_i-primary submodule Q_i of M with $\text{Ass}(Q_i/N) = \text{Ass}(M/N) - \{p_i\}$. Set $P := \bigcap Q_i$. Fix i. Then $P/N \subseteq Q_i/N$. So $\text{Ass}(P/N) \subseteq \text{Ass}(Q_i/N)$ by (17.6). But i is arbitrary. So $\text{Ass}(P/N) = \emptyset$. But P/N is Noetherian as M/N is. So $P/N = 0$ by (17.10). Finally, the decomposition $N = \bigcap Q_i$ is irredundant by (18.17).

Lemma (18.20). — Let R be a ring, S a multiplicative subset, p a prime ideal, M a module, Q a p-primary submodule. Assume M/Q is Noetherian and $S \cap p = \emptyset$. Then $S^{-1}Q$ is $S^{-1}p$-primary and $Q^S = \varphi_S^{-1}(S^{-1}Q) = Q$.

Proof: Every prime of $S^{-1}R$ is of the form $S^{-1}q$ where q is a prime of R with $S \cap q = \emptyset$ by (11.12)(2) and (12.2). But M/Q is Noetherian, so $R/\text{Ann}(M/Q)$ is too by (16.16). Hence $S^{-1}q \in \text{Ass}(S^{-1}(M/Q))$ if and only if $q \in \text{Ass}(M/Q)$ by (17.8); but if so, then $q = p$ as Q is p-primary.

Note $S^{-1}(M/Q) = S^{-1}M/S^{-1}Q$ by (12.13); also, $S^{-1}(M/Q)$ is a Noetherian $S^{-1}R$-module by (16.33). But $S \cap p = \emptyset$. Hence $\text{Ass}(S^{-1}M/S^{-1}Q) = \{S^{-1}p\}$. Thus, $S^{-1}Q$ is $S^{-1}p$-primary.

Finally, $Q^S = \varphi_S^{-1}(S^{-1}Q)$ by (12.12)(3). Given $m \in Q^S$, there is $s \in S$ with $sm \in Q$. But $s \notin p$. Further, Q is old-primary, and $p = \text{nil}(M/Q)$ by (18.2)(5). So $m \in Q$. Thus $Q^S \subseteq Q$. But $Q^S \supset Q$ as $1 \in S$. Thus $Q^S = Q$.

Proposition (18.21). — Let R be a ring, S a multiplicative subset, M a module, $N = Q_1 \cap \cdots \cap Q_r \subseteq M$ an irredundant primary decomposition. Assume M/N is Noetherian. Say Q_i is p_i-primary for all i, and $S \cap p_i = \emptyset$ for $i \leq h$. Then $S^{-1}N = S^{-1}Q_1 \cap \cdots \cap S^{-1}Q_h \subseteq S^{-1}M$ and $N^S = Q_1 \cap \cdots \cap Q_h \subseteq M$ are irredundant primary decompositions.

Proof: Note $S^{-1}N = S^{-1}Q_1 \cap \cdots \cap S^{-1}Q_r$ by (12.12)(6)(b). But $S^{-1}Q_i$ is $S^{-1}p_i$-primary for $i \leq h$ by (18.20), and $S^{-1}Q_i = S^{-1}M$ for $i > h$ by (12.23). Therefore, $S^{-1}N = S^{-1}Q_1 \cap \cdots \cap S^{-1}Q_h$ is a primary decomposition.

It is irredundant by (18.17). Indeed, $\text{Ass}(S^{-1}M/S^{-1}N) = \{S^{-1}p_1, \ldots, S^{-1}p_h\}$ by an argument like that in the first part of (18.20). Further, $S^{-1}p_1, \ldots, S^{-1}p_h$ are distinct by (11.12)(2) as the p_i are distinct.

Apply φ_S^{-1} to $S^{-1}N = S^{-1}Q_1 \cap \cdots \cap S^{-1}Q_h$. We get $N^S = Q_1^S \cap \cdots \cap Q_h^S$ by (12.12)(3). But each M/Q_i is Noetherian as it is a quotient of M/N. So $Q_i^S = Q_i$ by (18.20). So $N^S = Q_1 \cap \cdots \cap Q_h$ is a primary decomposition. It is irredundant as, clearly, (18.13)(1), (2) hold for it, as they do for $N = Q_1 \cap \cdots \cap Q_r$. □
Theorem (18.22) (Second Uniqueness). — Let R be a ring, M a module, N a submodule. Assume M/N is Noetherian. Let \mathfrak{p} be minimal in $\text{Ass}(M/N)$. Recall that $S_{\mathfrak{p}} : R - \mathfrak{p}$. Then, in any irredundant primary decomposition of N in M, the \mathfrak{p}-primary component Q is uniquely determined; in fact, $Q = NS_{\mathfrak{p}}$.

Proof: In (18.21), take $S := S_{\mathfrak{p}}$. Then $h = 1$ as \mathfrak{p} is minimal in $\text{Ass}(M/N)$. □

Theorem (18.23) (Krull Intersection). — Let \mathfrak{a} be an ideal, and M a Noetherian module. Set $N := \bigcap_{n \geq 0} \mathfrak{a}^n M$. Then there is $x \in \mathfrak{a}$ such that $(1 + x)N = 0$.

Proof: Since N is finitely generated, the desired $x \in \mathfrak{a}$ exists by (10.3) provided $N = \mathfrak{a}N$. Clearly $N \supset \mathfrak{a}N$. To prove $N \subseteq \mathfrak{a}N$, note that, as M is Noetherian, M/N is too by (16.13)(2). So (18.19) yields a decomposition $\mathfrak{a}N = \bigcap Q_i$ with Q_i \mathfrak{p}_i-primary, so old-primary by (18.3)(5). Fix i. So, if there’s $a \in \mathfrak{a} - \mathfrak{p}_i$, then $\mathfrak{a}N \subseteq Q_i$, and so $N \subseteq Q_i$. If $\mathfrak{a} \subseteq \mathfrak{p}_i$, then there’s n_t with $\mathfrak{a}^{n_t} M \subseteq Q_i$ by (18.5) and (3.38), and so again $N \subseteq Q_i$. Thus $N \subseteq \bigcap Q_i = \mathfrak{a}N$, as desired. □

Example (18.24) (Another non-Noetherian ring). — Let A be the local ring of germs of C^∞-functions $F(x)$ at $x = 0$ on \mathbb{R}, and m the ideal of A with $F(0) = 0$. Note that m is maximal, as $F \mapsto F(0)$ defines an isomorphism $A/m \cong \mathbb{R}$.

Given $F \in A$ and $n \geq 1$, apply Taylor’s Formula to $f(t) := F(xt)$ from $t = 0$ to $t = 1$ (see [13, Theorem 3.1, p. 109]); as $F^{(n)}(t) = x^n F^{(n)}(xt)$, we get

$$F(x) = F(0) + F'(0)x + \cdots + F^{(n-1)}(0)\frac{x^{n-1}}{(n-1)!} + x^n F_n(x)$$

(18.24.1)

where $F_n(x) := \int_0^1 \frac{(1-t)^{n-1}}{(n-1)!} F^{(n)}(xt) \, dt$.

Note F_n is C^∞: just differentiate under the integral sign (by [13, Thm. 7.1, p. 276]).

If $F^{(k)}(0) = 0$ for $k < n$, then (18.24.1) yields $F \subseteq (x^n)$. Conversely, assume $F(x) = x^n G(x)$ for some $G \in A$. By Leibniz’s Product Rule,

$$F^{(k)}(x) = \sum_{j=0}^{k} \binom{k}{j} x^{n-j} F^{(k-j)}(x).$$

So $F^{(k)}(0) = 0$ if $k < n$. So $(x^n) = \{ F \in A \mid F^{(k)}(0) = 0 \text{ for } k < n \}$. So $m = (x)$. Thus $(x^n) = m^n$. Set $n := \bigcap_{n \geq 0} m^n$. Thus $n = \{ F \in A \mid F^{(k)}(0) = 0 \text{ for all } k \}$.

Taylor’s Formula defines a map $\tau : A \to \mathbb{R}[[x]]$ by $\tau(F) := \sum_{n=0}^\infty F^{(n)}(0)\frac{x^n}{n!}$. Plainly τ is \mathbb{R}-linear and, by Leibniz’s Product Rule, τ is a ring map. Moreover, by the previous paragraph, $\ker(\tau) = n$.

Cauchy’s Function is a well-known nonzero C^∞-function $H \in n$; namely,

$$H(x) := \begin{cases} e^{-1/x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0; \end{cases}$$

see [13, Ex. 7, p. 82]. Thus $n \neq 0$.

Given $G \in m$, let’s show $(1 + G)H \neq 0$. Since $G(0) = 0$ and G is continuous, there is $\delta > 0$ such that $|G(x)| < 1/2$ if $|x| < \delta$. Hence $1 + G(x) \geq 1/2$ if $|x| < \delta$. Hence $(1 + G(x))H(x) > (1/2)h(x) > 0$ if $0 < |x| < \delta$. Thus $(1 + G)n \neq 0$. Thus the Krull Intersection Theorem (18.23) fails for A, and so A is non-Noetherian.
B. Exercises

Exercise (18.25). — Fix a prime \(p \in \mathbb{Z} \). Set \(M := \bigoplus_{n=1}^{\infty} \mathbb{Z}/(p^n) \) and \(Q := 0 \) in \(M \). Show \(Q \) is \((p)\)-primary, but not old-primary (even though \(\mathbb{Z} \) is Noetherian).

Exercise (18.26). — Let \(k \) be a field, and \(k[X, Y] \) the polynomial ring. Let \(a \) be the ideal \(\langle X^2, XY \rangle \). Show \(a \) is not primary, but \(\sqrt{a} \) is prime. Recall \(S := S_p \). Show \(a \) satisfies this condition: \(FG \in a \) implies \(F^2 \in a \) or \(G^2 \in a \).

Exercise (18.27). — Let \(R \) be PIR, \(q \) a primary ideal, and \(p, r \) prime ideals.

1. Assume \(q \subseteq p \) and \(r \nsubseteq p \). Show \(r \subseteq q \).
2. Assume \(r = \sqrt{q} \subseteq p \). Show \(r = q \).
3. Assume \(r \nsubseteq p \). Show \(r \) is the intersection of all primary ideals contained in \(p \).
4. Assume \(p \) and \(r \) are not comaximal. Show one contains the other.

Exercise (18.28). — Let \(\mathbb{Z}[X] \) be the polynomial ring, and set \(m := \langle 2, X \rangle \) and \(q := \langle 4, X \rangle \). Show \(m \) is maximal, \(q \) is \(m \)-primary, and \(q \) is not a power of \(m \).

Exercise (18.29). — Let \(k \) be a field, \(R := k[X,Y,Z] \) the polynomial ring in three variables. Set \(p_1 := \langle X,Y \rangle \), set \(p_2 := \langle X,Z \rangle \), set \(m := \langle X,Y,Z \rangle \), and set \(a := p_1 \cap p_2 \). Show that \(a = p_1 \cap p_2 \cap m^2 \) is an irredundant primary decomposition. Which associated primes are minimal, and which are embedded?

Exercise (18.30). — Let \(k \) be a field, \(R := k[X,Y,Z] \) be the polynomial ring. Set \(a := \langle XY, X-YZ \rangle \), set \(q_1 := \langle X,Z \rangle \) and set \(q_2 := \langle Y^2, X-YZ \rangle \). Show that \(a = q_1 \cap q_2 \) holds and that this expression is an irredundant primary decomposition.

Exercise (18.31). — For \(i = 1, 2 \), let \(R_i \) be a ring, \(M_i \) a \(R_i \)-module with \(0 \subseteq M_i \) primary. Find an irredundant primary decomposition for \(0 \subseteq M_1 \times M_2 \) over \(R_1 \times R_2 \).

Exercise (18.32). — Let \(R \) be a ring, \(a \) an ideal. Assume \(a = \sqrt{\mathfrak{a}} \). Prove (1) every prime \(p \) associated to \(a \) is minimal over \(a \) and (2) if \(R \) is Noetherian, then the converse holds, and \(\sqrt{a} = \bigcap_{p \in \text{Ass}(R/a)} p \) is an irredundant primary decomposition. Find a simple example showing (1) doesn’t generalize to modules.

Exercise (18.33). — Let \(R \) be a ring, \(M \) a module. We call a proper submodule \(Q \) irreducible if \(Q = N_1 \cap N_2 \) implies \(Q = N_1 \) or \(Q = N_2 \). Prove: (1) an irreducible submodule \(Q \) is primary if \(M/Q \) is Noetherian; and (2) a proper submodule \(N \) is the intersection of finitely many irreducible submodules if \(M/N \) is Noetherian.

Exercise (18.34). — Let \(R \) be a ring, \(M \) a module, \(N \) a submodule. Consider:

1. The submodule \(N \) is old-primary.
2. Given a multiplicative subset \(S \), there is \(s \in S \) with \(N^S = (N : (s)) \).
3. Given \(x \in R \), the sequence \((N : (x)) \supset (N : (x^2)) \supset \cdots \) stabilizes.

Prove (1) implies (2), and (2) implies (3). Prove (3) implies (1) if \(N \) is irreducible.

Exercise (18.35). — Let \(R \) be a ring, \(M \) a Noetherian module, \(N \) a submodule, \(m \subseteq \text{rad}(M) \) an ideal. Show \(N = \bigcap_{n \geq 0}(m^n M + N) \).
C. Appendix: Old-primary Submodules

Lemma (18.36). — Let R be a ring, and $Q \subset P \subset M$ modules. Assume Q is old-primary in M. Then $\text{nil}(M/Q) = \text{nil}(P/Q)$ and Q is old-primary in P.

Proof: First, $\text{nil}(M/Q) \subset \text{nil}(P/Q)$ since $\text{Ann}(M/Q) \subset \text{Ann}(P/Q)$ because $P/Q \subset M/Q$. Second, $\text{nil}(P/Q) \subset z\text{.div}(P/Q)$ by (17.11.1). Third, again as $P/Q \subset M/Q$, so $z\text{.div}(P/Q) \subset z\text{.div}(M/Q)$. Fourth, Q is old-primary in M; so $z\text{.div}(M/Q) = \text{nil}(M/Q)$ by (18.3)(1). Thus $\text{nil}(M/Q) = \text{nil}(P/Q) = z\text{.div}(P/Q)$. Finally, by (18.3)(1) again, Q is old-primary in P. □

Proposition (18.37). — Let R be a ring, and $L, N, Q_1, \ldots, Q_n \subset M$ modules with $N = \bigcap_{i=1}^n Q_i$. Set $p_i := \text{nil}(M/Q_i)$.

1. Then $\sqrt{(N : L)} = \bigcap_{i=1}^n \sqrt{(Q_i : L)}$. (2) Then $\text{nil}(M/N) = \bigcap_{i=1}^n p_i$.
2. Assume $N \subset \bigcap_{i=2}^n Q_i$. Given $m \in \bigcap_{i=2}^n Q_i - N$, let $\overline{m} \in M/N$ denote its residue. Then $p_1 \subset \sqrt{\text{Ann}(\overline{m})} \subset z\text{.div}(M/N)$. Further, if Q_1 is old-primary too, then $\text{Ann}(\overline{m})$ is old-primary and $p_1 = \sqrt{\text{Ann}(\overline{m})}.$
3. Let $\overline{m} \in M/N$ be any nonzero element, and p any minimal prime of $\text{Ann}(\overline{m})$. Assume Q_1, \ldots, Q_n are old-primary. Then $p = p_i$ for some i.
4. Assume Q_1, \ldots, Q_n are old-primary. Then $z\text{.div}(M/N) \subset \bigcup_{i=1}^n p_i$.
5. Assume $N \subset \bigcap_{i \neq j} Q_i$ for all j, and Q_1, \ldots, Q_n are old-primary. Then $z\text{.div}(M/N) = \bigcup_{i=1}^n p_i$.

Proof: For (1), recall (4.17)(5) asserts $(N : L) = \bigcap_{i=1}^n (Q_i : L)$. And (3.32)(1) asserts $\sqrt{a \cap b} = \sqrt{a} \cap \sqrt{b}$ for any ideals a, b. Thus (1) holds.

For (2), note $(N : M) = \text{Ann}(M/N)$ and $(Q_i : M) = \text{Ann}(Q_i/N)$ owing to (4.17)(2). Thus (1) with $L := M$ yields (2).

For (3), given $x \in p_1$, say $x^h \in \text{Ann}(M/Q_1)$ with $h \geq 1$. Then $x^h m \in Q_i$ for all i. So $x^h m \in N$. Thus $p_1 \subset \sqrt{\text{Ann}(\overline{m})}$.

Next, given $y \in \sqrt{\text{Ann}(\overline{m})}$, take $k \geq 0$ minimal with $y^k \overline{m} = 0$. But $m \not\in N$. So $k \geq 1$. Set $m' := y^{k-1} m$. Then $m' \not\in N$, but $ym' \in N$. Thus $y \in z\text{.div}(M/N)$. Thus $\sqrt{\text{Ann}(\overline{m})} \subset z\text{.div}(M/N)$.

Further, assume Q_1 is old-primary too. Given $x, y \in R$ with $xy \in \text{Ann}(\overline{m})$ but $y \not\in \text{Ann}(\overline{m})$, then $xym \in Q_1$ but $ym \not\in Q_1$. Hence $x \in p_1$ as Q_1 is old-primary. Thus $\sqrt{\text{Ann}(\overline{m})}$ is old-primary.

Finally, given $z \in \sqrt{\text{Ann}(\overline{m})}$, there’s $l \geq 1$ with $z^l m \in N$. So $z^l m \in Q_1$. But $m \not\in Q_1$, and Q_1 is old-primary. So $z^l \in p_1$. But p_1 is prime by (18.3)(2). So $z \in p_1$. Thus $p_1 \supset \sqrt{\text{Ann}(\overline{m})}$. Thus (3) holds.

For (4), take an $m \in M - N$ that represents \overline{m}. Reorder the Q_i so that $m \not\in Q_i$ if and only if $i \leq h$. Apply (1) with $L := Rm$, and let’s identify the terms. First, $(N : L) = \text{Ann}((N + L)/N)$ and $(Q_i : L) = \text{Ann}((Q_i + L)/Q_i)$ for all i by (4.17)(2).

Note $\text{Ann}((N + L)/N) = \text{Ann}(\overline{m})$. So $\sqrt{(N : L)} \subset p$. Moreover, $Q_i \subset Q_i + L$ for $i \leq h$, and Q_i is old-primary; so $\text{nil}((Q_i + L)/Q_i) = p_i$ by (18.36). But $Q_i + L = Q_i$ for $i > h$; so $\text{nil}((Q_i + L)/Q_i) = R$. So (1) yields $p \supset \bigcap_{i \leq h} p_i$. Thus, as p is prime, (2.25)(1) yields $p \supset p_j$ for some $j \leq h$.

Given $x \in \text{Ann}(\overline{m})$, note $xm \in N \subset Q_j$. But $m \not\in Q_j$ as $j \leq h$. So $x \in p_j$ as Q_j is old-primary. Thus $p_j \supset \text{Ann}(\overline{m})$. But p is a minimal prime of $\text{Ann}(\overline{m})$. Thus $p = p_j$. Thus (4) holds.

In (5), given $x \in z\text{.div}(M/N)$, take $m \in M - N$ with $xm \in N$. Then $m \not\in Q_i$ for
some \(i\). But \(xm \in Q_i\), and \(Q_i\) is old-primary. So \(x \in p_i\). Thus (5) holds.

Finally, (6) follows immediately from (3) and (5). \(\square\)

Lemma (18.38). — Let \(R\) be a ring, \(M\) a module, \(Q\) an old-primary submodule \(m \in M\), and \(\overline{m}\) its residue in \(M/Q\). Set \(p := \text{nil}(M/Q)\). Then

1. If \(m \notin Q\), then \(\text{Ann}(\overline{m})\) is old-primary and \(p = \sqrt{\text{Ann}(\overline{m})}\).
2. Given \(x \in R - p\), then \((Q : \langle x \rangle) = Q\).

Proof: Note (1) is just (18.37) with \(N = Q_1\) and \(n = 1\) as \(\bigcap_{i=2}^{n} Q_i = R\) by convention.

For (2), suppose \(m \in (Q : \langle x \rangle)\). Then \(xm \in Q\). But \(x \notin p\). So \(m \in Q\) as \(Q\) is old-primary. Thus \((Q : \langle x \rangle) \subset Q\). Conversely, \((Q : \langle x \rangle) \supset Q\) by (4.16)(2). Thus (2) holds. \(\square\)

Theorem (18.39). — Let \(R\) be a ring, \(M\) a module. Let \(\mathcal{D}(M)\) or \(\mathcal{D}_R(M)\) denote the set of primes \(p\) each minimal over some \(\text{Ann}(m)\) for \(m \in M\).

1. Then \(z \cdot \text{div}(M) = \bigcup_{p \in \mathcal{D}(M)} p\).
2. Set \(N := \bigcap_{p \in \mathcal{D}(M)} p^{S_p}\). Then \(N = 0\).
3. Let \(S \subset R\) be a multiplicatively closed subset. Then \(\mathcal{D}_S \setminus \mathcal{D}(M) = S^{-1}M = \{ S^{-1}p \mid p \in \mathcal{D}(M) \text{ and } p \cap S = 0 \}\).
4. Assume \(0 = \bigcap_{i=1}^{n} Q_i\) with the \(Q_i\) old-primary. For all \(j\), assume \(\bigcap_{i \neq j} Q_i \neq 0\). Set \(p_i := \text{nil}(M/Q_i)\). Then \(\mathcal{D}(M) = \{ p_i \}\).
5. Then \(\text{Ass}(M) \subset \mathcal{D}(M)\), with equality if \(R\) or \(M\) is Noetherian.

Proof: In (1), given \(x \in z \cdot \text{div}(M)\), there’s \(m \in M\) nonzero with \(x \in \text{Ann}(m)\). As \(\text{Ann}(m)\) is proper, there’s a prime \(p\) minimal over it owing to (2.21) (2.15), and (3.16). Thus \(x \in p \in \mathcal{D}(M)\). Thus \(z \cdot \text{div}(M) \subset \bigcup_{p \in \mathcal{D}(M)} p\).

Conversely, given \(p \in \mathcal{D}(M)\), say \(p\) is minimal over \(\text{Ann}(m)\). Then \(p\) consists of zerodivisors modulo \(\text{Ann}(m)\) by (14.7). So there’s \(y \in R - \text{Ann}(m)\) with \(ym = 0\). Thus \(x \in z \cdot \text{div}(M)\). Thus \(z \cdot \text{div}(M) \supset \bigcup_{p \in \mathcal{D}(M)} p\). Thus (1) holds.

In (2), given \(m \in M\) nonzero, again as \(\text{Ann}(m)\) is proper, there’s a prime \(p\) minimal over it owing to (2.21) (2.15), and (3.16). So there’s no \(s \in S_p\) with \(sm = 0\). So \(p \notin 0^{S_p}\). Thus \(m \notin N\). Thus (2) holds.

In (3), given any \(m \in M\) with \(\text{Ann}_R(m) \cap S = \emptyset\) and any \(s \in S\), it’s easy to show:

\[
\text{Ann}_R(m)^S = \text{Ann}_R(m/1) = \text{Ann}_R(m/s) \supset \text{Ann}_R(m).
\]

Next, given \(p \in \mathcal{D}_R(M)\) with \(p \cap S = \emptyset\), say \(p\) is minimal over \(\text{Ann}_R(m)\). Set \(\mathcal{P} := S^{-1}p\). Then \(\mathcal{P} \supset S^{-1} \cdot \text{Ann}_R(m)\); also \(\mathcal{P}\) is prime by (11.12)(2). Given a prime \(\Omega\) of \(S^{-1}M\) with \(\mathcal{P} \supset \Omega \supset S^{-1} \cdot \text{Ann}_R(m)\), set \(q := \varphi_S^{-1} \Omega\). Then \(q\) is prime, and \(\varphi_S^{-1} \mathcal{P} \supset q \supset \varphi_S^{-1} S^{-1} \cdot \text{Ann}_R(m)\). So \(p \supset q \supset \text{Ann}_R(m)^S\) by (12.12)(3)(a) and (11.11)(3)(a). But \(p\) is minimal over \(\text{Ann}_R(m)^S\) owing to (18.39.1). So \(p = q\). So \(\mathcal{P} = \Omega\) by (11.12)(2). Thus \(\mathcal{P}\) is minimal over \(S^{-1} \cdot \text{Ann}_R(m)\). But (12.17) with \(M := Rm\) yields \(S^{-1} \cdot \text{Ann}_R(m) = \text{Ann}_{S^{-1}R}(m/1)\). Thus \(\mathcal{P} \in \mathcal{D}_{S^{-1}R}(S^{-1}M)\).

Here \(p \mapsto \mathcal{P}\) is injective by (11.12)(2). So we have left to show it’s surjective.

Given \(\mathcal{P} \in \mathcal{D}_{S^{-1}R}(S^{-1}M)\), set \(p := \varphi_S^{-1} \mathcal{P}\). Then \(p\) is prime, \(p \cap S = \emptyset\), and \(\mathcal{P} = S^{-1}p\) by (11.12)(2). Thus we have left to show \(p \in \mathcal{D}(M)\).

Say \(\mathcal{P}\) is minimal over \(\text{Ann}_{S^{-1}R}(m/s)\). But \(\text{Ann}_{S^{-1}R}(m/s) = \text{Ann}_{S^{-1}R}(m/1)\) as 1/s is a unit. Moreover, again \(\text{Ann}_{S^{-1}R}(m/1) = S^{-1} \cdot \text{Ann}_R(m)\) by (12.17) with \(M := Rm\). Thus \(\mathcal{P}\) is minimal over \(S^{-1} \cdot \text{Ann}_R(m)\).

So \(p \supset \varphi_S^{-1} S^{-1} \cdot \text{Ann}_R(m)\). So (12.12)(3)(a) yields \(p \supset \text{Ann}_R(m)\). Now, given
a prime q of R with p ⊃ q ⊃ \text{Ann}_R(m), note that \mathcal{Q} ⊃ S^{-1}q ⊃ S^{-1}\text{Ann}_R(m). But \mathcal{Q} is minimal over S^{-1}\text{Ann}_R(m). So \mathcal{Q} = S^{-1}q. So p = q by (11.12)(2). Thus p is minimal over \text{Ann}_R(m). Thus p ∈ \mathcal{D}(M), as desired. Thus (3) holds.

For (4), given p ∈ \mathcal{D}(M), say p is minimal over \text{Ann}(m). Thus by (18.37)(4), p = p_i for some i. Thus \mathcal{D}(M) ⊂ \{p_i\}.

Conversely, each p_i is of the form \sqrt{\text{Ann}(m)} for some m ≠ 0 by (18.37)(3). Then p_i is minimal over Ann(m); indeed, given a prime q ⊃ \text{Ann}(M/Q_i) and \ x ∈ p_i, there’s n ≥ 1 with x^n ∈ Ann(M/Q_i), so x^n ∈ q, so x ∈ q, and thus q ⊃ p_i. Thus \mathcal{D}(M) ⊃ \{p_i\}. Thus (4) holds.

In (5), given p := \text{Ann}(m) ∈ \text{Ass}(M), note p ∈ \mathcal{D}(M). Thus \text{Ass}(M) ⊂ \mathcal{D}(R)(M).

If M is Noetherian, so is R/Ann(M) by (16.16). Fix p ∈ \mathcal{D}(M). Then, under either Noetherian hypothesis, p is finitely generated modulo \text{Ann}(M). Therefore, p ∈ \text{Ass}(M) if S_p^{-1}p ∈ \text{Ass}(S_p^{-1}M) by (17.8). But S_p^{-1}p ∈ \mathcal{D}_S^{-1}R(S_p^{-1}M) by (3). Thus we may localize at p and so assume R is local and p is its maximal ideal.

Say p is minimal over Ann(m). Then m ≠ 0. Also if M is Noetherian, so is Rm. So under either Noetherian hypothesis, (17.10) gives a q ∈ \text{Ass}(Rm) ⊂ \text{Ass}(M). Then q = \text{Ann}(m') with m' ∈ Rm; so q ⊃ Ann(m). As p is maximal, p ⊃ q. But p is minimal over Ann(m). So p = q. Thus \text{Ass}(M) ⊂ \mathcal{D}_R(M). Thus (5) holds. □

Lemma (18.40). — Let R be a ring, N ⊈ M modules, p be a minimal prime of Ann(M/N). Assume M/N is finitely generated. Recall S_p := R - p, and set Q := N^{S_p}. Then p = nil(M/Q) and Q is old-primary.

Proof: Set a := Ann(M/N). Then p is a minimal prime of a. So pR_p is the only prime of R_p containing aR_p. Thus (3.14) yields pR_p = \sqrt{aR_p}.

Set n := nil(M/Q) and b := Ann(M/Q). Given x ∈ n, there’s n ≥ 1 with x^n ∈ b. So x^n/1 ∈ b_p. But b_p ⊂ Ann(M_p/Q_p) by (12.17)(1). Now, plainly Q_p = N_p. Also M_p/N_p = (M/N)_p. But M/N is finitely generated. So Ann(M/N)_p = a_p again by (12.17)(1). Thus x^n/1 ∈ a_p. So there’s s ∈ S_p with sx^n ∈ a_p. But a ⊂ p, and p is prime. Hence x ∈ p. Thus n ⊂ p.

Conversely, let x ∈ p. Then x/1 ∈ pR_p. Recall pR_p = \sqrt{aR_p}. So there’s n ≥ 1 with x^n/1 ∈ aR_p. So there’s s ∈ S_p with sx^n ∈ a. So sx^nM ⊂ N. Hence x^nM ⊂ Q. So x^n ∈ b. So x ∈ n. Thus p ⊂ n. Thus p = n.

As M/N is finitely generated, V(a) = \text{Supp}(M/N) by (13.4)(3). But p ∈ V(a). So p ∈ \text{Supp}(M/N). So (M/N)_p ≠ 0. So N_p ≠ M_p by (12.13). Thus N^{S_p} ≠ M.

Let x ∈ R and m ∈ M with xm ∈ Q, but m ∉ Q. Recall Q_p = N_p. Hence xm/1 ∈ N_p, but m/1 ∉ N_p. So x/1 ∉ R^{S_p}. Thus x ∈ p. But p = n. Thus Q is old-primary, as desired. □

Proposition (18.41). — Let R be a ring, and M a module with this property:

(L1) Given any submodule N and prime p, there’s x ∈ S_p with xN^{S_p} ⊂ N.
Assume M finitely generated. Let N ⊈ M be a submodule.

(1) Given a minimal prime p of Ann(M/N) and x as in (L1), set Q := N^{S_p} and P := N + xM. Then Q is old-primary, p = nil(M/Q), and P ≅ N = Q ∩ P.

(2) Then N is an intersection of old-primary submodules.

Proof: In (1), note that N ⊂ Q ∩ P. Conversely, given m ∈ Q ∩ P, say that m = n + xm' with n ∈ N and m' ∈ M. But m ∈ Q and N ⊂ Q. So xm' ∈ Q. But Q is old-primary and p = nil(M/Q) by (18.40). Also x ∉ p. So m' ∈ Q. But xQ ⊂ N. So xm' ∈ N. So m ∈ N. Thus N ⊂ Q ∩ P. Thus N = Q ∩ P.
Primary Decomposition \hspace{1cm} (18.42) / (18.44) \hspace{1cm} App: Old-primary Submodules

Finally, \(x \notin p \) and \(p \supset \text{Ann}(M/N) \). So \(xM \not\subseteq N \). Thus \(P \supsetneq N \). Thus (1) holds.

For (2), let \(S \) be the set of pairs \((\Omega, P)\) where \(\Omega \) is a set of old-primary submodules \(Q \) and where \(P \) is a submodule with \(N = (\bigcap_{Q \in \Omega} Q) \cap P \). Order \(S \) by coordinatewise inclusion. Note \(S \) is nonempty as \((\emptyset, N) \in S \). Every linearly ordered subset \((\Omega_\lambda, P_\lambda)\) has an upper bound, namely \((\Omega, P)\), with \(\Omega := \bigcup \Omega_\lambda \), where this union takes place in the set of subsets of \(M \), and with \(P := \bigcup P_\lambda \). Thus Zorn’s Lemma implies \(S \) has a maximal element \((\Omega, P)\).

Suppose \(P \neq M \). Then (1) yields \(P = Q_1 \cap P_1 \) where \(Q_1 \) is old-primary and \(P_1 \) is a submodule with \(P_1 \supsetneq P \). Set \(Q_1 := \Omega \cup \{Q_1\} \). Then \((\Omega_1, P_1) > (\Omega, P)\), a contradiction. Thus \(P = M \) and \(N = \bigcap_{Q \in \Omega} Q \), as required. Thus (2) holds. \(\square \)

Proposition (18.42). — Let \(R \) be a ring, \(M \) a Noetherian module.

(1) Then the condition (L1) of \((18.41)\) holds.

(2) Then each proper submodule \(N \) is a finite intersection of old-primary submodules.

Proof: In (1), given any submodule \(N \) and prime \(p \), as \(M \) is Noetherian, there are \(m_1, \ldots, m_r \in N^{S_p} \) that generate \(N^{S_p} \). For each \(i \), there’s \(x_i \in S_p \) with \(x_i m_i \in N \). Set \(x := \prod x_i \). Then \(x N^{S_p} \subseteq N \). Thus (1) holds.

For (2), form the set \(S \) of all submodules \(P \) of \(M \) for which there are finitely many old-primary submodules \(Q_i \) with \(N = (\bigcap_{Q_i} Q) \cap P \). As \(M \) is Noetherian, there’s a maximal \(P \). If \(P \neq M \), then \((18.41)\)(1) provides a submodule \(P' \supsetneq P \) and an old-primary submodule \(Q = P \cap P' \). So \(N = (\bigcap_{Q_i} Q) \cap P' \), in contradiction to the maximality of \(P \). Thus \(P = M \). Thus (2) holds. \(\square \)

Proposition (18.43). — Let \(R \) be a ring, \(S \) a multiplicatively closed subset, and \(Q \not\subseteq M \) modules. Set \(p := \text{nil}(M/Q) \). Assume \(Q \) is old-primary and \(S \cap p = \emptyset \). Then \(Q^S = Q \) and \(S^{-1}Q \) is old-primary in \(S^{-1}M \) over \(S^{-1}R \).

Proof: Given \(s \in S \) and \(m \in M \) with \(sm \in Q \), note \(m \in Q \), as \(s \notin p \) and \(Q \) is old-primary. Thus \(Q^S \subseteq Q \). But \(Q^S \supseteq Q \) always. Thus \(Q^S = Q \).

Note \(S^{-1}Q \subseteq S^{-1}M \) as \(\varphi^{-1}S^{-1}Q = Q^S \) by (12.12)(3), but \(Q^S = Q \not\subseteq M \).

Given \(x \in R, m \in M \) and \(s, t \in S \) with \(xmn/st \in S^{-1}Q \), but \(m/t \notin S^{-1}Q \), there’s \(u \in S \) with \(xum \in Q \), but \(um \notin Q \). So \(x \in p \) as \(Q \) is old-primary. So \(x/s \in S^{-1}p \).

But \(S^{-1}p \subseteq \text{nil}(S^{-1}M/S^{-1}Q) \) by (12.37). Thus \(S^{-1}Q \) is old-primary. \(\square \)

Proposition (18.44). — Let \(R \) be a ring, \(M \) a finitely generated module. Along with (L1) of (18.41), consider this property of \(M \):

(L2) Given any submodule \(N \subseteq M \) and given any descending chain \(S_1 \supset S_2 \supset \cdots \) of multiplicatively closed subsets, the chain \(N^{S_1} \supset N^{S_2} \supset \cdots \) stabilizes.

If every submodule \(N \subseteq M \) is a finite intersection of old-primary submodules, then (L1) and (L2) hold. Conversely, assume \(N \) isn’t such an intersection and (L1) holds. Then there are submodules \(Q_1, \ldots, Q_m \) and \(N_0, N_1, \ldots, N_m \) such that:

1. Each \(Q_i \) is old-primary. Also \(N_0 := N \), and \(N_{m-1} \not\subseteq M \) if \(m \geq 1 \).
2. If \(m \geq 1 \), then \(N_m \) is maximal among the \(P \) such that \(N = \bigcap_{i=1}^m Q_i \cap P \).
3. For \(i \leq m \), set \(p_i := \text{Ann}(M/Q_i) \). If \(m \geq 1 \), then \(\text{Ann}(M/N_m) \not\subseteq p_i \) for \(i \leq m \).
4. If \(m \geq 1 \), set \(S_m := R - \bigcup_{i \leq m} p_i \). Then \(N^{S_m} = \bigcap_{i=1}^m Q_i \).
5. If \(m \geq 1 \), then \(S_{m-1} \supset S_m \), but \(N^{S_{m-1}} \not\supset N^{S_m} \).

148
Proof: First, say \(N = \bigcap_{i=1}^{n} Q_i \) with old-primary \(Q_i \). Set \(p_i := \text{nil}(M/Q_i) \).

Given a multiplicatively closed subset \(S \), note \(N^S = \bigcap_{i=1}^{n} Q^S_i \) by (12.12)(6)(a). Say \(S \cap p_i = \emptyset \) if and only if \(i \leq n \). Then \(Q^S_i = Q_i \) for \(i \leq n \) by (18.43)(1). But \(Q^S_i = M \) for \(i > n \) by (12.38)(2). Thus \(N^S = \bigcap_{i=1}^{n} Q_i \) and \(N = N^S \cap \bigcup_{i \geq n} Q_i \).

To check (L1), let \(p \) be a prime, and take \(S := \mathcal{S}_p \). Then \(p_i \subset p \) if and only if \(i \leq n \). For each \(i > n \), take \(x_i \in p_i - p \). Say \(n_i \geq 0 \) with \(x_i^{n_i} \in \text{Ann}(M/Q_i) \). Set \(x := \prod x_i^{n_i} \); so \(x = 1 \) if \(n = m \). Then \(x \in \text{Ann}(M/Q_i) \) for each \(i > n \), and \(x \not\in p \).

So \(xM \subset Q_i \), and \(x \in S_p \). Hence \(xN^{S_p} \subset N^{S_p} \cap \bigcap_{i \geq n} Q_i = N \). Thus (L1) holds.

As to (L2), for each \(i \), say \(S_i \cap p_j = \emptyset \) if and only if \(j \leq n_i \). But \(S_1 \supset S_2 \supset \cdots \). So \(n_1 \leq n_2 \leq \cdots \leq m \). So the \(n_i \) stabilize. But \(N^{S_i} = \bigcap_{j=1}^{n_i} Q_j \). Thus (L2) holds.

Conversely, assume \(N \) isn’t a finite intersection of old-primary submodules, and (L1) holds. Let \(N_0 := N \), and given \(n \geq 0 \), say \(Q_1, \ldots, Q_n \) and \(N_0, N_1, \ldots, N_n \) satisfy (1)–(5) for \(m = n \). Let’s find suitable \(Q_{n+1} \) and \(N_{n+1} \).

Note \(N_n \subset M \) by (1). So \(\text{Ann}(M/N_n) \neq R \). So there’s a minimal prime \(p_{n+1} \) of \(\text{Ann}(M/N_n) \), and so an \(x \) as in (L1). Let \(Q_{n+1} := N^{S_{n+1}} \) and \(P := N_n + xM \).

Then \(Q_{n+1} \) is old-primary, \(p_{n+1} = \text{nil}(M/Q_{n+1}) \), and \(P \supseteq N_n = Q_{n+1} \cap P \) by (18.41)(1).

Form the set \(S \) of submodules \(U \) of \(M \) with \(U \supset P \) and \(N = \bigcap_{i=1}^{n+1} Q_i \cap U \). Then \(P \in S \) as \(N = \bigcap_{i=1}^{n+1} Q_i \cap U \). Given a linearly ordered subset \(\{ P_i \} \) of \(S \), set \(U := \bigcup P_i \). If \(u \in \bigcap_{i=1}^{n+1} Q_i \cap U \), then \(u \in \bigcap_{i=1}^{n+1} Q_i \cap P_i \) for some \(i \); so \(u \in S \). So \(U \) is an upper bound. So Zorn’s Lemma yields a maximal element in \(S \), say \(N_{n+1} \).

Note \(N_{n+1} \subset N_n + 1 \), and \(N_{n+1} \subset M \); otherwise, \(N = \bigcap_{i=1}^{n+1} Q_i \) but \(N \) isn’t a finite intersection of old-primary submodules, Thus \(Q_1, \ldots, Q_{n+1} \) and \(N_0, N_1, \ldots, N_{n+1} \) satisfy (1)–(2) for \(m = n + 1 \).

As to (3) for \(m = n + 1 \), note \(\text{Ann}(M/N_n) \subset \text{Ann}(M/N_{n+1}) \) as \(N_n \subset N_{n+1} \). So \(\text{Ann}(M/N_{n+1}) \subset p_i \) for \(i \leq n \) by (3) for \(m = n \). But \(x \in \text{Ann}(M/N_{n+1}) \) as \(N_{n+1} \supset P \). But \(x \not\in p_{n+1} \). So \(\text{Ann}(M/N_{n+1}) \subset p_{n+1} \). Thus (3) holds for \(m = n + 1 \).

As to (4) for \(m = n + 1 \), note \(\text{Ann}(M/N_{n+1}) \subset \bigcup_{i=1}^{n+1} p_i \) by (3) for \(m = n + 1 \) and by Prime Avoidance (3.12). Hence there’s \(y \in \text{Ann}(M/N_{n+1}) - \bigcup_{i=1}^{n+1} p_i \).

Then \(yM \subset N_{n+1} \). Hence \(M = N^{S_{n+1}} \). Now, \(N = \bigcap_{i=1}^{n+1} Q_i \cap N_{n+1} \) by (2) for \(m = n + 1 \). So \(N^{S_{n+1}} = \bigcap_{i=1}^{n+1} Q_i^{S_{n+1}} \). Then \(Q_i^{S_{n+1}} = Q_i \) by (12.12)(6)(a). And \(N^{S_{n+1}} = N^{S_{n+1}} \) by (18.43)(1). Thus (4) holds for \(m = n + 1 \).

As to (5) for \(m = n + 1 \), plainly \(S_n \subset S_{n+1} \). Now, \(N_n \subset N_{n+1} \) by (1) for \(m = n + 1 \). So (2) for \(m = n \) gives \(N \subset \bigcap_{i=1}^{n} Q_i \cap N_{n+1} \). But \(N = \bigcap_{i=1}^{n+1} Q_i \cap N_{n+1} \) by (2) for \(m = n + 1 \). Hence \(\bigcap_{i=1}^{n} Q_i \subset \bigcap_{i=1}^{n+1} Q_i \). So (4) for \(m = n, n + 1 \) implies \(N_{n+1} \not\subset N_{n+1} \). Thus (5) holds for \(m = n + 1 \).

Finally, (5) for all \(m \) implies that the \(S_m \) form a descending chain \(S_1 \supset S_2 \supset \cdots \), but that the chain \(N^{S_1} \supset N^{S_2} \supset \cdots \) doesn’t stabilize, as desired.

\[\square \]

Proposition (18.45). — Let \(R \) be a ring, \(S \) a multiplicatively closed subset, and \(M \) a module. Then the map \(Q \mapsto S^{-1}Q \) is an inclusion-preserving bijection from the old-primary submodules of \(M \) with \(\text{nil}(M/Q) \cap S = \emptyset \) onto the old-primary \(S^{-1}R \)-submodules \(K \) of \(S^{-1}M \). The inverse is \(K \mapsto \varphi_S^{-1}K \).

Proof: The map in question is well defined by (18.43). It is injective because \(S^{-1}Q = Q^{S} \) by (12.12)(3) and \(Q = Q^{S} \) by (18.43). Finally, its surjective with inverse \(K \mapsto \varphi_S^{-1}K \) as \(\varphi_S^{-1}K \) is old-primary by (18.7) and \(S^{-1} \varphi_S^{-1}K = K \) for any submodule \(K \) of \(S^{-1}R \) by (12.12)(2)(b). \[\square \]
Proposition (18.46). — Let \(R \) be a ring, \(S \) a multiplicative subset, and \(M \) a module. Let \(N, Q_1, \ldots, Q_n \) be submodules with \(N = \bigcap_{i=1}^n Q_i \) and the \(Q_i \) old-primary. Set \(p_i := \text{nil}(M/Q_i) \), and assume \(S \cap p_i = \emptyset \) just for \(i \leq t \). Then

1. Then \(S^{-1}N = \bigcap_{i=1}^t S^{-1}Q_i \subseteq S^{-1}M \) and \(NS = \bigcap_{i=1}^t Q_i \subseteq M \).
2. Then the \(S^{-1}Q_i \) are old primary just for \(i \leq t \).
3. Set \(\mathfrak{P}_i := \text{nil}(S^{-1}M/S^{-1}Q_i) \). For \(i \neq j \) and \(j \leq t \), if \(p_i \neq p_j \), then \(\mathfrak{P}_i \neq \mathfrak{P}_j \).
4. For \(j \leq t \), if \(Q_j \not\supseteq \bigcap_{i \leq r, i \neq j} Q_i \), then \(S^{-1}Q_j \not\supseteq \bigcap_{i \leq t, i \neq j} S^{-1}Q_i \).

Proof: In (1), note \(S^{-1}N = \bigcap_{i=1}^t S^{-1}Q_i \) and \(NS = \bigcap_{i=1}^t Q_i \) by (12.12)(6). But \(S^{-1}Q_i = S^{-1}M \) for \(i > t \) and \(Q_i = M \) by (12.23). Thus (1) holds.

Note (2) results immediately from (18.43) and (12.23).

Note (3) holds as \(p_j = \varphi_S^{-1} \mathfrak{P}_j \) for \(j \leq t \) by (18.7).

Note (4) holds as \(Q_j = Q_j^S = \varphi_S^{-1} S^{-1}Q_j \) by (18.43) and (12.12)(3)(a). \(\square \)

Theorem (18.47). — Let \(N, Q_1, \ldots, Q_r \subseteq M \) be modules, \(S \) some set of minimal primes of \(\text{Ann}(M/N) \). Set \(p_i := \text{nil}(M/Q_i) \) and \(S := \bigcap_{p \in S} S_p \). Assume \(p_i \in S \) just for \(i \leq t \), the \(Q_i \) are old-primary, and \(N = \bigcap_{i=1}^t Q_i \). Then \(NS = \bigcap_{i=1}^t Q_i \).

Proof: Fix \(1 \leq i \leq r \). First, assume \(i \leq t \). Then \(p_i \in S \). Thus \(S \cap p_i = \emptyset \).

Next, assume \(t < i \) and \(S \cap p_i = \emptyset \). Then \(p_i \subseteq \bigcup_{p \in S} p \). So (3.12) provides \(p \in S \) with \(p_i \subseteq p \). But \(N \subseteq Q_i \); hence, \(\text{Ann}(M/N) \subseteq \text{Ann}(M/Q_i) \subseteq p_i \). But \(p_i \) is minimal over \(\text{Ann}(M/N) \). Hence \(p_i = p \in S \), contradicting \(t < i \). Thus \(S \cap p_i = \emptyset \).

Finally, (18.46)(1) yields \(NS = \bigcap_{i=1}^t Q_i \). \(\square \)

Proposition (18.48). — Let \(N, Q_1, \ldots, Q_n \subseteq M \) be modules with \(N = \bigcap_{i=1}^n Q_i \). Assume the \(Q_i \) are old-primary. Set \(p_i := \text{nil}(M/Q_i) \) and \(X := \text{Supp}(M/N) \). Then

1. Set \(a := \text{Ann}(M/N) \). Then every minimal prime \(p \) of \(a \) is one of the \(p_i \).
2. If \(M/N \) is finitely generated, then \(X \) has at most \(n \) irreducible components.

Proof: In (1), \(p \supseteq \text{nil}(M/N) \). So (18.37)(2) gives \(p \supset p_i \) for some \(i \). Note \(p_i \supset a \).

Also \(p_i \) is prime by (18.3)(2). So \(p = p_i \) as \(p \) is minimal. Thus (1) holds.

For (2), assume \(M/N \) is finitely generated. So \(\text{Supp}(M/N) = V(a) \) by (13.4)(3).

But \(a \) has at most \(n \) minimal primes by (1). Thus (16.50)(1), (3) yield (2). \(\square \)

D. Appendix: Exercises

Exercise (18.49). — Let \(q \subseteq p \) be primes, \(M \) a module, and \(Q \) an old-primary submodule with \(\text{nil}(M/Q) = q \). Then \(0^S \subseteq Q \).

Exercise (18.50). — Let \(R \) be an absolutely flat ring, \(q \) an old-primary ideal. Show that \(q \) is maximal.

Exercise (18.51). — Let \(X \) be an infinite compact Hausdorff space, \(R \) the ring of continuous \(\mathbb{R} \)-valued functions on \(X \). Using (14.26), show that \(\langle 0 \rangle \) is not a finite intersection of old-primary ideals.

Exercise (18.52). — Let \(R \) be a ring, \(X \) a variable, \(N, Q \subseteq M \) modules, and \(N = \bigcap_{i=1}^n Q_i \), a decomposition. Assume \(Q \) is old-primary. Assume \(N = \bigcap_{i=1}^n Q_i \) is irredundant; that is, (18.13)(1)–(2) hold. Show:

1. Assume \(M \) is finitely generated. Let \(p \) be a minimal prime of \(M \). Then \(p[X] \) is a minimal prime of \(M[X] \).
Primary Decomposition

(18.53) / (18.60)

App: Exercises

(2) Then nil(M[X]/N[X]) = nil(M/N)[X].
(3) Then Q[X] is old-primary in M[X].
(4) Then N[X] = \bigcap_{i=1}^{n} Q_i[X] is irredudant in M[X].

Exercise (18.53). — Let k be a field, P := k[X_1, \ldots, X_n] the polynomial ring. Given i, set p_i := \langle X_1, \ldots, X_i \rangle. Show p_i is prime, and all its powers are p_i -primary.

Exercise (18.54). — Let R be a ring, p a prime, M a module. Set N := 0^{S_p} \subset M. Assume M is finitely generated. Show the following conditions are equivalent:

1. nil(M/N) = p.
2. p is minimal over Ann(M).
3. N is old-primary.

Exercise (18.55). — Let R be a ring, M a module, \Sigma the set of minimal primes of Ann(M). Assume M is finitely generated. Set N := \bigcap_{p \in \Sigma} 0^{S_p}. Show:

1. Given p \in \Sigma, the saturation 0^{S_p} is the smallest old-primary submodule Q with nil(M/Q) = p.
2. Say 0 = \bigcap_{i=1}^{r} Q_i with the Q_i old-primary. For all j, assume Q_j \not\supseteq \bigcap_{i \neq j} Q_i.
 Set p_i := nil(M/Q_i). Then N = 0 if and only if \{p_1, \ldots, p_r\} = \Sigma.
3. If M = R, then N \supseteq nil(R).

Exercise (18.56). — Let R be a ring, N \subsetneq M modules. Assume there exists a decomposition N = \bigcap_{i=1}^{n} Q_i with the Q_i old-primary. Show that there are at most finitely many submodules of M of the form NS where S is a multiplicative subset.

Exercise (18.57). — Let R be a ring, M a module, p \in \text{Supp}(M). Fix m, n \geq 1. Set (pM)^{(n)} := (p^nM)^{S_p} and p^{(n)} := (p^{(n)}). (We call p^{(n)} the nth symbolic power of p.) Assume M is finitely generated. Set N := p^{(m)}(pM)^{(n)}. Show:

1. Then p is the smallest prime containing Ann(M/p^nM).
2. Then (pM)^{(n)} is old-primary, and nil(M/(pM)^{(n)}) = p.
3. Say p^nM = \bigcap_{i=1}^{r} Q_i with Q_i old-primary. Set p_i := nil(M/Q_i). Assume p_i = p if and only if i \leq t. Then (pM)^{(n)} = \bigcap_{i=1}^{t} Q_i.
4. Then (pM)^{(n)} = p^nM if and only if p^nM is old-primary.
5. Let Q be an old-primary submodule with nil(M/Q) = p. Assume p is finitely generated modulo Ann(M/Q). Then Q \supseteq (pM)^{(n)} if n \gg 0.
6. Then NS_p = (pM)^{(m+n)} and p is the smallest prime containing Ann(M/N).
7. Say N = \bigcap_{i=1}^{r} Q_i with all Q_i old-primary. Set p_i := nil(M/Q_i). Assume p_i = p if and only if i \leq t. Then Q_i = (pM)^{(m+n)} for some i.

Exercise (18.58). — Let R be a ring, f \in R, and N, Q_1, \ldots, Q_n \subsetneq M modules with N = \bigcap_{i=1}^{h} Q_i and the Q_i old-primary. Set p_i := nil(M/Q_i) for all i. Assume f \not\in p_i just for i > h. Show \bigcap_{i=1}^{h} Q_i = N_{S_f} = (N: (f^n)) for n \gg 0.

Exercise (18.59). — Let R be a ring, p a prime ideal, M a Noetherian module. Denote the intersection of all p-primary submodules by N. Show N = 0^{S_p}.

Exercise (18.60). — Let R be a ring, M a module, and p_1, \ldots, p_n \in \text{Supp}(M) distinct primes, none minimal in \text{Supp}(M). Assume M is finitely generated, and assume the following condition holds (it does, by (18.59), if M is Noetherian):

(*) For every prime p, the saturation 0^{S_p} is equal to the intersection of all the old-primary submodules Q with nil(M/Q) = p.

1. For 1 \leq i < n, assume p_i \not\supset p_n and let Q_i be an old-primary submodule with nil(M/Q_i) = p_i and \bigcap_{j \neq i} Q_j \not\subseteq Q_i. Set P := \bigcap_{j<n} Q_j. Show P \not\supseteq 0^{S_{p_n}}.
Primary Decomposition \hspace{1cm} (18.61) / (18.66) \hspace{1cm} App: Exercises

(2) In the setup of (1), show there is an old-primary submodule Q_n such that $\text{nil}(M/Q_n) = p_n$ and $P \not\subset Q_n$. Then show $\bigcap_{j \neq i} Q_j \not\subset Q_i$ for all i.

(3) Use (2) and induction on n to find old-primary submodules Q_1, \ldots, Q_n with $\text{nil}(M/Q_i) = p_i$ and $\bigcap_{j \neq i} Q_j \not\subset Q_i$ for all i.

Exercise (18.61). — Let R be a ring, M a module, Q an old-primary submodule. Set $q := \text{Ann}(M/Q)$. Show that q is old-primary.

Exercise (18.62). — Let $\varphi: R \to R'$ be a ring map, and M an R-module. Set $M' := M \otimes_R R'$ and $\alpha := 1_M \otimes \varphi$. Let $N' = \bigcap_{i=1}^t Q'_i$ be a decomposition in M' with each Q'_i old-primary. Set $N := \alpha^{-1}N'$ and $Q_i := \alpha^{-1}Q'_i$. Set $p_i := \text{nil}(M/Q_i)$ and $p'_i := \text{nil}(M'/Q'_i)$. Show:

1. Then $N = \bigcap_{i=1}^t Q_i$ with Q_i old-primary, and $p_i = \varphi^{-1}p'_i$ for all i.
2. Assume R' is flat and $N' = R'\alpha(N)$. Assume $N' \not\subseteq \bigcap_{i \neq j} Q'_i$ for all j, but $N = \bigcap_{i=1}^t Q_i$ with $t < r$. Fix $t < i \leq r$. Then $p_i \subset p_j$ for some $j \leq t$.

Exercise (18.63). — Let R be a ring, a an ideal, M a module, $0 = \bigcap Q_i$ a finite decomposition with Q_i old-primary. Set $p_i = \text{nil}(M/Q_i)$. Show $\Gamma_a(M) = \bigcap_{i \not\subset p_i} Q_i$.

(If $a \subset p_i$ for all i, then $\bigcap_{a \not\subset p_i} Q_i = M$ by convention.)

Exercise (18.64). — Let R be a ring, $N \subset M$ modules. Assume $N = \bigcap_{i=1}^r Q_i$ with Q_i old-primary. Set $p_i := \text{nil}(M/Q_i)$. Show $N = \bigcap_{i=1}^r \varphi^{-1}(N_{p_i})$.

Exercise (18.65). — Let $\varphi: R \to R'$ be a ring map, M' an R'-module, $M \subset M'$ an R-submodule, and $p \in \mathcal{D}_R(M)$. Assume $0 = \bigcap_{i=1}^Q Q'_i$ with the Q'_i old-primary R'-submodules. Show there’s $p' \in \mathcal{D}_R(M')$ with $\varphi^{-1}p' = p$.

Exercise (18.66). — Let R be a ring, M a module, $0 = \bigcap_{i=1}^n Q_i$ an old-primary decomposition in M. Set $p_i := \text{nil}(M/Q_i)$. Assume $\bigcap_{j \neq i} Q_j \neq 0$ for all i, the p_i are distinct, M is finitely generated, and p_i is finitely generated mod $\text{Ann}(M)$. Show:

1. Suppose that p_1 is minimal over $\text{Ann}(M)$. Then $Q_1 = p_1M^{(r)}$ for $r > 0$.
2. Suppose that p_1 is not minimal over $\text{Ann}(M)$. Show that replacing Q_1 by $(p_1M)^{(r)}$ for $r > 0$ gives infinitely many distinct old-primary decompositions of 0, still with $\bigcap_{j \neq i} Q_j \neq 0$ for all i and the p_i distinct. (Thus, when R is Noetherian, then 0 has infinitely many irredundant primary decompositions, which differ only in the first component.)
19. Length

The length of a module is a generalization of the dimension of a vector space. The length is the number of links in a composition series, which is a finite chain of submodules whose successive quotients are simple—that is, their only proper submodules are zero. Our main result is the Jordan–Hölder Theorem: any two composition series do have the same length and even the same successive quotients; further, their annihilators are just the primes in the support of the module, and the module is equal to the product of its localizations at these primes. Hence, the length is finite if and only if the module is both Artinian and Noetherian.

We also prove the Akizuki–Hopkins Theorem: a ring is Artinian if and only if it is Noetherian and every prime is maximal. Consequently, a ring is Artinian if and only if its length is finite; if so, then it is the product of Artinian local rings.

Lastly, we study parameter ideals q of a module M; by definition, $M = qM$ is of finite length, and q lies in the radical $\text{rad}(M)$, which is the intersection of all the maximal ideals containing the annihilator $\text{Ann}(M)$. So if M is the ring R itself, then R/q is a product of Artinian local rings; moreover, we prove that then R/q has at least as many idempotents as R, with equality if and only if R is decomposable.

A. Text

(19.1) (Length). — Let R be a ring, and M a module. We call M simple if it is nonzero and its only proper submodule is 0. We call a chain of submodules,

$$M = M_0 \supset M_1 \supset \cdots \supset M_m = 0 \quad (19.1.1)$$

a composition series of length m if each successive quotient M_{i-1}/M_i is simple.

We define the length $\ell(M)$ or $\ell_R(M)$ to be the infimum of all those lengths:

$$\ell(M) := \inf \{ m \mid M \text{ has a composition series of length } m \}. \quad (19.1.2)$$

By convention, if M has no composition series, then $\ell(M) := \infty$. Further, $\ell(M) = 0$ if and only if $M = 0$.

For example, if R is a field, then M is a vector space and $\ell(M) = \dim_R(M)$. Also, the chains in (17.32) are composition series, but those in (17.31) are not.

Given a submodule $N \subseteq M$, we call $\ell(M/N)$ the colength of N.

Exercise (19.2). — Let R be a ring, M a module. Prove these statements:

1. If M is simple, then any nonzero element $m \in M$ generates M.
2. If M is simple, then $M \cong R/m$ for some maximal ideal m, and if so, then $m = \text{Ann}(M)$.
3. If M has finite length, then M is finitely generated.

Theorem (19.3) (Jordan–Hölder). — Let R be a ring, and M a module with a composition series (19.1.1). Then any chain of submodules can be refined to a composition series, and every composition series is of the same length $\ell(M)$. Also,

$$\text{Supp}(M) = \{ m \in \text{Spec}(R) \mid m = \text{Ann}(M_{i-1}/M_i) \text{ for some } i \};$$

the $m \in \text{Supp}(M)$ are maximal; given i, there is an $m \in \text{Supp}(M)$ such that
First, let \(M' \) be a proper submodule of \(M \). Let’s show that

\[
\ell(M') < \ell(M).
\]

To do so, set \(M'_i := M_i \cap M' \). Then \(M'_{i-1} \cap M_i = M'_i \). So

\[
M'_{i-1}/M'_i = (M'_{i-1} + M_i)/M_i \subset M_{i-1}/M_i.
\]

Since \(M_{i-1}/M_i \) is simple, either \(M'_{i-1}/M'_i = 0 \), or \(M'_{i-1}/M'_i = M_{i-1}/M_i \) and so

\[
M'_{i-1} + M_i = M_{i-1}.
\]

If \((19.3.3)\) holds and if \(M_i \subset M' \), then \(M_{i-1} \subset M' \). Hence, if \((19.3.3)\) holds for all \(i \), then \(M \subset M' \), a contradiction. Therefore, there is an \(i \) with \(M'_{i-1}/M'_i = 0 \).

Now, \(M' = M'_0 \supseteq \cdots \supseteq M'_n = 0 \). Omit \(M'_i \) whenever \(M'_{i-1}/M'_i = 0 \). Thus \(M' \) has a composition series of length strictly less than \(n \). Therefore, \(\ell(M') < m \) for any choice of \((19.1.1)\). Thus \((19.3.2)\) holds.

Next, given a chain \(N_0 \supseteq \cdots \supseteq N_n = 0 \), let’s prove \(n \leq \ell(M) \) by induction on \(\ell(M) \). If \(\ell(M) = 0 \), then \(M = 0 \); so also \(n = 0 \). Assume \(\ell(M) \geq 1 \). If \(n = 0 \), then we’re done. If \(n \geq 1 \), then \(\ell(N_1) < \ell(M) \) by \((19.3.2)\); so \(n - 1 \leq \ell(M) \) by induction. Thus \(n \leq \ell(M) \).

If \(N_{i-1}/N_i \) is not simple, then there is \(N' \) with \(N_{i-1} \supseteq N' \supseteq N_i \). The new chain can have length at most \(\ell(M) \) by the previous paragraph. Repeating, we can refine the given chain into a composition series in at most \(\ell(M) - n \) steps.

Suppose the given chain is a composition series. Then \(\ell(M) \leq n \) by \((19.1.2)\). But we proved \(n \leq \ell(M) \) above. Thus \(n = \ell(M) \), and the first assertion is proved.

To proceed, fix a prime \(p \). Exactness of Localization, \((12.13)\), yields this chain:

\[
M\p = (M_0)\p \supset (M_1)\p \supset \cdots \supset (M_m)\p = 0.
\]

Now, consider a maximal ideal \(m \). If \(p = m \), then \((R/m)\p \simeq R/m\) by \((12.4)\) and \((12.1)\). If \(p \neq m \), then there is \(s \in m - p \); so \((R/m)\p = 0 \).

Set \(m_i := \text{Ann}(M_{i-1}/M_i) \). So \(M_{i-1}/M_i \simeq R/m_i \) and \(m_i \) is maximal by \((19.2)\). Then Exactness of Localization yields \((M_{i-1}/M_i)\p = (M_{i-1})\p/(M_i)\p \). Hence

\[
(M_{i-1})\p/(M_i)\p = \begin{cases} 0, & \text{if } p \neq m_i; \\ M_{i-1}/M_i \simeq R/m_i, & \text{if } p = m_i. \end{cases}
\]

Thus \(\text{Supp}(M) = \{m_1, \ldots, m_m\} \).

If we omit the duplicates from the chain \((19.3.4)\), then we get a composition series from the \((M_i)\p \) with \(M_{i-1}/M_i \simeq R/p \). Thus the number of such \(i \) is \(\ell(M_p) \).

Finally, \((M_m)\p = 0 \) if \(i \neq j \) by the above. So \((13.59)\) yields \((19.3.1)\).

Exercise (19.4). — Let \(R \) be a ring, \(M \) a Noetherian module. Show that the following three conditions are equivalent:

1. \(M \) has finite length;
2. \(\text{Supp}(M) \) consists entirely of maximal ideals;
3. \(\text{Ass}(M) \) consists entirely of maximal ideals.

Show that, if the conditions hold, then \(\text{Ass}(M) \) and \(\text{Supp}(M) \) are equal and finite.
Corollary (19.5). — A module M is both Artinian and Noetherian if and only if M is of finite length.

Proof: Any chain $M \supset N_0 \supset \cdots \supset N_n = 0$ has $n < \ell(M)$ by the Jordan–Hölder Theorem, (19.3). So if $\ell(M) < \infty$, then M satisfies both the dcc and the acc.

Conversely, assume M is both Artinian and Noetherian. Form a chain as follows. Set $M_0 := M$. For $i \geq 1$, if $M_{i-1} \neq 0$, take a maximal $M_i \subseteq M_{i-1}$ by the maxc. By the dcc, this recursion terminates. Then the chain is a composition series. □

Example (19.6). — Any simple \mathbb{Z}-module is finite owing to (19.2)(2). Hence, a \mathbb{Z}-module is of finite length if and only if it is finite. In particular, $\ell(\mathbb{Z}) = \infty$.

Of course, \mathbb{Z} is Noetherian, but not Artinian.

Let $p \in \mathbb{Z}$ be a prime, and set $M := \mathbb{Z}[1/p]/\mathbb{Z}$. Then M is an Artinian \mathbb{Z}-module, but not Noetherian by (16.43). Also, as M is infinite, $\ell(M) = \infty$.

Moreover, for no $m \in \mathbb{Z}$ is $m(1/p^n) \in \mathbb{Z}$ for all n; so $\text{Ann}(M) = \langle 0 \rangle$. Thus $\mathbb{Z}/\text{Ann}(M) = \mathbb{Z}$, so not Artinian, even though M is Artinian.

Theorem (19.7) (Additivity of Length). — Let M be a module, and M' a submodule. Then $\ell(M) = \ell(M') + \ell(M/M')$.

Proof: If M has a composition series, then the Jordan–Hölder Theorem yields another one of the form $M = M_0 \supset \cdots \supset M' \supset \cdots \supset M_m = 0$. The latter yields a pair of composition series: $M/M' = M_0/M' \supset \cdots \supset M'/M' = 0$ and $M' \supset \cdots \supset M_m = 0$. Conversely, every such pair arises from a unique composition series in M through M'. Therefore, $\ell(M) < \infty$ if and only if $\ell(M/M') < \infty$ and $\ell(M') < \infty$; furthermore, if so, then $\ell(M) = \ell(M') + \ell(M/M')$, as desired. □

Theorem (19.8) (Akizuki–Hopkins). — A ring R is Artinian if and only if R is Noetherian and $\text{dim}(R) = 0$. If so, then R has only finitely many primes.

Proof: Assume $\text{dim}(R) = 0$. Then, by definition, every prime is both maximal and minimal. Assume also R is Noetherian.

Then R has finite length by (19.4). Thus R is Artinian by (19.5).

Alternatively, recall that any minimal prime is associated by (17.14), and that $\text{Ass}(R)$ is finite by (17.17). Thus R has only finitely many primes, all maximal.

Set $\mathfrak{n} := \text{nil}(R)$. It is the intersection of all the primes by (3.14), so of finitely many maximal ideals. So \mathfrak{n} is their product by (1.21). But \mathfrak{n} is finitely generated, as R is Noetherian. So $\mathfrak{n}^k = 0$ for $k >> 0$ by (3.38). Thus some (finite) product of maximal ideals is 0. Thus (16.42) implies that R is Artinian.

Conversely, assume R is Artinian. Let m be a minimal (finite) product of maximal ideals of R. Then $m^2 = m$. Let S be the set of ideals a contained in m such that $am \neq 0$. If $S \neq \emptyset$, take $a \in S$ minimal. Then $am^2 = am \neq 0$; hence, $am = a$ by minimality of a. Given $x \in a$ with $xm \neq 0$, note $a = \langle x \rangle$ by minimality of a.

Given any maximal ideal \mathfrak{m}, note $\mathfrak{m}m = m$ by minimality of m. But $\mathfrak{m}m \subset \mathfrak{n}$. Thus $m \subset \text{rad}(R)$. But $a = \langle x \rangle$; so a is finitely generated. So Nakayama’s Lemma yields $a = 0$, a contradiction. So $xm = 0$ for any $x \in a$. Thus $am = 0$, a contradiction. Thus $S = \emptyset$. So $m^2 = 0$. But $m^2 = m$. So $m = 0$. Thus some product of maximal ideals is 0. Thus (16.42) implies that R is Noetherian, and (2.24) implies that R has only finitely many primes, all maximal; in particular, $\text{dim}(R) = 0$. □

Corollary (19.9). — Let R be an Artinian ring, and M a finitely generated module. Then M has finite length, and $\text{Ass}(M)$ and $\text{Supp}(M)$ are equal and finite.
By (19.8) every prime is maximal, so \(\text{Supp}(M)\) consists of maximal ideals. Also \(R\) is Noetherian by (19.8). So \(M\) is Noetherian by (16.15). Hence (19.4) yields the assertions. \(\square\)

Corollary (19.10). — A ring \(R\) is Artinian if and only if \(\ell(R) < \infty\).

Proof: Simply take \(M := R\) in (19.9) and (19.5). \(\square\)

Corollary (19.11). — A ring \(R\) is Artinian if and only if \(R\) is a finite product of Artinian local rings; if so, then \(R = \prod_{m \in \text{Spec}(R)} R_m\).

Proof: A finite product of rings is Artinian if and only if each factor is Artinian by (16.22)(3). If \(R\) is Artinian, then \(\ell(R) < \infty\) by (19.10); whence, \(R = \prod_{m} R_m\) by the Jordan–Holder Theorem. Thus the assertion holds. \(\square\)

Definition (19.12). — Let \(R\) be a ring, \(q\) an ideal, \(M\) a nonzero module. If \(q \subseteq \text{rad}(M)\) and \(\ell(M/qM) < \infty\), call \(q\) a parameter ideal of \(M\).

Lemma (19.13). — Let \(R\) be a ring, \(q\) an ideal, \(M\) a nonzero module. Assume that \(M\) is Noetherian or just that \(M\) is finitely generated and \(M/qM\) is Noetherian. Set \(m := \text{rad}(M)\) and \(q' := \text{Ann}(M/qM)\). Then these conditions are equivalent:

1. \(q\) is a parameter ideal.
2. \(q \subseteq m\), and \(\text{Supp}(M/qM)\) consists of finitely many maximal ideals.
3. \(q \subseteq m\), and \(\text{V}(q')\) consists of finitely many maximal ideals.
4. \(M\) is semilocal, and \(\text{V}(q') = \text{V}(m)\).
5. \(M\) is semilocal, and \(\sqrt{q'} = m\).
6. \(M\) is semilocal, and \(m^n \subseteq q' \subseteq m\) for some \(n \geq 1\).

Proof: First, (1) and (2) are equivalent by (19.4), as \(M/qM\) is Noetherian.

Next, (2) and (3) are equivalent, as \(\text{V}(q') = \text{Supp}(M/qM)\) by (13.4)(3).

Assume (3). As \(M\) is finitely generated, \(\text{V}(q') = \text{V}((q + \text{Ann}(M))\) by (13.46)(2). But \(q\), \(\text{Ann}(M) \subseteq m\). So \(\text{V}(q + \text{Ann}(M)) \subseteq \text{V}(m)\). Thus \(\text{V}(q') \subseteq \text{V}(m)\).

Conversely, given \(n \subseteq \text{V}(q')\), note \(n \supseteq q' \supseteq \text{Ann}(M)\). But \(n\) is maximal by (3). So \(n \supseteq m\). Thus \(\text{V}(q') \subseteq \text{V}(m)\). Thus \(\text{V}(q') = \text{V}(m)\). So \(\text{V}(m)\) consists of finitely many maximal ideals by (3). Thus \(M\) is semilocal. Thus (4) holds.

To see that (4) and (5) are equivalent, note that \(\text{V}(q') = \text{V}(m)\) if and only if \(\sqrt{q'} = \sqrt{m}\) by (13.1). But plainly \(\sqrt{m} = m\). Thus (4) and (5) are equivalent.

Let’s see that (4) and (5) together imply (3). First, \(\sqrt{q'} = m\) by (5). But plainly \(q \subseteq q' \subseteq \sqrt{q'}\). Thus \(q \subseteq m\).

By (4) or (5), \(M\) is semilocal; say the maximal ideals containing \(\text{Ann}(M)\) are \(m_1, \ldots, m_n\). So \(m := \bigcap m_i\). Given \(p \in \text{V}(m)\), note \(p \supseteq m \supseteq \prod m_i\). But \(p\) is prime. So \(p \supseteq m_{i_0}\) for some \(i_0\). But \(m_{i_0}\) is maximal. So \(p = m_{i_0}\). Thus \(\text{V}(m) = \{m_i\}\). But \(\text{V}(q') = \text{V}(m)\) by (4). So \(\text{V}(q')\) consists of \(m_1, \ldots, m_n\). Thus (3) holds.

Assume (5). Then \(q' \subseteq \sqrt{q'} = m\). Further, as \(M/qM\) is Noetherian, so is \(R/q'\) by (16.16). So \(m/q'\) is finitely generated. But \(m/q' = \sqrt{q}\). So \((m/q')^n = 0\) for some \(n \geq 1\) by (3.38). So \(m^n \subseteq q'\). Thus (6) holds.

Finally, assume (6). Then \(\sqrt{q'} = \sqrt{m}\). But \(\sqrt{m} = m\). Thus (5) holds. \(\square\)

Proposition (19.14). — Let \(R\) be a ring, and \(M\) a nonzero Noetherian module. Set \(m := \text{rad}(M)\). If \(M\) has a parameter ideal, then \(M\) is semilocal; conversely, if \(M\) is semilocal, then \(m^n\) is a parameter ideal for any \(n \geq 1\).

Moreover, if \(R\) has a parameter ideal \(q\), then \(q\) is a parameter ideal of \(M\) too.
Theorem (19.15). — Let R be a ring having a parameter ideal q. Let $\kappa: R \to R/q$ be the quotient map, and $\{m_i\}$ the set of maximal ideals.

1. Then R is semilocal, and the m_i are precisely the primes containing q.
2. Then R/q is decomposable; in fact, $R/q = \prod (R/q)_{m_i}$.
3. Then $\text{Idem}(\kappa)$ is injective; it’s bijective if and only if R is decomposable.

Proof: For (1), note $q = \text{Ann}(R/q)$ by (4.7). And R/q is Noetherian by (19.5) as $\ell(R/q)$ is finite. Thus (19.13)(1)\Rightarrow(3), (4) gives (1).

For (2), note R/q is Artinian by (19.10). Thus (1) and (19.11) give (2).

For (3), note $q \subseteq \text{rad}(R)$. Thus (3.3) implies that $\text{Idem}(\kappa)$ is injective.

Next, for all i, set $R_i := R_{m_i}$. Then (2) gives $R/q = \prod (R/q)_{m_i} = \prod R_i/rR_i$.

Assume R is decomposable. Then $R = \prod R_i$ by (11.18). Set $e_i := (\delta_{ij}) \in R$ and $\tau_i := (\delta_{ij}) \in R/q$ with δ_{ij} the Kronecker delta. Then each e_i reduces to τ_i.

Given an idempotent $\tau \in R/q$, note that, for all i, its projection $\tau_i \in R_i/qR_i$ is equal to either 1 or 0 by (3.22). So τ is a sum of certain of the τ_i. Form the corresponding sum in R. Its residue is τ. Thus $\text{Idem}(\kappa)$ is surjective.

Conversely, assume $\text{Idem}(\kappa)$ is surjective. Set $\bar{\tau}_i := (\delta_{ij}) \in R/q$. Then plainly $R_i/qR_i = (R/q)\bar{\tau}_i$. As $\text{Idem}(\kappa)$ is surjective, each τ_i lifts to some idempotent e_i in R. Then $\sum e_i$ and $e_j e_k$ for all j, k are idempotents. But $\sum \tau_i = 1$, and $\tau_j \tau_k = 0$ for $j \neq k$. Also, $\text{Idem}(\kappa)$ is injective. So $\sum e_i = 1$, and $e_j e_k = 0$ for $j \neq k$. Thus by induction, (1.11) yields $R = \prod R e_i$.

As e_i reduces τ_i, then $Re_i/qRe_i = (R/q)\bar{\tau}_i$. So $Re_i/qRe_i = R_i/qR_i$. But R_i/qR_i is local. So Re_i is local. Thus R is decomposable. Thus (3) holds. \qed

B. Exercises

Exercise (19.16). — Let R be a ring, M a module, Q a p-primary submodule, and $Q_1 \supseteq \cdots \supseteq Q_m := Q$ a chain of p-primary submodules. Set $M' := M/Q$. Assume that M' is Noetherian. Show that $m \leq \ell(M'_p) < \infty$, and that $m = \ell(M'_p)$ if and only if m is maximal.

Exercise (19.17). — Let k be a field, R an algebra-finite extension. Prove that R is Artinian if and only if R is a finite-dimensional k-vector space.

Exercise (19.18). — Given a prime $p \in \mathbb{Z}$, find all four different Artinian rings R with p^2 elements. Which R are \mathbb{F}_p-algebras?

Exercise (19.19). — Let k be a field, A a local k-algebra. Assume the map from k to the residue field is bijective. Given an A-module M, prove $\ell(M) = \dim_k(M)$.

Exercise (19.20). — Prove these conditions on a Noetherian ring R equivalent:

1. R is Artinian. (2) $\text{Spec}(R)$ is discrete and finite. (3) $\text{Spec}(R)$ is discrete.

Exercise (19.21). — Let $\varphi: R \to R'$ be a map of rings. Assume R' is algebra finite over R. Given $p \in \text{Spec}(R)$, set $k := \text{Frac}(R/p)$. Consider these statements:
(1) The fibers of $\text{Spec}(\varphi)$ are finite.
(2) The fibers of $\text{Spec}(\varphi)$ are discrete.
(3) All $R' \otimes_R k$ are finite-dimensional k-vector spaces.
(4) R' is module finite over R.

Show (1), (2), and (3) are equivalent and follow from (4). Show (4) holds if R' is integral over R. If R' is integral, but not algebra finite, and if (1) holds, does (4)?

Exercise (19.22). — Let A be a local ring, \mathfrak{m} its maximal ideal, B a module-finite algebra, and $\{\mathfrak{n}_i\}$ its set of maximal ideals. Then the \mathfrak{n}_i are precisely the primes lying over \mathfrak{m}, and $\mathfrak{m}B$ is a parameter ideal of B.

Exercise (19.23). — Let R be an Artinian ring. Show that $\text{rad}(R)$ is nilpotent.

Exercise (19.24). — Find another solution to (18.66)(1). Begin by setting $p := p_1$ and $A := (R/\text{Ann}(M))_p$ and showing A is Artinian.

Exercise (19.25). — Let R be a ring, \mathfrak{p} a prime ideal, and R' a module-finite R-algebra. Show that R' has only finitely many primes \mathfrak{p}' over \mathfrak{p}, as follows: reduce to the case that R is a field by localizing at \mathfrak{p} and passing to the residue rings.

Exercise (19.26). — Let R be a ring, and M a Noetherian module. Show the following four conditions are equivalent:

1. M has finite length;
2. M is annihilated by some finite product of maximal ideals $\prod \mathfrak{m}_i$;
3. every prime \mathfrak{p} containing $\text{Ann}(M)$ is maximal;
4. $R/\text{Ann}(M)$ is Artinian.

Exercise (19.27). — (1) Prove that a finite product rings $R := \prod_{i=1}^n R_i$ is a PIR if and only if each R_i is a PIR.

(2) Using (18.27), prove that a PIR R is uniquely a finite product of PIDs and Artinian local PIRs.

Exercise (19.28). — Let $A \to B$ be a local homomorphism of Artinian rings, N an A-flat B-module, \mathfrak{m} the maximal ideal of A. Show $\ell_B(N) = \ell_A(A) \cdot \ell_B(N/\mathfrak{m}N)$.

Exercise (19.29). — Let R be a ring, and \mathfrak{a} an ideal. Assume $\mathfrak{a} \subseteq \text{nil}(R)$. Set $R' := R/\mathfrak{a}$. Use (19.15)(3) to give a second proof (compare (13.23)) that R is decomposable if and only if R' is.
20. Hilbert Functions

The Hilbert Function of a graded module lists the lengths of its components. The corresponding generating function is called the Hilbert Series. We prove the Hilbert–Serre Theorem: under suitable hypotheses, this series is a rational function with poles just at 0 and 1. Hence these lengths are eventually given by a polynomial, called the Hilbert Polynomial.

Passing to an arbitrary module, we study its Hilbert–Samuel Series, the generating function of the colengths of the submodules in a filtration, which is a descending chain of submodules \(F^nM \). We derive Samuel’s Theorem: this series is a similar rational function under suitable hypotheses. Hence these colengths are eventually given by a polynomial, called the Hilbert–Samuel Polynomial. In the next chapter, we relate its degree to the dimension of \(M \). Here we consider its normalized leading coefficient, called the multiplicity of \(M \).

Lastly, we relate the Hilbert polynomial of a Noetherian module \(M \) to the sum of the polynomials of a submodule \(N \) and their quotient \(M/N \) in the case of a stable \(q \)-filtration for an ideal \(q \); that is, \(qF^nM \subset qF^{n+1} \) for all \(n \), with equality for \(n \gg 0 \). Our key is the Artin–Rees Lemma: if the \(F^nM \) form a stable \(q \)-filtration of \(M \), then the intersections \(N \cap F^nM \) form a stable \(q \)-filtration of \(N \).

In a brief appendix, we study further one notion that arose: homogeneity.

A. Text

(20.1) (Graded rings and modules). — We call a ring \(R \) graded if there are additive subgroups \(R_n \) for \(n \geq 0 \) with \(R = \bigoplus R_n \) and \(R_mR_n \subset R_{m+n} \) for all \(m, n \). For example, a polynomial ring \(R \) with coefficient ring \(R_0 \) is graded if \(R_n \) is the \(R_0 \)-submodule generated by the monomials of (total) degree \(n \).

In general, \(R_0 \) is a subring. Obviously, \(R_0 \) is closed under addition and under multiplication, but we must check \(1 \in R_0 \). So say \(1 = \sum x_m \) with \(x_m \in R_m \). Given \(z \in R \), say \(z = \sum z_n \) with \(z_n \in R_n \). Fix \(n \). Then \(z_n = 1 \cdot z_n = \sum x_m z_n \) with \(x_mz_n \in R_{m+n} \). So \(\sum_{m>0} x_mz_n = z_n - x_0z_n \in R_n \). Hence \(x_0z_n = 0 \) for \(m > 0 \). But \(n \) is arbitrary. So \(x_0z = 0 \) for \(m > 0 \). Thus \(1 = x_0 \in R_0 \).

We call an \(R \)-module \(M \) (compatibly) graded if there are additive subgroups \(M_n \) for \(n \in \mathbb{Z} \) with \(M = \bigoplus M_n \) and \(R_mM_n \subset M_{m+n} \) for all \(m, n \). We call \(M_n \) the \(n \)th homogeneous component; we say its elements are homogeneous. Obviously, \(M_n \) is an \(R_0 \)-module.

Given \(m \in \mathbb{Z} \), set \(M(m) := \bigoplus M_{m+n} \). Then \(M(m) \) is another graded module; its \(m \)th homogeneous component \(M(m)_n \) is \(M_{m+n} \). Thus \(M(m) \) is obtained from \(M \) by shifting \(m \) places to the left.

Lemma (20.2). — Let \(R = \bigoplus R_n \) be a graded ring, and \(M = \bigoplus M_n \) a graded \(R \)-module. If \(R \) is a finitely generated \(R_0 \)-algebra and if \(M \) is a finitely generated \(R \)-module, then each \(M_n \) is a finitely generated \(R_0 \)-module and \(M_n = 0 \) if \(n \ll 0 \).

Proof: Say \(R = R_0[x_1, \ldots, x_r] \). If \(x_i = \sum_j x_{ij} \) with \(x_{ij} \in R_j \), then replace the \(x_i \) by the nonzero \(x_{ij} \). Similarly, say \(M \) is generated over \(R \) by \(m_1, \ldots, m_r \) with \(m_i \in M_i \). Then any \(m \in M_n \) is a sum \(m = \sum f_im_i \) where \(f_i \in R \). Say \(f_i = \sum f_{ij} \)}
with \(f_{ij} \in R_i \), and replace \(f_i \) by \(f_{ik} \) with \(k := n - l_i \) or by \(0 \) if \(n < l_i \). Then \(f_i \) is an \(R_0 \)-linear combination of monomials \(x_1^{i_1} \cdots x_r^{i_r} \in R_k \). Thus, \(m \) is an \(R_0 \)-linear combination of the products \(x_1^{i_1} \cdots x_r^{i_r} m_i \in M_n \), and \(M_n = 0 \) if \(m < \min \{ l_i \} \). \(\square \)

Example (20.4). Let \(R = \bigoplus R_n \) be a graded ring, \(M = \bigoplus M_n \) a graded \(R \)-module. Assume \(R_0 \) is Artinian, \(R \) is algebra finite over \(R_0 \), and \(M \) is finitely generated over \(R \). Then each \(M_n \) is a finitely generated \(R_0 \)-module by (20.2), so is of finite length \(\ell(M_n) \) by (19.9). We call \(n \mapsto \ell(M_n) \) the \textbf{Hilbert Function} of \(M \) and its generating function

\[
H(M, t) := \sum_{n \in \mathbb{Z}} \ell(M_n) t^n
\]

the \textbf{Hilbert Series} of \(M \). This series is a rational function by (20.5) below.

Given any \(k \in \mathbb{Z} \), recall \(M(-k)_n := M_{n-k} \) for all \(n \). Hence,

\[
H(M(-k), t) = t^k H(M, t). \quad (20.3.1)
\]

If \(R = R_0[x_1, \ldots, x_r] \) with \(x_i \in R_1 \), then by (20.6) below, the Hilbert Function is, for \(n > 0 \), a polynomial \(h(M, n) \), called the \textbf{Hilbert Polynomial} of \(M \).

Theorem (20.5) (Hilbert–Serre). Let \(R = \bigoplus R_n \) be a graded ring, \(M = \bigoplus M_n \) a finitely generated graded \(R \)-module. Assume \(R_0 \) is Artinian, \(R \) is algebra finite over \(R_0 \), and \(M_n = 0 \) for \(n < n_0 \) but \(M_{n_0} \neq 0 \). Then

\[
H(M, t) = \sum_{n \geq 0} \ell(M_0) {{r-1+n} \choose r-1} t^n = \sum_{n \geq 0} \ell(M_0) (-1)^n \frac{t^n}{n!} = \ell(M_0)/(1-t)^r.
\]

This series is a rational function by (20.5) below, the Hilbert Function is, for \(n > 0 \), a polynomial of degree \(r - 1 \).

Formal manipulation yields \({{r-1+n} \choose r-1} = (-1)^n \frac{(r-1)_n}{n!} \). Therefore, Newton’s binomial theorem for negative exponents yields this computation for the Hilbert Series:

\[
H(M, t) = \frac{f(t)}{t^{-n_0} (1-t^{k_1}) \cdots (1-t^{k_r})}
\]

with \(f(t) \in \mathbb{Z}[t] \) and \(f(0) \neq 0 \) and with \(k_i \geq 1 \).

Proof: Say \(R = R_0[x_1, \ldots, x_r] \) with \(x_i \in R_{k_i} \) and \(k_i \geq 1 \). First, assume \(r = 0 \); so \(R = R_0 \). Say \(M \) is generated by \(m_i \), \(i \in I \), \(m_i \in M_{l_i} \) and \(l_i \leq l_{i+1} \). Then \(n_0 = l_1 \) and \(M_n = 0 \) for \(n > l_s \). Thus \(H(M, t) = t^{n_0} f(t) \) with \(f(t) \in \mathbb{Z}[t] \) and \(f(0) \neq 0 \).

Assume \(r \geq 1 \). Form this exact sequence, where \(\mu_{x_1} \) means multiplication by \(x_1 \):

\[
0 \to K \to M(-k_1) \xrightarrow{\mu_{x_1}} M \to L \to 0.
\]

As \(x_1 \in R_{k_1} \), the grading on \(M \) induces a grading on \(K \) and on \(L \). Also, \(K_n = 0 \) for \(n \leq n_0 \) as \(k_1 \geq 1 \). So \(L_n = 0 \) for \(n < n_0 \), but \(L_{n_0} \neq 0 \).

As \(R_0 \) is Artinian, \(R_0 \) is Noetherian by (19.8). So, as \(R \) is a finitely generated \(R_0 \)-algebra, \(R \) is Noetherian by (16.10). As \(M \) is a finitely generated \(R \)-module, \(M(-k_1) \) is too. Thus, by (16.13) (2), both \(K \) and \(L \) are too.

Set \(R' := R_0[x_2, \ldots, x_r] \). Note \(x_1 \) acts as \(0 \) on \(K \) and \(L \). So they are finitely generated \(R' \)-modules. Therefore, by induction on \(r \), both \(H(K, t) \) and \(H(L, t) \) can be written in the desired form.

Note \(H(M, t) - H(M(-k_1), t) = H(L, t) - H(K, t) \) by (19.7). Apply (20.3.1)
and the previous paragraph. Thus \((1 - t^{k_1})H(M, t) = f(t)/t^{n_0}(1 - t^{k_2}) \cdots (1 - t^{k_r})\) with \(f(t) \in \mathbb{Z}[t]\) and \(f(0) \neq 0\) and with \(k_i \geq 1\).

Corollary (20.6). Under the conditions of (20.5), say \(R = R_0[x_1, \ldots, x_r]\) with \(x_i \in R_1\). Then \(H(M, t)\) can be written uniquely in the form

\[
H(M, t) = e(t)/t^{n_0}(1 - t)^d
\]

(20.6.1)

with \(e(t) \in \mathbb{Z}[t]\) and \(e(0), e(1) \neq 0\) and \(r \geq d \geq 0\). Also, there is a polynomial \(h(M, n) \in \mathbb{Q}[n]\) of degree \(d - 1\) and leading coefficient \(e(1)/(d - 1)!\) such that

\[
\ell(M_n) = h(M, n)
\]

for \(n \geq \deg e(t) + n_0\). (20.6.2)

Proof: We may take \(k_i = 1\) for all \(i\) in the proof of (20.5). So \(H(M, t)\) has the form \(e(t)(1 - t)^s/t^{n_0}(1 - t)^r\) with \(e(0) \neq 0\) and \(e(1) \neq 0\). Set \(d := r - s\). Then \(d \geq 0\) as \(H(M, 1) = \sum \ell(M_n) > 0\) as \(M_{n_0} \neq 0\). Thus \(H(M, t)\) has the asserted form. This form is unique owing to the uniqueness of factorization of polynomials.

Say \(e(t) = \sum e_i t^i\) with \(e_i \neq 0\). Now, \((1 - t)^{-d} = \sum (-d)_n (-t)^n = \sum (d - 1 + n) t^n\). So \(\ell(M_n) = \sum_{i=0}^h e_i (d-1+n_i)\) for \(n - n_0 \geq h\). But \((d - 1 + n_i)\) is a polynomial in \(n\) of degree \(d - 1\) and leading coefficient \(1/(d - 1)!\). Thus (20.6.2) holds. \(\Box\)

Example (20.7) (Filtrations). Let \(R\) be an arbitrary ring, \(q\) an ideal, and \(M\) a module. A (descending) filtration \(F^*M\) of \(M\) is an infinite descending chain of submodules:

\[
\cdots \supset F^n M \supset F^{n+1} M \supset \cdots
\]

Call it a \(q\)-filtration if \(qF^n M \subseteq F^{n+1} M\) for all \(n\), and a stable \(q\)-filtration if also \(M = F^n M\) for \(n \leq 0\) and \(qF^n M = F^{n+1} M\) for \(n > 0\). This condition means that there are \(\mu\) and \(\nu\) with \(M = F^\nu M\) and \(q^\mu F^\nu M = F^{\nu+\mu} M\) for \(n > 0\).

For example, set \(q^n := R\) for \(n \leq 0\) and \(F^n M := q^n M\) for all \(n\). Thus we get a stable \(q\)-filtration, called the \(q\)-adic filtration.

The \(q\)-adic filtration of \(R\) yields two canonical graded rings:

\[
\mathcal{R}(q) := \bigoplus_{n \in \mathbb{Z}} q^n \quad \text{and} \quad G_q(R) : G(R) := \mathcal{R}(q)/\left(\mathcal{R}(q)(-1)\right).
\]

(20.7.1)

They’re called the extended Rees Algebra and associated graded ring of \(q\). Notice that \(G(R) = \bigoplus_{n \geq 0} G_n(R)\) where \(G_n(R) := q^n/q^{n+1}\).

Say \(x_1, \ldots, x_r \in \mathfrak{q}\) generate. In \(\mathcal{R}(q)\), regard the \(x_i\) as in \(q^1\) and 1 in \(R\) as in \(q^{-1}\).

Those \(r + 1\) elements generate \(\mathcal{R}(q)\) as an \(R\)-algebra. Thus if \(q\) is finitely generated, then \(\mathcal{R}(q)\) is \(R\)-algebra finite, and \(G_q(R)\) is \((R,q)\)-algebra finite.

As each \(F^n M\) is an \(R\)-module, so are the direct sums

\[
\mathcal{R}(F^*M) := \bigoplus_{n \in \mathbb{Z}} F^n M \quad \text{and} \quad G(M) := \mathcal{R}(F^*M)/(\mathcal{R}(F^*M)(-1)).
\]

(20.7.2)

Notice that \(G(M) = \bigoplus_{n \in \mathbb{Z}} G_n(M)\) where \(G_n(M) := q^n M/q^{n+1} M\).

If \(F^*M\) is a \(q\)-filtration, then \(\mathcal{R}(F^*M)\) is a graded \(\mathcal{R}(F^*R)\)-module, and \(G(M)\) is a graded \(G(R)\)-module. If \(F^*M\) is the \(q\)-adic filtration, set \(G_q(M) := G(M)\).

Given \(m \in \mathbb{Z}\), let \(M[m]\) denote \(M\) with the filtration \(F^*M\) reindexed by shifting it \(m\) places to the left; that is, \(F^n[M[m]] := F^{n+m} M\) for all \(n\). Then

\[
\mathcal{R}(F^*M[m]) = \mathcal{R}(F^*M)(m) \quad \text{and} \quad G(M[m]) = (G(M))(m).
\]

If the quotients \(M/F^n M\) have finite length, call \(n \mapsto \ell(M/F^n M)\) the Hilbert–Samuel Function, and call the generating function

\[
P(F^*M, t) := \sum_{n \geq 0} \ell(M/F^n M) t^n
\]
the **Hilbert–Samuel Series**. If the function \(n \mapsto \ell(M/F^n M) \) is, for \(n \gg 0 \), a polynomial \(p(F^* M, n) \), then call it the **Hilbert–Samuel Polynomial**. If the filtration is the \(q \)-adic filtration, we also denote \(P(F^* M, t) \), and \(p(F^* M, n) \) by \(P_q(M, t) \) and \(p_q(M, n) \).

Lemma (20.8). — Let \(R \) be a ring, \(q \) an ideal, \(M \) a module, \(F^* M \) a \(q \)-filtration. If \(\mathcal{R}(F^* M) \) is finitely generated over \(\mathcal{R}(q) \), then \(G(M) \) is finitely generated over \(G(R) \). Moreover, if \(\mathcal{R}(F^* M) \) is finitely generated over \(\mathcal{R}(q) \) and \(\bigcup F^n M = M \), then \(F^* M \) is stable; the converse holds if \(M \) is Noetherian.

Proof: First, assume \(\mathcal{R}(F^* M) \) is finitely generated over \(\mathcal{R}(q) \).

By (20.7.2), \(G(M) \) is a quotient of \(\mathcal{R}(F^* M) \). So \(G(M) \) too is finitely generated over \(\mathcal{R}(q) \). But \(G(R) \) is a quotient of \(\mathcal{R}(q) \) by (20.7.1). Thus \(G(M) \) is finitely generated over \(G(R) \), as desired.

Say \(m_1, \ldots, m_s \in \mathcal{R}(F^* M) \) generate over \(\mathcal{R}(q) \). Write \(m_i = \sum_{j=\mu}^{\nu} m_{ij} \) with \(m_{ij} \in F^j M \) for some uniform \(\mu \leq \nu \). Given any \(n \) and any \(m \in F^n M \), note \(m = \sum f_{ij} m_{ij} \) with \(f_{ij} \in \mathcal{R}(n-j) := q^{n-j} \). Hence, if \(n \leq \mu \), then \(m \in F^j M \), and so \(F^n M \subset F^j M \). Thus, if \(\bigcup F^n M = M \), then \(F^j M = M \). But, if \(n \geq \nu \), then \(f_{ij} \in q^{n-j} = q^{n-\nu}q^{\nu-j} \), and so \(q^{n-\nu}F^j M = F^n M \). Thus \(F^* M \) is stable.

Conversely, assume \(F^* M \) is stable: say \(F^n M = M \) and \(q^n F^* M = F^{n+1} M \) for \(n > 0 \). Then \(\bigcup F^n M = M \). Further, \(F^n M, \ldots, F^* M \) generate \(\mathcal{R}(F^* M) \) over \(\mathcal{R}(q) \). Assume \(M \) is Noetherian too. Then \(F^n M \subset M \) is finitely generated over \(R \) for all \(n \). Thus \(\mathcal{R}(F^* M) \) is finitely generated over \(\mathcal{R}(q) \), as desired. \(\square \)

Theorem (20.9) (Samuel’s). — Let \(R \) be a ring, \(q \) an ideal, and \(M \) a module with a stable \(q \)-filtration \(F^* M \). Assume \(M \) is Noetherian, and \(\ell(M/qM) < \infty \). Then \(\ell(F^n M/F^{n+1} M) < \infty \) and \(\ell(M/F^n M) < \infty \) for every \(n \geq 0 \); further, \(P(F^* M, t) = H(G(M), t) t/(1 - t) \). \hfill (20.9.1)

Proof: Set \(a := \text{Ann}(M) \). Set \(R' := R/a \) and \(q' := (a+q)/a \). As \(M \) is Noetherian, so is \(R' \) by (16.16). So \(R'/q' \) is Noetherian too. Also, \(M \) can be viewed as a finitely generated \(R' \)-module, and \(F^* M \) as a stable \(q' \)-filtration. So \(G(R') \) is generated as an \(R'/q' \)-algebra by finitely many elements of degree 1, and \(G(M) \) is a finitely generated \(G(R') \)-module by (20.8) applied with \(R' \). Therefore, each \(F^n M/F^{n+1} M \) is finitely generated over \(R'/q' \) by (20.2) or by the proof of (20.8).

However, \(V(a + q) = \text{Supp}(M/qM) \) by (13.46)(2). Hence \(V(a + q) \) consists entirely of maximal ideals, because \(\text{Supp}(M/qM) \) does by (19.4) as \(\ell(M/qM) < \infty \). Thus \(\dim(R'/q') = 0 \). But \(R'/q' \) is Noetherian. Therefore, \(R'/q' \) is Artinian by the Akizuki–Hopkins Theorem, (19.8).

Hence \(\ell(F^n M/F^{n+1} M) < \infty \) for every \(n \) by (19.9). Form the exact sequence \(0 \rightarrow F^n M/F^{n+1} M \rightarrow M/F^{n+1} M \rightarrow M/F^n M \rightarrow 0 \).

Then Additivity of Length, (19.7), yields \(\ell(F^n M/F^{n+1} M) = \ell(M/F^{n+1} M) - \ell(M/F^n M) \). \hfill (20.9.2)

So induction on \(n \) yields \(\ell(M/F^{n+1} M) < \infty \) for every \(n \). Further, multiplying that equation by \(t^n \) and summing over \(n \) yields the desired expression in another form:

\[
H(G(M), t) = (t^{-1} - 1)P(F^* M, t) = P(F^* M, t) (1 - t)/t.
\]
Corollary (20.10). — Under the conditions of (20.9), assume \(q \) is generated by \(r \) elements and \(M \neq 0 \). Then \(P(F^*M, t) \) can be written uniquely in the form

\[
P(F^*M, t) = e(t)/t^{l-1}(1-t)^{d+1}
\]

(20.10.1)

with \(e(t) \in \mathbb{Z}[t] \) and \(e(0) \), \(e(1) \neq 0 \) and \(l \in \mathbb{Z} \) and \(r \geq d \geq 0 \); also, there is a polynomial \(p(F^*M, n) \in \mathbb{Q}[n] \) with degree \(d \) and leading coefficient \(e(1)/d! \) such that

\[
\ell(M/F^nM) = p(F^*M, n) \quad \text{for} \quad n \geq \deg e(t) - l + 1.
\]

(20.10.2)

If nonzero, \(p_q(M, n) - p(F^*M, n) \) is a polynomial of degree at most \(d-1 \) and positive leading coefficient; also, \(d \) and \(e(1) \) are the same for every stable \(q \)-filtration.

Proof: The proof of (20.9) shows that \(G(R') \) and \(G(M) \) satisfy the hypotheses of (20.6). So (20.6.1) and (20.9.1) yield (20.10.1). In turn, (20.9.1) yields (20.10.2) by the argument in the second paragraph of the proof of (20.6).

Finally, as \(F^*M \) is a stable \(q \)-filtration, there is an \(m \) such that

\[
F^nM \supset q^nM \supset q^nF^mM = F^{n+m}M
\]

for all \(n \geq 0 \). Dividing into \(M \) and extracting lengths, we get

\[
\ell(M/F^nM) \leq \ell(M/q^nM) \leq \ell(M/F^{n+m}M).
\]

Therefore, (20.10.2) yields

\[
p(F^*M, n) \leq p_q(M, n) \leq p(F^*M, n + m) \quad \text{for} \quad n \gg 0.
\]

The two extremes are polynomials in \(n \) with the same degree \(d \) and the same leading coefficient \(c \) where

\[
c := e(1)/d!.
\]

Dividing by \(n^d \) and letting \(n \to \infty \), we conclude that the polynomial \(p_q(M, n) \) also has degree \(d \) and leading coefficient \(c \).

Thus the degree and leading coefficient are the same for every stable \(q \)-filtration. Also \(p_q(M, n) - p(F^*M, n) \) has degree at most \(d-1 \) and positive leading coefficient, owing to cancellation of the two leading terms and to the first inequality.

(20.11) (Multiplicity). — Preserve the conditions of (20.10). The “normalized” leading coefficient \(e(1) \) of the Hilbert–Samuel polynomial \(p(F^*M, n) \) is called the multiplicity of \(q \) on \(M \) and is also denoted \(e(q, M) \).

Note that \(e(q, M) \) is the same number for every stable \(q \)-filtration \(F^*M \). Moreover, \(\ell(M/q^nM) > 0 \) for all \(n > 0 \); hence, \(e(q, M) \) is a positive integer.

Set \(d := \deg p(F^*M, n) \), Then (20.3) and (20.9.2) yield, for \(n \gg 0 \),

\[
h(G_q(M), n) := \ell(q^nM/q^{n+1}M) = (e(q, M)/(d-1))n^{d-1} + \text{lower degree terms}.
\]

Lemma (20.12) (Artin–Rees). — Let \(R \) be a ring, \(M \) a module, \(N \) a submodule, \(q \) an ideal, \(F^*M \) a stable \(q \)-filtration. Set

\[
F^nN := N \cap F^nM \quad \text{for} \quad n \in \mathbb{Z}.
\]

Assume \(M \) is Noetherian. Then the \(F^nN \) form a stable \(q \)-filtration \(F^*N \).

Proof: Set \(a := \text{Ann}(M) \), set \(R' := R/a \), and set \(q' := (q + a)/a \). Then \(M \) and \(N \) are \(R' \)-modules, and \(F^*M \) is a stable \(q' \)-filtration. So we may replace \(R \) by \(R' \) (and \(q \) by \(q' \)), and thus by (16.16), assume \(R \) is Noetherian.

By (20.7), the extended Rees Algebra \(\mathcal{R}(q) \) is finitely generated over \(R \), so Noetherian by the Hilbert Basis Theorem (16.10). By (20.8), the module \(\mathcal{R}(F^*M) \)
is finitely generated over \(R(q) \), so Noetherian by (16.15). Clearly, \(F^*N \) is a q-filtration; hence, \(R(F^*N) \) is a submodule of \(R(F^*M) \), so finitely generated. But \(\bigcup F^nM = M \), so \(\bigcup F^nN = N \). Thus \(F^*N \) is stable by (20.8).

Proposition (20.13). Let \(R \) be a ring, \(q \) an ideal, and

\[
0 \to M' \to M \to M'' \to 0
\]

an exact sequence of Noetherian modules.

1. Then \(\ell(M/qM) < \infty \) if and only if \(\ell(M'/qM') < \infty \) and \(\ell(M''/qM'') < \infty \).
2. Assume \(\ell(M/qM) < \infty \). Then the polynomial

\[
p_q(M', n) - p_q(M, n) + p_q(M'', n)
\]

has degree at most \(\deg(p_q(M', n)) - 1 \) and has positive leading coefficient; also then

\[
\deg p_q(M, n) = \max \{ \deg p_q(M', n), \deg p_q(M'', n) \}.
\]

Proof: For (1), note (13.46) and (13.4)(1) and (13.46) yield

\[
\text{Supp}(M/qM) = \text{Supp}(M) \cap V(q) = (\text{Supp}(M') \cup \text{Supp}(M'')) \cap V(q) = (\text{Supp}(M') \cap V(q)) \cup (\text{Supp}(M'') \cap V(q)) = \text{Supp}(M'/qM') \cup \text{Supp}(M''/qM'').
\]

Thus (19.4) yields (1).

For (2), given \(n \in \mathbb{Z} \), set \(F^nM' := M' \cap q^nM \). Then the \(F^nM' \) form a stable q-filtration \(F^*M' \) by the Artin–Rees Lemma (20.12). Form the following canonical commutative diagram:

\[
\begin{array}{ccc}
0 & \to & F^nM' \to q^nM \to q^nM'' \to 0 \\
\downarrow & & \downarrow & & \downarrow \\
0 & \to & M' \to M \to M'' \to 0
\end{array}
\]

Its rows are exact. So the Nine Lemma (5.24) yields this exact sequence:

\[
0 \to M'/F^nM' \to M/q^nM \to M''/q^nM'' \to 0.
\]

As \(M/qM < \infty \), Additivity of Length, (19.7), and (20.10) yield

\[
p(F^*M', n) - p_q(M', n) + p_q(M'', n) = 0. \tag{20.13.1}
\]

Hence \(p_q(M', n) - p_q(M, n) + p_q(M'', n) \) is equal to \(p_q(M', n) - p(F^*M', n) \). But by (20.10) again, the latter is a polynomial with degree at most \(\deg p_q(M', n) - 1 \) and positive leading coefficient.

Finally, \(\deg p_q(M, n) = \max \{ \deg p(F^*M', n), \deg p_q(M'', n) \} \) by (20.13.1), as the leading coefficients of \(p(F^*M', n) \) and \(p_q(M'', n) \) are both positive, so cannot cancel. But \(\deg p(F^*M', n) = \deg p_q(M', n) \) by (20.10). Thus (2) holds. \(\square \)
B. Exercises

Exercise (20.14). — Let k be a field, $k[X,Y]$ the polynomial ring. Show $\langle X, Y^2 \rangle$ and $\langle X^2, Y^2 \rangle$ have different Hilbert Series, but the same Hilbert Polynomial.

Exercise (20.15). — Let k be a field, $P := k[X,Y,Z]$ the polynomial ring in three variables, $F \in P$ a homogeneous polynomial of degree $d \geq 1$. Set $R := P/(F)$. Find the coefficients of the Hilbert Polynomial $h(R, n)$ explicitly in terms of d.

Exercise (20.16). — Let K be a field, X_1, \ldots, X_r variables, k_1, \ldots, k_r positive integers. Set $R := K[X_1, \ldots, X_r]$, and define a grading on R by $\text{deg}(X_i) := k_i$. Set $q_r(t) := \prod_{i=1}^r (1 - t^{k_i}) \in \mathbb{Z}[t]$. Show $H(R, t) = 1/q_r(t)$.

Exercise (20.17). — Under the conditions of (20.6), assume there is a homogeneous nonzerodivisor $f \in R$ with $M_f = 0$. Prove $\text{deg} \ h(R, n) > \text{deg} \ h(M, n)$; start with the case $M := R/(f^k)$.

Exercise (20.18). — Let R be a ring, q an ideal, and M a Noetherian module. Assume $\ell(M/qM) < \infty$. Set $m := \sqrt{q}$. Show $\deg p_m(M, n) = \deg p_q(M, n)$.

Exercise (20.19). — Let R be a ring, $q \subseteq q'$ nested ideals, and M a Noetherian module. Assume $\ell(M/qM) < \infty$. Prove these two statements:

1. Then $e(q', M) \leq e(q, M)$, with equality if the q'-adic filtration is q-stable.
2. If $\ell(M) < \infty$ and $q \subseteq \text{rad}(M)$, then $e(q, M) = \ell(M)$.

Exercise (20.20). — Let R be a ring, q an ideal, and M a Noetherian module with $\ell(M/qM) < \infty$. Set $S := \text{Supp}(M) \cap \mathbf{V}(q)$. Set $d := \max_{m \in S} \dim(M_m)$ and $\Lambda := \{ m \in S \mid \dim(M_m) = d \}$. Show $e(q, M) = \sum_{m \in \Lambda} e(qR_m, M_m)$.

C. Appendix: Homogeneity

(20.22) (Homogeneity). — Let R be a graded ring, and $M = \bigoplus M_n$ a graded module. Given $m \in M$, write $m = \sum m_n$ with $m_n \in M_n$. Call the finitely many nonzero m_n the homogeneous components of m. Say that a component m_n is homogeneous of degree n. If n is lowest, call m_n the initial component of m.

Call a submodule $N \subseteq M$ homogeneous if, whenever $m \in N$, also $m_n \in N$, or equivalently, $N = \bigoplus (M_n \cap N)$. Call an ideal homogeneous if it’s a homogeneous submodule of R.

Consider a map $\alpha : M' \to M$ of graded modules with components M'_n and M_n. Call α homogeneous of degree r if $\alpha(M'_n) \subseteq M_{n+r}$ for all n. If so, then clearly $\text{Ker}(\alpha)$ is a homogeneous submodule of M. Further, $\text{Coker}(\alpha)$ is canonically graded, and the quotient map $M \to \text{Coker}(\alpha)$ is homogeneous of degree 0.

Proposition (20.23). — Let R be a graded ring, M a graded module, Q a proper homogeneous submodule. Set $p := \text{nil}(M/Q)$. Assume that Q has this property: given any homogeneous $x \in R$ and homogeneous $m \in M$ with $xm \in Q$ but $m \notin Q$, necessarily $x \in p$. Then Q is old-primary.
Proof: Given $x \in R$ and $m \in M$, decompose them into their homogeneous components: $x = \sum_{i \geq 1} x_i$ and $m = \sum_{j \geq 1} m_j$. Suppose $xm \in Q$, but $m \notin Q$. Then $m_t \notin Q$ for some t; take t minimal. Set $m' := \sum_{j < t} m_j$. Then $m' \in Q$. Set $m'' := m - m'$. Then $x m'' \in Q$.

Either $x_s m_t$ vanishes or it’s the initial component of $x m''$. But Q is homogeneous. So $x_s m_t \in Q$. But $m_t \notin Q$. Hence $x_s \in p$ by the hypothesis. Say $x_s, \ldots, x_u \in p$ with u maximal. Set $x' := \sum_{i=s}^n x_i$. Then $x' \in p$. So $x^k :\in \text{Ann}(M/Q)$ for some $k \geq 1$. So $x'^k m'' \in Q$. Set $x'' := x - x'$. Since $x m'' \in Q$, also $x'^k m'' \in Q$.

Suppose $x \notin p$. Then $x'' \neq 0$. And its initial component is x_v with $v > u$. Either $x'' m''$ vanishes or it is the initial component of $x m''$. But Q is homogeneous. So $x_v m_t \in Q$. But $m_t \notin Q$. Hence $x_v \in p$ by the hypothesis, contradicting $v > u$. Thus $x \in p$. Thus Q is old-primary. \qed

Exercise (20.24). — Let R be a graded ring, a a homogeneous ideal, and M a graded module. Show that \sqrt{a} and $\text{Ann}(M)$ and $\text{nil}(M)$ are homogeneous.

Exercise (20.25). — Let R be a graded ring, M a graded module, and Q an old-primary submodule. Let $Q^* \subset Q$ be the submodule generated by the homogeneous elements of Q. Show that Q^* is old-primary.

Theorem (20.26). — Let R be a graded ring, M a graded module, and N a proper homogeneous submodule. Assume M/N is Noetherian. Then N admits an irredundant primary decomposition in which all the primary submodules are homogeneous; moreover, the associated primes p_i of M/N are homogeneous.

Proof: Let $N = \bigcap Q_j$ be any primary decomposition: one exists by (18.19). Also, each Q_j is old-primary by (18.3)(5). Let $Q^*_j \subset Q_j$ be the submodule generated by the homogeneous elements of Q_j. Trivially, $\bigcap Q^*_j \subset \bigcap Q_j = N \subset \bigcap Q^*_j$. Further, each Q^*_j is plainly homogeneous, and is primary by (20.25) and (18.3)(4). Thus $N = \bigcap Q^*_j$ is a decomposition into homogeneous primary submodules. And, owing to (18.17), it is irredundant if $N = \bigcap Q_j$ is, as both decompositions have minimal length.

Moreover, the p_i are the $\text{nil}(M/Q^*_i)$ by (18.18). The M/Q^*_i are graded by (20.22). Thus by (20.24) the p_i are homogeneous. \qed

Theorem (20.27) (Graded Domains). — Let $R = \bigoplus_{n \geq 0} R_n$ be a graded domain, and set $K := \text{Frac}(R)$. We call $z \in K$ homogeneous of degree $n \in \mathbb{Z}$ if $z = x/y$ with $x \in R_m$ and $y \in R_{m-n}$. Clearly, n is well defined.

Let K_n be the set of all such z, plus 0. Then $K_n K_n \subset K_{m+n}$. Clearly, the canonical map $\bigoplus_{n \in \mathbb{Z}} K_n \to K$ is injective. Thus $\bigoplus_{n \geq 0} K_n$ is a graded subring of K. Further, K_0 is a field.

The n with $K_n \neq 0$ form a subgroup of \mathbb{Z}. So by renumbering, we may assume $K_1 \neq 0$. Fix any nonzero $x \in K_1$. Clearly, x is transcendental over K_0. If $z \in K_n$, then $z/x^n \in K_0$. Hence $R \subset K_0[x]$. So (2.3) yields $K = K_0(x)$.

Any $w \in \bigoplus K_n$ can be written $w = a/b$ with $a, b \in R$ and b homogeneous: say $w = \sum (a_n/b_n)$ with $a_n, b_n \in R$ homogeneous; set $b := \prod b_n$ and $a := \sum (a_n b/b_n)$.

Theorem (20.28). — Let R be a Noetherian graded domain, $K := \text{Frac}(R)$, and \overline{R} the integral closure of R in K. Then \overline{R} is a graded R-algebra.
Proof: Use the setup of (20.27). Since \(K_0[x] \) is a polynomial ring over a field, it is normal by (10.22). Hence \(\overline{R} \subset K_0[x] \). So every \(y \in R \) can be written as \(y = \sum_{i=0}^{r_n} y_i \), with \(y_i \) homogeneous and nonzero. Let’s show \(y_i \in \overline{R} \) for all \(i \).

Since \(y \) is integral over \(R \), the \(R \)-algebra \(R[y] \) is module finite by (10.14). So (20.27) yields a homogeneous \(b \in R \) with \(bR[y] \subset R \). Hence \(by_j \in R \) for all \(j \geq 0 \). But \(R \) is graded. Hence \(by_j^2 \in R \). Set \(z := 1/b \). Then \(y_j^2 \in Rz \). Since \(R \) is Noetherian, the \(R \)-algebra \(R[y_j] \) is module finite. Hence \(y_j \in \overline{R} \). Then \(y - y_j \in \overline{R} \). Thus \(y_i \in \overline{R} \) for all \(i \) by induction on \(n \). Thus \(\overline{R} \) is graded.

D. Appendix: Exercises

Exercise (20.29) (Nakayama’s Lemma for graded modules). — Let \(R \) be a graded ring, \(\mathfrak{a} \) a homogeneous ideal, \(M \) a graded module. Assume \(\mathfrak{a} = \sum_{i \geq i_0} \mathfrak{a}_i \) with \(i_0 > 0 \) and \(M = \sum_{n \geq n_0} M_n \) for some \(n_0 \). Assume \(\mathfrak{a}M = M \). Show \(M = 0 \).

Exercise (20.30) (Homogeneous prime avoidance). — Let \(R \) be a graded ring, \(\mathfrak{a} \) a homogeneous ideal, \(\mathfrak{a}^b \) its subset of homogeneous elements, \(\mathfrak{p}_1, \ldots, \mathfrak{p}_n \) primes. Adapt the method of (3.12) to prove the following assertions:

1. If \(\mathfrak{a}^a \nsubseteq \mathfrak{p}_j \) for all \(j \), then there is \(x \in \mathfrak{a}^b \) such that \(x \notin \mathfrak{p}_j \) for all \(j \).
2. If \(\mathfrak{a}^a \subseteq \bigcup_{i=1}^n \mathfrak{p}_i \), then \(\mathfrak{a} \subseteq \mathfrak{p}_i \) for some \(i \).

Exercise (20.31). — Let \(R = \bigoplus R_n \) be a graded ring, \(M = \bigoplus M_n \) a graded module, \(N = \bigoplus N_n \) a homogeneous submodule. Assume \(M/N \) is Noetherian. Set

\[N' := \{ m \in M \mid R_nm \in N \text{ for all } n \gg 0 \}. \]

1. Show that \(N' \) is the largest homogeneous submodule of \(M \) containing \(N \) and having, for all \(n \gg 0 \), its degree-\(n \) homogeneous component \(N'_n \) equal to \(N_n \).
2. Let \(N = \bigcap Q_i \) be a primary decomposition. Say \(Q_i \) is \(\mathfrak{p}_i \)-primary. Set \(R_+ := \bigoplus_{n \geq 0} R_n \). Show that \(N' = \bigcap_{i \geq 2} R_+ Q_i \).

Exercise (20.32). — Under the conditions of (20.6), assume \(R \) is a domain whose integral closure \(\overline{R} \) in \(\text{Frac}(R) \) is module finite (see (24.17)). Prove the following:

1. There is a homogeneous \(f \in R \) with \(R_f = \overline{R}_f \).
2. The Hilbert Polynomials of \(R \) and \(\overline{R} \) have the same degree and same leading coefficient.

Exercise (20.33). — Let \(R = \bigoplus R_n \) be a graded ring with \(R_0 \) Artinian. Assume \(R = R_0[x_1, \ldots, x_r] \) with \(x_i \in R_{k_i} \) and \(k_i \geq 1 \). Set \(q(t) := \prod_{i=1}^r (1-t^{k_i}) \). Let \(\mathcal{C} \) be the subcategory of \(((R\text{-mod})\text{-}\text{finitely generated graded }R\text{-modules}) = \bigoplus M_n \) and all homogeneous maps of degree 0; let \(\mathcal{C}_0 \) be its subcategory of all \(M \) with \(M_n = 0 \) for all \(n < 0 \). Using the notation of (17.34), let \(\lambda_0 : K_0(R_0) \to \mathbb{Z} \) be a \(\mathbb{Z} \)-map. Show that assigning to each \(M \in \mathcal{C} \) the series \(\sum_{n \in \mathbb{Z}} \lambda_0(\gamma_0(M_n)) t^n \) gives rise to \(\mathbb{Z} \)-maps \(K(\mathcal{C}) \to (1/q(t))\mathbb{Z}[t,1/t] \) and \(K(\mathcal{C}_0) \to (1/q(t))\mathbb{Z}[t] \).
21. Dimension

The dimension of a module is defined as the supremum of the lengths of the chains of primes in its support. The Dimension Theorem, which we prove, characterizes the dimension of a nonzero Noetherian semilocal module in two ways. First, the dimension is the degree of the Hilbert–Samuel Polynomial of the adic filtration associated to the radical of the module. Second, the dimension is the smallest number of elements in the radical that span a submodule of finite colength.

Next, in an arbitrary Noetherian ring, we study the height of a prime, which is the length of the longest chain of subprimes. We bound the height by the minimal number of generators of an ideal over which the prime is minimal. In particular, when this number is 1, we obtain Krull’s Principal Ideal Theorem.

Given any ring R and R-module M, we define the M-quasi-regularity of a sequence of elements $x_1, \ldots, x_s \in R$. Under appropriate hypotheses, including $s = \dim(M)$, we prove x_1, \ldots, x_s is M-quasi-regular if and only if the multiplicity of M is equal to the length of $M/\langle x_1, \ldots, x_s \rangle M$. Finally, we study regular local rings: they are the Noetherian local rings whose maximal ideal has the minimum number of generators, namely, the dimension.

A. Text

(21.1) (Dimension of a module). — Let R be a ring, and M a nonzero module. The dimension of M, denoted $\dim(M)$, is defined by this formula:

$$\dim(M) := \sup\{ \ell | \text{there's a chain of primes } p_0 \subsetneq \cdots \subsetneq p_r \text{ in } \text{Supp}(M) \}.$$

Assume M is Noetherian. Then M has finitely many minimal (associated) primes by (17.16). They are also the minimal primes $p_0 \in \text{Supp}(M)$ by (17.13) and (17.14). Thus (1.9) yields

$$\dim(M) = \max\{ \dim(R/p_0) | p_0 \in \text{Supp}(M) \text{ is minimal} \}. \quad (21.1.1)$$

(21.2) (The invariants $d(M)$ and $s(M)$). — Let R be a ring, M a nonzero Noetherian module, q a parameter ideal of M. Set $m := \text{rad}(M)$ and $q' := \text{Ann}(M/qM)$.

Then the Hilbert–Samuel Polynomial $p_q(M, n)$ exists by (20.10). Similarly, $p_m(M, n)$ exists, and the two polynomials have the same degree by (20.18) since $m = \sqrt{q'}$ by (1) \Longleftrightarrow (5) of (19.13), since $\sqrt{q'} = \sqrt{q''}$ where $q'' := q + \text{Ann}(M)$ owing to (13.46)(2) and (13.1), and since plainly $p_{q''}(M, n) = p_q(M, n)$. Thus the degree is the same for every parameter ideal. Denote this common degree by $d(M)$.

Alternatively, $d(M)$ can be viewed as the order of pole at 1 of the Hilbert Series $H(G_q(M), t)$. Indeed, that order is 1 less than the order of pole at 1 of the Hilbert–Samuel Series $P_q(M, t)$ by (20.9). In turn, the latter order is $d(M) + 1$ by (20.10).

Denote by $s(M)$ the smallest s such that there are $x_1, \ldots, x_s \in m$ with

$$\ell(M/\langle x_1, \ldots, x_s \rangle M) < \infty.$$

(21.2.1)

By convention, if $\ell(M) < \infty$, then $s(M) = 0$. If $s = s(M)$ and (21.2.1) holds, we say that $x_1, \ldots, x_s \in m$ form a system of parameters (sop) for M. Note that a sop generates a parameter ideal.
Lemma (21.3). — Let R be a ring, M a nonzero Noetherian semilocal module, q a parameter ideal of M, and $x \in \text{rad}(M)$. Set $K := \text{Ker}(M \xrightarrow{\mu_x} M)$.

1. Then $s(M) \leq s(M/xM) + 1$.
2. Then $\dim(M/xM) \leq \dim(M) - 1$ if $x \notin p$ for any $p \in \text{Supp}(M)$ with $\dim(R/p) = \dim(M)$.
3. Then $\deg(p_q(K, n) - p_q(M/xM, n)) \leq d(M) - 1$.

Proof: For (1), set $s := s(M/xM)$. There are $x_1, \ldots, x_s \in \text{rad}(M/xM)$ with

$$
\ell(M/(x, x_1, \ldots, x_s)M) < \infty.
$$

Now, $\text{Supp}(M/xM) = \text{Supp}(M) \cap \mathcal{V}(\langle x \rangle)$ by (13.46). But $x \in \text{rad}(M)$. Hence, $\text{Supp}(M/xM)$ and $\text{Supp}(M)$ have the same maximal ideals owing to (13.4)(4). Therefore, $\text{rad}(M/xM) = \text{rad}(M)$. Hence $s(M) \leq s + 1$. Thus (1) holds.

To prove (2), take a chain of primes $p_0 \subsetneq \cdots \subsetneq p_r$ in $\text{Supp}(M/xM)$. Again, $\text{Supp}(M/xM) = \text{Supp}(M) \cap \mathcal{V}(\langle x \rangle)$ by (13.46). So $x \in p_0 \in \text{Supp}(M)$. So, by hypothesis, $\dim(R/p_0) < \dim(M)$. Hence $r \leq \dim(M) - 1$. Thus (2) holds.

To prove (3), note that $xM := \text{Im}(\mu_x)$, and form these two exact sequences:

$$
0 \to K \to M \to xM \to 0, \quad 0 \to xM \to M \to M/xM \to 0.
$$

Then (20.13) yields $d(K) \leq d(M)$ and $d(xM) \leq d(M)$. So by (20.13) again, both $p_q(K, n) + p_q(xM, n) - p_q(M, n)$ and $p_q(xM, n) + p_q(M/xM, n) - p_q(M, n)$ are of degree at most $d(M) - 1$. So their difference is too. Thus (3) holds.

Theorem (21.4) (Dimension). — Let R be a ring, and M a nonzero Noetherian semilocal module. Then

$$
\dim(M) = d(M) = s(M) < \infty.
$$

Proof: Let’s prove a cycle of inequalities. Set $m := \text{rad}(M)$.

First, let’s prove $\dim(M) \leq d(M)$ by induction on $d(M)$. Suppose $d(M) = 0$. Then $\ell(M/m^2M)$ stabilizes. So $m^2M = m^{n+1}M$ for some n. But m^nM is finitely generated as M is Noetherian. Also, $\text{Ann}(M) \subset \text{Ann}(m^nM)$; so $m \subset \text{rad}(m^nM)$. So $m^nM = 0$ by Nakayama’s Lemma (10.6). But $\ell(M/m^nM) < \infty$. So $\ell(M) < \infty$. Thus (19.4) yields $\dim(M) = 0$.

Suppose $d(M) \geq 1$. By (21.1.1), $\dim(R/p_0) = \dim(M)$ for some $p_0 \in \text{Supp}(M)$. Then p_0 is minimal. So $p_0 \in \text{Ass}(M)$ by (17.14). Hence M has a submodule N isomorphic to R/p_0 by (17.3). Further, by (20.13), $d(N) \leq d(M)$.

Take a chain of primes $p_0 \subsetneq \cdots \subsetneq p_r$ in $\text{Supp}(N)$. If $r = 0$, then $r \leq d(M)$. Suppose $r \geq 1$. Then there’s an $x_1 \in p_1 - p_0$. Further, since p_0 is not maximal, for each maximal ideal n in $\text{Supp}(M)$, there is an $x_n \in n - p_0$. Set $x := x_1 \prod x_n$. Then $x \in (p_1 \cap m) - p_0$. Then $p_1 \cap x \in \text{Supp}(N) \cap \mathcal{V}(\langle x \rangle)$. But the latter is equal to $\text{Supp}(N/xN)$ by (13.46). So $r - 1 \leq \dim(N/xN)$.

However, μ_x is injective on N as $N \cong R/p_0$ and $x \notin p_0$. So (21.3)(3) yields $d(N/xN) \leq d(N) - 1$. But $d(N) \leq d(M)$. So $\dim(N/xN) \leq d(N/xN)$ by the induction hypothesis. Therefore, $r \leq d(M)$. Thus $\dim(M) \leq d(M)$.

Second, let’s prove $d(M) \leq s(M)$. Let q be a parameter ideal of M with $s(M)$ generators. Then $d(M) := \deg p_q(M, n)$. But $\deg p_q(M, n) \leq s(M)$ owing to (20.10). Thus $d(M) \leq s(M)$.

Finally, let’s prove $s(M) \leq \dim(M)$. Set $r := \dim(M)$, which is finite since $r \leq d(M)$ by the first step. The proof proceeds by induction on r. If $r = 0$, then M has finite length by (19.4); so by convention $s(M) = 0$.
Suppose \(r \geq 1 \). Let \(p_1, \ldots, p_k \) be the primes of \(\text{Supp}(M) \) with \(\dim(R/p_i) = r \). No \(p_i \) is maximal as \(r \geq 1 \). So \(m \) lies in no \(p_i \). Hence, by Prime Avoidance (3.12), there is an \(x \in m \) such that \(x \notin p_i \) for all \(i \). So \((21.3)(1), (2)\) yield \(s(M) \leq s(M/xM) + 1 \) and \(\dim(M/xM) + 1 \leq r \). By the induction hypothesis, \(s(M/xM) \leq \dim(M/xM) \). Hence \(s(M) \leq r \), as desired.

Corollary (21.5). — Let \(R \) be a ring, \(M \) a nonzero Noetherian semilocal module, \(x \in \text{rad}(M) \). Then \(\dim(M/xM) \geq \dim(M) - 1 \), with equality if and only if \(x \notin p \) for all \(p \in \text{Supp}(M) \) with \(\dim(R/p) = \dim(M) \); equality holds if \(x \notin \text{z.div}(M) \).

Proof: By \((21.3)(1)\), we have \(s(M/xM) \geq s(M) - 1 \). So the asserted inequality holds by \((21.4)\). If \(x \notin p \in \text{Supp}(M) \) when \(\dim(R/p) = \dim(M) \), then \((21.3)(2)\) yields the opposite inequality, so equality.

Conversely, assume \(x \notin p \) for some \(p \in \text{Supp}(M) \) with \(\dim(R/p) = \dim(M) \). Now, \(\text{Supp}(M/xM) = \text{Supp}(M) \cap \mathcal{V}(x) \) by \((13.46)\). So \(\mathcal{V}(p) \subset \text{Supp}(M/xM) \). Hence \(\dim(M/xM) \geq \dim(R/p) = \dim(M) \). Thus the equality in question fails.

Finally, assume \(x \notin \text{z.div}(M) \). Then \(x \notin p \) for any \(p \in \text{Ass}(M) \) by \((17.12)\). So \(x \notin p \) for any \(p \in \text{Supp}(M) \) by \((17.14)\). Thus \(x \notin p \) for any \(p \in \text{Supp}(M) \) with \(\dim(R/p) = \dim(M) \), and so the desired equality follows from the above. \(\square \)

Corollary (21.7). — Let \(R \) be a Noetherian ring, \(p \) a prime. Then \(\text{ht}(p) \leq r \) if and only if \(p \) is a minimal prime of some ideal generated by \(r \) elements.

Proof: Assume \(p \) is minimal containing an ideal \(a \) generated by \(r \) elements. Now, any prime of \(R_p \) containing \(aR_p \) is of the form \(qR_p \) where \(q \) is a prime of \(R \) with \(a \subset q \subset p \) by \((11.12)\). So \(q = p \). Hence \(pR_p = \sqrt{aR_p} \) by the Scheinnullstellensatz \((3.14)\). Hence \(r \geq s(R_p) \) by \((21.2)\). But \(s(R_p) = \dim(R_p) \) by \((21.4)\), and \(\dim(R_p) = \text{ht}(p) \) by \((21.6.1)\). Thus \(\text{ht}(p) \leq r \).

Conversely, assume \(\text{ht}(p) \leq r \). Then \(R_p \) has a parameter ideal \(b \) generated by \(r \) elements, say \(y_1, \ldots, y_r \) by \((21.6.1)\) and \((21.4)\). Say \(y_i = x_i/s_i \) with \(s_i \notin p \). Set \(a := \langle x_1, \ldots, x_r \rangle \). Then \(aR_p = b \).

Suppose there is a prime \(q \) with \(a \subset q \subset p \). Then \(b = aR_p \subset qR_p \subset pR_p \), and \(qR_p \) is prime by \((11.12)(2)\). But \(\sqrt{b} = pR_p \). So \(qR_p = pR_p \). Hence \(q = p \) by \((11.12)(2)\). Thus \(p \) is minimal containing \(a \), which is generated by \(r \) elements. \(\square \)

Theorem (21.8) (Krull Principal Ideal). — Let \(R \) be a Noetherian ring, \(x \in R \), and \(p \) a minimal prime of \((x) \). If \(x \notin \text{z.div}(R) \), then \(\text{ht}(p) = 1 \).

Proof: By \((21.7)\), \(\text{ht}(p) \leq 1 \). But by \((14.7)\), \(x \in \text{z.div}(R) \) if \(\text{ht}(p) = 0 \). \(\square \)

Exercise (21.9) . — (1) Let \(A \) be a Noetherian local ring with a principal prime \(p \) of height at least 1. Prove \(A \) is a domain by showing any prime \(q \subsetneq p \) is \(\langle 0 \rangle \).

(2) Let \(k \) be a field, \(P := k[[X]] \) the formal power series ring in one variable. Set \(R := P \times P \). Prove that \(R \) is Noetherian and semilocal, and that \(R \) contains a
principal prime \(p \) of height 1, but that \(R \) is not a domain.

Corollary (21.10). — Let \(\varphi \colon A \to B \) be a local map of Noetherian local rings, \(m \) and \(n \) their maximal ideals. Then

\[
\dim(B) \leq \dim(A) + \dim(B/mB),
\]

with equality if either (a) \(\varphi \) has the Going-down Property or (b) \(\varphi \) is quasi-flat, that is, there’s a finitely generated \(B \)-module \(M \) flat over \(A \) with \(\text{Supp}(M) = \text{Spec}(B) \).

Proof: Set \(s := \dim(A) \). By (21.4), there is a parameter ideal \(q \) generated by \(s \) elements. Then \(m/q \) is nilpotent by (1)\(\Rightarrow \)(6) of (19.13). Hence \(mB/qB \) is nilpotent. It follows that \(\dim(B/mB) = \dim(B/qB) \).

Say \(q = (x_1, \ldots, x_s) \). Set \(M_0 := B \) and \(M_i := M/(x_1, \ldots, x_i)M \) for \(1 \leq i \leq s \). Then (4.21) with \(a := (x_1, \ldots, x_i) \) and \(b := (x_{i+1}) \) yields \(M_{i+1} \cong M_i/x_{i+1}M_i \). So \(\dim(M_{i+1}) \geq \dim(M_i) - 1 \) by (21.5). But \(M_s = B/qB \) and \(M_0 := B \). Hence \(\dim(B/qB) \geq \dim(B) - s \). Thus the inequality holds.

For the equality, note that Case (b) is a special case of Case (a) owing to (14.8). So assume Case (a) obtains; that is, \(\varphi \) has the Going-down Property.

Given any prime \(p \) of \(B \), note that \(\dim(B) \geq \text{ht}(p) + \dim(B/p) \), as concatenating a maximal chain of primes contained in \(p \) with a maximal chain of primes containing \(p \) yields a chain of primes of length \(\text{ht}(p) + \dim(B/p) \). Fix \(p \supseteq mB \) such that \(\dim(B/p) = \dim(B/mB) \). Thus it suffices to show that \(\text{ht}(p) \geq \dim(A) \).

As \(\varphi \) is local, \(\varphi^{-1}n = m \). But \(n \supseteq p \supseteq mB \), so \(\varphi^{-1}p \supseteq \varphi^{-1}mB \supseteq m \). Thus \(\varphi^{-1}p = m \). But \(\varphi \) has the Going-down Property. So induction yields a chain of primes of \(B \) descending from \(p \) and lying over any given chain in \(A \). Thus \(\text{ht}(p) \geq \dim(A) \), as desired. \(\square \)

(21.11) (Quasi-regularity). — Let \(R \) be a ring, \(x_1, \ldots, x_s \) elements, \(X_1, \ldots, X_s \) variables, and \(M \) a module. Set \(q := (x_1, \ldots, x_s) \), and define a map

\[
\phi \colon (M/qM)[X_1, \ldots, X_s] \to G_q(M)
\]

by sending a homogeneous polynomial \(F(X_1, \ldots, X_s) \) of degree \(r \) with coefficients in \(M \) to the residue of \(F(x_1, \ldots, x_s) \) in \(q^rM/q^{r+1}M \). Note that \(\phi \) is well defined, surjective, \(R \)-linear, and homogeneous of degree 0.

If \(\phi \) is bijective and \(qM \neq M \), then \(x_1, \ldots, x_s \) is said to be \(M \)-quasi-regular.

Proposition (21.12). — Let \(R \) be a ring, \(M \) a Noetherian semilocal module. Let \(x_1, \ldots, x_s \) be a sop for \(M \), and set \(q := (x_1, \ldots, x_s) \). Then \(e(q, M) \leq \ell(M/qM) \), with equality if and only if \(x_1, \ldots, x_s \) is \(M \)-quasi-regular.

Proof: Form the map \(\phi \) of (21.11). Set \(P := (M/qM)[X_1, \ldots, X_s] \), and grade \(P \) by degree. For \(n \geq 0 \), define \(N_n \) by the exact sequence

\[
0 \to N_n \to P_n \xrightarrow{\phi_n} q^nM/q^{n+1}M \to 0.
\]

(21.12.1)

Note that \(\ell(P_n) = \ell(M/qM)(s-1+n) \) by (20.4). Thus

\[
\ell(P_n) = (\ell(M/qM) / (s-1))n^{s-1} + \text{lower degree terms}.
\]

(21.12.2)

Also \(\deg p_q(M, n) = d(M) \) by (21.2), and \(d(M) = s(M) \) by (21.4), and \(s(M) = s \) by (21.4) again; so \(\deg p_q(M, n) = s \). Thus (20.11) with \(d = s \) yields, for \(n \gg 0 \),

\[
\ell(q^nM/q^{n+1}M)(e(q, M) / (s-1))n^{s-1} + \text{lower degree terms}.
\]

(21.12.3)

By (21.11), \(x_1, \ldots, x_s \) is \(M \)-quasi-regular if and only if \(\phi \) is bijective. If \(\phi \) is
so, then \(\ell(P_n) = \ell(q^n M/q^{n+1}M) \) for all \(n \) by (21.12.1). Thus (21.12.2) and (21.12.3) yield \(e(q, M) = \ell(M/qM) \).

Assume \(\phi \) isn’t bijective. Then (21.12.1) yields \(q \) with a nonzero \(G \in N_q \).

Say \(V(q) = \{ m_1, \ldots, m_k \} \), and set \(m := m_1 \cdots m_k \). Then \(\mathfrak{m}^r(M/qM) = 0 \) for some \(r \) by (1) of (19.13). Hence \(\mathfrak{m}^rP = 0 \). So \(\mathfrak{m}^rG = 0 \). Take \(p \) so that \(\mathfrak{m}^pG = 0 \), but \(\mathfrak{m}^{p-1}G \neq 0 \). Then take \(k \) so that \(m_1 \cdots m_k \mathfrak{m}^{p-1}G = 0 \), but \(m_1 \cdots m_{k-1} \mathfrak{m}^{p-1}G \neq 0 \). Then \(x \in m_1 \cdots m_{k-1} \mathfrak{m}^{p-1} \) with \(xG \neq 0 \). Replace \(G \) by \(xG \). Then \(\mathfrak{m}_kG = 0 \). Also \(G \notin N_q \).

Set \(K := R/\mathfrak{m}_k \) and \(Q := K[X_1, \ldots, X_s] \). Grade \(Q \) by degree, and for each \(n \geq q \), form the \(R \)-linear map
\[
\nu : Q_{n-q} \to P_n \quad \text{by} \quad \nu(F) := FG.
\]

It’s well defined as \(\mathfrak{m}_kG = 0 \). Let’s see that it’s injective.

Let \(F \in Q_{n-q} \) be nonzero. As in (2.4), consider the grelex leading coefficients \(a \) of \(F \) and \(b \) of \(G \). Then \(a \in K^x \). So \(ab \in M/qM \) is nonzero. Hence \(ab \) is the grelex leading coefficient of \(FG \), and \(FG \) is nonzero. Thus \(\nu \) is injective.

Given \(F \in Q_{n-q} \), lift \(F \) to \(\tilde{F} \in R[X_1, \ldots, X_n] \). Then \(\tilde{F}(x_1, \ldots, x_s) \in q^{n-q} \). Denote its residue in \(q^{n-q}/q^{n-q+1} \) by \(f \). Then \(\phi(FG) = f \phi(G) = 0 \). Hence \(\nu(F) \in N_n \). Thus \(\nu(Q_{n-q}) \subseteq N_n \).

Since \(\nu \) is injective, \(\ell(Q_{n-q}) \leq \ell(N_n) \). But \(\ell(Q_{n-q}) = \binom{s-1+n-q}{s-1} \) by (20.4). Also (21.12.1) and (19.7) yield \(\ell(q^n M/q^{n+1}M) = \ell(P_n) - \ell(N_n) \). So (21.12.2) yields
\[
\ell(q^n M/q^{n+1}M) \leq (\ell(M/qM) - 1) + \ell(M/qM) - 1 \leq (s-1)! n^{s-1} + \text{lower degree terms}.
\]

Thus (21.12.3) yields \(e(q, M) \leq \ell(M/qM) - 1 \), as desired. \(\square \)

Exercise (21.13) . — Let \(A \) be a Noetherian local ring of dimension \(r \). Let \(\mathfrak{m} \) be the maximal ideal, and \(k := A/\mathfrak{m} \) the residue class field. Prove that
\[
r \leq \dim_k(\mathfrak{m}/\mathfrak{m}^2),
\]
with equality if and only if \(\mathfrak{m} \) is generated by \(r \) elements.

(21.14) **(Regular local rings).** — Let \(A \) be a Noetherian local ring of dimension \(r \) with maximal ideal \(\mathfrak{m} \) and residue field \(k \). We say \(A \) is regular if \(\mathfrak{m} \) is generated by \(r \) elements. If so, then, as \(r = s(R) \) by (21.4), any such \(r \) elements form a system of parameters; it is known as a regular system of parameters, or regular sop.

By (21.13), \(A \) is regular if and only if \(r = \dim_k(\mathfrak{m}/\mathfrak{m}^2) \). If so, then, by (10.9), elements of \(\mathfrak{m} \) form a regular sop if and only if their residues form a \(k \)-basis of \(\mathfrak{m}/\mathfrak{m}^2 \).

For example, a field is a regular local ring of dimension 0, and conversely. An example of a regular local ring of given dimension \(n \) is the localization \(P_n \) of a polynomial ring \(P \) in \(n \) variables over a field at any maximal ideal \(m \), as \(\dim(P_n) = n \) by (15.10) and (15.12) and as \(\mathfrak{m} \) is generated by \(n \) elements by (15.6).

Corollary (21.15) . — Let \(A \) be a Noetherian local ring of dimension \(r \), and \(\mathfrak{m} \) its maximal ideal. Then \(A \) is regular if and only if its associated graded ring \(G(A) \) is a polynomial ring; if so, then the number of variables is \(r \) and \(e(\mathfrak{m}, A) = 1 \).

Proof: Say \(G(A) \) is a polynomial ring in \(s \) variables. Then \(\dim(m/m^2) = s \). By (20.4), \(\deg h(G(A), n) = s - 1 \). So \(s = d(A) \) by (20.11) and (21.2). But \(d(A) = r \) by (21.4). Thus \(s = r \), and by (21.4), \(A \) is regular.

Conversely, assume \(A \) is regular. Then by (21.14), \(\mathfrak{m} \) is generated by \(r \) elements, which form a system of parameters. So (21.12) yields \(1 \leq e(\mathfrak{m}, A) \leq \ell(A/\mathfrak{m}) = 1 \).
Thus \(e(m, A) = 1 \), and so by (21.12) again, \(\varphi_r \) is an isomorphism, as desired. \(\square \)

Exercise (21.16) . — Let \(A \) be a Noetherian local ring of dimension \(r \), and let \(x_1, \ldots, x_s \in A \) with \(s \leq r \). Set \(\mathfrak{a} := (x_1, \ldots, x_s) \) and \(B := A/\mathfrak{a} \). Prove equivalent:

1. \(A \) is regular, and there are \(x_{s+1}, \ldots, x_r \in A \) with \(x_1, \ldots, x_r \) a regular sop.
2. \(B \) is regular of dimension \(r - s \).

Theorem (21.17). — A regular local ring \(A \) is a domain.

Proof: Use induction on \(r := \dim A \). If \(r = 0 \), then \(A \) is a field, so a domain. Assume \(r \geq 1 \). Let \(x \) be a member of a regular sop. Then \(A/(x) \) is regular of dimension \(r - 1 \) by (21.16). By induction, \(A/(x) \) is a domain. So \((x) \) is prime. Thus \(A \) is a domain by (21.9). (Another proof is found in (22.39).) \(\square \)

Lemma (21.18). — Let \(A \) be a local ring, \(m \) its maximal ideal, \(a \) a proper ideal. Set \(n := m/a \) and \(k := A/m \). Then this sequence of \(k \)-vector spaces is exact:

\[
0 \to (m^2 + a)/m^2 \to m/m^2 \to n/n^2 \to 0.
\]

Proof: The assertion is very easy to check. \(\square \)

Proposition (21.19). — Let \(A \) be a regular local ring of dimension \(r \), and \(\mathfrak{a} \) an ideal. Set \(B := A/\mathfrak{a} \), and assume \(B \) is regular of dimension \(r - s \). Then \(\mathfrak{a} \) is generated by \(s \) elements, and any such \(s \) elements form part of a regular sop.

Proof: In its notation, (21.18) yields \(\dim((m^2 + a)/m^2) = s \). Hence, any set of generators of \(\mathfrak{a} \) includes \(s \) members of a regular sop of \(A \). Let \(\mathfrak{b} \) be the ideal the \(s \) generate. Then \(A/\mathfrak{b} \) is regular of dimension \(r - s \) by (21.16). By (21.17), both \(A/\mathfrak{b} \) and \(B \) are domains of dimension \(r - s \); whence, (15.24) implies \(\mathfrak{a} = \mathfrak{b} \). \(\square \)

B. Exercises

Exercise (21.20) . — Let \(R \) be a ring, \(R' \) an algebra, and \(N \) a nonzero \(R' \)-module that’s a Noetherian \(R \)-module. Prove the following statements:

1. \(\dim_R(N) = \dim_{R'}(N) \).
2. Each prime in \(\text{Supp}_{R'}(N) \) contracts to a prime in \(\text{Supp}_R(N) \). Moreover, one is maximal if and only if the other is.
3. Each maximal ideal in \(\text{Supp}_{R'}(N) \) is the contraction of at least one and at most finitely many maximal ideals in \(\text{Supp}_R(N) \).
4. \(\text{rad}_R(N)R' \subset \text{rad}_{R'}(N) \).
5. \(N \) is semilocal over \(R \) if and only if \(N \) is semilocal over \(R' \).

Exercise (21.21) . — Let \(R \) be a ring, \(M \) a nonzero Noetherian semilocal module, \(q \) a parameter ideal, and \(0 = M_0 \subset M_1 \subset \cdots \subset M_n = M \) a chain of submodules with \(M_i/M_{i-1} \cong R/p_i \) for some \(p_i \in \text{Supp}(M) \). Set \(d := \dim(M) \) and set

\[
I := \{ i \mid \dim(R/p_i) = d \} \quad \text{and} \quad \Phi := \{ p \in \text{Supp}(M) \mid \dim(R/p) = d \}.
\]

Prove: (1) \(e(q, M) = \sum_{i \in I} e(q, R/p_i) \) and (2) \(e(q, M) = \sum_{p \in \Phi} e_{R_p}(M_p) e(q, R/p) \).

Exercise (21.22) . — Let \(A \) be a Noetherian local ring, \(m \) its maximal ideal, \(q \) a parameter ideal, \(P := (A/q)[X_1, \ldots, X_s] \) a polynomial ring for some \(s \geq 0 \). Show:

1. Set \(\mathfrak{M} := (m/q)[X_1, \ldots, X_s] \). Then \(z \text{div}(P) = \mathfrak{M} \).
(2) Assume \(q \) is generated by a sop \(x_1, \ldots, x_s \). Let \(\phi: P \to G_q(A) \) be the \((A/q)\)-algebra map with \(\phi(X_i) \) equal to the residue of \(x_i \). Then \(\text{Ker}(\phi) \subset z.\text{div}(P) \).

Exercise (21.23). — Let \(A \) be a Noetherian local ring, \(k \subset A \) a coefficient field (or field of representatives) — that is, \(k \) maps isomorphically onto the residue field — \(x_1, \ldots, x_r \), a sop. Using (21.22), show the \(x_i \) are algebraically independent over \(k \).

Exercise (21.24). — Let \(k \) be an algebraically closed field, \(R \) an algebra-finite domain, \(m \) a maximal ideal of \(R \). Using the dimension theory in this chapter and (15.1)(1), but not (2), show \(\dim(R) = \dim(R_m) = \text{tr.deg}_k(\text{Frac}(R)) \). (Compare with (15.10) and (15.12).)

Exercise (21.25). — Let \(R \) be a ring, \(N \) a Noetherian semilocal module, and \(y_1, \ldots, y_r \) a sop for \(N \). Set \(N_i := N/(y_1, \ldots, y_i)N \). Show \(\dim(N_i) = r - i \).

Exercise (21.26). — Let \(R \) be a ring, \(p \) a prime, \(M \) a finitely generated module. Set \(R' := R/\text{Ann} M \). Prove these two statements: (1) \(\dim(M_P) = \dim(R'_P) \).

(2) If \(\text{Ann}(M) = \langle 0 \rangle \), then \(\dim(M_P) = \text{ht}(p) \).

Exercise (21.27). — Let \(R \) be a Noetherian ring, and \(p \) a prime minimal containing \(x_1, \ldots, x_r \). Given \(r' \) with \(1 \leq r' \leq r \), set \(R' := R/(x_1, \ldots, x_{r'}) \) and \(p' := p/(x_1, \ldots, x_r) \). Assume \(\text{ht}(p) = r \). Prove \(\text{ht}(p') = r - r' \).

Exercise (21.28). — Let \(R \) be a Noetherian ring, \(p \) a prime of height at least 2. Prove that \(p \) is the union of height-1 primes, but not of finitely many.

Exercise (21.29). — Let \(R \) be a Noetherian ring of dimension at least 1. Show that the following conditions are equivalent:

1. \(R \) has only finitely many primes.
2. \(R \) has only finitely many height-1 primes.
3. \(R \) is semilocal of exactly dimension 1.

Exercise (21.30) (Artin–Tate [2, Thm. 4]). — Let \(R \) be a Noetherian domain, and set \(K := \text{Frac}(R) \). Prove the following statements are equivalent:

1. \(\langle fX - 1 \rangle \subset R[X] \) is a maximal ideal for some nonzero \(f \in R \).
2. \(K = R_f \) for some nonzero \(f \in R \).
3. \(K \) is algebra finite over \(R \).
4. Some nonzero \(f \in R \) lies in every nonzero prime.
5. \(R \) has only finitely many height-1 primes.
6. \(R \) is semilocal of dimension 1.

Exercise (21.31). — Let \(R \) be a Noetherian domain, \(p \) a prime element. Show that \(\langle p \rangle \) is a height-1 prime ideal.

Exercise (21.32). — Let \(R \) be a UFD, and \(p \) a height-1 prime ideal. Show that \(p = \langle p \rangle \) for some prime element \(p \).

Exercise (21.33). — Let \(R \) be a Noetherian domain such that every height-1 prime ideal \(p \) is principal. Show that \(R \) is a UFD.

Exercise (21.34) (Gauss’ Lemma). — Let \(R \) be a UFD, and \(X \) a variable, and \(F, G \in R[X] \). Call \(F \) primitive if its coefficients have no common prime divisor.

1. Show that \(F \) is primitive if and only if \(c(F) \) lies in no height-1 prime ideal.
2. Assume that \(F \) and \(G \) are primitive. Show that \(FG \) is primitive.
3. Let \(f, g, h \) be the gcd’s of the coefficients of \(F, G, FG \). Show \(fg = h \).
4. Assume \(c(F) = \langle f \rangle \) with \(f \in R \). Show \(f \) is the gcd of the coefficients of \(F \).
Exercise (21.35). — Let R be a finitely generated algebra over a field. Assume R is a domain of dimension r. Let $x \in R$ be neither 0 nor a unit. Set $R' := R/(x)$. Prove that $r - 1$ is the length of any chain of primes in R' of maximal length.

Exercise (21.36). — Let k be a field, $P = k[X_1, \ldots, X_n]$ the polynomial ring, R_1 and R_2 two P-algebra-finite domains, and p a minimal prime of $R_1 \otimes_P R_2$.

1. Set $C := R_1 \otimes_k R_2$, and let $q \subset C$ denote the preimage of p. Use (8.28)(1) to prove that q is a minimal prime of an ideal generated by n elements.

2. Use (15.12) and (15.28) to prove this inequality:
$$\dim(R_1) + \dim(R_2) \leq n + \dim((R_1 \otimes_P R_2)/p).$$

Exercise (21.37). — Let k be a field, $P := k[X_1, \ldots, X_n]$ the polynomial ring, R' a P-algebra-finite domain. Let p be a prime of P, and p' a minimal prime of pR'. Prove this inequality: $\text{ht}(p') \leq \text{ht}(p)$.

Exercise (21.38). — Let k be a field, $P := k[X_1, \ldots, X_n]$ the polynomial ring, p_1 and p_2 primes of P, and p a minimal prime of $p_1 + p_2$. Prove this inequality:
$$\text{ht}(p) \leq \text{ht}(p_1) + \text{ht}(p_2).$$

Exercise (21.39). — Let k be a field, $k[X, Y, Z, W]$ the polynomial ring. Set
$$q_1 := \langle X, Y \rangle \quad \text{and} \quad q_2 := \langle Z, W \rangle \quad \text{and} \quad q := \langle X, Y, Z, W \rangle \quad \text{and} \quad R := k[X, Y, Z, W]/\langle XZ - YW \rangle \quad \text{and} \quad p_i := q_i R \quad \text{and} \quad p := q R.$$

Show that p_1, p_2, p are primes of heights 1, 1, 3. Does (21.38) hold for R?

Exercise (21.40). — Let R be a Noetherian ring, X, X_1, \ldots, X_n variables. Show:
$$\dim(R[X]) = 1 + \dim(R) \quad \text{and} \quad \dim(R[X_1, \ldots, X_n]) = n + \dim(R).$$

Exercise (21.41) (Jacobian Criterion). — Let k be a field, $P := k[X_1, \ldots, X_n]$ the polynomial ring, $\mathfrak{A} \subset P$ an ideal, $x := (x_1, \ldots, x_n) \in k^n$. Set $R := P/\mathfrak{A}$ and $\mathfrak{M} := \langle X_1 - x_1, \ldots, X_n - x_n \rangle$. Prove the following statements:

1. Say $\mathfrak{A} = \langle F_1, \ldots, F_m \rangle$. Assume $F_i(x) = 0$ for all i. For all i, j, define $\partial F_i/\partial X_j \in P$ formally as in (1.18.1), and set $a_{ij} := (\partial F_i/\partial X_j)(x)$. Let r be the rank of the m by n matrix (a_{ij}). Set $d := \dim R_{\mathfrak{M}}$. Then these conditions are equivalent: (a) $R_{\mathfrak{M}}$ is regular; (b) $r = n - d$; and (c) $r \geq n - d$.

2. Assume \mathfrak{A} is prime, $F \notin \mathfrak{A}$ and k is algebraically closed. Then there’s a choice of x with $F(x) \neq 0$ and $\mathfrak{A} \subset \mathfrak{M}$ and $R_{\mathfrak{M}}$ regular.

Start with the case $\mathfrak{A} = \langle G \rangle$. Then reduce to it by using a separating transcendence basis for $K := \text{Frac}(R)$ over k and a primitive element.
22. Completion

Completion is used to simplify a ring and its modules beyond localization. First, we discuss the topology of a filtration, and use Cauchy sequences to construct the (separated) completion. Then we discuss the inverse limit, the dual notion of the direct limit; using it, we obtain an alternate construction. We conclude that, if we use the \(a \)-adic filtration, for any ideal \(a \), then the functor of completion is exact on the Noetherian modules. Moreover, if the ring is Noetherian, then the completion of a finitely generated module is equal to its tensor product with the completion of the ring; hence, the latter is flat. Lastly, we prove that the completion of a Noetherian module is Noetherian over the completion of the ring.

In an appendix, we study Henselian rings, the local rings such that, given a monic univariate polynomial \(F \), any factorization of \(F \), modulo the maximal ideal, into monic and coprime factors, lifts to a factorization of \(F \) itself. The completion of any local ring is Henselian by Hensel’s Lemma, which we prove. We characterize Henselian rings as the local rings over which any module-finite algebra is decomposable; hence, such an algebra, if local, is Henselian too. Next, we consider an equicharacteristic local ring: it and its residue field \(k \) have the same characteristic. Its completion contains a coefficient field, one mapping isomorphically onto \(k \), by the Cohen Existence Theorem, which we prove using Hensel’s lemma.

Lastly, we prove the Weierstraß Division Theorem and Preparation Theorem. The former is a version of the Division Algorithm for formal power series in one variable \(X \) over a ring \(R \) that is separated and complete in the \(a \)-adic topology for some ideal \(a \); the divisor \(F = \sum f_iX^i \) must have \(f_n \) a unit in \(R \) for some \(n \geq 0 \) but \(f_i \in a \) for \(i < n \). The Preparation Theorem asserts \(F = UV \) uniquely, where \(U \) is an invertible power series and \(V \) is a monic polynomial. We adapt these theorems to the local ring \(A \) of convergent complex power series in several variables, and conclude that \(A \) is Henselian, regular, and a UFD.

A. Text

(22.1) (Topology and completion). — Let \(R \) be a ring, \(M \) a filtered module with filtration \(F^*M \). Then \(M \) has a (linear) topology: the open sets are the arbitrary unions of sets of the form \(m + F^nM \) for various \(m \) and \(n \). Indeed, the intersection of two open sets is open, as the intersection of two unions is the union of the pairwise intersections; further, if the intersection \(U \) of \(m + F^nM \) and \(m' + F'^nM \) is nonempty and if \(n \geq n' \), then \(U = m + F^nM \), because, if say \(m'' \in U \), then

\[
m + F^nM = m'' + F^nM \subset m'' + F'^nM = m' + F'^nM.
\]

(22.1.1)

Let \(K \subseteq M \) be a submodule. If \(K \supseteq F^nM \) for some \(n \), then \(K \) is both open and closed for this reason: given \(m \in K \), we have \(m + F^nM \subseteq K \); given \(m \in M - K \), we have \(m + F^nM \subseteq M - K \). In particular, each \(F^nM \) is both open and closed.

The addition map \(M \times M \to M \), given by \((m, m') \mapsto m + m'\), is continuous, as

\[
(m + F^nM) + (m' + F^nM) \subseteq (m + m') + F^nM.
\]

So, with \(m' \) fixed, the translation \(m \mapsto m + m' \) is a homeomorphism \(M \to M \).

(Similarly, inversion \(m \mapsto -m \) is a homeomorphism; so \(M \) is a topological group.)
Given another filtration $\tilde{F}^\bullet M$ such that, for any m, there’s n with $F^m M \supset \tilde{F}^n M$, and for any p, there’s q with $\tilde{F}^p M \supset F^q M$, both filtrations yield the same topology.

Let a be an ideal, and give R the a-adic filtration. If the filtration on M is an a-filtration, then scalar multiplication $(x, m) \mapsto xm$ too is continuous, because

$$(x + a^n)(m + F^n M) \subset xm + F^n M.$$

Further, if the filtration is a-stable, then it yields the same topology as the a-adic filtration, because for some n' and any n,

$$F^n M \supset a^n M \supset a^n F^{n'} M = F^{n+n'} M.$$

Thus any two stable a-filtrations give the same topology: the a-adic topology.

When a is given, it is conventional to use the a-adic filtration and a-adic topology unless there’s explicit mention to the contrary. Moreover, if M is semilocal, then it is conventional to take a to be rad(M) or another parameter ideal q; the topology is the same for all q owing to $(1) \Rightarrow (6)$ of (19.13). Further, if R is semilocal, then it is conventional to take a to be rad(R) or another parameter ideal τ for R; recall from (22.1) that τ is also a parameter ideal for M.

Let \bar{K} denote the closure of the submodule $K \subset M$. Then $m \in M - \bar{K}$ means there’s n with $(m + F^n M) \cap K = \emptyset$, or equivalently $m \notin (K + F^n M)$. Thus

$$\bar{K} = \bigcap_n (K + F^n M).$$

In particular, $\{0\}$ is closed if and only if $\bigcap F^n M = \{0\}$.

Also, M is separated — that is, Hausdorff — if and only if $\{0\}$ is closed. For, if $\{0\}$ is closed, so is each $\{m\}$. So given $m' \neq m$, there’s n with $m \notin (m' + F^n M)$. Take $n \geq n'$. Then $(m + F^n M) \cap (m' + F^n M) = \emptyset$ owing to (22.1).

Finally, M is discrete — that is, every $\{m\}$ is both open and closed — if and only if $\{0\}$ is just open, if and only if $F^n M = 0$ for some n.

A sequence $(m_n)_{n \geq 0}$ in M is called Cauchy if, given n_0, there’s n_1 with

$$m_n - m_{n'} \in F^{n_0} M, \quad \text{or simply} \quad m_n - m_{n+1} \in F^{n_0} M, \quad \text{for all} \quad n, n' \geq n_1;$$

the two conditions are equivalent because $F^{n_0} M$ is a subgroup and

$$m_n - m_{n'} = (m_n - m_{n+1}) + (m_{n+1} - m_{n+2}) + \cdots + (m_{n'-1} - m_{n'}).$$

An $m \in M$ is called a limit of (m_n) if, given n_0, there’s n_1 with $m - m_n \in F^{n_0} M$ for all $n \geq n_1$. If so, we say (m_n) converge to m, and write $m = \lim m_n$.

Plainly, if (m_n) converges, then it’s Cauchy if every Cauchy sequence converges, then M is called complete. Plainly, the notions of Cauchy sequence and limit depend only on the topology.

The Cauchy sequences form a module $C(M)$ under termwise addition and scalar multiplication. The sequences with 0 as a limit form a submodule $Z(M)$. Set

$$\hat{M} := C(M)/Z(M).$$

Call \hat{M} the (separated) completion of M; this name is justified by (22.13)(2), (22.16)(4), and (22.54) below.

Form the R-map $M \to C(M)$ that carries m to the constant sequence (m). Composing it with the quotient map $C(M) \to \hat{M}$ yields this canonical R-map:

$$\kappa_M : M \to \hat{M} \quad \text{by} \quad \kappa_M m := \text{the residue of} \ (m).$$

(22.1.2)

If M is discrete, then every Cauchy sequence stabilizes; hence, then κ_M is bijective; moreover, M is separated and complete. For example, an Artinian ring R is discrete as its radical is nilpotent by (19.23); so R is separated and complete.
The submodule $K \subset M$ carries an induced filtration: $F^n K := K \cap F^n M$. Plainly $C(K) \subset C(M)$ and $Z(K) = C(K) \cap Z(M)$. Thus $\hat{K} \subset \hat{M}$ and $\kappa_K = \kappa_M | K$. In particular, the $F^n M$ form a filtration of \hat{M}.

Let $F^n M \cap \hat{K} \supset F^n \hat{K}$. Conversely, given $m \in F^n M \cap \hat{K}$, lift it to (m_k) in $C(M)$. Then $m_k \in F^n M \cap K$ for $k \gg 0$. So $m \in F^n \hat{K}$. Thus $F^n M \cap \hat{K} = F^n \hat{K}$; that is, on \hat{K}, the $F^n \hat{M}$ induce the filtration formed by the $F^n \hat{K}$.

Note $\kappa_M^{-1} F^n M \supset F^n M$ as $\kappa_M | F^n M = \kappa_{F^n M}$. Conversely, given a constant sequence $(m) \in C(F^n M)$, note $m \in F^n M$. Thus $\kappa_M^{-1} F^n M = F^n M$.

Let $\alpha: M \to N$ be a map of filtered modules with filtrations $F^* M$ and $F^* N$; that is, $\alpha(F^n M) \subset F^n N$ for all n. Plainly α is continuous, and preserves Cauchy sequences and limits. So α induces an R-map $C(M) \to C(N)$ by $(m_n) \mapsto (\alpha m_n)$, and it carries $Z(M)$ into $Z(N)$. Thus α induces an R-map $\hat{\alpha}: \hat{M} \to \hat{N}$ with $\hat{\alpha} \kappa_M = \kappa_N \alpha$. Plainly, $(\alpha(F^n M)) = F^n \hat{M} \to F^n \hat{N}$ is equal to $\hat{\alpha} | F^n M$; thus $\hat{\alpha}$ is a map of filtered modules. Moreover, $M \to \hat{M}$ is an R-linear functor.

Again, let \mathfrak{a} be an ideal. Under termwise multiplication of Cauchy sequences, \hat{R} is a ring, $\kappa_R: R \to \hat{R}$ is a ring map, and \hat{M} is an \hat{R}-module. Similarly, given an ideal $\mathfrak{b} \subset R$ equipped with the \mathfrak{a}-adic topology, define the \hat{R}-submodule $\mathfrak{b} \hat{M} \subset \hat{M}$, even if the natural map $\mathfrak{b} \to \hat{R}$ isn’t injective. A priori, the \mathfrak{a}-adic filtration of \hat{M} might differ from the induced filtration, which is given by $F^n M = \mathfrak{a}^n \hat{M}$ for all n; however, when M is Noetherian, the two coincide by (22.21).

Example (22.2). — Let R be a ring, X_1, \ldots, X_r variables. Set $P := R[X_1, \ldots, X_r]$ and $\mathfrak{a} := (X_1, \ldots, X_r)$. Then a sequence $(F_n)_{n \geq 0}$ of polynomials is Cauchy in the \mathfrak{a}-adic topology if and only if, given n_0, there’s n_1 such that, for all $n \geq n_1$, the F_n agree in degree less than n_0. So (F_n) determines a power series, and it is 0 if and only if (F_n) converges to 0. Thus \hat{P} is just the power series ring $R[[X_1, \ldots, X_r]]$.

Given $n \geq 0$, note \mathfrak{a}^n consists of the polynomials with no monomial of degree less than n. So a Cauchy sequence of polynomials in \mathfrak{a}^n converges to a power series with no monomial of degree less than n. Hence $\mathfrak{a}^n = \mathfrak{a}^n \hat{P}$. Thus \hat{P} has the \mathfrak{a}-adic topology. Note $\bigcap \mathfrak{a}^n \hat{P} = \{0\}$; thus \hat{P} is separated. Further, a sequence $(m_n)_{n \geq 0}$ of power series is Cauchy if and only if, given n_0, there’s n_1 such that, for all $n \geq n_1$, the m_n agree in degree less than n_0. Thus \hat{P} is complete.

For another example, take a prime integer p, and set $\mathfrak{a} := (p)$. Then a sequence $(x_n)_{n \geq 0}$ of integers is Cauchy if and only if, given n_0, there’s n_1 such that, for all $n \geq n_1$, the difference $x_n - x_{n'}$ is a multiple of p^{n_0}. The completion, denoted $\hat{\mathbb{Z}}_p$, is called the ring of p-adic integers, and consists of the sums $\sum_{i=0}^{\infty} z_i p^i$ with $0 \leq z_i < p$. Moreover, $\hat{\mathbb{Z}}_p$ has the p-adic topology, and is separated and complete.

Exercise (22.3). — Let R be a ring, M a module, $F^* M$ a filtration. Prove that
\[
\ker(\kappa_M) = \bigcap F^n M.
\]
where κ_M is the map of (22.1.2). Conclude that these conditions are equivalent:

(1) $\kappa_M: M \to \hat{M}$ is injective;
(2) $\bigcap F^n M = \{0\}$;
(3) M is separated.

Assume M is Noetherian and $F^* M$ is the \mathfrak{a}-adic filtration for a proper ideal \mathfrak{a} with either (a) $\mathfrak{a} \subset \text{rad}(M)$ or (b) R a domain and M torsionfree. Prove $M \subset \hat{M}$.
Proposition (22.4). — Let R be a ring, and \mathfrak{a} an ideal. Then $\widehat{\mathfrak{a}} \subset \text{rad}(\widehat{R})$.

Proof: Given $a \in \widehat{\mathfrak{a}}$, represent a by $(a_n) \in C(\mathfrak{a})$. For all n, set $b_n := 1 - a_n$ and $c_n := 1 + a_n + \cdots + a_n^n$ and $d_n := 1 - a_n^{n+1}$; then $b_n c_n = d_n$. Note (b_n) and (c_n) and (d_n) are Cauchy. Also, (b_n) and (d_n) represent $1 - a$ and $1 \in \widehat{R}$. Say (c_n) represents c. Then $(1 - a)c = 1$. Thus (3.2) implies $\widehat{\mathfrak{a}} \subset \text{rad}(\widehat{R})$. □

(22.5) (Inverse limits). — Let R be a ring. A sequence of modules Q_n and maps $\alpha_n^{n+1}: Q_{n+1} \to Q_n$ for $n \geq 0$ is called an inverse system. Its inverse limit $\varprojlim Q_n$ is the submodule of $\prod Q_n$ of all vectors (q_n) with $\alpha_n^{n+1}q_{n+1} = q_n$ for all n.

Define $\theta: \prod Q_n \to \varprojlim Q_n$ by $\theta(q_n) := (q_n - \alpha_n^{n+1}q_{n+1})$. Then

$$\varprojlim Q_n = \ker \theta.$$

(22.5.1) Plainly, $\varprojlim Q_n$ has this UMP: given maps $\beta_n: P \to Q_n$ with $\alpha_n^{n+1}\beta_{n+1} = \beta_n$, there’s a unique map $\beta: P \to \varprojlim Q_n$ with $\pi_n \beta = \beta_n$ for all n.

Further, owing to the UMP, a map of inverse systems, in the obvious sense of the term, induces a map between their inverse limits. (The notion of inverse limit is formally dual to that of direct limit.)

For instance, a module M with a filtration F^*M yields the inverse system with $Q_n := M/F^nM$ and α_n^{n+1} the quotient maps for $n \geq 0$. Moreover, let $\alpha M \to N$ be a map of filtered modules, F^*N the filtration on N, and $\alpha_n: M/F^nM \to N/F^nN$ the induced maps. The α_n form a map of inverse systems, as they respect the quotient maps. In (22.7) below, we prove $\widehat{M} = \varprojlim (M/F^nM)$ and $\widehat{\alpha} = \varprojlim \alpha_n$.

Example (22.6). — First, let R be a ring, $P := R[X_1, \ldots, X_r]$ the polynomial ring in r variables. Set $m := (X_1, \ldots, X_r)$ and $P_n := P/m^n+1$. Then P_n is just the algebra of polynomials of degree at most n, and the quotient map $\alpha_n^{n+1}: P_{n+1} \to P_n$ is just truncation. Thus $\varprojlim P_n$ is equal to the power series ring $[X_1, \ldots, X_r]$.

Second, take a prime integer p, and set $\mathbb{Z}_n := \mathbb{Z}/(p^n+1)$. Then \mathbb{Z}_n is just the ring of sums $\sum_{i=0}^n z_i p^i$ with $0 \leq z_i < p$, and the quotient map $\alpha_n^{n+1}: \mathbb{Z}_{n+1} \to \mathbb{Z}_n$ is just truncation. Thus $\varprojlim \mathbb{Z}_n$ is just the ring of p-adic integers.

Proposition (22.7). — Let $\alpha M \to N$ be a map of filtered modules with filtrations F^*M and F^*N, and $\alpha_n: M/F^nM \to N/F^nN$ the induced maps for $n \geq 0$. Then

$$\widehat{M} = \varprojlim (M/F^nM)$$

and

$$\widehat{\alpha} = \varprojlim \alpha_n.$$

Moreover, $\kappa_M: M \to \widehat{M}$ is induced by the quotient maps $M \to M/F^nM$.

Proof: Let’s define an R-map $\gamma: C(M) \to \varprojlim (M/F^nM)$. Given $(m_\nu) \in C(M)$, let $q_\nu \in M/F^nM$ be the residue of m_ν for $\nu \gg 0$. Then q_ν is independent of ν, because (m_ν) is Cauchy. Further, q_ν is the residue of $q_{\nu+1}$ in M/F^nM; so $(q_\nu) \in \varprojlim (M/F^nM)$. Define $\gamma(m_\nu) := (q_\nu)$. Plainly, γ is R-linear.

Above, it’s easy to see that $(m_\nu) \in Z(M)$ if and only if $q_\nu = 0$ for all n. Hence γ factors through an injective R-map $\lambda: \widehat{M} \to \varprojlim (M/F^nM)$.

Next, given $(q_\nu) \in \varprojlim (M/F^nM)$, lift $q_\nu \in M/F^nM$ to some $m_\nu \in M$ for all ν. Then $m_\nu - m_\nu \in F^nM$ for $\mu \geq \nu$, as $q_\nu \in M/F^nM$ maps to $q_\nu \in M/F^nM$. Hence $(m_\nu) \in C(M)$. Thus γ is surjective. So λ is too. Thus λ is an isomorphism.

Next, $\widehat{\alpha} = \varprojlim \alpha_n$ as $\alpha_n(q_\nu)$ is the residue of $\alpha(m_\nu)$ in N/F^nN for $\nu \gg 0$.

Moreover, given $m \in M$, assume $m_\nu = m$ for all ν. Then $q_\nu \in M/F^nM$ is the residue of m for all n. Thus $\kappa_M: M \to \widehat{M}$ is induced by the $M \to M/F^nM$. □

179
Exercise (22.8). — Let R be a ring, M a module, F^*M a filtration. Use (22.7) to compute $F^kM \subset \widehat{M}$. Then use (22.3) to show \widehat{M} is separated.

Exercise (22.9). — Let $Q_0 \supset Q_1 \supset Q_2 \supset \cdots$ be a descending chain of modules, $\alpha^{n+1}_n : Q_{n+1} \to Q_n$ the inclusions. Show $\bigcap Q_n = \lim_{\leftarrow} Q_n$.

Lemma (22.10). — (1) Let (M_n, μ^{n+1}_n) be an inverse system. Assume the μ^{n+1}_n are surjective for all n. Then $\lim_{\leftarrow} M_n = 0$.

(2) For $n \geq 0$, given commutative diagrams with exact rows

\[0 \to M_{n+1} \xrightarrow{\alpha_{n+1}} N_{n+1} \xrightarrow{\beta_{n+1}} P_{n+1} \to 0 \]

they induce the following exact sequence:

\[0 \to \lim_{\leftarrow} M_n \to \lim_{\leftarrow} N_n \to \lim_{\leftarrow} P_n \to \lim_{\leftarrow} M_n \to \lim_{\leftarrow} N_n \to \lim_{\leftarrow} P_n \to 0. \]

Proof: In (1), the μ^{n+1}_n are surjective. So given $(m_n) \in \prod M_n$, we can solve $q_n - \mu^{n+1}_n(q_{n+1}) = m_n$ recursively, starting with $q_0 = 0$, to get $(q_n) \in \prod M_n$ with $\theta((q_n)) = (m_n)$, where θ is the map of (22.5). So θ is surjective. Thus (1) holds.

For (2), note that the given diagrams induce the next one:

\[0 \to \prod M_n \xrightarrow{\prod \alpha_n} \prod N_n \xrightarrow{\prod \beta_n} \prod P_n \to 0 \]

Its rows are exact by (5.4). So the Snake Lemma (5.10) and (22.5.1) give (2). □

Example (22.11). — Let R be a ring, M a module, F^*M a filtration. For $n \geq 0$, consider the following natural commutative diagrams with exact rows:

\[0 \to F^{n+1}\!M \to M \to M/F^{n+1}\!M \to 0 \]

\[0 \to F^n\!M \to M \to M/F^n\!M \to 0 \]

with vertical maps, respectively, the inclusion, the identity, and the quotient map. By (22.9) and (22.7), the exact sequence of inverse limits in (22.10)(2) yields

\[0 \to \lim_{\leftarrow} F^n\!M \to M \xrightarrow{\kappa_M} \widehat{M}. \]

But κ_M is not always surjective; for examples, see (22.2). Thus \lim_{\leftarrow} is not always exact, nor is \lim_{\leftarrow} always 0.

Exercise (22.12). — Let R be a ring, M a module, F^*M a filtration, and $N \subset M$ a submodule. Give N and M/N the induced filtrations: $F^nN := N \cap F^nM$ and $F^n(M/N) := F^nM/F^nN$. Show the following: (1) $\widehat{N} \subset \widehat{M}$ and $\widehat{M}/\widehat{N} = \widehat{M}/N$.

(2) If $N \supset F^kM$ for some k, then $\kappa_{M/N}$ is a bijection, $\kappa_{M/N} : M/N \to \widehat{M}/N$.

Exercise (22.13). — Let R be a ring, M a module, F^*M a filtration. Show:

1. The canonical map $\kappa_M : M \to \widehat{M}$ is surjective if and only if M is complete.
2. Given $(m_n) \in C(M)$, its residue $m \in \widehat{M}$ is the limit of the sequence $(\kappa_M m_n)$.

180
Exercise (22.14). — Let R be a ring, M a module, and $F^\bullet M$ a filtration. Show that the following statements are equivalent: (1) κ_M is bijective; (2) M is separated and complete; (3) κ_M is an isomorphism of filtered modules.

Assume M is Noetherian and $F^\bullet M$ is the a-adic filtration for a proper ideal a with either (a) $a \subset \text{rad}(M)$ or (b) R a domain and M torsionfree. Prove that M is complete if and only if $M = \hat{M}$.

Exercise (22.15). — Let R be a ring, $\alpha : M \to N$ a map of filtered modules, $\alpha' : \hat{M} \to \hat{N}$ a continuous map such that $\alpha'\kappa_M = \kappa_N\alpha$. Show $\alpha' = \hat{\alpha}$.

Exercise (22.16). — Let R be a ring, M a module, $F^\bullet M$ a filtration. Show:

1. $G(\kappa_M) : G(M) \to G(\hat{M})$ is bijective.
2. $\kappa_M : M \to \hat{M}$ is bijective.
3. $\kappa_{\hat{M}} = \kappa_M$.
4. \hat{M} is separated and complete.

Lemma (22.17). — Let R be a ring, a an ideal, M a Noetherian module, N a submodule. Then the $(a$-adic) topology on M induces that on N.

Proof: Set $F^n N := N \cap a^n M$. The $F^n N$ form an a-stable filtration by the Artin–Rees Lemma (20.12). Thus by (22.1), it defines the a-adic topology. □

Theorem (22.18) (Exactness of Completion). — Let R be a ring, a an ideal. Then on the Noetherian modules M, the functor $M \mapsto \hat{M}$ is exact.

Proof: Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of Noetherian modules. Then $0 \to \hat{M}' \to \hat{M} \to \hat{M}'' \to 0$ is exact by (22.12)(1) and (22.17). □

Corollary (22.19). — Let R be a ring, a an ideal, M a finitely generated module. Then the canonical map $\hat{R} \otimes M \to \hat{M}$ is surjective; it’s bijective if R is Noetherian.

Proof: On (\text{(R-mod)}), the functor $N \mapsto \hat{N}$ preserves surjections by (22.12)(1); on the Noetherian modules, it is exact by (22.18). But if R is Noetherian, then every finitely generated module is Noetherian and finitely presented by (16.15). Thus (8.14) yields both assertions. □

Corollary (22.20). — Let R be a ring, a and b ideals, M a module. Use the a-adic topology. Assume either: (a) M and $b M$ are finitely generated and $b \supset a$, or (b) M is Noetherian. Then $b^n M = b^n \hat{M} = \hat{b^n M}$ for any $n \geq 1$.

Proof: To do $n = 1$, form the square induced by the inclusion $b M \to M$:

$$
\begin{array}{ccc}
\hat{R} \otimes (b M) & \xrightarrow{\alpha} & \hat{R} \otimes M \\
\downarrow & & \downarrow \gamma \\
b \hat{M} & \xrightarrow{\delta} & \hat{M}
\end{array}
$$

It’s commutative. Moreover, both β and γ are surjective by (22.19) as both $b M$ and M are finitely generated under either (a) or (b)

Plainly $\text{Im}(\alpha) = b(\hat{R} \otimes M)$. But γ is surjective. Thus $\text{Im}(\gamma \alpha) = b \hat{M}$.

At the bottom, δ is injective by (22.12)(1), as the topology on M induces that on $b M$ for these reasons. It does if (a) holds, namely if $a \subset b \subset R$, as then for any $k \geq 0$, multiplying by $a^k M$ yields $a^{k+1} M \subset a^k b M \subset a^k M$. And it does by (22.17) if (b) holds. Hence $\text{Im}(\delta \beta) = b M$. But $\text{Im}(\delta \beta) = \text{Im}(\gamma \alpha)$. Thus $b \hat{M} = b M$.

Plainly $b \hat{M} \subset b \hat{M}$. Also, $b \hat{M} \subset b \hat{M}$ as, given a Cauchy sequence in b and one
in M, their product is one in bM. But $\hat{b}\hat{M} = \hat{b}\hat{M}$. Thus the case $n = 1$ holds.

For $n \geq 2$, on any module, the a^n-adic topology is the same as the a-adic. So the case $n = 1$ applies with a^n and b^n for a and b. Thus $b^n\hat{M} = b^n\hat{M}b^n\hat{M}$. So it remains to show $b^n\hat{M} = b^n\hat{M}$. Induct on n. For $n = 1$, recall $b\hat{M} = \hat{b}\hat{M}$.

Assume $b^{n-1}\hat{M} = b^{n-1}\hat{M}$ with $n \geq 2$. Multiplying by b gives $b^n\hat{M} = b^n\hat{M}$. But $b\hat{M} = \hat{b}\hat{M}$. Thus $b^n\hat{M} = b^n\hat{M}$, as desired. □

Corollary (22.21). — Let R be a ring, a an ideal, M a module. Assume M is Noetherian, or just M and aM are finitely generated. Then these filtrations of \hat{M} coincide: the induced (for which $F^n\hat{M} := a^n\hat{M}$), the \hat{a}-adic, and the a-adic.

Proof: The assertion is an immediate consequence of (22.20) with $b := a$. □

Corollary (22.22). — Let R be a Noetherian ring, a an ideal, and M a finitely generated module. Assume M is flat. Then \hat{M} is flat both over \hat{R} and over R.

Proof: First, \hat{M} is flat over \hat{R} by (9.22) as $\hat{M} = M \otimes_R \hat{R}$ by (22.19). Second, fix an ideal b. Note $b\hat{M} = \hat{b}\hat{M}$ by (22.20). And $\hat{b}\hat{M} = \hat{R} \otimes \hat{b}\hat{M}$ by (22.19). But M is flat; so $b\hat{M} = \hat{b} \otimes M$ by (9.15). Thus $b\hat{M} = \hat{R} \otimes \hat{b} \otimes M$. But $\hat{R} \otimes M = \hat{M}$ by (22.19). Thus $\hat{b}\hat{M} = \hat{b} \otimes \hat{M}$. So \hat{M} is flat over R by (9.15). □

Lemma (22.23). — Let R be a ring, $\alpha: M \to N$ a map of filtered modules with filtrations $F^\bullet M$ and $F^\bullet N$.

1. Assume $F^nM = M$ for $n \ll 0$ and $G(\alpha)$ is injective. Then $\hat{\alpha}$ is injective.
2. Assume $F^nN = N$ for $n \ll 0$ and $G(\alpha)$ is surjective. Then $\hat{\alpha}$ is surjective.

Proof: Given $n \in \mathbb{Z}$, form the following commutative diagram:

\[
\begin{array}{cccccc}
0 & \to & F^nM/F^{n+1}M & \to & M/F^{n+1}M & \to & M/F^nM & \to & 0 \\
& & \alpha_n & \downarrow & \alpha_{n+1} & \downarrow & \alpha_n & \downarrow & \\
0 & \to & F^nN/F^{n+1}N & \to & N/F^{n+1}N & \to & N/F^nN & \to & 0
\end{array}
\]

Its rows are exact. So the Snake Lemma (5.10) yields this exact sequence:

$$\text{Ker } G_n(\alpha) \to \text{Ker } \alpha_{n+1} \beta_n \to \text{Ker } \alpha_n \to \text{Coker } G_n(\alpha) \to \text{Coker } \alpha_{n+1} \gamma_n \to \text{Coker } \alpha_n.$$

In (1), $\text{Ker } G_n(\alpha) = 0$ for all n; so β_n is injective for all n. Also $M/F^nM = 0$ for $n \ll 0$; so $\text{Ker } \alpha_n = 0$ for $n \ll 0$. Hence by induction, $\text{Ker } \alpha_n = 0$ for all n. So $\lim \text{Ker } \alpha_n$ is injective by (22.10)(2). Thus (22.7) yields (1).

In (2), note $\text{Coker } G_n(\alpha) = 0$ for all n. So β_n is surjective for all n. Thus (22.10)(1) yields $\lim \text{Coker } \alpha_n = 0$.

Again, $\text{Coker } G_n(\alpha) = 0$ for all n. So γ_n is injective for all n. Also $N/F^nN = 0$ for $n \ll 0$; so $\text{Coker } \alpha_n = 0$ for $n \ll 0$. So by induction, $\text{Coker } \alpha_n = 0$ for all n. So α_n is surjective for all n. So for all n, the following sequence is exact:

$$0 \to \text{Ker } \alpha_n \to M/F^nM \xrightarrow{\alpha_n} N/F^nN \to 0$$

So $\lim \alpha_n$ is surjective by (22.10)(1–2). Thus (22.7) yields (2). □

Lemma (22.24). — Let R be a ring, a an ideal, M a module, $F^\bullet M$ an a-filtration. Assume R is complete, M is separated, $F^nM = M$ for $n \ll 0$, and $G(M)$ is finitely generated over $G(R)$. Then M is complete, and finitely generated over R.

182
Proof: Take finitely many generators μ_i of $G(M)$, and replace them by their homogeneous components. Set $n_i := \deg(\mu_i)$. Lift μ_i to $m_i \in F^{n_i} M$.

Filter R a-adically. Set $E := \bigoplus R[-n_i]$. Filter E with $F^n E := \bigoplus F^n (R[-n_i])$. Then $F^n E = E$ for $n < 0$. Define $\alpha: E \to M$ by sending $1 \in R[-n_i]$ to $m_i \in M$. Then $\alpha F^n E \subset F^n M$ for all n. Also, $G(\alpha): G(E) \to G(M)$ is surjective as the μ_i generate. Thus α is surjective by (22.23).

Form the following canonical commutative diagram:

$$
\begin{array}{ccc}
E & \xrightarrow{\kappa_E} & \widehat{E} \\
\alpha \downarrow & & \alpha \downarrow \\
M & \xrightarrow{\kappa_M} & \widehat{M}
\end{array}
$$

Plainly, $\kappa_E = \bigoplus_i \kappa_{R[-n_i]}$. But κ_R is surjective by (22.13)(1), as R is complete. Hence κ_E is surjective. So $\alpha \circ \kappa_E$ is surjective. So κ_M is surjective. Thus (22.13)(1) implies M is complete.

By hypothesis, M is separated. So κ_M is injective by (22.3). Hence κ_M is bijective. So α is surjective. Thus M is finitely generated. \square

Proposition (22.25). — Let R be a ring, a an ideal, and M a module. Assume R is complete, and M separated. Assume $G(M)$ is a Noetherian $G(R)$-module. Then M is Noetherian over R, and every submodule N is complete.

Proof: Let $F^a M$ denote the a-adic filtration, and $F^a N$ the induced filtration: $F^n N := N \cap F^n M$. Then N is separated, and $F^n N = N$ for $n < 0$. Further, $G(N) \subset G(M)$. However, $G(M)$ is Noetherian. So $G(N)$ is finitely generated. Thus N is complete and finitely generated over R by (22.24). Thus M is Noetherian. \square

Theorem (22.26). — Let R be a ring, a an ideal, and M a Noetherian module. Then \widehat{M} is Noetherian over \widehat{R}, and every \widehat{R}-submodule is complete.

Proof: Set $R' := R/\Ann(M)$ and $a' := aR'$. Then R' is Noetherian by (16.16). Also, $a'^r = a^r R'$ and $a'^r M = a^r M$ for all $r \geq 0$. So the (a-adic) topology on R' and on M is equal to the a'-adic topology. Also, \widehat{R}' is a quotient of \widehat{R} by (22.12)(1). Hence, if \widehat{M} is Noetherian over \widehat{R}', then it’s so over \widehat{R}. Thus we may replace R by R', and thus assume R is Noetherian.

Since M is Noetherian and its a-adic filtration is (trivially) stable, $G(M)$ is a finitely generated $G(R)$-module owing to (20.8). But R is Noetherian. So a is finitely generated. So $G(R)$ is algebra finite over R/a by (20.7). But R/a is Noetherian as R is. So $G(R)$ is Noetherian by the Hilbert Basis Theorem, (16.10). But $G(R) = G(\widehat{R})$ and $G(M) = G(\widehat{M})$ owing to (22.16)(1) and (22.17). So $G(\widehat{M})$ is a Noetherian $G(\widehat{R})$-module. But \widehat{R} is complete and \widehat{M} is separated by (22.16)(4). Thus (22.25) now yields both assertions. \square

Example (22.27). — Let k be a Noetherian ring, $P := k[X_1, \ldots, X_r]$ the polynomial ring, and $A := k[[X_1, \ldots, X_r]]$ the formal power series ring. Then A is the completion of P in the (X_1, \ldots, X_r)-adic topology by (22.2). Further, P is Noetherian by the Hilbert Basis Theorem, (16.10). Thus A is Noetherian by (22.26).

Assume k is a domain. Then A is a domain. Indeed, A is one if $r = 1$, because $(a_m X_1^{n_1} + \cdots) (b_n X_1^{n_2} + \cdots) = a_m b_n X_1^{n_1 + n_2} + \cdots$.

If $r > 1$, then $A = k[[X_1, \ldots, X_r]] [[X_{i+1}, \ldots, X_r]]$; so A is a domain by induction.
Set \(p_i := \langle X_{i+1}, \ldots, X_r \rangle \). Then \(A/p_i = k[[X_1, \ldots, X_i]] \) by (3.7). Hence \(p_i \) is prime. So \(0 = p_1 \subseteq \cdots \subseteq p_0 \) is a chain of primes of length \(r \). Thus \(\dim A \geq r \).

Assume \(k \) is a field. Then \(A \) is local with maximal ideal \(\langle X_1, \ldots, X_r \rangle \) and residue field \(k \) by (3.7). So \(\dim A \leq r \) by (21.13). Thus \(A \) is regular of dimension \(r \).

B. Exercises

Exercise (22.28). — Let \(R \) be a ring, \(a \) an ideal, \(X \) a variable. Filter \(R[[X]] \) with the ideals \(b_n \) consisting of the \(H := \sum h_i X^i \) with \(h_i \in a^n \) for all \(i \). Show: (1) that \(R[[X]] = R[[X]] \) and (2) that if \(R \) is separated and complete, then so is \(R[[X]] \).

Exercise (22.29). — In \(\mathbb{Z}_2 \), evaluate the sum \(s := 1 + 2 + 4 + 8 + \cdots \).

Exercise (22.30). — Let \(R \) be a ring, \(\alpha_n^{n+1} : Q_{n+1} \to Q_n \) linear maps for \(n \geq 0 \). Set \(\alpha_n^m := \alpha_n^{m+1} \cdots \alpha_n^{m-1} \) for \(m > n \) and \(\alpha_n^n = 1 \). Assume the Mittag-Leffler Condition: for all \(n \geq 0 \), there’s \(m \geq n \) such that
\[
Q_n \supseteq \alpha_n^{n+1} Q_{n+1} \supseteq \cdots \supseteq \alpha_n^m Q_m = \alpha_n^{m+1} Q_{m+1} = \cdots.
\]
Set \(P_n := \bigcap_{m \geq n} \alpha_n^m Q_m \), and prove \(\alpha_n^{n+1} P_{n+1} = P_n \). Conclude that \(\lim_{n \to \infty} Q_n = 0 \).

Exercise (22.31). — Let \(R \) be a ring, and \(a \) an ideal. Set \(S := 1 + a \) and set \(T := \kappa^{-1}_R (\widehat{R}) \). Given \(t \in R \), let \(t_n \in R/a^n \) be its residue for all \(n \). Show:
1. Given \(t \in R \), then \(t \) is \(T \) if and only if \(t_n \in (R/a^n)^{\times} \) for all \(n \).
2. Then \(T = \{ t \in R \mid t \) lies in no maximal ideal containing \(a \} \).
3. Then \(S \subseteq T \), and \(\widehat{R} \) is the completion of \(S^{-1} R \) and of \(T^{-1} R \).
4. Assume \(\kappa_R : R \to \widehat{R} \) is injective. Then \(\kappa_{S^{-1} R} \) and \(\kappa_{T^{-1} R} \) are too.
5. Assume \(a \) is a maximal ideal \(m\). Then \(\widehat{R} = \widehat{R}_m \).

Exercise (22.32). — Let \(R \) be a ring, \(a \) an ideal, \(M \) a finitely generated module. Show \(\widehat{R} \cdot \kappa_M (M) = \widehat{M} \).

Exercise (22.33). — Let \(R \) be a ring, \(M \) a module, \(F^\bullet M \) a filtration, and \(N \) a submodule. Give \(N \) the induced filtration: \(F^n N := N \cap F^n M \) for all \(n \). Show:
1. \(\widehat{N} \) is the closure of \(\kappa_M N \) in \(\widehat{M} \).
2. \(\kappa_M^{-1} \widehat{N} \) is the closure of \(N \) in \(M \).

Exercise (22.34). — Let \(R \) be a ring, \(a \) an ideal. Show that every closed maximal ideal \(m \) contains \(a \).

Exercise (22.35). — Let \(R \) be a ring, \(a \) an ideal. Show equivalent:
1. \(a \subset \text{rad}(R) \).
2. Every element of \(1 + a \) is invertible.
3. Given any finitely generated \(R \)-module \(M \), if \(M = aM \), then \(M = 0 \).
4. Every maximal ideal \(m \) is closed.
Show, moreover, that (1)–(4) hold if \(R \) is separated and complete.

Exercise (22.36). — Let \(R \) be a Noetherian ring, \(a \) an ideal. Show equivalent:
1. \(R \) is a Zariski ring; that is, \(R \) is Noetherian, and \(a \subset \text{rad}(R) \).
2. Every finitely generated module \(M \) is separated.
3. Every submodule \(N \) of every finitely generated module \(M \) is closed.
4. Every ideal \(b \) is closed.
5. Every maximal ideal \(m \) is closed.
6. Every faithfully flat, finitely generated module \(M \) has a faithfully \(R \)-flat \(\widehat{M} \).
7. The completion \(\widehat{R} \) is faithfully \(R \)-flat.
Exercise (22.37). — Let R be a ring, a an ideal, M a Noetherian module. Prove:

1. $\bigcap_{n=1}^{\infty} a^n M = \bigcap_{m \in \Psi} \ker(M \xrightarrow{\cdot m} M_m)$ where $\Psi := \{ m \supset a \mid m \text{ maximal} \}$.
2. $\widehat{M} = 0$ if and only if $\text{Supp}(M) \cap V(a) = \emptyset$.

Exercise (22.38). — Let R be a ring, m_1, \ldots, m_m maximal ideals, and M module. Set $m := \bigcap m_i$, and give M the m-adic topology. Show $\widehat{M} = \prod M_{m_i}$.

Exercise (22.39). — (1) Let R be a ring, a an ideal. If $G_a(R)$ is a domain, show \bar{R} is a domain. If also $\bigcap_{n \geq 0} a^n = 0$, show R is a domain.

2. Use (1) to give an alternative proof that a regular local ring A is a domain.

Exercise (22.40). — (1) Let R be a Noetherian ring, a an ideal. Assume that $G_a(R)$ is a normal domain and that $\bigcap_{n \geq 0} (sR + a^n) = sR$ for any $s \in R$. Show using induction on n and applying (16.40) that R is a normal domain.

2. Use (1) to prove a regular local ring A is normal.

Exercise (22.41). — Let R be a ring, a an ideal, M a module with $\ell_R(M) < \infty$.

1. Assume M is simple. Show \widehat{M} is simple if $a \subset \text{Ann}(M)$, but $\widehat{M} = 0$ if not.

2. Show $\ell_R(\widehat{M}) \leq \ell_R(M)$, with equality if and only if $a \subset \text{rad}(M)$.

Exercise (22.42). — Let R be a ring, M a module with two filtrations $F^\bullet M$ and $G^\bullet M$. For all m, give $G^m M$ the filtration induced by $F^\bullet M$, and let $(G^m M)^F$ be its completion; filter M^F by the $(G^m M)^F$, and let $(M^F)^G$ be the completion. Define $H^\bullet M$ by $H^p M := F^p M + G^p M$, and let M^H be the completion. Show:

$$(M^F)^G = \lim_{\leftarrow m} \lim_{n \to \infty} M/(F^m M + G^m M) = M^H. \quad (22.42.1)$$

Exercise (22.43). — Let R be a ring, a and b ideals. Given any module M, let M^a be its a-adic completions. Set $c := a + b$. Assume M is Noetherian. Show:

1. Then $(M^a)^b = M^c$.

2. Assume $a \supset b$ and $M^a = M$. Then $M^b = M$.

Exercise (22.44). — Let R be a ring, a an ideal, X a variable, $F_n, G \in R[[X]]$ for $n \geq 0$. In $R[[X]]$, set $b := (a, X)$. Show the following:

1. Then b^n consists of all $H = \sum h_i X^i$ with $h_i \in a^{n-i}$ for all $i < m$.

2. Say $F_n := \sum f_{n,i} X^i$. Then (F_n) is Cauchy if and only if every $(f_{n,i})$ is.

3. Say $G := \sum g_i X^i$. Then $G = \lim F_n$ if and only if $g_i = \lim f_{n,i}$ for all i.

4. If R is separated or complete, then so is $R[[X]]$.

5. The (a, X)-adic completion of $R[X]$ is $\widehat{R}[X]$.

Exercise (22.45). — Let R be a ring, a an ideal, M a Noetherian module, $x \in R$. Prove: if $x \notin \text{z.div}(M)$, then $x \notin \text{z.div}(\widehat{M})$; and the converse holds if $a \subset \text{rad}(M)$.

Exercise (22.46). — Let k be a field with char$(k) \neq 2$, and X, Y variables. Set $P := k[X, Y]$ and $R := P/(Y^2 - X^2 - X^3)$. Let x, y be the residues of X, Y, and set $m := (x, y)$. Prove R is a domain, but its completion \widehat{R} with respect to m isn’t.

Exercise (22.47). — Given modules M_1, M_2, \ldots, set $P_k := \prod_{n=1}^{k} M_n$, and let $\pi_{k+1}^{k+1}: P_{k+1} \to P_k$ be the projections. Show $\lim_{\leftarrow k \geq 1} P_k = \prod_{n=1}^{\infty} M_n$.

185
Exercises \((22.48)\). — Let \(p \in \mathbb{Z}\) be prime. For \(n > 0\), define a \(\mathbb{Z}\)-linear map
\[
\alpha_n: \mathbb{Z}/(p) \to \mathbb{Z}/(p^n) \quad \text{by} \quad \alpha_n(1) = p^{n-1}.
\]
Set \(A := \bigoplus_{n \geq 1} \mathbb{Z}/(p^n)\) and \(B := \bigoplus_{n \geq 1} \mathbb{Z}/(p^n)\). Set \(\alpha := \bigoplus \alpha_n\); so \(\alpha: A \to B\).

1. Show that \(\alpha\) is injective and that the \(p\)-adic completion \(\widehat{A}\) is just \(A\).
2. Show that, in the topology on \(A\) induced by the \(p\)-adic topology on \(B\), the completion \(\overline{A}\) is equal to \(\prod_{n=1}^{\infty} \mathbb{Z}/(p^n)\).
3. Show that the natural sequence of \(p\)-adic completions
\[
\widehat{A} \xrightarrow{\alpha} \widehat{B} \xrightarrow{\beta}(B/A)\overline{\sim}
\]
is not exact at \(\widehat{B}\). (Thus \(p\)-adic completion is neither left exact nor right exact.)

Exercises \((22.49)\). — Preserve the setup of \((22.48)\). Set \(A_k := \alpha^{-1}(p^kB)\) and \(P := \prod_{k=1}^{\infty} \mathbb{Z}/(p)\). Show \(\lim_{k \to \infty} A_k = P/A\), and conclude \(\lim_{k \to \infty}\) is not right exact.

Exercises \((22.50)\). — Let \(R\) be a ring, \(a\) an ideal, and \(M\) a module. Show that \(\text{Ann}_R(M)\widehat{R} \subset \text{Ann}_{\widehat{R}}(\widehat{M})\), with equality if \(R\) is Noetherian and if \(M\) is finitely generated.

Exercises \((22.51)\). — Let \(R\) be a ring, \(a\) an ideal, \(M\) a module. Assume \(aM = 0\). Set \(b := \text{Ann}_R(M)\). Show \(\widehat{b} = \text{Ann}_{\widehat{R}}(\widehat{M})\).

Exercises \((22.52)\). — Let \(R\) be a ring, \(a\) an ideal, and \(M, N, P\) modules. Assume \(aM \subset P \subset N \subset M\). Prove:

1. The \((a\text{-adic})\) topology on \(M\) induces that on \(N\).
2. Then \((aM)^\wedge \subset \widehat{P} \subset \widehat{N} \subset \widehat{M}\), and \(N/P = \widehat{N}/\widehat{P}\).
3. The map \(Q \to \widehat{Q}\) is a bijection from the \(R\)-submodules \(Q\) with \(P \subset Q \subset N\) to the \(\widehat{R}\)-submodules \(\widehat{Q}'\) with \(\widehat{P} \subset Q' \subset \widehat{N}\). Its inverse is \(Q' \mapsto \kappa^{-1}_{\widehat{M}}(Q')\).

Exercises \((22.53)\). — Let \(R\) be a ring, \(a \subset b\) ideals, and \(M\) a finitely generated module. Let \(\Phi\) be the set of maximal ideals \(\mathfrak{m} \in \text{Supp}(M)\) with \(\mathfrak{m} \supset a\). Use the \(a\text{-adic}\) topology. Prove:

1. Then \(\widehat{M}\) is a finitely generated \(\widehat{R}\)-module, and \(\widehat{b}\widehat{M} = \widehat{bM} \subset \widehat{M}\).
2. The map \(p \to \widehat{p}\) is a bijection \(\text{Supp}(M/\widehat{aM}) \xrightarrow{\sim} \text{Supp}(\widehat{M}/\widehat{bM})\). Its inverse is \(p' \mapsto \kappa^{-1}_{\widehat{M}}p'\). It restricts to a bijection on the subsets of maximal ideals.
3. Then \(\text{Supp}(\widehat{M}/\widehat{aM})\) and \(\text{Supp}(\widehat{M})\) have the same maximal ideals.
4. Then the \(\widehat{m}\) with \(m \in \Phi\) are precisely the maximal ideals of \(\widehat{R}\) in \(\text{Supp}(\widehat{M})\).
5. Then \(\kappa^{-1}_{\widehat{M}}\text{rad}(\widehat{M}) = \bigcap_{\mathfrak{m} \in \Phi} \mathfrak{m}\) and \(\text{rad}(\widehat{M}) = (\bigcap_{\mathfrak{m} \in \Phi} \mathfrak{m})\wedge\).
6. Then \(\Phi\) is finite if and only if \(\widehat{M}\) is semilocal.
7. If \(M = R\), then \(\Phi = \{b\}\) if and only if \(\widehat{R}\) is local with maximal ideal \(\widehat{b}\).

Exercises \((22.54)\) \((\text{UMP of \(\text{completion}\))}\). — (1) Let \(R\) be a ring, \(M\) a filtered module. Show \(\kappa_M: M \to \widehat{M}\) is the universal example of a map of filtered modules \(\alpha: M' \to N\) with \(N\) separated and complete. (2) Let \(R\) be a filtered ring. Show \(\kappa_R\) is the universal filtered ring map \(\varphi: R \to R'\) with \(R'\) separated and complete.

Exercises \((22.55)\) \((\text{UMP of \(\text{formal power series}\))}\). — Let \(R\) be a ring, \(R'\) an algebra, \(b\) an ideal of \(R'\), and \(x_1, \ldots, x_n \in b\). Let \(A := R[[x_1, \ldots, x_n]]\) be the formal power series ring. Assume \(R'\) is separated and complete in the \(b\)-adic topology. Show there’s a unique map of \(R\)-algebras \(\varphi: A \to R'\) with \(\varphi(x_i) = x_i\) for all \(i\), and \(\varphi\) is surjective if the induced map \(R \to R'/b\) is surjective and the \(x_i\) generate \(b\).
Exercise (22.56). — Let R be a ring, a a finitely generated ideal, X_1, \ldots, X_n variables. Set $P := R[[X_1, \ldots, X_n]]$. Prove $P/aP = (R/a)[[X_1, \ldots, X_n]]$. (But, it’s not always true that $R'[\otimes_R P = R'[[X_1, \ldots, X_n]]$ for an R-algebra R'; see (8.18).)

Exercise (22.57) (Cohen Structure Theorem I). — Let $A \to B$ be a local homomorphism, $b \subset B$ an ideal. Assume that $A = B/b$ and that B is separated and complete in the b-adic topology. Prove the following statements:

1. The hypotheses hold if B is a complete Noetherian local ring, b is its maximal ideal, and A is a coefficient field.
2. Then $B \cong A[[X_1, \ldots, X_r]]/a$ for some r, variables X_i, and some ideal a.

Exercise (22.58) (Cohen Structure Theorem II). — Let $A \to B$ be a flat local homomorphism of complete Noetherian local rings, and $b \subset B$ an ideal. Denote the maximal ideal of A by m, and set $B' := B/mB$. Assume that $A \to B'/b$ and that B' is regular of dimension r. Find an A-isomorphism $\psi : B' \to A[[X_1, \ldots, X_r]]$ for variables X_i with $\psi(b) = (X_1, \ldots, X_r)$. In fact, if $b = \langle x_1, \ldots, x_r \rangle$ for given x_i, find such a ψ with $\psi(x_i) = X_i$.

Exercise (22.59). — Let k be a field, $A := k[[X_1, \ldots, X_n]]$ the power series ring in variables X_i with $n \geq 1$, and $F \in A$ nonzero. Find an algebra automorphism φ of A such that $\varphi(F)$ contains the monomial X_n^s for some $s \geq 0$; do so as follows. First, find suitable $m_i \geq 1$ and use (22.55) to define φ by

$$\varphi(X_i) := X_i + X_n^{m_i}$$

for $1 \leq i \leq n - 1$ and $\varphi(X_n) := X_n$.

(22.59.1)

Second, if k is infinite, find suitable $a_i \in k^\times$ and use (22.55) to define φ by

$$\varphi(X_i) := X_i + a_i X_n$$

for $1 \leq i \leq n - 1$ and $\varphi(X_n) := X_n$.

(22.59.2)

Exercise (22.60). — Let A be a separated and complete Noetherian local ring, k a coefficient field, x_1, \ldots, x_s a sop, X_1, \ldots, X_s variables. Set $B := k[[X_1, \ldots, X_s]]$. Find an injective map $\varphi : B \to A$ such that $\varphi(X_i) = x_i$ and A is B-module finite.

Exercise (22.61). — Let R be a ring, M a nonzero Noetherian module, and q a parameter ideal of M. Show: (1) \hat{M} is a nonzero Noetherian \hat{R}-module, and \hat{q} is a parameter ideal of \hat{M}; and (2) $e(q, M) = e(\hat{q}, \hat{M})$ and $\dim(M) = \dim(\hat{M})$.

Exercise (22.62). — Let A be a Noetherian local ring, m the maximal ideal, k the residue field. Show: (1) \hat{A} is a Noetherian local ring with \hat{m} as maximal ideal and k as residue field; and (2) A is regular of dimension r if and only if \hat{A} is so.

Exercise (22.63). — Let A be a Noetherian local ring, $k \subset A$ a coefficient field. Show A is regular if and only if, given any surjective k-map of finite-dimensional local k-algebras $B \to C$, every local k-map $A \to B$ lifts to a local k-map $A \to C$.

Exercise (22.64). — Let k be a field, $\varphi : B \to A$ a local homomorphism of Noetherian local k-algebras, and n, m the maximal ideals. Assume $k = A/m = B/n$, the induced map $\varphi' : n/n^2 \to m/m^2$ is injective, and A is regular. Show B is regular.

Exercise (22.65). — Let R be a Noetherian ring, and X_1, \ldots, X_n variables. Show that $R[[X_1, \ldots, X_n]]$ is faithfully flat.

Exercise (22.66) (Gabber–Ramero [8, Lem. 7.1.6]). — Let R be a ring, a an ideal, N a module. Assume N is flat. Prove the following:
(1) The functor \(M \mapsto (M \otimes N) \wedge \) is exact on the Noetherian modules \(M \).
(2) Assume \(R \) is Noetherian. Then for all finitely generated modules \(M \), there’s a canonical isomorphism \(M \otimes \hat{N} \cong (M \otimes N) \), and \(\hat{N} \) is flat over \(R \).

Exercise (22.67). — Let \(P \) be the polynomial ring over \(\mathbb{C} \) in variables \(X_1, \ldots, X_n \), and \(A \) its localization at \((X_1, \ldots, X_n) \). Let \(C \) the ring of all formal power series in \(X_1, \ldots, X_n \), and \(B \) its subring of series converging about the origin in \(\mathbb{C}^n \). Assume basic Complex Analysis (see [7, pp. 105–9]). Show \(B \) is local, and its maximal ideal is generated by \(X_1, \ldots, X_n \). Show \(P \subset A \subset B \subset C \), and \(P = A = B = C \). Show \(B \) is flat over \(A \).

Exercise (22.68). — Let \(R \) be a Noetherian ring, and \(a \) and \(b \) ideals. Assume \(a \subset \text{rad}(R) \), and use the \(a \)-adic topology. Prove \(b \) is principal if \(b\hat{R} \) is.

Exercise (22.69) (Nakayama’s Lemma for adically complete rings). — Let \(R \) be a ring, \(a \) an ideal, and \(M \) a module. Assume \(R \) is complete, and \(M \) separated. Show \(m_1, \ldots, m_n \in M \) generate assuming their images \(m'_1, \ldots, m'_n \in M/\text{rad}M \) generate.

Exercise (22.70). — Let \(A \rightarrow B \) be a local homomorphism of Noetherian local rings, \(\mathfrak{m} \) the maximal ideal of \(A \). Assume \(B \) is quasi-finite over \(A \); that is, \(B/\mathfrak{m}B \) is a finite-dimensional \(A/\mathfrak{m} \)-vector space. Show that \(\hat{B} \) is module finite over \(\hat{A} \).

Exercise (22.71). — Let \(A \) be the non-Noetherian local ring of (18.24). Using E. Borel’s theorem that every formal power series in \(x \) is the Taylor expansion of some \(C^\infty \)-function (see [13, Ex. 5, p. 244]), show \(\hat{A} = \mathbb{R}[[x]] \), and \(\hat{A} \) is Noetherian; moreover, show \(\hat{A} \) is a quotient of \(A \) (so module finite).

Exercise (22.72). — Let \(R \) be a ring, \(\mathfrak{q} \) an ideal, \(M \) a module. Prove that, if \(M \) is free, then \(M/\mathfrak{q}M \) is free over \(R/\mathfrak{q} \) and multiplication of \(G_\mathfrak{q}(R) \) on \(G_\mathfrak{q}(M) \) induces an isomorphism \(\sigma_M : G_\mathfrak{q}(R) \otimes_{R/\mathfrak{q}} M/\mathfrak{q}M \rightarrow G_\mathfrak{q}(M) \). Prove the converse holds if either (a) \(\mathfrak{q} \) is nilpotent, or (b) \(M \) is Noetherian, and \(\mathfrak{q} \subset \text{rad}(M) \).

C. Appendix: Henselian Rings

App: Henselian Rings

(22.73) (Henselian pairs and Rings). — Let \(R \) be a ring, \(\mathfrak{a} \) an ideal. We call the pair \((R, \mathfrak{a})\) **Henselian** if \(\mathfrak{a} \subset \text{rad}(R) \) and if, given any variable \(X \) and any monic polynomial \(F \in R[X] \) whose residue \(\overline{F} \in (R/\mathfrak{a})[X] \) factors as \(\overline{F} = GH \) with \(G \) and \(\overline{H} \) monic and coprime, then \(F \) itself factors as \(F = GH \) where \(G \) and \(H \) are monic with residues \(\overline{G}, \overline{H} \in (R/\mathfrak{a})[X] \).

Note that \(G \) and \(H \) too are coprime by (10.33)(2).

The factorization \(F = GH \) is unique: given \(F = G'H' \) where \(G' \) and \(H' \) are monic with residues \(\overline{G}, \overline{H} \), then \(G = G' \) and \(H = H' \). Indeed, \(G \) and \(H' \) are coprime by (10.33)(2). So there are \(A, B \in R[X] \) with \(AG + BH' = 1 \). Then

\[G' = AGG' + BH'G' = AGG' + BGH = (AG + BH)G. \]

But \(G \) and \(G' \) are monic of degree \(\deg (\overline{G}) \). Thus \(G = G' \). So \(GH = GH' \). So \(G(H - H') = 0 \). As \(G \) is monic, \(H = H' \).

For future application, note that, even if we don’t require \(F \) and \(H \) to be monic, the preceding argument establishes the uniqueness of the factorization \(F = GH \).

If \((R, \mathfrak{a})\) is Henselian, then so is \((R/\mathfrak{b}, \mathfrak{a}/\mathfrak{b})\) for any ideal \(\mathfrak{b} \subset \mathfrak{a} \).

We call a local ring \(A \) with maximal ideal \(\mathfrak{m} \) **Henselian** if \((A, \mathfrak{m})\) is Henselian.
Example (22.74) (Some Henselian Rings). — (1) Any field is Henselian.

(2) Any separated and complete local ring is Henselian by (22.75) just below.

(3) Let A be the localization of \mathbb{Z} at $\langle p \rangle$. Set $F := X(X - 1) + p \in A[X]$. Then $F = X(X - 1)$ in $(A/p)A[X]$ with X and $X - 1$ coprime and monic. But plainly F does not factor in $A[X]$. Thus A is not Henselian.

Theorem (22.75) (Hensel’s Lemma). — Let R be a ring, a an ideal. Assume R is separated and complete (in the a-adic topology). Then (R, a) is Henselian.

In fact, given any variable X and any $F \in R[X]$ whose image $\overline{F} \in (R/a)[X]$ factors as $\overline{F} = GH$ where G is monic and G and H are coprime, then $F = GH$ uniquely where G is monic and G and H are coprime with residues \overline{G} and \overline{H}.

Proof: As R is separated and complete, (22.35) yields $a \subset \text{rad}(R)$.

Set $P := R[X]$. Lift $\overline{G}, \overline{H}$ to some $G_0, H_0 \in P$ with G_0 monic. By (10.33)(2), G_0 and H_0 are relatively prime. Set $n := \deg G_0$ and $m := \max \{\deg H_0, \deg F - n\}$.

Starting with G_0, H_0, by induction let’s find $G_k, H_k \in P$ for $k \geq 1$ with G_k monic of degree n, with $\deg H_k \leq m$, and with

$$G_{k-1} \equiv G_k \text{ and } H_{k-1} \equiv H_k \pmod{a^{k-1}P} \quad \text{and} \quad F \equiv G_kH_k \pmod{a^kP}.$$

Plainly, applying (10.34) to G_{k-1}, H_{k-1}, and a^{k-1} yields suitable G_k and H_k.

Set $p := \max \{\deg H_0, \deg F\}$ and $M := \sum_{i=0}^{p} RX^i$. As R is separated and complete, plainly so is M. But the G_k and H_k form Cauchy sequences in M. So they have limits, say G and H; in fact, the coefficients of G and H are the limits of the coefficients of the G_k and H_k.

As the G_k are monic of degree n, so is G. As all G_k and H_k have residues \overline{G} and \overline{H}, so do G and H. Now, F is the limit of G_kH_k; so $F = GH$; this factorization is unique by (22.73). As \overline{G} and \overline{H} are coprime, so are G and H by (10.33)(2).

Exercise (22.76). — Let R be a ring, a an ideal, X a variable, $F \in R[X]$. Assume its residue $\overline{F} \in (R/a)[X]$ has a supersimple root $\overline{a} \in R/a$, and R is separated and complete. Then F has a unique supersimple root $a \in R$ with residue \overline{a}.

Proposition (22.77). — Let A be a local domain, R an overdomain. Assume A is Henselian, and R is integral over A. Then R is local.

Proof: Let m be the maximal ideal of A, and m', m'' maximal ideals of R. The latter lie over m by (14.3)(1). By way of contradiction, assume there’s $x \in m' - m''$.

As R/A is integral, x satisfies a monic polynomial of minimal degree, say

$$F(x) := X^n + c_1X^{n-1} + \cdots + c_n \in A[x].$$

Then F is irreducible; for if $F = GH$, then $G(x)H(x) = 0$, but R is a domain.

Note $x \in m'$. So $c_n = -x(x^{n-1} + \cdots + c_{n-1}) \in A \cap m' = m$. Now, $c_i \notin m$ for some i; else, $x^n = -(c_1x^{n-1} + \cdots + c_n)$, but $x \notin m''$. Let j be maximal such that $c_j \notin m$. Then $1 \leq j < n$.

Set $k := A/m$. Let $\tau_i \in k$ be the residue of c_i. Set $\overline{G} := X^j + \tau_1X^{j-1} + \cdots + \tau_j$ and $\overline{H} := X^{n-j}$. Then the residue $\overline{F} \in k[X]$ factors as $\overline{F} = \overline{G}\overline{H}$. But $\tau_j \neq 0$. So G and H are coprime by (2.33) or (2.18). But A is Henselian. Thus F is irreducible, a contradiction. So $m' \subset m''$. But m' is maximal. So $m' = m''$. Thus R is local. □
Theorem (22.78). — Let A be a local ring, and X a variable. Then the following four conditions are equivalent: (1) A is Henselian.

(2) For any monic polynomial $F \in A[X]$, the algebra $A[X]/\langle F \rangle$ is decomposable.

(3) Any module-finite A-algebra B is decomposable.

(4) Any module-finite A-algebra B that is free is decomposable.

Proof: Let m be the maximal ideal of A, and set $k := A/m$.

Assume (1). To prove (2), set $B := A[X]/\langle F \rangle$, and let $\overline{F} \in k[X]$ be the image of F. Note $A[X]/m[X] = k[X]$ by (1.16); so $B/mB = k[X]/\langle \overline{F} \rangle$. If \overline{F} is a power of an irreducible polynomial, then $k[X]/\langle \overline{F} \rangle$ is local, and so B is local.

Otherwise, $\overline{F} = \overline{G}/\overline{H}$ with \overline{G}, \overline{H} monic and coprime of positive degrees. So (1) yields $F = GH$ with G, H monic and coprime with residues \overline{G} and \overline{H}. Hence

$$B = (A[X]/\langle G \rangle) \times (A[X]/\langle H \rangle)$$

by (1.21)(1). So B is decomposable by recursion. Thus (2) holds.

Assume (2). To prove (3), set $\mathcal{B} := B/mB$. By (19.15)(2), $\mathcal{B} = \prod \mathcal{B}_n$, where the \mathcal{n}_i are the maximal ideals of B. Let $\mathcal{e}_i \in \mathcal{B}$ be the idempotent with $\mathcal{B}_n = \mathcal{B}_{\mathcal{e}_i}$.

Fix i. Let $b \in B$ lift $\mathcal{e}_i \in \mathcal{B}$. Set $B' := A[b]$. As B is a module-finite A-algebra, B is a module-finite B'-algebra. For all j, set $n'_j := n_j \cap B$. By (14.3)(1), the n'_j are maximal (but not necessarily distinct). Now, $\mathcal{e}_i \notin n_i B$, but $\mathcal{e}_i \in n_i B$ for $j \neq i$. So $b \notin n_i$, but $b \in n_j$ for $j \neq i$. Thus $n'_j \neq n'_i$ for $j \neq i$.

By (10.14)(3)\Rightarrow(1), $F(b) = 0$ for a monic $F \in A[X]$. Set $B'' := A[X]/\langle F \rangle$. Let $x \in B''$ be the residue of X. Define $\phi : B'' \to B'$ by $\phi(x) := b$. For all j, set $n''_j := \varphi^{-1} n'_j$. Then as ϕ is surjective, the n''_j are maximal, and $n''_j \neq n''_i$ for $j \neq i$.

By (10.15)(1)\Rightarrow(3), B'' is a module-finite A-algebra. So B'' is decomposable by (2). For all j, set $B''_j := B''/n''_j$. By (11.18), each B''_j is a factor of B''.

Let e be the idempotent with $B''_i = B'' e$, and \mathcal{e} the residue of $\phi(e)$ in \mathcal{B}. Then \mathcal{e} projects to 1 in \mathcal{B}_n, and to 0 in \mathcal{B}_n for $j \neq i$. Hence $\mathcal{e} = \mathcal{e}_i$. So $\phi(e) \in B$ is idempotent, and lifts \mathcal{e}_i. So the map $\text{Idem}(B) \to \text{Idem}(B/mB)$ is surjective. So B is decomposable by (11.18). Thus (3) holds.

Trivially, (3) implies (4). And (4) implies (2) by (10.15).

Assume (2). To prove (1), let F be a monic polynomial whose residue $\overline{F} \in k[X]$ factors as $\overline{F} = \overline{G}_1 \overline{G}_2$ with the \overline{G}_i monic and coprime. Set $B := A[X]/\langle F \rangle$. Then

$$(\ref{22.78})(1) \text{ yields } B/mB \twoheadrightarrow (k[X]/\langle \overline{G}_1 \rangle) \times (k[X]/\langle \overline{G}_2 \rangle).$$

By (2), B is decomposable. So idempotents of B/mB lift to idempotents of B by (11.18). Thus $B = B_1 \times B_2$ with $B_i/mB_i = k[X]/\langle \overline{G}_i \rangle$.

By (10.15)(1)\Rightarrow(4), B is free over A. So each B_i is projective by (5.16)(3)\Rightarrow(1). But A is local, and B_i is module-finite. Thus (10.12)(2)\Rightarrow(1) implies B_i is free.

By (10.32), each $B_i = A[X]/\langle G_i \rangle$ where G_i is monic and lifts \overline{G}_i. Plainly, $\text{deg}(G_i) = \text{deg}(\overline{G}_i)$. By (10.33)(2), the G_i are coprime. So $B_1 \times B_2 = A[X]/\langle G_1 G_2 \rangle$ by (1.21)(1). So $A[X]/\langle F \rangle = A[X]/\langle G_1 G_2 \rangle$. So $\langle F \rangle = \langle G_1 G_2 \rangle$. But F and $G_1 G_2$ are monic of the same degree. Hence $F = G_1 G_2$. Thus (1) holds.

Corollary (22.79). — Let A be a Henselian local ring, B be a module-finite local A-algebra. Then B is Henselian.

Proof: Apply (22.78)(3)\Rightarrow(1): a module-finite B-algebra C is a module-finite A-algebra by (10.16); thus, (22.78)(1)\Rightarrow(3) implies C is decomposable. \qed
(22.80) (Equicharacteristic). — A local ring A is said to be **equicharacteristic** if it has the same characteristic as its residue field.

Assume A is equicharacteristic. Let m be its maximal ideal, p its characteristic, and A_0 the image of the canonical map $\varphi: \mathbb{Z} \to A$. If $p > 0$, then $\ker(\varphi) = \langle p \rangle$, and so $\mathbb{F}_p \to A_0$. Suppose $p = 0$. Then $\varphi: \mathbb{Z} \to A_0$. But A/m too has characteristic 0. Hence $A_0 \cap m = \langle 0 \rangle$. So $A_0 - 0 \subset A^\kappa$. Hence A contains $\mathbb{Q} = \text{Frac}(A_0)$. In sum, A contains a field isomorphic to the prime field, either \mathbb{F}_p or \mathbb{Q}.

Conversely, if a local ring contains a field, then that field is isomorphic to a subfield of the residue field, and so the local ring is equicharacteristic.

Any quotient of A is, plainly, equicharacteristic too. Moreover, given any local subring B of A with $B \cap m$ as maximal ideal, plainly B has the same characteristic as A, and its residue field is a subfield of that of A; so B is equicharacteristic too.

Theorem (22.81) (Cohen Existence). — A separated and complete equicharacteristic local ring contains a coefficient field.

Proof: Let A be the local ring, m its maximal ideal, K its residue field, and $\kappa: A \to K$ the quotient map. Let p be the characteristic of A and K.

First, assume $p = 0$. Then $\mathbb{Q} \subset A$ by (22.80). Apply Zorn’s Lemma to the subfields of A ordered by inclusion; it yields a maximal subfield E. Set $L = \kappa(E)$. Suppose there’s an $x \in A$ with $\kappa(x)$ transcendental over L. Then $E[x] \cap m = 0$. So $E[x] - 0 \subset A^\kappa$. So $E(x) \subset A$, contradicting maximality. Thus K/L is algebraic.

Suppose there’s $y \in K - L$. Let $F(X) \in L[X]$ be its monic minimal polynomial. Set $F(X) := \partial F(X)/\partial X$; see (1.18.1). Then $F(X) \neq 0$ as $p = 0$. So $\deg(F') < \deg(F)$. Thus (1.19) implies y is a super simple root of F.

Let $F \in E[X]$ be the lift of F. Then by (22.76), there’s a root $x \in A$ of F lifting y. Consider the surjections $E[X]/(F) \to E[x] \to L[y]$. The composition is an isomorphism owing to (10.15)(4)\Rightarrow(1). So $E[X]/(F) \to E[x] \to L[y]$. But $L[y] \subset K$, so $L[y]$ is a domain. Thus $E[x]$ is a domain.

Note x is integral over E. Hence $E[x]$ is integral over E by (10.18)(2)\Rightarrow(1). But $E[x]$ is a domain. So $E[x]$ is a field by (14.1). But $x \notin E$ as $y \notin L$. So $E[x] \neq F$, contradicting maximality. Thus $L = K$, as desired.

So assume $p > 0$ instead. For all $n \geq 1$, set $A_n := A/m^n$. Then $A_1 = K$. Set $K_1 := A_1$. For $n \geq 2$, let’s find a field $K_n \subset A_n$ that’s carried isomorphically onto K_{n-1} by the canonical surjection $\psi_n: A_n \to A_{n-1}$. Suppose we have K_{n-1}.

Set $B := \psi_n^{-1}(K_{n-1})$ and $n := \ker(\psi_n)$. Then $n \subset B$ as $0 \in K_{n-1}$. Let’s show B local with n as maximal ideal. Given $x \in B - n$, set $y := \psi_n(x)$. Then $y \neq 0$ in K_{n-1}. So there’s $z \in K_{n-1}$ with $yz = 1$. So $y \notin m/m^{n-1}$. So $x \notin m/n$. So there’s $u \in A_n$ with $xu = 1$. So $\psi_n(u) = 1$. So $\psi_n(u) = z$. So $u \in B$. Thus by (3.5), B is local with n as maximal ideal.

Note $n := \psi_n^{-1}(K_{n-1}) = m^{n-1}/m^n$. So $n^2 = 0$. Set $B^p = \{ x^p \mid x \in B \}$. Then B^p is a ring. Given $y \in B^p - 0$, say $y = x^p$. Then $x \notin n$ as $n^2 = 0$. So there’s $z \in B$ with $xz = 1$. Then $yz^p = 1$. Thus B^p is a field.

Zorn’s Lemma yields a maximal subfield K_n of B containing B^p. Suppose there’s $x \in B$ with $\psi_n(x) \notin \psi_n(K_n)$. Then $x^p \in B^p \subset K_n$. So $\psi_n(x)^p \in \psi_n(K_n)$. So its monic minimal polynomial is $X^p - \psi_n(x)^p$. So $X^p - x^p$ is irreducible in $B[x]$, as any nontrivial monic factor would reduce to one of $X^p - \psi_n(x)^p$. So $K_n[X]/(X^p - x^p)$ is a domain. Hence, as above, it is isomorphic to $K_n[x]$, and $K_n[x]$ is a field, contradicting maximality. Thus $\psi_n(K_n) = K_{n-1}$, as desired.
Finally, given \(x_1 \in K_1 \), define \(x_n \in K_n \) inductively by \(x_n := (\psi_n|K_n)^{-1}(x_{n-1}) \). Then \((x_n) \in \lim A_n \subset \prod A_n \) as \(\psi_n(x_n) = x_{n-1} \) for all \(n \). But \(\lim A_n = \hat{A} \) by (22.7), and \(A = \hat{A} \) by (22.14)(2)⇒(1) as \(A \) is separated and complete. Define \(\psi: K_1 \to A \) by \(\psi(x_1) := (x_n) \). Then \(\psi(K_1) \subset A \) is a field, and \(\kappa \psi(K_1) = K \). Thus \(\psi(K_1) \) is a coefficient field of \(A \). □

Theorem (22.82) (Hensel’s Lemma, ver. 2). — Let \(R \) be a ring, \(a \) an ideal, \(x \in R \). Let \(X \) be a variable, \(F \in R[X] \) a polynomial. Set \(F'(X) := \partial F(X)/\partial X \) as in (1.18.1), and set \(e := F'(x) \). Assume that \(R \) is separated and complete and that \(F(x) \equiv 0 \pmod{e^2} \). Then there’s a root \(y \in R \) of \(F \) with \(y \equiv x \pmod{e^3} \).
Moreover, if \(e \) is a nonzerodivisor, then \(y \) is unique.

Proof: By hypothesis, \(F(x) = e^2a \) for some \(a \in a \). So by (1.18), there’s some \(H(X) \in R[X] \) with \(F(X) = e^2a + e(X - x) + (X - x)^2H(X) \).
Thus
\[
F(x + eX) = e^2(a + X + X^2H(x + eX)).
\]
(22.82.1)

Set \(H_1(X) := H(x + eX) \) and \(b := (X) \). Then \(R[[X]] \) is \(b \)-adically separated and complete by (22.2). So (22.55) yields an \(R \)-algebra map \(\varphi: R[[X]] \to R[[X]] \) with \(\varphi(X) = X + X^2H_1(X) \). But \(G_b(\varphi) \) is, plainly, the identity of \(R[[X]] \). So \(\varphi \) is an automorphism by (22.23). Thus we may apply \(\varphi^{-1} \) to (22.82.1), and obtain
\[
F(x + e\varphi^{-1}(X)) = e^2(a + X).
\]
(22.82.2)

By hypothesis, \(R \) is \(a \)-adically separated and complete. So (22.55) yields an \(R \)-algebra map \(\psi: R[[X]] \to R \) with \(\psi(X) = -a \). Applying \(\psi \) to (22.82.2) yields \(F(x + e\psi\varphi^{-1}(X)) = 0 \). So set \(y := x + e\psi\varphi^{-1}(X) \). Then \(F(y) = 0 \). But \(\varphi^{-1}(X) \in b \) and \(\psi(b) \subset a \).
So \(y \equiv x \pmod{e^3} \). Thus \(y \) exists.

Moreover, assume \(e \) is a nonzerodivisor. Given two roots \(y_1, y_2 \) of \(F \) such that \(y_i = x + ea_i \) with \(a_i \in a \), note \(0 = F(y_i) = e^2(a + a_i + a_i^2H_1(a_i)) \) by (22.82.1). So \(a_1 + a_1^2H_1(a_1) = a_2 + a_2^2H_1(a_2) \). But, (22.55) gives \(R \)-algebra maps \(\theta_i: R[[X]] \to R \) with \(\theta_i(X) = a_i \). So \(\theta_1 \varphi(X) = \theta_2 \varphi(X) \). Thus \(\theta_1 \varphi = \theta_2 \varphi \) by uniqueness in (22.55). But \(\varphi \) is an isomorphism. So \(\theta_1 = \theta_2 \). Thus \(y_1 = y_2 \), as desired. □

Example (22.83). — Let’s determine the nonzero squares \(z \) in the \(p \)-adic numbers \(\hat{\mathbb{Z}}_p \), introduced in (22.2). Say \(z = \sum_{i=1}^{n} z_i p^i \) with \(0 \leq z_i < p \) and \(z_n \neq 0 \). Set \(y = \sum_{i=0}^{n} z_i^{-1} p^i \). Then \(z = p^m y \) and \(y \) isn’t divisible by \(p \).
Suppose \(z = x^2 \). Say \(x = p^m w \) with \(w \in \hat{\mathbb{Z}}_p \) not divisible by \(p \). Then \(z = p^{2m} w^2 \).
If \(n \geq 2m \), then \(p^{n-2m} y = w^2 \); so \(n = 2m \) as \(w^2 \) isn’t divisible by \(p \). Similarly, if \(n \leq 2m \), then \(n = 2m \). Thus \(n \) is even, and \(y \) is a square. Conversely, if \(n \) is even, and \(y \) is a square, then \(z \) is a square. Thus it remains to see when \(y \) is a square.

If \(y \) is a square, then so is its residue \(\overline{y} \in \mathbb{F}_p = \hat{\mathbb{Z}}_p/p \). Conversely, suppose \(\overline{y} = w^2 \) for some \(w \in \mathbb{F}_p \). Form \(F(X) := X^2 - y \in \hat{\mathbb{Z}}_p[X] \). Then \(\overline{w} \) is a root of the residue \(F(X) \). Set \(F'(X) := \partial F(X)/\partial X \) as in (1.18.1). Then \(F'(X) = 2X \).

First, assume \(p > 2 \). Then \(F'(w) = 2\overline{w} \neq 0 \) as \(\overline{w} \neq 0 \). So \(\overline{w} \) is a super simple root of \(F \) by (1.19). So (22.76) yields a root \(w \) of \(F \) in \(A \). So \(y = w^2 \). Thus \(y \) is a square if and only if \(\overline{y} \) is a square.

For instance, \(2 \) is a square in \(\hat{\mathbb{Z}}_2 \) as \(2^2 \equiv 2 \pmod{7} \).
Lastly, assume \(p = 2 \). Then \(2X \equiv 0 \pmod{2} \). So the above reasoning fails. But suppose \(y \equiv 1 \pmod{8} \). Then \((\partial F(X)/\partial X)(1) = 2 \) and \(F(1) = 1 - y \equiv 0 \pmod{2^2 \cdot 2} \). So (22.82) yields a root \(w \) of \(F \). Thus \(y \) is a square in \(\hat{\mathbb{Z}}_2 \).
Conversely, suppose \(y = w^2 \) for some \(w \in \hat{\mathbb{Z}_2} \). Recall \(y \) isn’t divisible by 2. So \(y \equiv 1 \pmod{2} \). So \(w = 1 + 2v \) for some \(v \in \hat{\mathbb{Z}_2} \). So \(y = (1 + 2v)^2 = 1 + 4v(1 + v) \). But \(v(1 + v) \equiv 0 \pmod{2} \). Hence \(y \equiv 1 \pmod{8} \).

Thus \(y \) is a square if and only if \(y \equiv 1 \pmod{8} \).

Theorem (22.84) (Weierstraß Division). — Let \(R \) be a ring, \(a \) an ideal. Assume \(R \) is separated and complete (in the \(\mathfrak{m} \)-adic topology). Fix \(F = \sum f_i X^i \in R[[X]] \).

Assume there’s \(n \geq 0 \) with \(f_n \in R^\times \) but \(f_i \in a \) for \(i < n \). Then given \(G \in R[[X]] \), there are unique \(Q \in R[[X]] \) and \(P \in R[X] \) with either \(P = 0 \) or \(\deg(P) < n \) such that \(G = QF + P \). Moreover, if \(F, G \in R[X] \) and \(\deg(F) = n \), then \(Q \in R[X] \) with either \(Q = 0 \) or \(\deg(Q) = \deg(G) - n \).

Proof: Given \(H = \sum h_i X^i \in R[[X]] \), set \(\alpha(H) := h_0 + \cdots + h_{n-1} X^{n-1} \) and \(\tau(H) := h_n + h_{n+1} X + \cdots \). As \(f_n \in R^\times \), then \(\tau(F) \in R[[X]]^\times \) by (3.7). Set \(M := -\alpha(F) \tau(F)^{-1} \) and \(\mu(H) := \tau(MH) \). Then \(\alpha, \tau, \mu \in \text{End}_R(R[[X]]) \).

Assume \(F, G \in R[[X]] \) and \(\deg(F) = n \). Then the usual Division Algorithm (DA) yields \(Q, P \). Let’s review it, then modify it so that it yields \(Q, P \) for any \(F, G \).

The DA is: set \(Q := 0 \) and \(P := G \); while \(P =: \sum_{i=m}^n p_i X^i \) with \(p_m \neq 0 \) and \(m \geq n \), replace \(Q \) by \(Q + p_m f_n^{-1} X^{m-n} \) and replace \(P \) by \(P - p_m f_n^{-1} X^{m-n} F \). Note \(G = QF + P \) holds initially, and is preserved on each iteration of the loop:

\[
G = QF + P = (Q + p_m f_n^{-1} X^{m-n})F + (P - p_m f_n^{-1} X^{m-n} F).
\]

Moreover, when the DA terminates, \(P = 0 \) or \(\deg(P) < n \). So if \(Q \neq 0 \), then \(\deg(G) = \deg(Q) + n \) as \(G = QF + P \) and \(f_n \in R^\times \). Thus \(Q, P \) work.

The algorithm does, in fact, terminate. Indeed, replacing \(P \) by \(P - p_m f_n^{-1} X^{m-n} F \) eliminates \(p_m \) and modifies the \(p_i \) for \(i < m \), but adds no new \(p_i X^i \) for \(i > m \). Thus on each iteration of the loop, either \(P \) becomes 0 or its degree drops.

The Modified Division Algorithm (MDA) is similar, but de-emphasizes \(m \). Also, \(n \) can be made implicit as \(f_n = \tau(F) \). The MDA is this: set \(Q := 0 \) and \(P := G \); while \(\tau(P) \neq 0 \), replace \(Q \) by \(Q + \tau(P) \tau(F)^{-1} \) and \(P \) by \(P - \tau(P) \tau(F)^{-1} F \).

Initially, \(G = QF + P \). And \(G = QF + P \) remains true when we replace \(Q, P \) as

\[
G = QF + P = (Q + \tau(P) \tau(F)^{-1} F + (P - \tau(P) \tau(F)^{-1} F).
\]

When the MDA terminates, \(\tau(P) = 0 \), and so \(P = 0 \) or \(\deg(P) < n \).

At any stage, \(P = \tau(P) X^n + \alpha(P) \). Moreover, \(F = \tau(F) X^n + \alpha(F) \), and \(M := -\alpha(F) \tau(F)^{-1} \alpha(F) \). Thus \(P - \tau(P) \tau(F)^{-1} F = M \tau(P) + \alpha(P) \).

Note \(M = 0 \) or \(\deg(M) < n \). So \(M \tau(P) = 0 \) or \(\deg(M \tau(P)) < \deg(P) \). Further, if \(\tau(P) \neq 0 \) and \(\alpha(P) \neq 0 \), then \(\deg(\alpha(P)) < \deg(P) \). So when we replace \(P \), either \(P \) becomes 0 or \(\deg(P) \) drops. Thus the MDA does terminate.

Note \(\tau(M \tau(P) + \alpha(P)) = \tau(M \tau(P)) + \tau(\alpha(P)) = \mu(\tau(P)) \); that is, when we replace \(P \), it always has the new value of \(\tau(P) \). Initially, \(P := G \). So for \(r \geq 1 \), after \(r \) iterations, \(\tau(P) = \mu^r(\tau(G)) \). Initially, \(Q := 0 \). Thus after \(r \) iterations, \(Q = \sum_{i=0}^{r-1} \mu^i(\tau(G)) \tau(F)^{-1} \) where \(\mu^i := 1 \) in \(\text{End}_R(R[[X]]) \).

As before, if \(Q \neq 0 \), then \(\deg(G) = \deg(Q) + n \) as \(G = QF + P \) and \(f_n \in R^\times \) and either \(P = 0 \) or \(\deg(P) < n \). Thus the MDA too yields \(Q, P \) that work. The uniqueness statement, proved at the very end, implies that these \(Q, P \) coincide with those given by the DA.

For the general case, filter \(R[[X]] \) with the ideals \(b_n \) of all \(H =: \sum h_i X^i \) with \(h_i \in a^n \) for all \(i \). Correspondingly, \(R[[X]] \) is separated and complete by (22.28) (2). Let’s prove that the sum \(\sum_{i\geq0} \mu^i(\tau(G)) \tau(F)^{-1} \) converges to a \(Q \) that works.
Note $\alpha(F) \in b$. So $M \in b$. So for any $i \geq 1$ and $H \in b_{i-1}$, we have $\mu(H) \in b_i$. So by induction, for any $i \geq 0$ and $H \in R[[X]]$, we have $\mu^i(H) \in b_i$. Thus for any $H, H_1 \in R[[X]]$, the sum $\sum_{i \geq 0} \mu^i(H)H_1$ converges uniquely.

Set $Q := \sum_{i \geq 0} \mu^i(\tau(G))\tau(F)^{-1}$. Let’s find $\tau(QF)$. Note $F = \tau(F)X^n + \alpha(F)$. Also $\tau(X^nH) = H$ for any $H \in R[[X]]$. Hence $\tau(QF) = Q\tau(F) + \tau(Q\alpha(F))$. But $Q\tau(F) = \sum_{i \geq 0} \mu^i(\tau(G))$. Furthermore, $Q\alpha(F) = -\sum_{i \geq 0} \mu^i(\tau(G))M$, and $\tau(\mu^i(\tau(G))M) = \mu^{i+1}(\tau(G))$. But $\tau(b_s) \in b_s$ for all s; so τ is continuous. Hence $\tau(Q\alpha(F)) = \sum_{i \geq 1} \mu^i(\tau(G))$. Thus $\tau(QF) = \tau(G)$.

Set $P := G - QF$. Then $\tau(P) = \tau(G) - \tau(QF) = 0$. So $P \in R[X]$ with either $P = 0$ or $\deg(P) < n$. Thus Q, P work.

It remains to show Q, P are unique. Suppose $G = Q_1F + P_1$ with $P_1 \in R[X]$ and either $P_1 = 0$ or $\deg(P_1) < n$. Then $\tau(G) = \tau(Q_1F) + \tau(P_1) = \tau(Q_1F)$. But $F = \tau(F)X^n + \alpha(F)$. So $\tau(Q_1F) = Q_1\tau(F) + \tau(Q_1\alpha(F))$. Set $H := Q_1\tau(F)$. Then $Q_1\alpha(F) = -HM$. Thus $\tau(G) = H - \tau(HM) = H - \mu(H)$.

So $\mu^1(\tau(G)) = \mu^1(H) - \mu^{i+1}(H)$ for all i. So $\sum_{i=0}^{s-1} \mu^i(\tau(G)) = H - \mu^s(H)$ for all s. But $\mu^s(H) \in b_s$. So $\sum_{i \geq 0} \mu^i(\tau(G)) = H$. So $\tau(QF) = H = \tau(Q_1\tau(F))$. Thus $Q = Q_1$. But $P = G - QF$ and $P_1 = G - Q_1F$. Thus $P = P_1$, as desired. □

Theorem (22.85) (Weierstraß Preparation). — In (22.84), further $F = UV$ where $U \in R[[X]]^\times$ and $V = X^n + v_{n-1}X^{n-1} + \cdots + v_0$; both U and V are unique, and all $v_i \in a$. And if $F \in R[X]$, then $U \in R[X]$ and $\deg(U) = \deg(F) - n$.

Proof: Say (22.84) yields $X^n = QF + P$ where $Q = \sum q_iX^i \in R[[X]]$ and $P \in R[X]$ with $P = 0$ or $\deg(P) < n$. But $F = \sum f_iX^i$ with $f_i \in a$ for $i < n$. Hence $q_0f_n = 1 + a$ with $a \in a$. But R is separated and complete. So $1 + a \in R^\times$ by (22.35). Hence $q_0 \in R^\times$. Thus (3.7) yields $Q \in R[[X]]^\times$.

Set $U := Q^{-1}$ and $V := X^n - P$. Then $F = UV$, as desired.

Say $P = p_{n-1}X^{n-1} + \cdots + p_0$. Then $V = X^n - (p_{n-1}X^{n-1} + \cdots + p_0)$. But $P = X^n - QF$ and $f_i \in a$ for $i < n$. Thus all $p_i \in a$, as desired.

Suppose $F = U_1V_1$ too, with $U_1 \in R[[X]]^\times$ and $V_1 \in R[[X]]$ monic of degree n. Set $Q_1 := U_1^{-1}$ and $P_1 := X^n - V_1$. Then $X^n = Q_1F + P_1$, and either $P_1 = 0$ or $\deg(P_1) < n$. So $Q_1 = Q$ and $P_1 = P$ by the uniqueness of Q and P, which is part of (22.84). Thus $U_1 = U$ and $V_1 = V$, as desired.

Finally, suppose $F \in R[X]$. Apply (22.84) with $F := V$ and $G := F$. Thus, by uniqueness, $U \in R[X]$ and $\deg(U) = \deg(F) - n$, as desired. □

Exercise (22.86). — Show that (22.75) is a formal consequence of (22.85) when R is a local ring with maximal ideal a such that $k := A/a$ is algebraically closed.

Exercise (22.87). — Let k be a field, $B_n := k[[X_1, \ldots, X_n]]$ the local ring of power series in n variables X_i. Use (22.59) and (22.84) to recover, by induction, the conclusion of (22.27), that B_n is Noetherian.

Exercise (22.88). — Let k be a field, $B_n := k[[X_1, \ldots, X_n]]$ the local ring of power series in n variables X_i. Use (22.27) and (22.59) and (22.85) to show, by induction, that B_n is a UFD.

(22.89) **(Analysis).** — Let’s adapt the Weierstraß Division Theorem (22.84) and its consequences (22.85)–(22.88) to convergent complex power series. Specifically, let A be the ring of complex power series in variables X_1, \ldots, X_r converging about the origin in \mathbb{C}^r. Then A is local with maximal ideal $m := \langle X_1, \ldots, X_r \rangle$ by (22.67).
Let’s now see A is Henselian, Noetherian, regular of dimension r, and a UFD.

Consider the Weierstraß Division Theorem \((22.84)\). First, suppose $F, G \in \mathbb{R}[X]$ with $\deg(F) = n$ and $f_n \in \mathbb{R}^X$. Then for any R whatsoever, the DA and the MDA work as before to provide $P, Q \in \mathbb{R}[X]$ with either $P = 0$ or $\deg(P) < n$ and with either $Q = 0$ or $\deg(Q) = \deg(G) - n$ such that $G = QF + P$. Moreover, P and Q are unique. Indeed, suppose $P_1, Q_1 \in \mathbb{R}[X]$ with either $P_1 = 0$ or $\deg(P_1) < n$ such that $G = Q_1F + P_1$. Then $(Q - Q_1)F = P_1 - P$. If $Q \neq Q_1$, then $\deg(Q - Q_1)F \geq n$, but $\deg(P_1 - P) < n$, a contradiction. Thus $Q = Q_1$ and so $P = P_1$.

Next, take R to be A and a to be m. Let B be the ring of complex power series in X_1, \ldots, X_r, X converging about the origin $0 := (0, \ldots, 0, 0)$ in \mathbb{C}^{r+1}. Then $B \subset A[[X]]$. Suppose $F, G \in B$. Distilling and adapting the discussion in \([7, pp. 105-115]\), let’s see that the sum $\sum_{i \geq 0} \mu^i(\tau(G))\tau(F)^{-1}$, defined in the proof of \((22.84)\), converges, complex analytically, to a $Q \in B$ that works.

Fix a vector $t := (t_1, \ldots, t_r)$ of positive real numbers. Given a complex power series $H = \sum a_n X^n$ where $i := (i_1, \ldots, i_r, i)$ is a vector of nonnegative integers and $X^i := X_1^{i_1} \cdots X_r^{i_r} X$, set $\|H\| := \sum_i |a_i|$ and $C := \{H \mid \|H\| < \infty\}$. Then $C \subset B$.

Note $\|H\| = 0$ if and only if $H = 0$. Moreover, $\|aH\| = |a|\|H\|$ for any $a \in \mathbb{C}$ as $aH = \sum a_i X^n$ and $|a_n| = |a| |a_1|$. Furthermore, given $H' = \sum a_i X^n$, note $\|HH'\| \leq \|H\|\|H'\|$ as $HH' = \sum b_i X^n$ where $b_i := \sum_{j+k=i} a_j a_k'$ and where by the triangle inequality $|b_i| \leq \sum_{j+k=i} |a_j||a_k'|$. Similarly, $\|H + H'\| \leq \|H\| + \|H'\|$.

Let’s see C is complete in this norm. Let (E_n) be Cauchy. Say $E_n = \sum b_{n,i} X^i$. Given $\varepsilon > 0$, there’s n_ε with $\sum |b_n - b_{n',i}|t^i < \varepsilon$ for all $n, n' \geq n_\varepsilon$. But $t^i \neq 0$ for all i. So $|b_{n,i} - b_{n',i}| < \varepsilon/t^i$. Thus $(b_{n,i})$ is Cauchy in \mathbb{C}, so has a limit b_i. Given any set I of m vectors i for any m, there’s n_ε with $|b_{n,i} - b_{n',i}| < \varepsilon/t^m$ for all $i \in I$. So $\sum_{i \in I} |b_{n,i} - b_{n',i}|t^i < \varepsilon$. But $b_{n,i} - b_{n,i} = b_{n,i} - b_{n',i} + b_{n',i} - b_{n,i}$. Thus $\sum_{i \in I} |b_{n,i} - b_{n',i}|t^i < 2\varepsilon$ for all $n \geq n_\varepsilon$. Set $E := \sum b_i X^n$. Then $\|E_n - E\| \leq 2\varepsilon$ for all $n \geq n_\varepsilon$. Hence $E_n - E \in C$. But $E = (E - E_n) + E_n$. Thus $E \in C$, and lim $E_n = E$. Thus C is complete. In sum, C is a complex Banach algebra.

Replacing the t_i and t by smaller values just decreases $\|H\|$ and so enlarges C. In particular, given any $E \in B$, replace the t_i and t by smaller values so that E lies in the open polydisk of convergence of E; then $E \in C$.

Next, given $E \in C$ with $E(0) = 0$ and given $\varepsilon > 0$, let’s see we can replace the t_i and t by smaller values so that $\|E\| < \varepsilon$. Note $E = X_1E_1 + \cdots + X_rE_r + XE_{r+1}$ for some formal power series E_r. But, as shown in the solution to \((22.67)\), the E_i can be altered so that they have distinct monomials. Then

$$\|E\| = t_1\|E_1\| + \cdots + t_r\|E_r\| + t\|E_{r+1}\|.$$

So all $E_i \in C$. Thus replacing the t_i and t by small enough values gives $\|E\| < \varepsilon$.

Given $H \in B$ with $a := H(0) \neq 0$, let’s see why $H \in B^X$. First replace the t_i and t by smaller values so that $H \in C$. Set $E := 1 - H/a$. Then $E(0) = 0$. So, as just observed, we can replace the t_i and t by even smaller values so that $\|E\| < 1$. Then $\sum_{i \geq 0} E^i$ converges, say to $E' \in C$. Then $(1 - E)E' = 1$. Thus $H \cdot (E'/a) = 1$.

Returning to $\sum_{i \geq 0} \mu^i(\tau(G))\tau(F)^{-1}$, let’s see it converges. Replace the t_i and t by smaller values so that $F, G \in C$. Note $F = \sum f_i X^i$ with $f_i \in A$; also, $f_i(0) \neq 0$, but $f_i(0) = 0$ for $i < n$. Recall $\alpha(F) := \sum_{i=n}^{\infty} f_i X^i$ and $\tau(F) := \sum_{i=n}^{\infty} f_i X^i$. So $\tau(F)(0) \neq 0$. Replace the t_i and t by even smaller values so that $\tau(F)^{-1} \in C$. Set $c := \|\tau(F)^{-1}\|$. Fix $0 < \varepsilon < 1$. Replace the t_i, but not t, by yet smaller values so that $\|f_i\| < t^{n-i}\varepsilon/cn$ for $i < n$. Then $\|\alpha(F)\| < t^n\varepsilon/c$. Recall $M := -\alpha(F)\tau(F)^{-1}$.
Hence \(\|M\| \leq \|\alpha(F)\|\|\tau(F)^{-1}\| < t^n\varepsilon \). For all \(H \in C \), note \(t^n\|\tau(H)\| \leq \|H\| \).

Recall \(\mu(H) := \tau(MH) \). So \(\|\mu(H)\| \leq t^{-n}\|M\|\|H\| \leq \varepsilon\|H\| \). So \(\|\mu^i(H)\| \leq \varepsilon^i\|H\| \) for \(i \geq 0 \). But \(C \) is complete. Thus \(\lim_{i \geq 0} \mu^i(\tau(G))\tau(F)^{-1} \) converges.

Note \(\tau(H) \) is continuous in \(H \), as \(\|\tau(H)\| \leq t^{-n}\|H\| \). So the rest of the existence proof in (22.84) carries over here without change. Uniqueness here is a special case of uniqueness in (22.84). Thus the Weierstraß Division Theorem can be adapted.

To adapt the Weierstraß Preparation Theorem (22.85), note that the Division Theorem above yields \(X^n = FQ + P \) where \(Q \in B \) and \(P \in A[X] \) with \(\deg(P) < n \). The proof of (22.85) shows \(Q(0) \neq 0 \). So \(Q \in B^\times \). Set \(U := Q^{-1} \) and set \(V := X^n - P \). Then \(F = UV \) where \(U \in B^\times \) and \(V = X^n + v_{n-1}X^{n-1} + \cdots + v_0 \) with \(v_i \in A \). By (22.85), \(U \) and \(V \) are unique; also, if \(F \in R[X] \), then \(U \in R[X] \) and \(\deg(U) = \deg(F) - n \). Thus we can adapt the Weierstraß Preparation Theorem.

To prove \(A \) is Henselian, adapt the solution to (22.86) by replacing (22.85) with its counterpart above.

Next, consider the second automorphism \(\varphi \) of \(\mathbb{C}[[X_1, \ldots, X_r, X]] \) in (22.58). Let \(H \in B \). If \(H \) converges at \((x_1, \ldots, x_r, x) \), then \(\varphi(H) \) converges at \((x_1', \ldots, x_r', x) \) where \(x_i' := x_i - a_i x \), and so \(\varphi(H) \in B \). Thus \(\varphi \) induces an automorphism of \(B \).

To prove \(B \) is Noetherian, adapt the solution to (22.87) by replacing (22.84) with its analytic counterpart. Thus, as \(r \) is arbitrary, \(A \) is Noetherian too.

To prove \(A \) is regular of dimension \(r \), recall from (22.67) that \(A \) is local with completion \(\mathbb{C}[[X_1, \ldots, X_r]] \). By (22.27), the latter ring is regular of dimension \(r \). Thus, by (22.62)(2), \(A \) too is regular of dimension \(r \).

Finally, to prove \(A \) is a UFD, adapt the solution to (22.88) by replacing (22.27) and (22.58) and (22.85) by their analytic counterparts.

D. Appendix: Exercises

Exercise (22.90). — (Implicit Function Theorem) Let \(R \) be a ring, \(T_1, \ldots, T_n, X \) variables. Given a polynomial \(F \in R[T_1, \ldots, T_n, X] \) such that \(F(0, \ldots, 0, X) \) has a supersimple root \(a_0 \in R \). Show there’s a unique power series \(a \in R[[T_1, \ldots, T_n]] \) with \(a(0, \ldots, 0) = a_0 \) and \(F(T_1, \ldots, T_n, a) = 0 \).

Exercise (22.91). — Let \(A \) be the filtered direct limit of Henselian local rings \(A_\lambda \) with local transition maps. Show that \(A \) is a Henselian local ring.

Exercise (22.92). — Let \(A \) be a local Henselian ring, \(\mathfrak{m} \) its maximal ideal, \(B \) an integral \(A \)-algebra, and \(\mathfrak{n} \) a maximal ideal of \(B \). Set \(\overline{B} = B/\mathfrak{m}B \). Show:

1. \(\text{Idem}(B) \rightarrow \text{Idem}(\overline{B}) \) is bijective.
2. \(B_\mathfrak{n} \) is integral over \(A \), and Henselian.

Exercise (22.93). — Let \(A \) be local ring. Show that \(A \) is Henselian if and only if, given any module-finite algebra \(B \) and any maximal ideal \(\mathfrak{n} \) of \(B \), the localization \(B_\mathfrak{n} \) is integral over \(A \).

Exercise (22.94). — Let \(A \) be a local ring, and \(a \) an ideal. Assume \(a \subset \text{nil}(A) \). Set \(A' := A/a \). Show that \(A \) is Henselian if and only if \(A' \) is so.

Exercise (22.95). — Let \(A \) be a local ring. Assume \(A \) is separated and complete. Use (22.78)(4)⇒(1) to give a second proof (compare (22.75)) that \(A \) is Henselian.

Exercise (22.96). — Let \(R \) be a ring, \(a \) an ideal, \(u \in R^\times \), and \(n \geq 2 \). Assume \(R \) is separated and complete, and \(u \equiv 1 \pmod{n^2a} \). Find an \(n \)th root of \(u \).
Exercise (22.97). — Let p, a_1, \ldots, a_s, k be integers, and X_1, \ldots, X_s variables. Set $F := a_1 X_1^k + \cdots + a_s X_s^k$. Assume p prime, each a_i and k prime to p, and $s > k > 0$. Using (2.45), show F has a nontrivial zero in \mathbb{Z}_p^s.

Exercise (22.98). — Find a cube root of 2 in $\hat{\mathbb{Z}}_5$.

Exercise (22.100). — In the setup of (22.84), if $n \geq 1$, find an alternative proof for the existence of Q and P as follows: take a variable Y; view $R[[X]]$ as an $R[[Y]]$-algebra via the map φ with $\varphi(Y) := F$; and show $1, X, \ldots, X^{n-1}$ generate $R[[X]]$ as a module by using Nakayama’s Lemma for adically complete rings (22.69).
23. Discrete Valuation Rings

A discrete valuation is a homomorphism from the multiplicative group of a field to the additive group of integers such that the value of a sum is at least the minimum value of the summands. The corresponding discrete valuation ring consists of the elements whose values are nonnegative, plus 0. We characterize these rings in various ways; notably, we prove they are the normal Noetherian local domains of dimension 1. Then we prove that any normal Noetherian domain is the intersection of all the discrete valuation rings obtained by localizing at its height-1 primes. Finally, we prove Serre’s Criterion for normality of a Noetherian domain.

Along the way, we consider two important notions for a module M over any ring R. We say x_1, \ldots, x_n is an M-sequence or is M-regular if $x_{i+1} \in R$ is a nonzerodivisor on $M_i := M/(x_1, \ldots, x_i)M$ for $0 \leq i \leq n$ and if $M_n \neq 0$. If R is local, we call the supremum of the lengths n of the M-sequences, the depth of M.

In an appendix, we study those two notions and one more: we call M Cohen–Macaulay if M is nonzero Noetherian and if, for all maximal ideals $m \in \text{Supp}(M)$, the depth of M_m equals its dimension. We prove the Unmixedness Theorem: if there are only finitely many m and the dimensions are equal, then every associated prime of M is minimal, and all maximal chains of primes in $\text{Supp}(M)$ have the same length. We end by proving, under appropriate hypotheses, the equivalence of these conditions: (1) the multiplicity of M is equal to the length of M_n; (2) x_1, \ldots, x_n is M-quasi-regular; (3) x_1, \ldots, x_n is M-regular; (4) M is Cohen–Macaulay.

A. Text

(23.1) (Discrete Valuations). — Let K be a field. We define a discrete valuation of K to be a surjective function $v: K^\times \to \mathbb{Z}$ such that, for every $x, y \in K^\times$,

\begin{enumerate}
\item $v(xy) = v(x) + v(y)$,
\item $v(x + y) \geq \min\{v(x), v(y)\}$ if $x \neq -y$.
\end{enumerate}

(23.1.1)

Condition (1) just means v is a group homomorphism. Hence, for any $x \in K^\times$,

\begin{enumerate}
\item $v(1) = 0$ and
\item $v(x^{-1}) = -v(x)$.
\end{enumerate}

(23.1.2)

As a convention, we define $v(0) := \infty$. Consider the sets

$$A := \{x \in K \mid v(x) \geq 0\} \quad \text{and} \quad m := \{x \in K \mid v(x) > 0\}.$$

Clearly, A is a subring, so a domain, and m is an ideal. Further, m is nonzero as v is surjective. We call A the discrete valuation ring (DVR) of v.

Notice that, if $x \in K$, but $x \notin A$, then $x^{-1} \in m$; indeed, $v(x) < 0$, and so $v(x^{-1}) = -v(x) > 0$. Hence, $\text{Frac}(A) = K$. Further,

$$A^\times = \{x \in K \mid v(x) = 0\} = A - m.$$

Indeed, if $x \in A^\times$, then $v(x) \geq 0$ and $-v(x) = v(x^{-1}) \geq 0$; so $v(x) = 0$. Conversely, if $v(x) = 0$, then $v(x^{-1}) = -v(x) = 0$; so $x^{-1} \in A$, and so $x \in A^\times$. Therefore, by the nonunit criterion, A is a local domain, not a field, and m is its maximal ideal.

An element $t \in m$ with $v(t) = 1$ is called a (local) uniformizing parameter. Such a t is irreducible, as $t = ab$ with $v(a) \geq 0$ and $v(b) \geq 0$ implies $v(a) = 0$ or $v(b) = 0$ since $1 = v(a) + v(b)$. Further, any $x \in K^\times$ has the unique factorization $x = ut^n$ where $u \in A^\times$ and $n := v(x)$; indeed, $v(u) = 0$ as $u = xt^{-n}$. In particular,
Let \(t_1 \) be a uniformizing parameter if and only if \(t_1 = ut \) with \(u \in A^\times \); also, \(A \) is a UFD.

Moreover, \(A \) is a PID; in fact, any nonzero ideal \(\mathfrak{a} \) of \(A \) has the form
\[
\mathfrak{a} = (t^m) \quad \text{where} \quad m := \min \{ v(x) \mid x \in \mathfrak{a} \}.
\]

Indeed, given a nonzero \(x \in \mathfrak{a} \), say \(x = ut^n \) where \(u \in A^\times \). Then \(t^m \in \mathfrak{a} \). So \(n \geq m \).

Set \(y := ut^{-m} \). Then \(y \in A \) and \(x = y t^m \), as desired.

In particular, \(m = \langle t \rangle \) and \(\dim(A) = 1 \). Thus \(A \) is regular local of dimension 1.

Example (23.2). — The prototype of a DVR is this example. Let \(k \) be a field, and \(K := k((t)) \) the field of formal Laurent series \(x := \sum_{i \geq n} a_i t^i \) with \(n \in \mathbb{Z} \) and \(a_i \in k \). If \(a_n \neq 0 \), set \(v(x) := n \), the “order of vanishing” of \(x \). Plainly, \(v \) is a discrete valuation, the formal power series ring \(k[[t]] \) is its DVR, and \(m := \langle t \rangle \) is its maximal ideal.

The preceding example can be extended to cover any DVR \(A \) that contains a field \(k \) with \(k \hooklongrightarrow A/(t) \) where \(t \) is a uniformizing power. Indeed, \(A \) is a subring of its completion \(\hat{A} \) by (22.3), and \(k \hooklongrightarrow \hat{A}/t\hat{A} \) by (22.12)(2); so \(\hat{A} = k[[t]] \) by the Cohen Structure Theorem II (22.58). Further, clearly, the valuation on \(\hat{A} \) restricts to that on \(A \).

A second old example is this. Let \(p \in \mathbb{Z} \) be prime. Given \(x \in \mathbb{Q} \), write \(x = ap^n/b \) with \(a, b \in \mathbb{Z} \) relatively prime and prime to \(p \). Set \(v(x) := n \). Clearly, \(v \) is a discrete valuation, the localization \(\mathbb{Z}_p \) is its DVR, and \(p\mathbb{Z}_p \) is its maximal ideal. We call \(v \) the \(p \)-adic valuation of \(\mathbb{Q} \).

Lemma (23.3). — Let \(A \) be a local domain, \(m \) its maximal ideal. Assume that \(m \) is nonzero and principal and that \(\bigcap_{n \geq 0} m^n = 0 \). Then \(A \) is a DVR.

Proof: Given a nonzero \(x \in A \), there is an \(n \geq 0 \) such that \(x \in m^n - m^{n+1} \). Say \(m = \langle t \rangle \). Then \(x = ut^n \) and \(u \notin m \), so \(u \in A^\times \). Set \(K := \text{Frac}(A) \). Given \(x \in K^\times \), write \(x = y/z \) where \(y = bt^m \) and \(z = ct^h \) with \(b, c \in A^\times \). Then \(x = ut^n \) with \(u := b/c \in A^\times \) and \(n := m - k \in \mathbb{Z} \). Define \(v \) by \(v(x) := n \). If \(ut^n = wt^h \) with \(n \geq h \), then \((u/w)v^{n-h} = 1 \), and so \(n = h \). Thus \(v \) is well defined.

Since \(v(t) = 1 \), clearly \(v \) is surjective. To verify (23.1.1), take \(x = ut^n \) and \(y = wt^h \) with \(u, w \in A^\times \). Then \(xy = (uw)t^{n+h} \). Thus (1) holds. To verify (2), we may assume \(n \geq h \). Then \(x + y = t^h(ut^{n-h} + w) \). Hence
\[
v(x + y) \geq h = \min \{ n, h \} = \min \{ v(x), v(y) \}.
\]
Thus (2) holds. So \(v \) is a valuation. Clearly, \(A \) is the DVR of \(v \). □

(23.4) (Depth). — Let \(R \) be a ring, \(M \) a nonzero module, and \(x_1, \ldots, x_n \in R \). Set \(M_i := M/(x_1, \ldots, x_i)M \). We say the sequence \(x_1, \ldots, x_n \) is \(M \)-**regular**, or an \(M \)-**sequence**, and we call \(n \) its \textbf{length} if \(M_n \neq 0 \) and \(x_i \notin z \cdot \text{div}(M_{i-1}) \) for all \(i \).

For reference, note that (4.21) with \(\mathfrak{a} := \langle x_1, \ldots, x_i \rangle \) and \(\mathfrak{b} := \langle x_{i+1} \rangle \) yields
\[
M_{i+1} \twoheadrightarrow M_i/x_{i+1}M_i.
\]
If \(M \) is finitely generated, then (13.46) with \(\mathfrak{a} := \langle x_1, \ldots, x_i \rangle \) and (13.4)(4) yield
\[
\text{rad}(M_i) = \text{rad}(M) \quad \text{if and only if} \quad x_1, \ldots, x_i \in \text{rad}(M).
\]

Call the supremum of the lengths \(n \) of the \(M \)-sequences found in an ideal \(\mathfrak{a} \), the \textbf{depth} of \(\mathfrak{a} \) on \(M \), and denote it by \(\text{depth}(\mathfrak{a}, M) \). By convention, \(\text{depth}(\mathfrak{a}, M) = 0 \) means \(\mathfrak{a} \) contains no nonzero divisor on \(M \).

Call the depth of \(\text{rad}(M) \) on \(M \) just the \textbf{depth} of \(M \), and denote it by \(\text{depth}(M) \).
or \(\text{depth}_R(M) \). Notice that, in this case, if \(M \) is finitely generated, then \(M_n \neq 0 \) automatically owing to Nakayama’s Lemma (10.6).

Lemma (23.5). — Let \(R \) be a ring, \(M \) a nonzero Noetherian semilocal module.

(1) Then \(\text{depth}(M) = 0 \) if and only if there’s a maximal ideal \(\mathfrak{m} \in \text{Ass}(M) \).

(2) Then \(\text{depth}(M) = 1 \) if and only if there’s an \(x \in \text{rad}(M) \) with \(x \notin z\text{div}(M) \) and there’s a maximal ideal \(\mathfrak{m} \in \text{Ass}(M/xM) \).

(3) Then \(\text{depth}(M) \leq \dim(M) \).

Proof: Consider (1). First, if there’s a maximal ideal \(\mathfrak{m} \in \text{Ass}(M) \), then the definitions readily yield \(\text{rad}(M) \subset \mathfrak{m} \subset z\text{div}(M) \), and so \(\text{depth}(M) = 0 \).

Conversely, assume that \(\text{depth}(M) = 0 \). Then \(\text{rad}(M) \subset z\text{div}(M) \). Since \(M \) is Noetherian, \(z\text{div}(M) = \bigcup_{p \in \text{Ass}(M)} p \) by (17.12). Since \(M \) is nonzero and finitely generated, \(\text{Ass}(M) \) is nonempty and finite by (17.10) and (17.17). So \(\text{rad}(M) \subset p \) for some \(p \in \text{Ass}(M) \) by Prime Avoidance, (3.12). But \(\text{rad}(M) \) is, by definition, the intersection of some of the finitely many maximal ideals \(\mathfrak{m} \). So (2.23) yields an \(\mathfrak{m} \subset p \). But \(\mathfrak{m} \) is maximal. So \(\mathfrak{m} = p \). Thus \(\mathfrak{m} \in \text{Ass}(M) \). Thus (1) holds.

Consider (2). Assume \(\text{depth}(M) = 1 \). Then there is an \(M \)-sequence of length 1 in \(\text{rad}(M) \), but none longer; that is, there’s an \(x \in \text{rad}(M) \) with \(x \notin z\text{div}(M) \) and \(\text{depth}(M/xM) = 0 \). Then (1) yields a maximal ideal \(\mathfrak{m} \in \text{Ass}(M/xM) \).

Conversely, assume there’s \(x \in \text{Ass}(M) \) with \(x \notin z\text{div}(M) \). Then by definition, \(\text{depth}(M) \geq 1 \). Assume also there’s a maximal ideal \(\mathfrak{m} \in \text{Ass}(M/xM) \). Then given any \(y \in \text{rad}(M) \) with \(y \notin z\text{div}(M) \), also \(\mathfrak{m} \in \text{Ass}(M/yM) \) by (17.19). So \(\text{depth}(M/yM) = 0 \) by (1). So there is no \(z \in \text{rad}(M) \) such that \(y, z \) is an \(M \)-sequence. Thus \(\text{depth}(M) \leq 1 \). Thus \(\text{depth}(M) = 1 \). Thus (2) holds.

Consider (3). Given any \(M \)-sequence \(x_1, \ldots, x_n \), set \(M_i := M/(x_1, \ldots, x_i)M \). Then \(M_{i+1} \xrightarrow{\sim} M_i/x_{i+1}M_i \) by (23.4.1). Assume \(x_i \in \text{rad}(M) \) for all \(i \). Then \(\dim(M_{i+1}) = \dim(M_i) - 1 \) by (21.5). Hence \(\dim(M) - n = \dim(M_n) \geq 0 \). But \(\text{depth}(M) := \sup\{n\} \). Thus (3) holds. \(\square \)

Theorem (23.6) (Characterization of DVRs). — Let \(A \) be a local ring, \(\mathfrak{m} \) its maximal ideal. Assume \(A \) is Noetherian. Then these five conditions are equivalent:

(1) \(A \) is a DVR.

(2) \(A \) is a normal domain of dimension 1.

(3) \(A \) is a normal domain of depth 1.

(4) \(A \) is a regular local ring of dimension 1.

(5) \(\mathfrak{m} \) is principal and of height at least 1.

Proof: Assume (1). Then \(A \) is UFD by (23.1); so \(A \) is normal by (10.21). Further, \(A \) has just two primes, \((0) \) and \(\mathfrak{m} \); so \(\dim(A) = 1 \). Thus (2) holds. Further, (4) holds by (23.1). Clearly, (4) implies (5).

Assume (2). As \(\dim(A) = 1 \), there’s \(x \in \mathfrak{m} \) nonzero; \(x \notin z\text{div}(A) \) as \(A \) is a domain. So \(1 \leq \text{depth}(A) \). But \(\text{depth}(A) \leq \dim(A) \) by (23.5)(3). Thus (3) holds.

Assume (3). By (23.5)(2), there are \(x, y \in \mathfrak{m} \) such that \(x \) is nonzero and \(y \) has residue \(\overline{y} \in A/(x) \) with \(\mathfrak{m} = \text{Ann}(\overline{y}) \). So \(y\mathfrak{m} \subset (x) \). Set \(z := y/x \in \text{Frac}(A) \). Then \(z\mathfrak{m} = (y\mathfrak{m})/x \subset A \). Suppose \(z\mathfrak{m} \subset \mathfrak{m} \). Then \(z \) is integral over \(A \) by (10.14). But \(A \) is normal, so \(z \in A \). So \(y = xz \in (x) \), a contradiction. Hence, \(1 \in z\mathfrak{m} \); so there is \(t \in \mathfrak{m} \) with \(zt = 1 \). Given \(w \in \mathfrak{m} \), therefore \(w = (wz)t \) with \(wz \in A \). Thus \(\mathfrak{m} \) is principal. Finally, \(\text{ht}(\mathfrak{m}) \geq 1 \) because \(x \in \mathfrak{m} \) and \(x \neq 0 \). Thus (5) holds.

Assume (5). Set \(N := \bigcap \mathfrak{m}^n \). The Krull Intersection Theorem (18.23) yields an
Let \(x \in m \) with \((1 + x)N = 0\). Then \(1 + x \in A^\times \). So \(N = 0 \). Further, \(A \) is a domain by (21.9)(1). Thus (1) holds by (23.3).

Exercise (23.7). Let \(R \) be a normal Noetherian domain, \(x \in R \) a nonzero nonunit, \(a \) an ideal. Show that every \(p \in Ass(R/(x)) \) has height 1. Conversely, if \(R \) is a UFD and if every \(p \in Ass(R/a) \) has height 1, show that \(a \) is principal.

Theorem (23.8) (Nagata). Let \(A \subset B \) be a faithfully flat extension of Noetherian local domains. Assume \(B \) is a UFD. Then so is \(A \).

Proof: By (21.33), it suffices to show every height-1 prime \(p \) of \(A \) is principal.

Let \(k \) and \(\ell \) be the residue fields of \(A \) and \(B \). Owing to (10.8)(2), \(p \) is principal if and only if \(p \otimes_A k \simeq k \); similarly, \(pB \) is principal if and only if \((pB) \otimes_B \ell \simeq \ell \). But \(B \) is flat; so \(pB = p \otimes_A B \) by (9.15). But \(p \otimes_A B \otimes_B \ell = (p \otimes_A k) \otimes_k \ell \) by (8.9). Hence \(p \) is principal if and only if \(pB \) is. But \(B \) is a UFD. Thus by (23.7), it suffices to show every \(\mathfrak{q} \) in \(Ass(B/pB) \) has height 1.

As \(B \) is faithfully flat, \(pB \cap A = p \) by (9.28)(3). So \(\mathfrak{q} \cap A \) lies in \(p \) owing to (18.62) and (18.17). Hence \(p = \mathfrak{q} \cap A \). Set \(S := A - p \). Then \(S^{-1}A = \mathfrak{q} \cap A \). Hence \(A \) too is normal. Thus by (11.32) also \(S^{-1}A \) is normal.

Next, let’s show \(S^{-1}A \) is normal. Set \(K := \text{Frac}(A) \) and \(L := \text{Frac}(B) \). Then \(K \subset L \) as \(A \subset B \). Given \(x/y \in K \cap B \) with \(x, y \in A \), note \(x \in yB \cap A \). But \(yB \cap A = yA \) by (9.28)(3). Thus \(K \cap A = A \). But \(B \) is a UFD, so normal by (10.21). Hence \(A \) too is normal. Thus by (11.32) also \(S^{-1}A \) is normal.

Exercise (23.9). Let \(A \) be a DVR with fraction field \(K \), and \(f \in A \) a nonzero nonunit. Prove \(A \) is a maximal proper subring of \(K \). Prove \(\dim(A) \neq \dim(A_f) \).

(23.10) (Serre’s Conditions). We say a ring \(R \) satisfies Serre’s Condition \((R_n)\) if, for any prime \(p \) of height \(m \leq n \), the localization \(R_p \) is regular of dimension \(m \).

For example, \((R_0)\) holds if and only if \(R_p \) is a field for any minimal prime \(p \). Also, \((R_1)\) holds if and only if \((R_0)\) does and \(R_p \) is a DVR for any \(p \) of height-1.

We say Serre’s Condition \((S_n)\) holds for a nonzero semilocal \(R \)-module \(M \) if

\[
\text{depth}(M_p) \geq \min\{\text{dim}(M_p), n\} \quad \text{for any } p \in \text{Supp}(M),
\]

where \(M_p \) is regarded as an \(R_p \)-module.

Assume \(M \) is Noetherian. Then \(\text{depth}(M_p) \leq \text{dim}(M_p) \) by (23.5)(3). Thus \((S_n)\) holds if and only if \(\text{depth}(M_p) = \text{dim}(M_p) \) when \(\text{depth}(M_p) < n \).

In particular, \((S_1)\) holds if and only if \(p \) is minimal whenever \(\text{depth}(M_p) = 0 \). But \(\text{depth}(M_p) = 0 \) and only if \(pR_p \in \text{Ass}(M_p) \) by (23.5)(1); so if and only if \(p \in \text{Ass}(M) \) by (17.8). Thus \((S_1)\) holds if and only if \(M \) has no embedded primes.

Exercise (23.11). Let \(R \) be a domain, \(M \) a Noetherian module. Show that \(M \) is torsionfree if and only if \((R_0)\) and \((S_1)\) hold.

Exercise (23.12). Let \(R \) be a Noetherian ring. Show that \(R \) is reduced if and only if \((R_0)\) and \((S_1)\) hold.
Lemma (23.13). — Let \(R \) be a domain, \(M \) a nonzero torsionfree Noetherian module. Set \(\Phi := \{ p \text{ prime} \mid \text{ht}(p) = 1 \} \) and \(\Sigma := \{ p \text{ prime} \mid \text{depth}(M_p) = 1 \} \). Then \(\Phi \subset \Sigma \), and \(\Phi = \Sigma \) if and only if \(M \) satisfies (S2). Further, \(M = \bigcap_{p \in \Sigma} M_p \subset M(0) \).

Proof: By hypothesis, \(M \) is torsionfree. So given \(s \in R \) and \(m \in M \), if \(s \neq 0 \) but \(sm = 0 \), then \(m = 0 \). Thus, by construction, \(M \subset M_p \subset M(0) \) for all primes \(p \).

So \(\text{Supp}(M) = \text{Spec}(R) \) as \(M \neq 0 \). Thus \(\dim(M_p) = \text{ht}(p) \) for any \(p \in \text{Spec}(R) \).

So given \(p \in \Phi \), we have \(\dim(M_p) = 1 \). So \(\text{depth}(M_p) \leq 1 \) by (23.5)(3). But if \(\text{depth}(M_p) = 0 \), then \(pR_p \in \text{Ass}(M_p) \) by (23.5)(1). So \(p = \text{Ann}(m) \) for some nonzero \(m \in M \) by (17.8). But \(M \) is torsionfree. So \(p = \langle 0 \rangle \), a contradiction. Thus \(\text{depth}(M_p) = 1 \). Thus \(\Phi \subset \Sigma \).

If \(M \) satisfies (S2), then \(\dim(M_p) = 1 \) for any \(p \in \Sigma \), so \(p \in \Phi \); thus then \(\Phi = \Sigma \).

Conversely, assume \(\Phi = \Sigma \). Then given any prime \(p \) with \(\dim(M_p) \geq 2 \), also \(\text{depth}(M_p) \geq 2 \). But \(M \) satisfies (S1) by (23.11). Thus \(M \) satisfies (S2).

We noted that \(M \subset M_p \) for all primes \(p \). Thus \(M \subset \bigcap_{p \in \Sigma} M_p \).

Conversely, given \(m \in \bigcap_{p \in \Sigma} M_p \), say \(m = m'/s \) with \(m' \in M \) and \(s \in R - \{0\} \). Then \(m' \in sM_p \) for all \(p \in \Sigma \).

Given \(p \in \text{Ass}(M/sM) \), note \(pR_p \in \text{Ass}(M_p/sM_p) \) by (17.8). But \(s \notin \text{div}(M_p) \).

Thus (23.5)(2) yields \(p \in \Sigma \).

Note \(sM = \bigcap_{p \in \text{Ass}(M/sM)} sM_p \) by (18.64) applied with \(N = sM \). Hence

\[
sM = \bigcap_{p \in \text{Ass}(M/sM)} sM_p \supset \bigcap_{p \in \Sigma} sM_p \supset sM.
\]

Thus \(sM = \bigcap_{p \in \Sigma} sM_p \). Hence \(m' \in sM \). So \(m' = sm'' \) for some \(m'' \in M \). So \(m = m'' \in M \). Thus \(M \supset \bigcap_{p \in \Sigma} M_p \), as desired.

Theorem (23.14). — Let \(R \) be a normal Noetherian domain. Then

\[
R = \bigcap_{p \in \Phi} R_p \quad \text{where} \quad \Phi := \{ \text{p prime} \mid \text{ht}(p) = 1 \}.
\]

Proof: As \(R \) is normal, so is \(R_p \) for any prime \(p \) by (11.32). So \(\text{depth}(R_p) = 1 \) if and only if \(\dim(R_p) = 1 \) by (23.6). Thus (23.13) yields the assertion.

Theorem (23.15) (Serre’s Criterion). — Let \(R \) be a Noetherian domain. Then \(R \) is normal if and only if (R1) and (S2) hold.

Proof: As \(R \) is a domain, (R0) and (S1) hold by (23.12). If \(R \) is normal, then so is \(R_p \) for any prime \(p \) by (11.32); whence, (R1) and (S2) hold by (23.6).

Conversely, assume \(R \) satisfies (R1) and (S2). Let \(x \) be integral over \(R \). Then \(x \) is integral over \(R_p \) for any prime \(p \). Now, \(R_p \) is a DVR for all \(p \) of height 1 as \(R \) satisfies (R1). Hence, \(x \in R_p \) for all \(p \) of height 1, so for all \(p \) of depth 1 as \(R \) satisfies (S2). So \(x \in R \) owing to (23.13). Thus \(R \) is normal.
B. Exercises

Exercise (23.16). — Show an equicharacteristic regular local ring A is a UFD.

Exercise (23.17). — Let R be a ring, $0 \to N \to M \to L \to 0$ a short exact sequence, and $x_1, \ldots, x_n \in R$. Set $a_i := (x_1, \ldots, x_i)$ for $0 \leq i \leq n$. Prove:

1. Assume x_1, \ldots, x_n is L-regular. Then $a_i M \cap N a_i N$ for $0 \leq i \leq n$.
2. Then x_1, \ldots, x_n is both N-regular and L-regular if and only if x_1, \ldots, x_n is M-regular, $a_i M \cap N = a_i N$ for $0 \leq i \leq n$, and $N/a_i N \not= 0$ and $L/a_i L \not= 0$.

Exercise (23.18). — Let R be a ring, M a module, $F: ((R\text{-mod})) \to ((R\text{-mod}))$ a left-exact functor. Assume $F(M)$ is nonzero and finitely generated. Show that, for $d = 1, 2$, if M has depth at least d, then so does $F(M)$.

Exercise (23.19). — Let k be a field, A a ring intermediate between the polynomial ring and the formal power series ring in one variable: $k[X] \subset A \subset k[[X]]$. Suppose that A is local with maximal ideal (X). Prove that A is a DVR. (Such local rings arise as rings of power series with curious convergence conditions.)

Exercise (23.20). — Let L/K be an algebraic extension of fields; X_1, \ldots, X_n variables; P and Q the polynomial rings over K and L in X_1, \ldots, X_n. Prove this:

1. Let q be a prime of Q, and p its contraction in P. Then $\text{ht}(p) = \text{ht}(q)$.
2. Let $F, G \in P$ be two polynomials with no common prime factor in P. Then F and G have no common prime factor $H \in Q$.

Exercise (23.21). — Prove that a Noetherian domain R is normal if and only if, given any prime p associated to a principal ideal, pR_p is principal.

Exercise (23.22). — Let R be a ring, M a nonzero Noetherian module. Set

$$\Phi := \{ p \text{ prime} \mid \text{dim}(M_p) = 1 \} \quad \text{and} \quad \Sigma := \{ p \text{ prime} \mid \text{depth}(M_p) = 1 \}.$$

Assume M satisfies (S_1). Show $\Phi \subset \Sigma$, with equality if and only if M satisfies (S_2).

Set $S := R - z.\text{div}(M)$. Without assuming (S_1), show this sequence is exact:

$$M \to S^{-1} M \to \prod_{p \in \Sigma} S^{-1} M_p/M_p. \tag{23.22.1}$$

Exercise (23.23) (Serre’s Criterion). — Let R be a Noetherian ring, and K its total quotient ring. Set $\Phi := \{ p \text{ prime} \mid \text{ht}(p) = 1 \}$. Prove equivalent:

1. R is normal.
2. (R_1) and (S_2) hold.
3. (R_1) and (S_1) hold, and $R \to K \to \prod_{p \in \Phi} K_p/R_p$ is exact.

C. Appendix: M-sequences

Exercise (23.24). — Let R be a ring, M a module, and x, y an M-sequence.

1. Given $m, n \in M$ with $xm = yn$, find $p \in M$ with $m = yp$ and $n = xp$.
2. Assume $y \notin z.\text{div}(M)$. Show y, x form an M-sequence too.

Proposition (23.25). — Let R be a ring, M a nonzero Noetherian module, and $x, y \in \text{rad}(M)$. Assume that, given any $m, n \in M$ with $xm = yn$, there exists $p \in M$ with $m = yp$ and $n = xp$. Then x, y form an M-sequence.
Discrete Valuation Rings \((23.26) / (23.29) \)

App: M-sequences

Proof: First, as noted in (23.4), automatically \(M/(x, y)M \neq 0 \).

Next, we have to prove \(x \notin z\text{div}(M) \). Given \(m \in M \) with \(xm = 0 \), set \(n := 0 \). Then \(xn = yn \); so there exists \(p \in M \) with \(m = yp \) and \(n = xp \). Repeat with \(p \) in place of \(m \), obtaining \(p_1 \in M \) such that \(p = yp_1 \) and \(0 = xp_1 \). Induction yields \(p_i \in M \) for \(i \geq 2 \) such that \(p_{i-1} = yp_i \) and \(0 = xp_i \).

Then \(Rp_1 \subset Rp_2 \subset \cdots \) is an ascending chain. It stabilizes as \(M \) is Noetherian. Say \(Rp_n = Rp_{n+1} \) for some \(z \in R \). Then \(p_n = yp_{n+1} = yzp_n \). So \((1 - yz)p_n = 0 \). Set \(R' := R/\text{Ann}(M) \) and let \(y' \), \(z' \in R' \) be the residues of \(x \), \(y \).

But \(y \in \text{rad}(M) \). Also \(\text{rad}(M)/\text{Ann}(M) = \text{rad}(R') \) by (4.1.1). Hence \(1 - y'z' \) is a unit by (3.2). But \((1 - y'z')p_n = (1 - yz)p_n = 0 \). Hence \(p_n = 0 \). But \(m = y^{n+1}p_n \).

Thus \(m = 0 \), as desired. Thus \(x \notin z\text{div}(M) \).

Finally, set \(M_1 := M/xM \). We must prove \(y \notin z\text{div}(M_1) \). Given \(n_1 \in M_1 \) with \(yn_1 = 0 \), lift \(n_1 \) to \(n \in M \). Then \(yn = xm \) for some \(m \in M \). So there’s \(p \in M \) with \(n = xp \). Thus \(n_1 = 0 \), as desired. Thus \(x, y \) form an \(M \)-sequence, as desired. \(\square \)

Exercise (23.26). — Let \(R \) be a ring, \(a \subset R \) an ideal, \(M \) a module, \(x_1, \ldots, x_r \) an \(M \)-sequence in \(a \), and \(R' \) an algebra. Set \(M' := M \otimes_R R' \). Assume \(R' \) flat and \(M'/aM' \neq 0 \). Prove: \(x_1, \ldots, x_r \) is an \(M' \)-sequence in \(aR' \).

Exercise (23.27). — Let \(R \) be a ring, \(a \) an ideal, \(M \) a Noetherian module with \(M/aM \neq 0 \). Let \(x_1, \ldots, x_r \) be an \(M \)-sequence in \(a \), and \(p \in \text{Supp}(M/aM) \). Prove: (1) \(x_1/1, \ldots, x_r/1 \) is an \(M_p \)-sequence in \(a_p \), and (2) \(\text{depth}(a, M) \leq \text{depth}(a_p, M_p) \).

(23.28) **(Maximal sequences).** — Let \(R \) be a ring, \(a \) an ideal, \(M \) a nonzero module. We say an \(M \)-sequence in \(a \) is maximal in \(a \), if it can not be lengthened in \(a \).

In particular, the sequence of length 0 (the empty sequence) is maximal in \(a \) if and only if there are no nonzerodivisors on \(M \) in \(a \), that is, \(a \subset z\text{div}(M) \).

Theorem (23.29). — Let \(R \) be a ring, \(a \) an ideal, and \(M \) a Noetherian module. Then there exists a finite maximal \(M \)-sequence in \(a \) if and only if \(M/aM \neq 0 \). If so, then any finite \(M \)-sequence in \(a \) can be lengthened until maximal in \(a \), and every maximal \(M \)-sequence in \(a \) is of the same length, namely, \(\text{depth}(a, M) \).

Proof: First, assume \(M/aM \neq 0 \). Then there’s \(p \in \text{Supp}(M/aM) \) by (13.8). Hence successively (23.27)(2) and (23.5)(3) and (21.4) yield

\[
\text{depth}(a, M) \leq \text{depth}(M_p) \leq \dim(M_p) < \infty.
\]

However, every \(M \)-sequence in \(a \) is of length at most \(\text{depth}(a, M) \) by (23.4). Hence the \(M \)-sequences in \(a \) are of bounded length. Thus in finitely many steps, any one can be lengthened until maximal in \(a \). In particular, the empty sequence can be so lengthened. Thus there exists a finite maximal \(M \)-sequence in \(a \).

Instead, assume there exists a finite maximal \(M \)-sequence \(x_1, \ldots, x_m \) in \(a \). Set \(M_i := M/(x_1, \ldots, x_i)M \) for all \(i \). Suppose \(M_m = aM_m \). Then there’s \(a \in a \) with \((1 + a)M = 0 \) by (10.3). But \(a \subset z\text{div}(M_m) \) by maximality. So \(ap = 0 \) for some nonzero \(p \subset M_m \). So \(p + ap = 0 \). So \(a = 0 \), a contradiction. Hence \(M_m/aM_m \neq 0 \).

But \(M_m/aM_m \) is a quotient of \(M/aM \). Thus \(M/aM \neq 0 \).

Given any other maximal \(M \)-sequence \(y_1, \ldots, y_n \) in \(a \), it now suffices to prove \(m = n \). Indeed, then \(m = \text{depth}(a, M) \) by (23.4), completing the proof.

To prove \(m = n \), induct on \(m \). If \(m = 0 \), then \(a \subset z\text{div}(M) \), and so \(n = 0 \) too. Assume \(m \geq 1 \). Set \(N_j := M/(y_1, \ldots, y_j)M \) for all \(j \), and set

\[
U := \bigcup_{i=0}^{m-1} z\text{div}(M_i) \cup \bigcup_{j=0}^{n-1} z\text{div}(N_j).
\]

204
Page Dimensions: 612.0x792.0

Then U is equal to the union of all associated primes of M_i for $i < m$ and of N_j for $j < n$ by (17.12). And these primes are finite in number by (17.17).

Suppose $a \subset U$. Then a lies in one of the primes, say $p \in \text{Ass}(M_i)$, by (3.12). But $x_{i+1} \in a - z.\text{div}(M_i)$ and $a \subset p \subset z.\text{div}(M_i)$, a contradiction. Thus $a \not\subset U$.

Take $z \in a - U$. Then $z \not\in z.\text{div}(M_i)$ for $i < m$ and $z \not\in z.\text{div}(N_j)$ for $j < n$. In particular, x_1, x_m, z and y_1, y_{n-1}, z are M-regular.

By maximality, $a \subset z.\text{div}(M_m)$. So $a \subset q$ for some $q \in \text{Ass}(M_m)$ by (17.12) and (3.12). But $M_m = M_{m-1}/x_mM_{m-1}$ by (23.4.1). Also, $x_m, z \not\in z.\text{div}(M_{m-1})$.

Further, $x_m, z \in a \subset q$. So $q \in \text{Ass}(M_{m-1}/zM_{m-1})$ by (17.19). Hence

$$a \subset z.\text{div}(M/\langle x_1, \ldots, x_m, z \rangle M).$$

Thus x_1, \ldots, x_{m-1}, z is maximal in a. Similarly, y_1, \ldots, y_{n-1}, z is maximal in a.

Note $M_{m-1} = M_{m-2}/x_{m-1}M_{m-2}$ by (23.4.1). Hence x_{m-1}, z is M_{m-2}-regular. However, $z \not\in z.\text{div}(M_{m-2})$. So z, x_{m-1} is M_{m-2}-regular by (23.24)(2). Therefore, $x_1, \ldots, x_{m-2}, z, x_{m-1}$ is a maximal M-regular sequence in a. Continuing shows that z, x_1, \ldots, x_{m-1} is one too. Similarly, z, y_1, \ldots, y_{n-1} is another one.

Thus we may assume $x_1 = y_1$. Then $M_1 = N_1$. Further, x_2, \ldots, x_m and y_2, \ldots, y_n are maximal M_1-sequences in a. So by induction, $m - 1 = n - 1$. Thus $m = n$. □

Example (23.30). — For any $n \geq 0$, here’s an example of a Noetherian local ring R_n of depth n that does not satisfy (S$_1$), so not (S$_n$). Let $R := k[[X,Y]]/\langle XY, Y^2 \rangle$ be the local ring of (17.2). Take additional variables Z_1, \ldots, Z_n. Set $R_0 := R$ and $R_n := R[[Z_1, \ldots, Z_n]]$ if $n \geq 1$. By (22.27), R_n is a Noetherian local ring.

If $n \geq 1$, then Z_n is a nonzerodivisor on R_n. But $R_n = R_{n-1}[[Z_n]]$. So (3.7) yields $R_n/\langle Z_n \rangle R_{n-1}$. Thus Z_1, \ldots, Z_n is an R_n-sequence by induction on n.

Set $m := \langle x, y, Z_1, \ldots, Z_n \rangle \subset R_n$ where x, y are the residues of X, Y. Then $m \subset z.\text{div}_{R_n}(R_0)$. So Z_1, \ldots, Z_n is a maximal R_n-sequence in m. Thus (23.29) yields $\text{depth}(R_n) = n$.

Set $P := k[[X,Y,Z_1,\ldots,Z_n]]$. Then P is a power series ring in $n + 2$ variables. The ideals $\langle Y \rangle$ and $\langle X, Y \rangle$ are prime by (22.27). Set $a := \langle XY, Y^2 \rangle$. Then $P/aP = R_n$ by (22.56). Thus $\langle y \rangle$ and $\langle x, y \rangle$ are prime ideals of R_n.

Plainly $\langle x, y \rangle \subset \text{Ann}(y)$. Given $F \in R_n$, say $F = \sum a_{ij}x^iy^jF_{ij}$ where F_{ij} is a power series in Z_1, \ldots, Z_n. Assume $F \in \text{Ann}(y)$. Then $a_{ij}x^iy^jF_{ij} = 0$. So $\sum a_{ij}x^iy^jF_{ij} \in a$. Hence $\sum a_{ij}F_{ij} \in a$. So $a \supseteq \sum a_{ij}YF_{ij} = 0$. Hence $F \in \langle x, y \rangle$. Thus $\langle x, y \rangle = \text{Ann}(y)$. But $\langle x, y \rangle$ is prime. Thus $\langle x, y \rangle \in \text{Ass}(R_n)$.

Plainly $\langle y \rangle \subset \text{Ann}(y)$. Assume $F \in \text{Ann}(y)$. Then $a_{ij}x^iy^jF_{ij} = 0$. So $\sum a_{ij}x^iy^jF_{ij} \in a$. So $\sum a_{ij}x^iy^jF_{ij} \in a$. So $\langle y \rangle \subset \text{Ann}(a)$. Hence $\langle y \rangle = \text{Ann}(a)$. Thus $\langle y \rangle \in \text{Ass}(R_n)$. So $\langle x, y \rangle$ ia an embedded prime of R_n. Thus (23.10) implies R_n does not satisfy (S$_1$).

Exercise (23.31). — Let R be a ring, a an ideal, M a Noetherian module with $M/aM \neq 0$, and $x \in a - z.\text{div}(M)$. Show depth$(a, M/xM) = \text{depth}(a, M) - 1$.

Exercise (23.32). — Let R be a ring, M a nonzero Noetherian semilocal module, and $x \in \text{rad}(M) - z.\text{div}(M)$. Show that depth$(M) = \dim(M)$ if and only if depth$(M/xM) = \dim(M/xM)$.

Exercise (23.33). — Let R be a ring, R' an algebra, and N a nonzero R'-module that’s a Noetherian R-module. Assume N is semilocal over R (or equivalently by (21.20)(5), semilocal over R'). Show depth$_R(N) = \text{depth}_{R'}(N)$.

205
Proposition (23.34). — Let $R \to R'$ be a map of rings, $a \subset R$ an ideal, and M an R-module with $M/aM \neq 0$. Set $M' := M \otimes_R R'$. Assume R' is faithfully flat over R, and M and M' are Noetherian. Then $\text{depth}(aR', M') = \text{depth}(aM)$.

Proof: By (23.28), there is a maximal M-sequence x_1, \ldots, x_r in a. For all i, set $M_i := M/\langle x_1, \ldots, x_i \rangle M$ and $M'_i := M'/\langle x_1, \ldots, x_i \rangle M'$. By (8.10), we have $M'/aM' = M/aM \otimes_R R'$ and $M'_i = M_i \otimes_R R'$. So $M'/aM' \neq 0$ by faithful flatness. Hence x_1, \ldots, x_r is an M'-sequence by (23.26).

As x_1, \ldots, x_r is maximal, $a \subset z \cdot \text{div}(M_i)$. So $\text{Hom}_R(R/a, M_i) \neq 0$ by (17.20). So $\text{Hom}_R(R/a, M_i \otimes_R R') \neq 0$ by faithful flatness. But (9.10) and (8.9) yield $\text{Hom}_R(R/a, M_i \otimes_R R') \cong \text{Hom}_R(R/a, M'_i)$. So $aR' \subset z \cdot \text{div}(M'_i)$ by (17.20). So x_1, \ldots, x_r is a maximal M'-sequence in aR'. Thus (23.29) yields the assertion. \hfill \Box

Lemma (23.35). — Let R be a ring, a an ideal, M a nonzero Noetherian module, $x \in \text{rad}(M) - z \cdot \text{div}(M)$. Assume $a \subset z \cdot \text{div}(M)$. Set $M' := M/xM$. Then there is $p \in \text{Ass}(M')$ with $p \supset a$.

Proof: Set $a' := \text{Ann}(M)$ and $q := a + a'$. Given any $a \in a$, there’s a nonzero $m \in M$ with $am = 0$. So given any $a' \in a'$, also $(a + a')m = 0$. Thus $q \subset z \cdot \text{div}(M)$.

Set $R' := R/a'$. Then R' is Noetherian by (16.16). Set $N := R/q$. Then N is a quotient of R'. Thus N is Noetherian.

Set $H := \text{Hom}(N, M)$. Then H is Noetherian by (16.37). Also $\text{Supp}(N) = V(q)$ by (13.4)(3). But $q \subset z \cdot \text{div}(M)$. So $H \neq 0$ by (17.20). Further, $a' \subset \text{Ann}(H)$; so $\text{rad}(M) \subset \text{rad}(H)$. So Nakayama’s Lemma (10.6) yields $H/xH \neq 0$.

As $0 \to M \xrightarrow{\cdot x} M \to M' \to 0$ is exact, so is $0 \to H \xrightarrow{\cdot x} H \to \text{Hom}(N, M')$ by (5.11). Hence, $H/xH \subset \text{Hom}(N, M')$. So $\text{Hom}(N, M') \neq 0$. Thus (17.20) yields $p \in \text{Ass}(M')$ with $p \supset q \supset a$. \hfill \Box

Lemma (23.36). — Let R be a ring, M a nonzero Noetherian module, p_0 in $\text{Ass}(M)$, and $p_0 \supset \cdots \supset p_i \subset p$ a chain of primes. Assume that there is no prime p with $p_i \subset p_{i-1}$ for any i. Then $\text{depth}(p_r, M) \leq \text{depth}(M_{p_r}) \leq r$.

Proof: If $r = 0$, then $p_0 \subset z \cdot \text{div}(M)$. So $\text{depth}(p_0, M) = 0$, as desired. Induct on r. Assume $r \geq 1$. As $p_0 \in \text{Ass}(M)$, we have $p_r \in \text{Supp}(M)$ by (17.13); so $M_{p_r} \neq 0$. So Nakayama’s Lemma (10.6) yields $M_{p_r}/p_{p_r} M_{p_r} \neq 0$. Further, $\text{depth}(p_r, M) \leq \text{depth}(M_{p_r})$ by (23.27)(2). So localizing at p_r, we may assume R is local, p_r is the maximal ideal, and $M = M_{p_r}$. Then $\text{depth}(p_r, M) = \text{depth}(M_{p_r})$.

Let x_1, \ldots, x_s be a maximal M-sequence in p_{r-1}. Then as $p_{r-1} \subset p_r$, clearly $M/p_{r-1}M \neq 0$. So $s = \text{depth}(p_{r-1}, M)$ by (23.29). So by induction $s \leq r - 1$.

Set $M_s := M/\langle x_1, \ldots, x_s \rangle M$. Then $p_{r-1} \subset z \cdot \text{div}(M_s)$ by maximality.

Suppose $p_r \subset z \cdot \text{div}(M_s)$. Then x_1, \ldots, x_s is maximal in p_r. So $s = \text{depth}(M_s)$ by (23.29), as desired.

Suppose instead $p_r \not\subset z \cdot \text{div}(M_s)$. Then there’s $x \in p_{r-1} - z \cdot \text{div}(M_s)$. So x_1, \ldots, x_s, x is an M-sequence in p_r. By (23.35), there is $p \in \text{Ass}(M_s/xM_s)$ with $p \supset p_{r-1}$. But $p = \text{Ann}(m)$ for some $m \in M_s/xM_s$, so $x \in p$. Hence $p_{r-1} \supset p \supset p_r$. Hence, by hypothesis, $p = p_r$. Hence x_1, \ldots, x_s, x is maximal in p_r. So (23.29) yields $s + 1 = \text{depth}(M)$. Thus $\text{depth}(M) \leq r$, as desired. \hfill \Box
Theorem (23.37) (Unmixedness). — Let \(R \) be a ring, \(M \) a nonzero Noetherian semilocal module. Assume \(\text{depth}(M) = \dim(M) \). Then \(M \) has no embedded primes, and all maximal chains of primes in \(\text{Supp}(M) \) are of length \(\dim(M) \).

Proof: Given \(p_0 \in \text{Ass}(M) \), take any maximal chain of primes \(p_0 \subsetneq \cdots \subsetneq p_r \). Then \(p_r \) is a maximal ideal in \(\text{Supp}(M) \). So \(p_r \supseteq \text{rad}(M) \) by (13.4)(4). So (23.29) yields \(\text{depth}(M) \leq \text{depth}(p_r, M) \). But (23.36) yields \(\text{depth}(p_r, M) \leq r \). Also \(\text{depth}(M) = \dim(M) \). Moreover, \(r \leq \dim(M) \) by definition (21.1). So \(r = \dim(M) \). Hence \(p_0 \) is minimal. Thus \(M \) has no embedded primes.

Given any maximal chain of primes \(p_0 \subsetneq \cdots \subsetneq p_r \) in \(\text{Supp}(M) \), necessarily \(p_0 \) is minimal. So \(p_0 \in \text{Ass}(M) \) by (17.14). Thus, as above, \(r = \dim(M) \), as desired. \(\square \)

Proposition (23.38). — Let \(R \) be a ring, \(M \) a nonzero Noetherian semilocal module, and \(x_1, \ldots, x_n \in \text{rad}(M) \). Set \(M_i := M/(x_1, \ldots, x_i)M \) for all \(i \). Assume \(\text{depth}(M) = \dim(M) \). Then \(x_1, \ldots, x_n \) is \(M \)-regular if and only if it is part of a sop; if so, then \(\text{depth}(M_i) = \dim(M_i) \) for all \(i \).

Proof: Assume \(x_1, \ldots, x_n \) is \(M \)-regular. Then \(\text{depth}(M_i) = \dim(M_i) \) for all \(i \) by (23.32) and (23.4.1) applied inductively. Moreover, \(x_1, \ldots, x_n \) can be extended to a maximal \(M \)-sequence by (23.29); so assume it is already maximal. Then \(\text{depth}(M_n) = 0 \). Hence \(\dim(M_n) = 0 \). Thus \(x_1, \ldots, x_n \) is a sop.

Conversely, assume \(x_1, \ldots, x_n \) is part of a sop \(x_1, \ldots, x_s \). Induct on \(n \). If \(n = 0 \), there is nothing to prove. Assume \(n \geq 1 \). By induction \(x_1, \ldots, x_{n-1} \) is \(M \)-regular. So as above, \(\text{depth}(M_{n-1}) \). Hence, by (23.37), \(M_{n-1} \) has no embedded primes, and \(\dim(R/p) = \dim(M_{n-1}) \) for all minimal primes \(p \) of \(M_{n-1} \).

However, \(\dim(M_n) = \dim(M_{n-1}) - 1 \) by (21.25). Also \(M_n \twoheadrightarrow M_{n-1}/x_nM_{n-1} \) by (23.4.1). Hence \(x_n \) lies in no minimal prime of \(M_{n-1} \) by (21.5). But \(M_{n-1} \) has no embedded primes. So \(x_n \notin M_{n-1} \). So \(x_n \notin \text{z.div}(M_{n-1}) \) by (17.12). Thus \(x_1, \ldots, x_n \) is \(M \)-regular. \(\square \)

Proposition (23.39). — Let \(R \) be a ring, \(M \) a Noetherian semilocal module, \(p \) in \(\text{Supp}(M) \). If \(\text{depth}(M) = \dim(M) \), then \(\text{depth}(p, M) = \text{depth}(M_p) = \dim(M_p) \).

Proof: Set \(s := \text{depth}(p, M) \). Induct on \(s \). Assume \(s = 0 \). Then \(p \subset \text{z.div}(M) \). So \(p \) lies in some \(q \in \text{Ass}(M) \) by (17.20). But \(q \) is minimal in \(\text{Supp}(M) \) by (23.37). So \(q = p \). Hence \(\dim(M_p) = 0 \). Thus (23.5)(3) yields \(\text{depth}(M_p) = \dim(M_p) = 0 \).

Assume \(s \geq 1 \). Then there’s \(x \in p - \text{z.div}(M) \). Set \(M' := M/xM \). Then \(M' \) is Noetherian and semilocal. Now, \(M_p \neq 0 \). So (10.6) yields \(M_p/pM_p \neq 0 \). But \(M_p/pM_p = (M/pM)_p \) by (12.15). So \(M/pM \neq 0 \). Set \(s' := \text{depth}(p, M') \). Thus \(s' = s-1 \) by (23.31), and \(\text{depth}(M') = \dim(M') \) by (23.32).

Assume \(s \geq 1 \). Then there is \(x \in p - \text{z.div}(M) \). Set \(M' := M/xM \), and set \(s' := \text{depth}(p, M') \). As \(M_p \neq 0 \), also \(M_p/pM_p \neq 0 \) owing to (10.6). But \(M_p/pM_p = (M/pM)_p \) by (12.15). So \(M/pM \neq 0 \). Thus \(s' = s-1 \) by (23.31), and \(\text{depth}(M') = \dim(M') \) by (23.32).

Further, \(M'_p = M'_p/xM_p \) by (12.15). But \(x \in p \). So \(M'_p \neq 0 \) by Nakayama’s Lemma (10.6). Thus \(p \in \text{Supp}(M') \). So by induction, \(\text{depth}(M'_p) = \dim(M'_p) = s' \).

As \(x \notin \text{z.div}(M) \), also \(x/1 \notin \text{z.div}(M_p) \) by (23.27)(1). But \(x/1 \in pR_p \) and \(pR_p = \text{rad}(M_p) \). Hence \(\text{depth}(M_p) = \dim(M_p) \) by (23.32). Finally, \(\dim(M_p) = s \) by (21.5). \(\square \)
Exercise (23.40). — Let R be a ring, a an ideal, and M a Noetherian module with $M/aM \neq 0$. Find a maximal ideal $m \in \text{Supp}(M/aM)$ with
\[\text{depth}(a, M) = \text{depth}(a_m, M_m). \]

Definition (23.41). — Let R be a ring. A nonzero Noetherian module M is called Cohen–Macaulay if $\text{depth}(M_m) = \dim(M_m)$ for all maximal ideals $m \in \text{Supp}(M)$.

It’s equivalent that $\text{depth}(m, M) = \dim(M_m)$ for all m by (23.40) with $a := m$.

It’s equivalent that M_p be a Cohen–Macaulay R_p-module for all $p \in \text{Supp}(M)$, since if p lies in the maximal ideal m, then M_p is the localization of M_m at the prime ideal pR_m by (11.34), and hence M_p is Cohen–Macaulay if M_m is by (23.39).

The ring R is called Cohen–Macaulay if R is so as an R-module.

Exercise (23.42). — Let R be a ring, and M a nonzero Noetherian semilocal module. Set $d := \dim(M)$. Show $\text{depth}(M) = d$ if and only if M is Cohen–Macaulay and $\dim(M_m) = d$ for all maximal $m \in \text{Supp}(M)$.

Proposition (23.43). — Let R be a ring, and M a module. Then M is Cohen–Macaulay if and only if the polynomial module $M[X]$ is so over $R[X]$.

Proof: First, assume $M[X]$ is Cohen–Macaulay. Given $m \in \text{Supp}(M)$ maximal, set $\mathfrak{M} := mR[X] + \langle X \rangle$. Then \mathfrak{M} is maximal in $R[X]$ and $\mathfrak{M} \cap R = m$ by (23.32).

So $\mathfrak{M} \in \text{Supp}(M[X])$ by (13.49) and (8.31). Thus $M[X]_{\mathfrak{M}}$ is Cohen–Macaulay.

Form the ring map $\varphi: R[X] \to R$ with $\varphi(X) = 0$, and view M as an $R[X]$-module via φ. Then $\varphi(\mathfrak{M}) = m$. So $M_{\mathfrak{M}} = M_m$ by (12.29)(3).

There is a unique $R[X]$-map $\beta: M[X] \to M$ with $\beta | M = 1_M$ by (4.18)(1).

Plainly $\text{Ker}(\beta) = XM[X]$, and β is surjective. So $M[X]/XM[X] \to M$. Hence $M[X]_{\mathfrak{M}}/XM[X]_{\mathfrak{M}} = M_{\mathfrak{M}}$. But $X \notin \text{z.div}(M[X]_{\mathfrak{M}})$. So $M_{\mathfrak{M}}$ is Cohen–Macaulay over $R[X]_{\mathfrak{M}}$ by (23.32). But $M_{\mathfrak{M}} = M_m$. So M_m is Cohen–Macaulay over R_m owing to (23.33) and (21.20)(1) with $R := R[X]_{\mathfrak{M}}$ and $R' := R_m$. Thus M is Cohen–Macaulay over R.

Conversely, assume M is Cohen–Macaulay over R. Given a maximal ideal \mathfrak{M} in $\text{Supp}(M[X])$, set $m := \mathfrak{M} \cap R$. Then $M[X]_{\mathfrak{M}} = (M[X]_m)_{\mathfrak{M}}$ by (12.29)(1)(3). Also $M[X]_mM_m[X]_m$ by (12.28). So $m \in \text{Supp}(M)$. So M_m is Cohen–Macaulay over R_m. Thus, to show $M[X]_{\mathfrak{M}}$ is Cohen–Macaulay over $R[X]_{\mathfrak{M}}$, replace R by R_m and M by M_m, so that R is local with maximal ideal m. Set $k := R/m$.

Note $R[X]/mR[X] = k[X]$ by (1.16). Also, $R[X]/mR[X]$ is maximal in $k[X]$, so contains a nonzero polynomial F. As k is a field, we may take F monic. Lift F to a monic polynomial $X \in \mathfrak{M}$. Set $B := R[X]/(F)$ and $n := \deg F$. Then B is a free R-module of rank n by (10.15).

Plainly $\text{Supp}(N) = \text{Supp}(M)$. Hence $\dim(N) = \dim(M)$. Now, given a sequence $x_1, \ldots, x_n \in m$, plainly it’s an N-sequence if and only if it’s an M-sequence. Hence $\text{depth}(N) = \text{depth}(M)$. Thus N is Cohen–Macaulay over R, as M is.

Note $\dim_B(N) = \dim_B(N) = (21.20)(1)$, and B is semilocal by (21.20)(5). Note $\text{depth}_B(N) = \text{depth}_B(N) = (23.33)$. But N is Cohen–Macaulay over R. Hence $\text{depth}_B(N) = \text{dim}_B(N)$. Thus by (23.42), N is Cohen–Macaulay over B.

Set $n := \mathfrak{M}B$. Then N_n is Cohen–Macaulay over B_n as N is Cohen–Macaulay over B. But $N_n = N_{\mathfrak{M}}$ by (12.29)(3). So $N_{\mathfrak{M}}$ is Cohen–Macaulay over $R[X]_{\mathfrak{M}}$ by (23.33) and (21.20)(1) with $R := R[X]_{\mathfrak{M}}$ and $R' := R_m$. But $N_{\mathfrak{M}} = M[X]_{\mathfrak{M}}/F \cdot
M[X]_\mathfrak{m}$ by (12.15). And F is monic, so a nonzerodivisor. So $M[X]_\mathfrak{m}$ is Cohen–Macaulay over $R[X]_\mathfrak{m}$ by (23.32). Thus $M[X]$ is Cohen–Macaulay over $R[X]$. \hfill \square

Definition (23.44). — Let R be a ring, M a module. We call M **universally catenary** if, for every finite set of variables X_1, \ldots, X_n, every quotient of the $R[X_1, \ldots, X_n]$-module $M[X_1, \ldots, X_n]$ is catenary.

We call R **universally catenary** if R is so as an R-module.

Theorem (23.45). — A Cohen–Macaulay module M is universally catenary.

Proof: Any quotient of a catenary module is catenary by (15.13). So it suffices to prove that $N := M[X_1, \ldots, X_n]$ is catenary over $P := R[X_1, \ldots, X_n]$ for every set of variables X_1, \ldots, X_n.

Given nested primes $\mathfrak{q} \subset \mathfrak{p}$ in P, the chains of primes from \mathfrak{q} to \mathfrak{p} correspond bijectively to the chain from $\mathfrak{q}P_\mathfrak{p}$ to $\mathfrak{p}P_\mathfrak{p}$. But N is Cohen–Macaulay over P by (23.43) and induction on n. So $N_\mathfrak{p}$ is catenary over $P_\mathfrak{p}$ by (23.42). Thus all maximal chains of primes between \mathfrak{q} and \mathfrak{p} have the same length, as desired. \hfill \square

Example (23.46). — Trivially, a field is Cohen–Macaulay. Plainly, a domain of dimension 1 is Cohen–Macaulay. By (23.15), a normal domain of dimension 2 is Cohen–Macaulay. Thus these rings are all universally catenary by (23.45). In particular, we recover (15.14).

Proposition (23.47). — Let A be a regular local ring of dimension n, and M a finitely generated module. Assume M is Cohen–Macaulay of dimension n. Then M is free.

Proof: Induct on n. If $n = 0$, then A is a field by (21.14), and so M is free.

Assume $n \geq 1$. Let $t \in A$ be an element of a regular system of parameters. Then $A/(t)$ is regular of dimension $n - 1$ by (21.16). As M is Cohen–Macaulay of dimension n, any associated prime \mathfrak{q} is minimal in A by (23.37); so $\mathfrak{q} = (0)$ as A is a domain by (21.17). Hence t is a nonzerodivisor on M by (17.12). So M/tM is Cohen–Macaulay of dimension $n - 1$ by (23.32) and (21.5). Hence by induction, M/tM is free, say of rank r.

Let k be the residue field of A. Then $M \otimes_A k = (M/tM) \otimes_{A/(t)} k$ by (8.27)(1). So $r = \text{rank}(M \otimes_A k)$.

Set $\mathfrak{p} := (t)$. Then $A_\mathfrak{p}$ is a DVR by (23.6). Moreover, $M_\mathfrak{p}$ is Cohen–Macaulay of dimension 1 by (23.39) as depth$(t, M) = 1$. So $M_\mathfrak{p}$ is torsionfree by (23.11). Therefore $M_\mathfrak{p}$ is flat by (9.35), so free by (10.12). Set $s := \text{rank}(M_\mathfrak{p})$.

Let $k(p)$ be the residue field of $A_\mathfrak{p}$. Then $M_\mathfrak{p} \otimes_{A_\mathfrak{p}} k(p) = M_\mathfrak{p} / tM_\mathfrak{p}$ by (8.27)(1). Moreover, $M_\mathfrak{p} / tM_\mathfrak{p} = (M/tM)_\mathfrak{p}$ by (12.15). So $r = s$.

Set $K := \text{Frac}(A)$. Then $M_\mathfrak{p} \otimes_{A_\mathfrak{p}} K = M \otimes_A K$ by (12.29)(1). Hence $M \otimes_A K$ has rank r. Thus M is free by (14.23). \hfill \square

Proposition (23.48). — Let R be a ring, M a module, and $x_1, \ldots, x_s \in R$ an M-sequence. Then x_1, \ldots, x_s is M-quasi-regular.

Proof: Consider the surjection $\phi : (M/qM)[X_1, \ldots, X_s] \rightarrow G_q(M)$ of (21.11), where $q := (x_1, \ldots, x_s)$ and the X_i are variables. We have to prove that ϕ is bijective. So given a homogeneous polynomial $F \in M[X_1, \ldots, X_s]$ of degree r with $F(x_1, \ldots, x_s) \in q^{r+1}M$, we have to show that the coefficients of F lie in qM.

As $F(x_1, \ldots, x_s) \in q^{r+1}M$, there are homogeneous $F_i \in M[X_1, \ldots, X_s]$ of degree r with $F(x_1, \ldots, x_s) = \sum_i x_i F_i(x_1, \ldots, x_s)$. Set $F' := \sum_i x_i F_i(x_1, \ldots, X_s)$. Then
Let first see that m quasi-regular and that $F_\mathcal{M}$ with m have to show M_q by induction on H. Hence H so assume $r > 1$. Set $r = (x_1, \ldots, x_{s-1})$. By induction, x_1, \ldots, x_{s-1} is M-quasi-regular; that is, $\varphi_{s-1}: (M/rM)[X_1, \ldots, X_{s-1}] \to G_r(M)$ is bijective. So $G_{r,k}(M)$ is a direct sum of copies of M/rM for all k. But x_s is M/rM-regular. So x_s is $G_{r,k}(M)$-regular. Consider the exact sequence

$$0 \to G_{r,k}(M) \to M/r^{k+1}M \to M/r^kM \to 0.$$

Induct on k and apply (23.17) to conclude that x_s is M/r^kM-regular for all k.

To see that the coefficients of F lie in qM, induct on r. The case $r = 0$ is trivial. So assume $r > 0$. Say

$$F(X_1, \ldots, X_s) = G(X_1, \ldots, X_{s-1}) + X_sH(X_1, \ldots, X_s),$$

where G is homogeneous of degree r and H is homogeneous of degree $r - 1$. Recall $F(x_1, \ldots, x_s) = 0$. Hence $x_sH(x_1, \ldots, x_s) \in r'M$. But x_s is $M/r'M$-regular. Hence $H(x_1, \ldots, x_s) \in r'M \subset q'M$. So by induction on r, the coefficients of H lie in qM. Thus it suffices to see that the coefficients of G lie in qM.

Since $H(x_1, \ldots, x_s) \in r'M$, there is a homogeneous polynomial $H'(X_1, \ldots, X_{s-1})$ of degree r with $H'(x_1, \ldots, x_s) = H(x_1, \ldots, x_s)$. Set $G'(X_1, \ldots, X_{s-1}) := G(X_1, \ldots, X_{s-1}) + x_sH'(X_1, \ldots, X_{s-1})$.

Then G' has degree r, and $G'(x_1, \ldots, x_{s-1}) = 0$. So the coefficients of G' lie in rM by induction on s. So the coefficients of G lie in qM. So the coefficients of F lie in qM. Thus x_1, \ldots, x_s is M-quasi-regular.

Proposition (23.49). — Let R be a ring, M a module, and $x_1, \ldots, x_s \in R$. Set $M_i := M/\langle x_1, \ldots, x_i \rangle M$, and set $q := \langle x_1, \ldots, x_s \rangle$. Assume that x_1, \ldots, x_s is M-quasi-regular and that M_i is separated for the q-adic topology for $0 \leq i \leq s - 1$. Then x_1, \ldots, x_s is M-regular.

Proof: First, let’s see that x_1 is M-regular. Given $m \in M$ with $x_1m = 0$, we have to show $m = 0$. But $\bigcap_{r \geq 0} q^rM = 0$ as M is separated. So we have to show $m \in q^rM$ for all $r \geq 0$. Induct on r. Note $m \in M = q^0M$. So assume $m \in q^rM$. We have to show $m \in q^{r+1}M$.

As $m \in q^rM$, there’s a homogeneous polynomial $F \in M[X_1, \ldots, X_s]$ of degree r with $F(x_1, \ldots, x_s) = m$. Consider the map $\phi: (M/qM)[X_1, \ldots, X_s] \to G_q(M)$ of (21.11), where the X_i are variables. As x_1, \ldots, x_s is M-quasi-regular, ϕ is bijective. But $x_1m = 0$. Hence X_1F has coefficients in qM. But X_1F and F have the same coefficients. Thus $m \in q^{r+1}M$. Thus x_1 is M-regular.

Suppose $s \geq 2$. Induct on s. Set $q_1 := \langle x_2, \ldots, x_s \rangle$. Then (4.21) yields $M_1/q_1M_1 = M/qM$. Thus $M_1/q_1M_1 \neq 0$. Next, form this commutative diagram:

$$
\begin{array}{ccc}
(M/qM)[X_1, \ldots, X_s] & \xrightarrow{\varphi} & G_q(M) \\
\iota \uparrow & & \psi \uparrow \\
(M_1/q_1M_1)[X_2, \ldots, X_s] & \xrightarrow{\varphi_{s-1}} & G_{q_1}(M_1)
\end{array}
$$

where ι is the inclusion and ψ is induced by the inclusions $q_1^r \subset q^r$ for $r \geq 0$. As ι
and \(\varphi_s \) are injective, so is \(\varphi_{s-1} \). Thus \(x_2, \ldots, x_s \) is \(M_1 \)-quasi-regular.

Set \(M_{1,i} := M_1/(x_2, \ldots, x_i) \) for \(1 \leq i \leq s \). Then \(M_{1,i} = M_i \) by (4.21) again. Also \(q_1 M_{1,i} = q M_i \). So \(M_{1,i} \) is separated for the \(q_1 \)-adic topology for \(1 \leq i \leq s-1 \). Hence \(x_2, \ldots, x_s \) is \(M_1 \)-regular by induction on \(s \). Thus \(x_1, \ldots, x_s \) is \(M \)-regular. □

Theorem (23.50). — Let \(R \) be a ring, \(M \) a Noetherian semilocal module, and \(x_1, \ldots, x_s \) a sop for \(M \). Set \(q := \langle x_1, \ldots, x_s \rangle \). Then these conditions are equivalent:

1. \(e(q, M) = \ell(M/qM) \).
2. \(x_1, \ldots, x_s \) is \(M \)-quasi-regular.
3. \(x_1, \ldots, x_s \) is \(M \)-regular.
4. \(M \) is Cohen–Macaulay.

Proof: First, (1) and (2) are equivalent by (21.12).

Second, (3) implies (2) by (23.48). Conversely, fix \(i \). Set \(N := \langle x_1, \ldots, x_i \rangle M \). Set \(M' := M/N \) and \(R' := R/\Ann(M') \). Then \(\rad(R') = \rad(M')/\Ann(M') \) by (4.1.1). But \(\Ann(M') \supset \Ann(M) \); so \(\rad(M') \supset \rad(M) \). But \(\rad(M) \supset q \). Hence \(qR' \subset \rad(R') \). Hence \(M' \) is separated for the \(q \)-adic topology by (18.35). Thus owing to (23.49), (2) implies (3). Thus (2) and (3) are equivalent.

Third, (4) implies (3) by (23.38). Conversely, assume (3). Then \(s \leq \depth(M) \). But \(\depth(M) \leq \dim(M) \) by (23.5). Also, as \(x_1, \ldots, x_s \) is a sop, \(\dim(M) = s \) by (21.4). Thus (4) holds. Thus (3) and (4) are equivalent. □

D. Appendix: Exercises

Exercise (23.51). — Let \(R \) be a ring, \(M \) a module, and \(x_1, \ldots, x_n \in R \). Set \(a := \langle x_1, \ldots, x_n \rangle \) and assume \(M/aM \neq 0 \). For all \(p \in \Supp(M) \cap V(a) \), assume \(x_1/1, \ldots, x_n/1 \) is \(M_p \)-regular. Prove \(x_1, \ldots, x_n \) is \(M \)-regular.

Exercise (23.52). — Let \(R \) be a ring, \(M \) a Noetherian module, \(x_1, \ldots, x_n \) an \(M \)-sequence in \(\rad(M) \), and \(\sigma \) a permutation of \(1, \ldots, n \). Prove that \(x_{\sigma 1}, \ldots, x_{\sigma n} \) is an \(M \)-sequence too; first, say \(\sigma \) just transposes \(i \) and \(i+1 \).

Exercise (23.53). — Let \(R \) be a ring, \(a \) an ideal, and \(M \) a Noetherian module. Let \(x_1, \ldots, x_r \) be an \(M \)-sequence, and \(n_1, \ldots, n_r \geq 1 \). Prove these two assertions:

1. \(x_1^{n_1}, \ldots, x_r^{n_r} \) is an \(M \)-sequence.
2. \(\depth(a, M) = \depth(\sqrt{a}, M) \).

Exercise (23.54). — Let \(R \) be a ring, \(a \) an ideal, \(M \) a nonzero Noetherian module, \(x \in R \). Assume \(a \subset z.\div(M) \) and \(a + \langle x \rangle \subset \rad(M) \). Show \(\depth(a + \langle x \rangle, M) \leq 1 \).

Exercise (23.55). — Let \(R \) be a ring, \(a \) an ideal, \(M \) a nonzero Noetherian module, \(x \in R \). Set \(b := a + \langle x \rangle \). Assume \(b \subset \rad(M) \). Show \(\depth(b, M) \leq \depth(a, M) + 1 \).

Exercise (23.56). — Let \(R \) be a ring, \(M \) a nonzero Noetherian module. Given any proper ideal \(a \), set \(c(a, M) := \min \{ \dim M_p \mid p \in \Supp(M/aM) \} \). Prove \(M \) is Cohen–Macaulay if and only if \(\depth(a, M) = c(a, M) \) for all proper ideals \(a \).

Exercise (23.57). — Prove that a Noetherian local ring \(A \) of dimension \(r \geq 1 \) is regular if and only if its maximal ideal \(m \) is generated by an \(A \)-sequence. Prove that, if \(A \) is regular, then \(A \) is Cohen–Macaulay and universally catenary.

Exercise (23.58). — Let \(R \) be a ring, and \(M \) a nonzero Noetherian semilocal module. Set \(\bar{m} := \rad(M) \). Prove: (1) \(\bar{M} \) is a nonzero Noetherian semilocal \(\bar{R} \)-module, and \(\bar{m} = \rad(\bar{M}) \); and (2) \(\depth_M(M) = \depth_{\bar{R}}(\bar{M}) = \depth_{\bar{R}}(\bar{M}) \).
Exercise (23.59). — Let A be a DVR, t a uniformizing parameter, X a variable. Set $P := A[X]$. Set $m_1 := (1-tX)$ and $m_2 := (t, X)$. Prove P is Cohen–Macaulay, and each m_i is maximal with $ht(m_i) = i$.

Set $S_i := P - m_i$ and $T := S_1 \cap S_2$. Set $B := T^{-1}P$ and $n_i := m_i B$. Prove B is semilocal and Cohen–Macaulay, n_i is maximal, and $\dim(B_{n_i}) = i$.

Exercise (23.60). — Let R be a ring, M a nonzero Noetherian semilocal module, and $x_1, \ldots, x_m \in \text{rad}(M)$. For all i, set $M_i := M/(x_1, \ldots, x_i)M$. Assume that $\text{depth}(M) = \dim(M)$ and $\dim(M_m) = \dim(M) - m$. For all i, show x_1, \ldots, x_i form an M-sequence, and $\text{depth}(M_i) = \dim(M_i) = \dim(M) - i$.

Exercise (23.61). — Let k be an algebraically closed field, $P := k[X_1, \ldots, X_n]$ a polynomial ring, and $F_1, \ldots, F_m \in P$. Set $\mathfrak{A} := \langle F_1, \ldots, F_m \rangle$. For all i, j, define $\partial F_i / \partial X_j \in P$ formally as in (1.18.1). Let \mathfrak{A}' be the ideal generated by \mathfrak{A} and all the maximal minors of the m by n matrix $\left(\partial F_i / \partial X_j \right)$. Set $R := P/\mathfrak{A}$ and $R' := P/\mathfrak{A}'$. Assume $\dim R = n - m$. Show that R is Cohen–Macaulay, and that R is normal if and only if either $R' = 0$ or $\dim R' \leq n - m - 2$.
24. Dedekind Domains

Dedekind domains are defined as the 1-dimensional normal Noetherian domains. We prove they are the Noetherian domains whose localizations at nonzero primes are discrete valuation rings. Next we prove the Main Theorem of Classical Ideal Theory: in a Dedekind domain, every nonzero ideal factors uniquely into primes. Then we prove that a normal domain has a module-finite integral closure in any finite separable extension of its fraction field by means of the trace pairing of the extension; in Chapter 26, we do without separability by means of the Krull–Akizuki Theorem. We conclude that a ring of algebraic integers is a Dedekind domain and that, if a domain is algebra finite over a field of characteristic 0, then in the fraction field or in any algebraic extension of it, the integral closure is module finite over the domain and is algebra finite over the field.

A. Text

Definition (24.1). — A domain R is said to be Dedekind if it is Noetherian, normal, and of dimension 1.

Example (24.2). — Examples of Dedekind domains include the integers \mathbb{Z}, the Gaussian integers $\mathbb{Z}[\sqrt{-1}]$, the polynomial ring $k[X]$ in one variable over a field, and any DVR. Indeed, those rings are PIDs, and every PID R is a Dedekind domain: R is Noetherian by definition; R is a UFD, so normal by Gauss’s Theorem, (10.21); and R is of dimension 1 since every nonzero prime is maximal by (2.17).

On the other hand, any local Dedekind domain is a DVR by (23.6).

Example (24.3). — Let $d \in \mathbb{Z}$ be a square-free integer. Set $R := \mathbb{Z} + \mathbb{Z} \eta$ where

$$\eta := \begin{cases}
(1 + \sqrt{d})/2 & \text{if } d \equiv 1 \pmod{4}; \\
\sqrt{d} & \text{if not.}
\end{cases}$$

Then R is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ by [3, Prp. (6.14), p. 412]; so R is normal by (10.16). Also, $\dim(R) = \dim(\mathbb{Z})$ by (15.25); so $\dim(R) = 1$. Finally, R is Noetherian by (16.10) as \mathbb{Z} is so and as $R := \mathbb{Z} + \mathbb{Z}\eta$. Thus R is Dedekind.

Exercise (24.4). — Let R be a domain, S a multiplicative subset.

1. Assume $\dim(R) = 1$. Prove $\dim(S^{-1}R) = 1$ if and only if there is a nonzero prime p of R with $p \cap S = \emptyset$.

2. Assume $\dim(R) \geq 1$. Prove $\dim(R) = 1$ if and only if $\dim(R_p) = 1$ for every nonzero prime p of R.

Exercise (24.5). — Let R be a Dedekind domain, S a multiplicative subset. Show that $S^{-1}R$ is Dedekind if there’s a nonzero prime p with $p \cap S = \emptyset$, and that $S^{-1}R = \text{Frac}(R)$ if not.

Proposition (24.6). — Let R be a Noetherian domain, not a field. Then R is a Dedekind domain if and only if R_p is a DVR for every nonzero prime p.

Proof: If R is Dedekind, then R_p is too by (24.5); so R_p is a DVR by (23.6). Conversely, suppose R_p is a DVR for every nonzero prime p. Then, trivially, R
satisfies (R₁) and (S₂); so R is normal by Serre’s Criterion. Since R is not a field, \(\dim(R) \geq 1 \); whence, \(\dim(R) = 1 \) by (24.4)(2). Thus R is Dedekind.

Proposition (24.7). — In a Noetherian domain R of dimension 1, every ideal \(a \neq 0 \) has a unique factorization \(a = q_1 \cdots q_r \) with the \(q_i \) primary and their primes \(p_i \) distinct; further, \(\{p_1, \ldots, p_r\} = \Ass(R/a) \) and \(q_i = aR_{p_i} \cap R \) for each i.

Proof: The Lasker–Noether Theorem, (18.19), yields the irredundant primary decomposition \(a = \bigcap q_i \). Say \(q_i \) is \(p_i \)-primary. Then by (18.17) the \(p_i \) are distinct and \(\{p_i\} = \Ass(R/a) \).

The \(q_i \) are pairwise comaximal for the following reason. Suppose \(q_i + q_j \), lies in a maximal ideal \(m \). Now, \(p_i := \sqrt{a} \) by (18.3)(5); so \(p_i^{n_i} \subset q_i \) for some \(n_i \) by (3.38). Hence \(p_i^{n_i} \subset m \). So \(p_i \subset m \) by (2.23). But \(0 \neq a \subset p_i \); hence, \(p_i \) is maximal since \(\dim(R) = 1 \). Therefore, \(p_i = m \). Similarly, \(p_j = m \). Hence \(i = j \). Thus the \(q_i \) are pairwise comaximal. So the Chinese Remainder Theorem, (1.21), yields \(a = \prod q_i \).

As to uniqueness, let \(a = \prod q_i \) be any factorization with the \(q_i \) primary and their primes \(p_i \) distinct. The \(p_i \) are minimal containing \(a \) as \(\dim(R) = 1 \); so the \(p_i \) lie in \(\Ass(R/a) \) by (17.14). By the above reasoning, the \(q_i \) are pairwise comaximal and so \(\prod q_i = \bigcap q_i \). Hence \(a = \bigcap q_i \) is an irredundant primary decomposition by (18.17). So the \(p_i \) are unique by the First Uniqueness Theorem, (18.18), and \(q_i = aR_{p_i} \cap R \) by the Second Uniqueness Theorem, (18.22), and by (12.12)(3).

Theorem (24.8) (Main Theorem of Classical Ideal Theory). — Let R be a domain. Assume R is Dedekind. Then every nonzero ideal \(a \) has a unique factorization into primes \(p \). In fact, if \(v_p \) denotes the valuation of \(R_p \), then

\[
a = \prod p^{v_p(a)} \quad \text{where} \quad v_p(a) := \min \{ v_p(a) \mid a \in a \}.
\]

Proof: Using (24.7), write \(a = \prod q_i \) with the \(q_i \) primary, their primes \(p_i \) distinct and unique, and \(q_i = aR_{p_i} \cap R \). Then \(R_{p_i} \) is a DVR by (24.6). So (23.1.3) yields \(aR_{p_i} = p_i^{m_i} R_{p_i} \) with \(m_i := \min \{ v_{p_i}(a/s) \mid a \in a \text{ and } s \in R - p_i \} \). But \(v_{p_i}(1/s) = 0 \). So \(v_{p_i}(a/s) = v_{p_i}(a) \). Hence \(m_i := v_{p_i}(a) \). Now, \(p_i^{m_i} \) is primary by (18.11) as \(p_i \) is maximal; so \(p_i^{m_i} R_{p_i} \cap R = R p_i^{m_i} \) by (18.20). Thus \(q_i = p_i^{m_i} \).

Corollary (24.9). — A Noetherian domain R of dimension 1 is Dedekind if and only if every primary ideal is a power of its radical.

Proof: If R is Dedekind, every primary ideal is a power of its radical by (24.8).

Conversely, given a nonzero prime \(p \), set \(m := pR_p \). Then \(m \neq 0 \). So \(m \neq m^2 \) by Nakayama’s Lemma. Take \(t \in m - m^2 \). Then \(m \) is the only prime containing \(t \), as \(\dim(R_p) = 1 \) by (24.4)(2). So \(tR_p \) is \(m \)-primary by (18.11). Set \(q := tR_p \cap R \). Then \(q \) is \(p \)-primary by (18.7). So \(q = p^n \) for some \(n \) by hypothesis. But \(qR_p = tR_p \) by (11.11)(3)(b). So \(tR_p = m^n \). But \(t \notin m^2 \). So \(n = 1 \). So \(R_p \) is a DVR by (23.6). Thus R is Dedekind by (24.6). □

Lemma (24.10) (Artin Character). — Let \(L \) be a field, \(G \) a group, \(\sigma_i : G \to L^x \) distinct homomorphisms. Then the \(\sigma_i \) are linearly independent over \(L \) in the vector space of set maps \(\sigma : G \to L \) under valuewise addition and scalar multiplication.

Proof: Suppose there’s an equation \(\sum_{i=1}^m a_i \sigma_i(x) = 0 \) with nonzero \(a_i \in L \). Take \(m \geq 1 \) minimal. Now, \(\sigma_i \neq 0 \) as \(\sigma_i : G \to L^x \); so \(m \geq 2 \). Since \(\sigma_1 \neq \sigma_2 \), there’s an \(x \in G \) with \(\sigma_1(x) \neq \sigma_2(x) \). Then \(\sum_{i=1}^m a_i \sigma_i(x) = \sum_{i=1}^m a_i \sigma_i(xy) = 0 \) for every \(y \in G \) since \(\sigma_i \) is a homomorphism.
Dedekind Domains

Let a ring of algebraic integers be a Dedekind domain. By (24.11.1) a finite separable field extension, then the integral closure R in L is integral over R. Then R is Noetherian. Clearly, tr is K-linear. It is nonzero by (24.10) with $G := L^\times$.

Consider the symmetric K-bilinear Trace Pairing:
\[
L \times L \rightarrow K \quad \text{by} \quad (x, y) \mapsto tr(xy).
\]

It is nondegenerate for this reason. As tr is nonzero, there is $z \in L$ with $tr(z) \neq 0$. Now, given $x \in L^\times$, set $y := z/x$. Then $tr(xy) \neq 0$, as desired.

Lemma (24.12). — Let R be a normal domain, K its fraction field, L/K a finite Galois field extension, and $x \in L$ integral over R. Then $tr(x) \in R$.

Proof: Let $x^n + a_1 x^{n-1} + \cdots + a_n = 0$ be an equation of integral dependence for x over R. Let $\sigma \in \text{Gal}(L/K)$. Then
\[
(\sigma x)^n + a_1 (\sigma x)^{n-1} + \cdots + a_n = 0;
\]
so σx is integral over R. Hence $tr(x)$ is integral over R, and lies in K. Thus $tr(x) \in R$ since R is normal.

Theorem (24.13) (Finiteness of integral closure). — Let R be a normal Noetherian domain, K its fraction field, L/K a finite separable field extension, and R' the integral closure of R in L. Then R' is module finite over R, and is Noetherian.

Proof: Let L_1 be the Galois closure of L/K, and R'_1 the integral closure of R in L_1. Let $z_1, \ldots, z_n \in L_1$ form a K-basis. Using (11.30), write $z_i = y_i/a_i$ with $y_i \in R'_{1}$ and $a_i \in R$. Clearly, y_1, \ldots, y_n form a basis of L_1/K contained in R'_{1}.

Let x_1, \ldots, x_n form the dual basis with respect to the Trace Pairing, (24.11.1), so that $tr(x_i y_j) = \delta_{ij}$. Given $b \in R'$, write $b = \sum c_i x_i$ with $c_i \in K$. Fix j. Then
\[
tr(b y_j) = tr\left(\sum c_i x_i y_j\right) = \sum c_i tr(x_i y_j) = c_j \quad \text{for each} \quad j.
\]
But $b y_j \in R'_{1}$. So $c_j \in R$ by (24.12). Thus $R' \subset \sum Rx_i$. Since R is Noetherian, R' is module finite over R by definition, and so is Noetherian owing to (16.15).

Corollary (24.14). — Let R be a Dedekind domain, K its fraction field, L/K a finite separable field extension. Then the integral closure R' of R in L is Dedekind.

Proof: First, R' is module finite over R by (24.13); so R' is Noetherian by (16.15). Second, R' is normal by (10.20). Finally, $\dim(R') = \dim(R)$ by (15.25), and $\dim(R) = 1$ as R is Dedekind. Thus R is Dedekind.

Theorem (24.15). — A ring of algebraic integers is a Dedekind domain.

Proof: By (24.2), \mathbb{Z} is a Dedekind domain; whence, so is its integral closure in any field that is a finite extension of \mathbb{Q} by (24.14).
Theorem (24.16) (Noether’s Finiteness of Integral Closure). Let k be a field of characteristic 0, and R an algebra-finite domain over k. Set $K := \text{Frac}(R)$. Let L/K be a finite field extension (possibly $L = K$), and R' the integral closure of R in L. Then R' is module finite over R and is algebra finite over k.

Proof: By the Noether Normalization Lemma, (15.1), R is module finite over a polynomial subring P. Then P is normal by Gauss’s Theorem, (10.21), and Noetherian by the Hilbert Basis Theorem, (16.10); also, $L/\text{Frac}(P)$ is a finite field extension, which is separable as k is of characteristic 0. Thus R' is module finite over P by (24.13), and so R' is plainly algebra finite over k.

(24.17) (Other cases). In (24.14), even if L/K is inseparable, the integral closure R' of R in L is still Dedekind; see (26.14).

However, Akizuki constructed an example of a DVR R and a finite inseparable extension $L/\text{Frac}(R)$ such that the integral closure of R is a DVR, but is not module finite over R. The construction is nicely explained in [16, Secs. 9.4(1) and 9.5]. Thus separability is a necessary hypothesis in (24.13).

Noether’s Theorem, (24.16), remains valid in positive characteristic, but the proof is more involved. See [6, (13.13), p. 297].

B. Exercises

Exercise (24.18). Let R be a Dedekind domain, and a, b, c ideals. By first reducing to the case that R is local, prove that
\[
a \cap (b + c) = (a \cap b) + (a \cap c),
\]
\[
a + (b \cap c) = (a + b) \cap (a + c).
\]

Exercise (24.19). Prove that a semilocal Dedekind domain A is a PID. Begin by proving that each maximal ideal is principal.

Exercise (24.20). Let R be a Dedekind domain, and a a nonzero ideal. Prove (1) R/a is PIR, and (2) a is generated by two elements.

Exercise (24.21). Let R be a Dedekind domain, and M a finitely generated module. Assume M is torsion; that is, $T(M) = M$. Show $M \simeq \sum_{i,j} R/p_i^{n_{ij}}$ for unique nonzero primes p_i and unique $n_{ij} > 0$.

Exercise (24.22). Let R be a Dedekind domain; X a variable; $F, G \in R[X]$. Show $c(FG) = c(F)c(G)$.

Exercise (24.23). Let R be a Dedekind domain; $x_1, \ldots, x_n \in R$; and a_1, \ldots, a_n ideals. Prove that the system of congruences $x \equiv x_i \mod a_i$ for all i has a solution $x \in R$ if and only if $x_i \equiv x_j \mod (a_i + a_j)$ for $i \neq j$. In other words, prove the exactness (in the middle) of the sequence of R-modules
\[
R \xRightarrow{\varphi} \bigoplus_{i=1}^n R/a_i \xrightarrow{\psi} \bigoplus_{i<j} R/(a_i + a_j)
\]
where $\varphi(y)$ is the vector of residues of y in the R/a_i and where $\psi(y_1, \ldots, y_n)$ is the vector of residues of the $y_i - y_j$ in $R/(a_i + a_j)$.
Exercise (24.24). — Let k be an algebraically closed field, $P := k[X_1, \ldots, X_n]$ a polynomial ring, and $F_1, \ldots, F_m \in P$. Set $\mathfrak{P} := \langle F_1, \ldots, F_m \rangle$. For all i, j, define $\partial F_i / \partial X_j \in P$ formally as in (1.18.1). Let \mathfrak{A} be the ideal generated by \mathfrak{P} and all the $n-1$ by $n-1$ minors of the m by n matrix $(\partial F_i / \partial X_j)$. Set $R := P / \mathfrak{P}$. Assume R is a domain of dimension 1. Show R is Dedekind if and only if $1 \in \mathfrak{A}$.
25. Fractional Ideals

A fractional ideal is defined to be a submodule of the fraction field of a domain. A fractional ideal is called invertible if its product with another fractional ideal is equal to the given domain. We characterize the invertible fractional ideals as those that are nonzero, finitely generated, and principal locally at every maximal ideal. We prove that, in a Dedekind domain, any two nonzero ordinary ideals have an invertible fractional ideal as their quotient.

We prove that, in a Dedekind domain, any two nonzero ordinary ideals have an invertible fractional ideal as their quotient. We characterize Dedekind domains as the domains whose ordinary ideals are, equivalently, all invertible, all projective, or all flat of finite rank. Further, we prove a Noetherian domain is Dedekind if and only if every torsionfree module is flat. Finally, we prove the ideal class group is equal to the Picard group; the former is the group of invertible fractional ideals modulo those that are principal, and the latter is the group, under tensor product, of isomorphism classes of modules local free of rank 1.

A. Text

Definition (25.1). — Let R be a domain, and set $K := \text{Frac}(R)$. We call an R-submodule M of K a fractional ideal. We call M principal if there is an $x \in K$ with $M = Rx$.

Given another fractional ideal N, form these two new fractional ideals:

$MN := \{ \sum x_i y_i \mid x_i \in M \text{ and } y_i \in N \}$ and $(M : N) := \{ z \in K \mid zN \subseteq M \}$. We call them the product of M and N and the quotient of M by N.

Exercise (25.2). — Let R be a domain, M and N nonzero fractional ideals. Prove that M is principal if and only if there exists some isomorphism $M \cong R$. Construct the following canonical surjection and canonical isomorphism:

$\pi : M \otimes N \twoheadrightarrow MN$ and $\varphi : (M : N) \cong \text{Hom}(N, M)$.

Proposition (25.3). — Let R be a domain, and $K := \text{Frac}(R)$. Consider these finiteness conditions on a fractional ideal M:

1. There exist ordinary ideals a and b with $b \neq 0$ and $(a : b) = M$.
2. There exists an $x \in K^\times$ with $xM \subseteq R$.
3. There exists a nonzero $x \in R$ with $xM \subseteq R$.
4. M is finitely generated.

Then (1), (2), and (3) are equivalent, and they are implied by (4). Further, all four conditions are equivalent for every M if and only if R is Noetherian.

Proof: Assume (1) holds. Take any nonzero $x \in b$. Given $m \in M$, clearly $xm \in a \subseteq R$; so $xM \subseteq R$. Thus (2) holds.

Assume (2) holds. Write $x = a/b$ with $a, b \in R$ and $a, b \neq 0$. Then $aM \subseteq bR \subseteq R$. Thus (3) holds.

If (3) holds, then xM and xR are ordinary, and $M = (xM : xR)$; thus (1) holds.

Assume (4) holds. Say $y_1/x_1, \ldots, y_n/x_n \in K^\times$ generate M with $x_i, y_i \in R$. Set $x := \prod x_i$. Then $x \neq 0$ and $xM \subseteq R$. Thus (3) holds.

218
Assume (3) holds and \(R \) is Noetherian. Then \(xM \subset R \). So \(xM \) is finitely generated, say by \(y_1, \ldots, y_n \). Then \(y_1/x, \ldots, y_n/x \) generate \(M \). Thus (4) holds.

Finally, assume all four conditions are equivalent for every \(M \). If \(M \) is ordinary, then (3) holds with \(x := 1 \), and so (4) holds. Thus \(R \) is Noetherian. \(\square \)

Lemma (25.4). — Let \(R \) be a domain, \(M \) and \(N \) fractional ideals. Let \(S \) be a multiplicative subset. Then

\[
S^{-1}(MN) = (S^{-1}M)(S^{-1}N) \quad \text{and} \quad S^{-1}(M : N) \subset (S^{-1}M : S^{-1}N),
\]

with equality if \(N \) is finitely generated.

Proof: Given \(x \in S^{-1}(MN) \), write \(x = (\sum m_in_i)/s \) with \(m_i \in M \), with \(n_i \in N \), and with \(s \in S \). Then \(x = \sum (m_i/s)(n_i/1) \), and so \(x \in (S^{-1}M)(S^{-1}N) \). Thus \(S^{-1}(MN) \subset (S^{-1}M)(S^{-1}N) \).

Conversely, given \(x \in (S^{-1}M)(S^{-1}N) \), say \(x = \sum (m_i/s_i)(n_i/t_i) \) with \(m_i \in M \) and \(n_i \in N \) and \(s_i, t_i \in S \). Set \(s := \prod s_i \) and \(t := \prod t_i \). Then

\[
x = \sum (m_in_i/s_i t_i) = \sum m_i'n_i'/st \in S^{-1}(MN)
\]

with \(m_i' \in M \) and \(n_i' \in N \). Thus \(S^{-1}(MN) \supset (S^{-1}M)(S^{-1}N) \), so equality holds.

Given \(z \in S^{-1}(M : N) \), write \(z = x/s \) with \(x \in (M : N) \) and \(s \in S \). Given \(y \in S^{-1}N \), write \(y = n/t \) with \(n \in N \) and \(t \in S \). Then \(z \cdot n/t = xn/st \) and \(xn \in M \) and \(st \in S \). So \(z \in (S^{-1}M : S^{-1}N) \). Thus \(S^{-1}(M : N) \subset (S^{-1}M : S^{-1}N) \).

Conversely, say \(N \) is generated by \(n_1, \ldots, n_r \). Given \(z \in (S^{-1}M : S^{-1}N) \), write \(zn_i/s_i \) with \(m_i \in M \) and \(s_i \in S \). Set \(s := \prod s_i \). Then \(sz \cdot n_i \in M \). So \(sz \in (M : N) \). Hence \(z \in S^{-1}(M : N) \), as desired. \(\square \)

Definition (25.5). — Let \(R \) be a domain. We call a fractional ideal \(M \) **locally principal** if, for every maximal ideal \(m \), the localization \(M_m \) is principal over \(R_m \).

Exercise (25.6). — Let \(R \) be a domain, \(M \) and \(N \) fractional ideals. Prove that the map \(\pi : M \otimes N \rightarrow MN \) of (25.2) is an isomorphism if \(M \) is locally principal.

Proposition (25.7). **(Invertible fractional ideals).** — Let \(R \) be a domain. A fractional ideal \(M \) is said to be **invertible** if there is some fractional ideal \(M^{-1} \) with \(MM^{-1} = R \).

For example, a nonzero principal ideal \(Rx \) is invertible, as \((Rx)(R \cdot 1/x) = R \).

Proof: Clearly \(M^{-1} \subset (R : M) \) as \(MM^{-1} = R \). But, if \(x \in (R : M) \), then \(x \cdot 1 \in (R : M)MM^{-1} \subset M^{-1} \), so \(x \in M^{-1} \). Thus \((R : M) \subset M^{-1} \), as desired. \(\square \)

Exercise (25.9). — Let \(R \) be a domain, \(M \) and \(N \) fractional ideals. Prove this:

1. Assume \(N \) is invertible. Then \((M : N) = M \cdot N^{-1} \).
2. Both \(M \) and \(N \) are invertible if and only if their product \(MN \) is. If so, then \((MN)^{-1} = N^{-1}M^{-1} \).

Lemma (25.10). — An invertible ideal is finitely generated and nonzero.

Proof: Let \(R \) be the domain, \(M \) the ideal. Say \(1 = \sum m_in_i \) with \(m_i \in M \) and \(n_i \in M^{-1} \). Let \(m \in M \). Then \(m = \sum m_in_i \). But \(m_i \in R \) as \(m \in M \) and \(n_i \in M^{-1} \). So the \(m_i \) generate \(M \). Trivially, \(M \neq 0 \). \(\square \)

Lemma (25.11). — Let \(A \) be a local domain, \(M \) a fractional ideal. Then \(M \) is invertible if and only if \(M \) is principal and nonzero.

219
Fractional Ideals \((25.12) / (25.18)\) Text

Proof: Assume \(M\) is invertible. Say \(1 = \sum m_i n_i\) with \(m_i \in M\) and \(n_i \in M^{-1}\). As \(A\) is local, \(A - A^\times\) is an ideal. So there’s a \(j\) with \(m_j n_j \in A^\times\). Let \(m \in M\). Then \(m n_j \in A\). Set \(a := (m n_j)(m_j n_j)^{-1} \in A\). Then \(m = a m_j\). Thus \(M = Am_j\).

Conversely, if \(M\) is principal and nonzero, then it’s invertible by \((25.7)\). \(\square\)

Exercise (25.12). — Let \(R\) be a UFD. Show that a fractional ideal \(M\) is invertible if and only if \(M\) is principal and nonzero.

Theorem (25.13). — Let \(R\) be a domain, \(M\) a fractional ideal. Then \(M\) is invertible if and only if \(M\) is finitely generated and locally principal.

Proof: Say \(M N = R\). Then \(M\) is finitely generated and nonzero by \((25.10)\). Let \(S\) be a multiplicative subset. Then \((S^{-1}M)(S^{-1}N) = S^{-1}R\) by \((25.4)\). Let \(m\) be a maximal ideal. Then, therefore, \(M_m\) is an invertible fractional ideal over \(R_m\). Thus \(M_m\) is principal by \((25.11)\), as desired.

Conversely, set \(a := M(R : M) \subset R\). Assume \(M\) is finitely generated. Then \((25.4)\) yields \(a_m = M_m(R_m : M_m)\). In addition, assume \(M_m\) is principal and nonzero. Then \((25.7)\) and \((25.8)\) yield \(a_m = R_m\). Hence \((13.8)\) yields \(a = R\), as desired. \(\square\)

Theorem (25.14). — Let \(R\) be a Dedekind domain, \(a, b\) nonzero ordinary ideals, \(M := (a : b)\). Then \(M\) is invertible, and has a unique factorization into powers of primes \(p\): if \(v_p\) denotes the valuation of \(R_p\) and if \(p^v := (p^{-1})^{-v}\) when \(v < 0\), then

\[
M = \prod p^{v_p(M)} \quad \text{where} \quad v_p(M) := \min\{v_p(x) \mid x \in M\}.
\]

Further, \(v_p(M) = \min\{v_p(x_i)\}\) if the \(x_i\) generate \(M\).

Proof: First, \(R\) is Noetherian. So \((25.2)\) yields that \(M\) is finitely generated and that there is a nonzero \(x \in R\) with \(xM \subset R\). Also, each \(R_p\) is a DVR by \((24.6)\). So \(x M_p\) is principal by \((23.1.3)\). Thus \(M\) is invertible by \((25.13)\).

The Main Theorem of Classical Ideal Theory, \((24.8)\), yields \(x M = \prod p^{v_p(x M)}\) and \(xR = \prod p^{v_p(x)}\). But \(v_p(xM) = v_p(x) + v_p(M)\). Thus \((25.9)\) yields

\[
M = (xR : xR) = \prod p^{v_p(x) + v_p(M)} \cdot \prod p^{-v_p(x)} = \prod p^{v_p(M)}.
\]

Further, given \(x \in M\), say \(x = \sum_{i=1}^n a_i x_i\) with \(a_i \in R\). Then \((23.1.1)\) yields \(v_p(x) \geq \min\{v_p(a_i x_i)\} \geq \min\{v_p(x_i)\}\) by induction on \(n\). Thus \(v_p(M) = \min\{v_p(x_i)\}\). \(\square\)

Exercise (25.15). — Show that it is equivalent for a ring \(R\) to be either a PID, a 1-dimensional UFD, or a Dedekind domain and a UFD.

(25.16) **(Invertible modules).** — Let \(R\) be an arbitrary ring. We call a module \(M\) invertible if there is another module \(N\) with \(M \otimes R \simeq R\).

Up to (noncanonical) isomorphism, \(N\) is unique if it exists: if \(N' \otimes R \simeq R\), then \(N = R \otimes N \simeq (N' \otimes M) \otimes N = N' \otimes (M \otimes N) \simeq N' \otimes R = N'\).

Exercise (25.17). — Let \(R\) be an ring, \(M\) an invertible module. Prove that \(M\) is finitely generated, and that, if \(R\) is local, then \(M\) is free of rank 1.

Exercise (25.18). — Show these conditions on an \(R\)-module \(M\) are equivalent:

1. \(M\) is invertible.
2. \(M\) is finitely generated, and \(M_m \simeq R_m\) at each maximal ideal \(m\).
(3) M is locally free of rank 1.
Assuming these conditions hold, show that $M \otimes \operatorname{Hom}(M, R) = R$.

Proposition (25.19). — Let R be a domain, M a fractional ideal. Then the following conditions are equivalent:

1. M is an invertible fractional ideal.
2. M is an invertible abstract module.
3. M is a nonzero projective abstract module.

Proof: Assume (1). Then M is locally principal by (25.13). So (25.6) yields $M \otimes M^{-1} = MM^{-1}$ by (1). But $MM^{-1} = 1$. Thus (2) holds.

If (2) holds, then M is locally free of rank 1 by (25.18); so (13.15) yields (3).

Finally, assume (3). By (5.16), there's an M' with $M \oplus M' \simeq R^{\oplus\Lambda}$. Let $\rho: R^{\oplus\Lambda} \to M$ be the projection, and set $x_\lambda := \rho(e_\lambda)$ where e_λ is the standard basis vector. Define $\varphi_\lambda: M \to R^{\oplus\Lambda} \to R$ to be the composition of the injection with the projection φ_λ on the λth factor. Then given $x \in M$, we have $\varphi_\lambda(x) = 0$ for almost all λ and $x = \sum_{\lambda \in \Lambda} \varphi_\lambda(x) x_\lambda$.

Fix a nonzero $y \in M$. For $\lambda \in \Lambda$, set $q_\lambda := \frac{1}{y} \varphi_\lambda(y) \in \operatorname{Frac}(R)$. Set $N := \sum Rq_\lambda$. Given any nonzero $x \in M$, say $x = a/b$ and $y = c/d$ with $a, b, c, d \in R$. Then $a, c \in M$; whence, $ad\varphi_\lambda(y) \varphi_\lambda(ac) = bc\varphi_\lambda(x)$. Thus $xq_\lambda = \varphi_\lambda(x) \in R$. Hence $M \cdot N \subseteq R$. But $y = \sum \varphi_\lambda(y) y_\lambda$; so $1 = y_\lambda q_\lambda$. Thus $M \cdot N = R$. Thus (1) holds.

Theorem (25.20). — Let R be a domain. Then the following are equivalent:

1. R is a Dedekind domain or a field.
2. Every nonzero ordinary ideal a is invertible.
3. Every nonzero ordinary ideal a is projective.
4. Every nonzero ordinary ideal a is finitely generated and flat.

Proof: Assume R is not a field; otherwise, (1)–(4) hold trivially.
If R is Dedekind, then (25.14) yields (2) since $a = (a : R)$.
Assume (2). Then a is finitely generated by (25.10). Thus R is Noetherian. Let p be any nonzero prime of R. Then by hypothesis, p is invertible. So by (25.13), p is locally principal. So R_p is a DVR by (23.6). Hence R is Dedekind by (24.6). Thus (1) holds. Thus (1) and (2) are equivalent.
By (25.19), (2) and (3) are equivalent. But (2) implies that R is Noetherian by (25.10). Thus (3) and (4) are equivalent by (16.15) and (13.15).

Theorem (25.21). — Let R be a Noetherian domain, but not a field. Then R is Dedekind if and only if every torsionfree module is flat.

Proof: (Of course, as R is a domain, every flat module is torsionfree by (9.35).)
Assume R is Dedekind. Let M be a torsionfree module, m a maximal ideal. Let's see that M_m is torsionfree over R_m. Let $z \in R_m$ be nonzero, and say $z = x/s$ with $x, s \in R$ and $s \notin m$. Then $\mu_x: M \to M$ is injective as M is torsionfree. So $\mu_x: M_m \to M_m$ is injective by the Exactness of Localization. But $\mu_{x/s} = \mu_x \mu_{1/s}$ and $\mu_{1/s}$ is invertible. So $\mu_{x/s}$ is injective. Thus M_m is torsionfree.
Since R is Dedekind, R_m is a DVR by (24.6), so a PID by (24.1). Hence M_m is flat over R_m by (9.35). But m is arbitrary. Thus by (13.12), M is flat over R.

Conversely, assume every torsionfree module is flat. In particular, every nonzero ordinary ideal is flat. But R is Noetherian. Thus R is Dedekind by (25.20).
Fractional Ideals

Exercises

(25.22) **(The Picard Group).** — Let \(R \) be a ring. We denote the collection of isomorphism classes of invertible modules by \(\text{Pic}(R) \). By (25.17), every invertible module is finitely generated, so isomorphic to a quotient of \(R^n \) for some integer \(n \). Hence, \(\text{Pic}(R) \) is a set. Further, \(\text{Pic}(R) \) is, clearly, a group under tensor product with the class of \(R \) as identity. We call \(\text{Pic}(R) \) the **Picard Group** of \(R \).

Assume \(R \) is a domain, not a field. Set \(K := \text{Frac}(R) \). Given an invertible abstract module \(M \), we can embed \(M \) into \(K \) as follows. Recall \(S_0 := R - 0 \).

Form the canonical map \(M \to S_0^{-1}M \). It is injective owing to (12.12) if the multiplication map \(x \mapsto M \) is injective for any \(x \in S_0 \). Let’s prove it is.

Let \(m \) be a maximal ideal. Clearly, \(M_m \) is an invertible \(R_m \)-module. So \(M_m \cong R_m \) by (25.17). Hence \(\mu_x : M_m \to M_m \) is injective. Therefore, \(\mu_x : M \to M \) is injective by (13.9). Thus \(M \) embeds canonically into \(S_0^{-1}M \). Now, \(S_0^{-1}M \) is a localization of \(M_m \), so is a 1-dimensional \(K \)-vector space, again as \(M_m \cong R_m \). Choose an isomorphism \(S_0^{-1}M \cong K \). It yields the desired embedding of \(M \) into \(K \).

Hence, (25.19) implies \(M \) is also invertible as a fractional ideal.

The invertible fractional ideals \(N \), clearly, form a group \(\mathcal{F}(R) \). Sending an \(N \) to its isomorphism class yields a map \(\kappa : \mathcal{F}(R) \to \text{Pic}(R) \) by (25.16). By the above, \(\kappa \) is surjective. Further, \(\kappa \) is a group homomorphism by (25.6). It’s not hard to check that its kernel is the group \(\mathcal{P}(R) \) of principal ideals and that \(\mathcal{P}(R) = K^\times / R^\times \). We call \(\mathcal{F}(R)/\mathcal{P}(R) \) the **Ideal Class Group** of \(R \). Thus \(\mathcal{F}(R)/\mathcal{P}(R) = \text{Pic}(R) \); in other words, the Ideal Class Group is canonically isomorphic to the Picard Group.

Every invertible fractional ideal is, by (25.13), finitely generated and nonzero, so of the form \((a : b) \) where \(a \) and \(b \) are nonzero ordinary ideals by (25.3). Conversely, by (25.14) and (25.20), every fractional ideal of this form is invertible if and only if \(R \) is Dedekind. In fact, then \(\mathcal{F}(R) \) is the free abelian group on the prime ideals. Further, then \(\text{Pic}(R) = 0 \) if and only if \(R \) is UFD, or equivalently by (25.15), a PID. See [3, Ch. 11, Sects. 10–11, pp. 424–437] for a discussion of the case in which \(R \) is a ring of quadratic integers, including many examples where \(\text{Pic}(R) \neq 0 \).

B. Exercises

Exercise (25.23). — Let \(R \) be a Dedekind domain, \(S \) a multiplicative subset. Prove \(M \to S^{-1}M \) induces a surjective group map \(\text{Pic}(R) \to \text{Pic}(S^{-1}R) \).
26. Arbitrary Valuation Rings

A valuation ring is a subring of a field such that the reciprocal of any element outside the subring lies in it. We prove valuation rings are normal local domains. They are maximal under domination of local rings; that is, one contains the other, and the inclusion map is a local homomorphism. Given any domain, its normalization is equal to the intersection of all the valuation rings containing it. Given a 1-dimensional Noetherian domain and a finite extension of its fraction field with a proper subring containing the domain, that subring too is 1-dimensional and Noetherian; this is the Krull–Akizuki Theorem. So normalizing a Dedekind domain in any finite extension of its fraction field yields another Dedekind domain.

A. Text

Definition (26.1). — A proper subring V of a field K is said to be a valuation ring of K if, whenever $z \in K - V$, then $1/z \in V$.

Proposition (26.2). — Let V be a valuation ring of a field K, and set
\[m := \{1/z \mid z \in K - V\} \cup \{0\}. \]
Then V is local, m is its maximal ideal, and K is its fraction field.

Proof: Clearly $m = V - V^\times$. Let’s show m is an ideal. Take a nonzero $a \in V$ and nonzero $x, y \in m$. Suppose $ax \notin m$. Then $ax \in V^\times$. So $a(1/ax) \in V$. So $1/x \in V$. So $x \in V^\times$, a contradiction. Thus $ax \in m$. Now, by hypothesis, either $x/y \in V$ or $y/x \in V$. Say $y/x \in V$. Then $1 + (y/x) \in V$. So $x + y = (1 + (y/x))x \in m$. Thus m is an ideal. Hence V is local and m is its maximal ideal by (3.5). Finally, K is its fraction field, because whenever $z \in K - V$, then $1/z \in V$.

Exercise (26.3). — Prove that a valuation ring V is normal.

Lemma (26.4). — Let R be a domain, a an ideal, $K := \text{Frac}(R)$, and $x \in K^\times$. Then either $1 \notin aR[x]$ or $1 \notin aR[1/x]$.

Proof: Assume $1 \in aR[x]$ and $1 \in aR[1/x]$. Then there are equations
\[1 = a_0 + \cdots + a_n x^n \quad \text{and} \quad 1 = b_0 + \cdots + b_m x^m \quad \text{with all} \quad a_i, b_j \in a. \]
Assume n, m minimal and $m \leq n$. Multiply through by $1 - b_0$ and $a_n x^n$, getting
\[1 - b_0 = (1 - b_0)a_0 + \cdots + (1 - b_0)a_n x^n \quad \text{and} \]
\[(1 - b_0)a_n x^n = a_n b_1 x^{n-1} + \cdots + a_n b_m x^{n-m}. \]
Combine the latter equations, getting
\[1 - b_0 = (1 - b_0)a_0 + \cdots + (1 - b_0)a_{n-1} x^{n-1} + a_n b_1 x^{n-1} + \cdots + a_n b_m x^{n-m}. \]
Simplify, getting an equation of the form $1 = c_0 + \cdots + c_{n-1} x^{n-1}$ with $c_i \in a$, which contradicts the minimality of n.

(26.5) (Domination). — Let A, B be local rings, and m, n their maximal ideals. We say B dominates A if $B \ni A$ and $n \cap A = m$; in other words, the inclusion map $\varphi : A \to B$ is a local homomorphism.
Proposition (26.6). — Let \(K \) be a field, \(A \) a local subring. Then \(A \) is dominated by a valuation ring \(V \) of \(K \) with algebraic residue field extension.

Proof: Let \(\mathfrak{m} \) be the maximal ideal of \(A \). There is an algebraic closure \(\Omega \) of \(A/\mathfrak{m} \) by (14.13). Form the set \(\mathcal{S} \) of pairs \((R, \sigma)\) with \(A \subset R \subset K \) and \(\sigma: R \to \Omega \) an extension of the quotient map \(A \to A/\mathfrak{m} \). Order \(\mathcal{S} \) as follows: \((R, \sigma) \leq (R', \sigma')\) if \(R \subset R' \) and \(\sigma'|R = \sigma \). Given a totally ordered subset \(\{(R_\lambda, \sigma_\lambda)\} \), set \(B := \bigcup \bigcup R_\lambda \) and define \(\tau: B \to \Omega \) by \(\tau(x) := \sigma_\lambda(x) \) if \(x \in R_\lambda \). Plainly \(\tau \) is well defined, and \((B, \tau) \in \mathcal{S} \). Thus by Zorn’s Lemma, \(\mathcal{S} \) has a maximal element, say \((V, \rho)\).

Set \(\mathfrak{M} := \ker(\rho) \). Let’s see that \(V \) is local with \(\mathfrak{M} \) as maximal ideal. Indeed, \(V \subset V_{\mathfrak{M}} \) and \(\rho \) extends to \(V_{\mathfrak{M}} \) as \(\rho(V - \mathfrak{M}) \subset \Omega \). Thus maximality yields \(V = V_{\mathfrak{M}} \).

Let’s see that \(V \) is a valuation ring of \(K \). Given \(x \in K \), set \(V' := V[x] \). First, suppose \(1 \notin \mathfrak{M}V' \). Let’s see \(x \in V \). Then \(\mathfrak{M}V' \) is contained in a maximal ideal \(\mathfrak{M}' \) of \(V' \). So \(\mathfrak{M}' \cap V \subset \mathfrak{M} \), but \(1 \notin \mathfrak{M}' \). So \(\mathfrak{M}' \cap V = \mathfrak{M} \). Set \(k := V/\mathfrak{M} \) and \(k' := V'/\mathfrak{M}' \). Then \(k' = k[x'] \) where \(x' \) is the residue of \(x \). But \(k' \) is a field, not a polynomial ring. So \(x' \) is algebraic over \(k \). Thus \(k'/k \) is algebraic by (10.17)(2).

Let \(\bar{\rho}: k \rightarrow \Omega \) be the embedding induced by \(\rho \). Then \(\bar{\rho} \) extends to an embedding \(\bar{\rho}': k' \rightarrow \Omega \) by (14.12). Composing with the quotient map \(V' \rightarrow k' \) yields a map \(\rho': V' \rightarrow \Omega \) that extends \(\rho \). Thus \((V', \rho') \in \mathcal{S} \), and \((V', \rho') \geq (V, \rho) \). By maximality, \(V = V' \). Thus \(x \in V \).

Similarly, set \(V'' := V[1/x] \). Then \(1 \notin \mathfrak{M}V'' \) implies \(1/x \in V \). But by (26.4), either \(1 \notin \mathfrak{M}V' \) or \(1 \notin \mathfrak{M}V'' \). Thus either \(x \in V \) or \(1/x \in V \). Thus \(V \) is a valuation ring of \(K \). But \((V, \rho) \in \mathcal{S} \). Thus \(V \) dominates \(A \).

Finally, \(k \rightarrow \Omega \). But \(\Omega \) is an algebraic closure of \(A/\mathfrak{m} \), so algebraic over \(A/\mathfrak{m} \). Hence \(k \) is algebraic over \(A/\mathfrak{m} \) too. Thus \(V \) is as desired.

Theorem (26.7). — Let \(R \) be any subring of a field \(K \). Then the integral closure \(\bar{R} \) of \(R \) in \(K \) is the intersection of all valuation rings \(V \) of \(K \) containing \(R \). Further, if \(R \) is local, then the \(V \) dominating \(R \) with algebraic residue field extension suffice.

Proof: Every valuation ring \(V \) is normal by (26.3). So if \(V \supset R \), then \(V \supset \bar{R} \). Thus \(\bigcap_{V \supset R} V = \bar{R} \).

To prove the opposite inclusion, take any \(x \in K - \bar{R} \). To find a valuation ring \(V \) with \(V \supset R \) and \(x \notin V \), set \(y := 1/x \). If \(1/y \in R[y] \), then for some \(n, \)

\[
1/y = a_0y^n + a_1y^{n-1} + \cdots + a_n \quad \text{with} \quad a_\lambda \in R.
\]

Multiplying by \(x^n \) yields \(x^{n+1} - a_nx^n - \cdots - a_0 = 0 \). So \(x \in \bar{R} \), a contradiction.

Thus \(1 \notin yR[y] \). So there is a maximal ideal \(\mathfrak{m} \) of \(R[y] \) containing \(y \). Then the composition \(R \rightarrow R[y] \rightarrow R[y]/\mathfrak{m} \) is surjective as \(y \in \mathfrak{m} \). Its kernel is \(\mathfrak{m} \cap R \), so \(\mathfrak{m} \cap R \) is a maximal ideal of \(R \). By (26.6), there is a valuation ring \(V \) that dominates \(R[y]/\mathfrak{m} \) with algebraic residue field extension; whence, if \(R \) is local, then \(V \) also dominates \(R \), and the residue field of \(R[y]/\mathfrak{m} \) is equal to that of \(R \). But \(y \notin \mathfrak{m} \); so \(x = 1/y \notin V \), as desired.

(26.8) (Valuations). — We call an additive abelian group \(\Gamma \) **totally ordered** if \(\Gamma \) has a subset \(\Gamma_+ \) that is closed under addition and satisfies \(\Gamma_+ \cup \{0\} = \Gamma \).

Given \(x, y \in \Gamma \), write \(x > y \) if \(x - y \in \Gamma_+ \). Note that either \(x > y \) or \(x = y \) or \(y > x \). Note that, if \(x > y \), then \(x + z > y + z \) for any \(z \in \Gamma \).

Let \(V \) be a domain, and set \(K := \text{Frac}(V) \) and \(\Gamma := K^\times/V^\times \). Write the group \(\Gamma \)
additively, and let \(v: K^\times \to \Gamma \) be the quotient map. It is a homomorphism:
\[
v(xy) = v(x) + v(y). \tag{26.8.1}
\]
Set \(\Gamma_+ := v(V - 0) - 0 \). Then \(\Gamma_+ \) is closed under addition. Clearly, \(V \) is a valuation ring if and only if \(-\Gamma_+ \cup \{0\} \cup \Gamma_+ = \Gamma\), so if and only if \(\Gamma \) is totally ordered.

Assume \(V \) is a valuation ring. Let’s prove that, for all \(x, y \in K^\times \),
\[
v(x + y) \geq \min\{v(x), v(y)\} \quad \text{if} \quad x \neq -y. \tag{26.8.2}
\]
Indeed, say \(v(x) \geq v(y) \). Then \(z := x/y \in V \). So \(v(z + 1) \geq 0 \). Hence
\[
v(x + y) = v(z + 1) + v(y) \geq v(y) = \min\{v(x), v(y)\},
\]
Note that (26.8.1) and (26.8.2) are the same as (1) and (2) of (23.1).

Conversely, start with a field \(K \), with a totally ordered additive abelian group \(\Gamma \), and with a surjective homomorphism \(v: K^\times \to \Gamma \) satisfying (26.8.2). Set
\[
V := \{ x \in K^\times \mid v(x) \geq 0 \} \cup \{0\}.
\]
Then \(V \) is a valuation ring, and \(\Gamma = K^\times/V^\times \). We call such a \(v \) a valuation of \(K \), and \(\Gamma \) the value group of \(v \) or of \(V \).

For example, a DVR \(V \) of \(K \) is just a valuation ring with value group \(\mathbb{Z} \), since any \(x \in K^\times \) has the form \(u/t^n \) with \(u \in V^\times \) and \(n \in \mathbb{Z} \).

Example (26.9). Fix a totally ordered additive abelian group \(\Gamma \), and a field \(k \). Form the \(k \)-vector space \(R \) on the symbols \(X^a \) for \(a \in \Gamma \) as basis. Define \(X^a X^b = X^{a+b} \), and extend this product to \(R \) by linearity. Then \(R \) is a \(k \)-algebra with \(X_0 = 1 \). We call \(R \) the group algebra of \(\Gamma \). Define \(v: (R - 0) \to \Gamma \) by
\[
v(\sum r_a X^a) := \min\{a \mid r_a \neq 0\}.
\]
Then for \(x, y \in (R - 0) \), clearly \(v(xy) = v(x) + v(y) \) because \(k \) is a domain and \(\Gamma \) is ordered. Hence \(R \) is a domain. Moreover, if \(v(x + y) = a \), then either \(v(x) \leq a \) or \(v(y) \leq a \). Thus \(v(x + y) \geq \min\{v(x), v(y)\} \).

Set \(K := \text{Frac}(R) \), and extend \(v \) to a map \(v: K^\times \to \Gamma \) by \(v(x/y) := v(x) - v(y) \) if \(y \neq 0 \). Clearly \(v \) is well defined, surjective, and a homomorphism. Further, for \(x, y \in K^\times \), clearly \(v(x + y) \geq \min\{v(x), v(y)\} \). Thus \(v \) is a valuation with group \(\Gamma \).

Set \(R' := \{ x \in R \mid v(x) \geq 0 \} \) and \(p := \{ x \in R \mid v(x) > 0 \} \). Clearly, \(R' \) is a ring, and \(p \) is a prime of \(R' \). Further, \(R'_p \) is the valuation ring of \(v \).

There are many choices for \(\Gamma \) other than \(\mathbb{Z} \). Examples include the additive rationals, the additive reals, its subgroup generated by two incommensurate reals, and the lexicographically ordered product of any two totally ordered abelian groups.

Proposition (26.10). Let \(v \) be a valuation of a field \(K \), and \(x_1, \ldots, x_n \in K^\times \) with \(n \geq 2 \). Set \(m := \min\{v(x_i)\} \).

1. If \(n = 2 \) and if \(v(x_1) \neq v(x_2) \), then \(v(x_1 + x_2) = m \).
2. If \(x_1 + \cdots + x_n = 0 \), then \(m = v(x_i) = v(x_j) \) for some \(i \neq j \).

Proof: For (1), say \(v(x_1) > v(x_2) \); so \(v(x_2) = m \). Set \(z := x_1/x_2 \). Then \(v(z) > 0 \). Also \(v(-z) = v(z) + v(-1) > 0 \). Now,
\[
0 = v(1) = v(z + 1 - z) \geq \min\{v(z + 1), v(-z)\} \geq 0.
\]
Hence \(v(z + 1) = 0 \). Now, \(x_1 + x_2 = (z + 1)x_2 \). Therefore, \(v(x_1 + x_2) = v(x_2) = m \). Thus (1) holds.

For (2), reorder the \(x_i \) so \(v(x_i) = m \) for \(i \leq k \) and \(v(x_i) > m \) for \(i > k \). By induction, (26.8.2) yields \(v(x_{k+1} + \cdots + x_n) \geq \min_{i > k} v(x_i) \). Therefore,
Set \((26.12.1) \)

\[
v(x_{k+1} + \cdots + x_n) > m. \text{ If } k = 1, \text{ then (1) yields } v(0) = v(x_1 + (x_2 + \cdots + x_n)) = m, \text{ a contradiction. So } k > 1, \text{ and } v(x_1) = v(x_2) = m, \text{ as desired.} \]

\[\square\]

Exercise (26.11). — Let \(V \) be a valuation ring. Prove these statements:

1. Every finitely generated ideal \(a \) is principal.
2. \(V \) is Noetherian if and only if \(V \) is a DVR.

Lemma (26.12). — Let \(R \) be a 1-dimensional Noetherian domain, \(K \) its fraction field, \(M \) a torsionfree module, and \(x \in R \) nonzero. Then \(\ell(R/xR) < \infty \). Further,

\[
\ell(M/xM) \leq \dim_K(M \otimes_R K) \ell(R/xR),
\]

(26.12.1)

with equality if \(M \) is finitely generated.

Proof: Set \(r := \dim_K(M \otimes_R K) \). If \(r = \infty \), then (26.12.1) is trivial; so we may assume \(r < \infty \).

Given any module \(N \), set \(N_K := S_0^{-1}N \) with \(S_0 := R - 0 \). Recall \(N_K = N \otimes_R K \).

First, assume \(M \) is finitely generated. Choose any \(K \)-basis \(m_1/s_1, \ldots, m_r/s_r \) of \(M_K \) with \(m_i \in M \) and \(s_i \in S_0 \). Then \(m_1/1, \ldots, m_r/1 \) is also a basis. Define an \(R \)-map \(\alpha: R^r \to M \) by sending the standard basis elements to the \(m_i \). Then its localization \(\alpha_K \) is a \(K \)-isomorphism. But \(\text{Ker}(\alpha) \) is a submodule of \(R^r \), so torsionfree. Further, \(S_0^{-1} \text{Ker}(\alpha) = \text{Ker}(\alpha_K) = 0 \). Hence \(\text{Ker}(\alpha) = 0 \). Thus \(\alpha \) is injective.

Set \(N := \text{Coker}(\alpha) \). Then \(N_K = 0 \), and \(N \) is finitely generated. Hence, \(\text{Supp}(N) \) is a proper closed subset of \(\text{Spec}(R) \). But \(\dim(R) = 1 \) by hypothesis. Hence, \(\text{Supp}(N) \) consists entirely of maximal ideals. So \(\ell(N) < \infty \) by (19.4).

Similarly, \(\text{Supp}(R/xR) \) is closed and proper in \(\text{Spec}(R) \). So \(\ell(R/xR) < \infty \).

Consider the standard exact sequence:

\[0 \to N' \to N \to N/xN \to 0 \quad \text{where} \quad N' := \text{Ker}(\mu_x).\]

Apply Additivity of Length, (19.7); it yields \(\ell(N') = \ell(N/xN) \).

Since \(M \) is torsionfree, \(\mu_x: M \to M \) is injective. Consider this commutative diagram with exact rows:

\[
\begin{array}{cccccc}
0 & \to & R^r & \xrightarrow{\alpha} & M & \xrightarrow{\mu_x} & N & \to & 0 \\
& & \mu_x & & \mu_x & & \mu_x & & \\
0 & \to & R^r & \xrightarrow{\alpha} & M & \xrightarrow{\mu_x} & N & \to & 0 \\
\end{array}
\]

Applying the snake lemma (5.10). It yields this exact sequence:

\[0 \to N' \to (R/xR)^r \to M/xM \to N/xN \to 0.\]

Hence \(\ell(M/xM) = \ell((R/xR)^r) \) by additivity. But \(\ell((R/xR)^r) = r \ell(R/xR) \) also by additivity. Thus equality holds in (26.12.1) when \(M \) is finitely generated.

Second, assume \(M \) is arbitrary, but (26.12.1) fails. Then \(M \) possesses a finitely generated submodule \(M' \) whose image \(H \) in \(M/xM \) satisfies \(\ell(H) > r \ell(R/xR) \).

Now, \(M_K \geq M'_K \); so \(r \geq \dim_K(M'_K) \). Therefore,

\[\ell(M'/xM') \geq \ell(H) > r \ell(R/xR) \geq \dim_K(M'_K) \ell(R/xR).\]

However, together these inequalities contradict the first case with \(M' \) for \(M \). \(\square \)

Theorem (26.13) (Krull–Akizuki). — Let \(R \) be a 1-dimensional Noetherian domain, \(K \) its fraction field, \(K' \) a finite extension field, and \(R' \) a proper subring of \(K' \) containing \(R \). Then \(R' \) is, like \(R \), a 1-dimensional Noetherian domain.
Proof: Given a nonzero ideal \(a' \) of \(R' \), take any nonzero \(x \in a' \). Since \(K'/K \) is finite, there is an equation \(a_nx^n + \cdots + a_0 = 0 \) with \(a_i \in R \) and \(a_0 \neq 0 \). Then \(a_0 \in a' \cap R \). Further, (26.12) yields \(\ell(R/a_0R) < \infty \).

Clearly, \(R' \) is a domain, so a torsionfree \(R \)-module. Further, \(R' \otimes_R K \subset K' \); hence, \(\dim_K(R' \otimes_R K) < \infty \). Therefore, (26.12) yields \(\ell_R(R'/a_0R') < \infty \).

But \(a'/a_0R' \subset R'/a_0R' \). So \(\ell_R(a'/a_0R') < \infty \). So \(a'/a_0R' \) is finitely generated over \(R \) by (19.2)(3). Hence \(a' \) is finitely generated over \(R' \). Thus \(R' \) is Noetherian.

Set \(R_0 := R'/a_0R' \). Clearly, \(\ell_{R_0}R_0'' \leq \ell_RR_0'' \). So \(\ell_{R_0}R_0'' < \infty \). So, in \(R_0'' \), every prime is maximal by (19.4). So if \(a' \) is prime, then \(a'/a_0R' \) is maximal, whence \(a' \) maximal. So in \(R \), every nonzero prime is maximal. Thus \(R' \) is 1-dimensional. □

Corollary (26.14). — Let \(R \) be a 1-dimensional Noetherian domain, such as a Dedekind domain. Let \(K \) be its fraction field, \(K' \) a finite extension field, and \(R' \) the normalization of \(R \) in \(K' \). Then \(R' \) is Dedekind.

Proof: Since \(R \) is 1-dimensional, it’s not a field. But \(R' \) is the normalization of \(R \). So \(R' \) is not a field by (14.1). Hence, \(R' \) is Noetherian and 1-dimensional by (26.13). Thus \(R' \) is Dedekind by (24.1). □

Corollary (26.15). — Let \(K'/K \) be a field extension, \(V' \) a valuation ring of \(K' \) not containing \(K \). Set \(V := V' \cap K \). Then \(V \) is a DVR if \(V' \) is, and the converse holds if \(K'/K \) is finite.

Proof: It follows easily from (26.1) that \(V \) is a valuation ring, and from (26.8) that its value group is a subgroup of that of \(V' \). Now, a nonzero subgroup of \(\mathbb{Z} \) is a copy of \(\mathbb{Z} \). Thus \(V \) is a DVR if \(V' \) is.

Conversely, assume \(V \) is a DVR, so Noetherian and 1-dimensional. Now, \(V' \not\supseteq K \), so \(V' \not\subseteq K' \). Hence, \(V' \) is Noetherian by (26.13), so a DVR by (26.11)(2). □

B. Exercises

Exercise (26.16). — Let \(V \) be a domain. Show that \(V \) is a valuation ring if and only if, given any two ideals \(a \) and \(b \), either \(a \) lies in \(b \) or \(b \) lies in \(a \).

Exercise (26.17). — Let \(V \) be a valuation ring of \(K \), and \(V \subset W \subset K \) a subring. Prove that \(W \) is also a valuation ring of \(K \), that its maximal ideal \(p \) lies in \(V \), that \(V/p \) is a valuation ring of the field \(W/p \), and that \(W = V_p \).

Exercise (26.18). — Let \(K \) be a field, \(S \) the set of local subrings ordered by domination. Show that the valuation rings of \(K \) are the maximal elements of \(S \).

Exercise (26.19). — Let \(V \) be a valuation ring of a field \(K \). Let \(\varphi: V \to R \) and \(\psi: R \to K \) be ring maps. Assume \(\text{Spec}(\varphi) \) is closed and \(\psi_\varphi: V \to K \) is the inclusion. Set \(W := \psi(R) \). Show \(W = V \).

Exercise (26.20). — Let \(\varphi: R \to R' \) be a map of rings. Prove that, if \(R' \) is integral over \(R \), then for any \(R \)-algebra \(C \), the map \(\text{Spec}(\varphi \otimes_R C) \) is closed; further, the converse holds if also \(R' \) has only finitely many minimal primes. To prove the converse, start with the case where \(R' \) is a domain, take \(C \) to be an arbitrary valuation ring of \(\text{Frac}(R') \) containing \(\varphi(R) \), and apply (26.19).
Exercise (26.21). — Let \(V \) be a valuation ring with valuation \(v: K^\times \to \Gamma \), and \(p \) a prime of \(V \). Set \(\Delta := v(V_p^\times) \). Prove the following statements:

1. \(\Delta \) and \(\Gamma/\Delta \) are the valuation groups of the valuation rings \(V/p \) and \(V_p \).
2. \(v(V - p) \) is the set of nonnegative elements \(\Delta_{\geq 0} \), and \(p = V - v^{-1}\Delta_{\geq 0} \).
3. \(\Delta \) is isolated in \(\Gamma \); that is, given \(\alpha \in \Delta \) and \(0 \leq \beta \leq \alpha \), also \(\beta \in \Delta \).

Exercise (26.22). — Let \(V \) be a valuation ring with valuation \(v: K^\times \to \Gamma \). Prove that \(p \mapsto v(V_p^\times) \) is a bijection \(\gamma \) from the primes \(p \) of \(V \) onto the isolated subgroups \(\Delta \) of \(\Gamma \) and that its inverse is \(\Delta \mapsto V - v^{-1}\Delta_{\geq 0} \).

Exercise (26.23). — Let \(V \) be a valuation ring, such as a DVR, whose value group \(\Gamma \) is Archimedean: that is, given any nonzero \(\alpha, \beta \in \Gamma \), there's \(n \in \mathbb{Z} \) such that \(n\alpha > \beta \). Show that \(V \) is a maximal proper subring of its fraction field \(K \).

Exercise (26.24). — Let \(R \) be a Noetherian domain, \(K := \text{Frac}(R) \), and \(L \) a finite extension field (possibly \(L = K \)). Prove the integral closure \(\overline{R} \) of \(R \) in \(L \) is the intersection of all DVRs \(V \) of \(L \) containing \(R \) by modifying the proof of (26.7): show \(y \) is contained in a height-1 prime \(p \) of \(R[y] \) and apply (26.14) to \(R[y]_p \).
Part II
Solutions
1. Rings and Ideals

Exercise (1.13). — Let $\varphi: R \to R'$ be a map of rings, a, a_1, a_2 ideals of R, and b, b_1, b_2 ideals of R'. Prove the following statements:

- (1a) $(a_1 + a_2)^c = a_1^c + a_2^c$.
- (1b) $(b_1 + b_2)^c \supset b_1^c + b_2^c$.
- (2a) $(a_1 \cap a_2)^c \subset a_1^c \cap a_2^c$.
- (2b) $(b_1 \cap b_2)^c = b_1^c \cap b_2^c$.
- (3a) $(a_1 : a_2)^c = a_1^c a_2^c$.
- (3b) $(b_1 : b_2)^c \supset b_1^c b_2^c$.
- (4a) $(a_1 : a_2)^c \subset (a_1^c : a_2^c)$.
- (4b) $(b_1 : b_2)^c \subset (b_1^c : b_2^c)$.

Solution: For (1a), note $a_i^c \subset (a_1 + a_2)^c$. So $a_1^c + a_2^c \subset (a_1 + a_2)^c$. Conversely, given $z \in (a_1 + a_2)^c$, there are $a_i \in a_i$ and $y_j \in R'$ with $z = \sum (a_{ij} + a_{2j}) y_j$. Then $z = \sum a_{1j} y_j + \sum a_{2j} y_j$. So $z \in a_1^c + a_2^c$. Thus $(a_1 + a_2)^c \subset a_1^c + a_2^c$. Thus (1a) holds.

For (1b), given $b_i \in b_i^c$ for $i = 1, 2$, note $\varphi(b_i) \in b_i$. But $\varphi(b_1 + b_2) = \varphi(b_1) + \varphi(b_2)$. Hence $\varphi(b_1 + b_2) \in b_1 + b_2$. So $b_1 + b_2 \subset (b_1 + b_2)^c$. Thus (1b) holds.

For (2a), note $a_1 \cap a_2 \subset a_i$. So $(a_1 \cap a_2)^c \subset a_i^c$. Thus (2a) holds.

For (2b), note similarly $(b_1 \cap b_2)^c \subset b_i^c \cap b_i^c$. Conversely, given $b \in b_i^c \cap b_i^c$, note $\varphi(b) \in b_1 \cap b_2$. Thus $b \subset (b_1 \cap b_2)^c$. Thus (2b) holds.

For (3a), note both $(a_1 : a_2)^c$ and $a_1^c a_2^c$ are generated by the products $a_1 a_2$ with $a_i \in a_i$. Thus (3a) holds.

For (3b), given $b_i \in b_i^c$ for $i = 1, 2$, note $\varphi(b_1 b_2) = \varphi(b_1) \varphi(b_2) \in b_1 b_2$. Hence $b_1 b_2 \subset (b_1 b_2)^c$. Thus (3b) holds.

For (4a), given $x \in (a_1 : a_2)$ and $a_2 \in a_2$, note $x a_2 \in a_1$. So $\varphi(x a_2) \in a_i^c$. But $\varphi(x a_2) = \varphi(x) \varphi(a_2)$. So $\varphi(x) \varphi(a_2) \in a_i^c$. But the $\varphi(a_2)$ generate a_i^c. So $\varphi(x) a_i^c \subset a_i^c$. But $\varphi(x) \in (a_i^c : a_i^c)$. But the $\varphi(x)$ generate $(a_1 : a_2)^c$. So (4a) holds.

For (4b), given $x \in (b_1 : b_2)^c$ and $b_2 \in b_2^c$, note $\varphi(x b_2) = \varphi(x) \varphi(b_2) \in b_1$. So $x b_2 \subset b_1^c$. Thus (4b) holds.

Exercises (1.14). — Let $\varphi: R \to R'$ be a map of rings, a an ideal of R, and b an ideal of R'. Prove the following statements:

- (1) Then $a^{cc} \supset a$ and $b^{cc} \subset b$.
- (2) Then $a^{ccc} = a^c$ and $b^{ccc} = b^c$.
- (3) If b is an extension, then b^c is the largest ideal of R with extension b.
- (4) If two extensions have the same contraction, then they are equal.

Solution: For (1), given $x \in a$, note $\varphi(x) = x \cdot 1 \in a R'$. So $x \in \varphi^{-1}(a R')$, or $x \in a^{cc}$. Next, $\varphi(\varphi^{-1} b) \subset b$. But b is an ideal of R'. So $\varphi(\varphi^{-1} b) R' \supset b$, or $b^{cc} \subset b$. Thus (1) holds.

For (2), note $a^{ccc} \subset a^c$ by (1) applied with $b := a^c$. But $a \subset a^{cc}$ by (1); so $a^c \subset a^{ccc}$. Thus $a^c = a^{ccc}$. Similarly, $b^{ccc} \supset b^c$ by (1) applied with $a := b^c$. But $b^c \subset b$ by (1); so $b^{ccc} \subset b^c$. Thus (2) holds.

For (3), say $b = a^c$. Then $b^{cc} = a^{ccc}$. But $a^{ccc} = a^c$ by (2). Hence b^c has extension b. Further, it's the largest such ideal, as $a^{cc} \supset a$ by (1). Thus (3) holds.

For (4), say $b_i^c = b_1^c$ for extensions b_i. Then $b_i^c = b_i$ by (3). Thus (4) holds.

Exercise (1.15). — Let R be a ring, a an ideal, X a set of variables. Prove:

- (1) The extension $a(R[X])$ is the set $a[X]$ of polynomials with coefficients in a.
- (2) $a(R[X]) \cap R = a$.

Solution: For (1), use double inclusion. Given $F \in a(R[X])$, say $F = \sum a_i F_i$ where $a_i \in a$ and where $F_i = \sum a_{ij} M_j$ with $a_{ij} \in R$ and with M_j a monomial in the variables. Then $F = \sum \left(\sum a_{ij} a_{ij} \right) M_j \in a[X]$. Conversely, given $F \in a[X]$, say $F = \sum a_j M_j$ with $a_j \in a$ and M_j a monomial in the variables, note $F = \sum a_j M_j \in a[X]$. Thus (2) holds.
Solutions (1.16) / (1.18) Rings and Ideals

in the variables. Then \(a_i M_i \in a(R[X])\). Thus \(F \in a(R[X])\). Thus (1) holds.

For (2), note that plainly \(a[X] \cap R = a\). Thus (1) implies (2).

Exercise (1.16) . — Let \(R\) be a ring, \(a\) an ideal, and \(X\) a set of variables. Set \(P := R[X]\). Prove \(P/a F = (R/a)[X]\).

Solution: Say \(\mathcal{X} := \{X_\lambda\}\). Let \(\kappa: R \to R/a\) be the quotient map. By (1.3), there is a unique ring map \(\varphi: P \to (R/a)[X]\) with \(\varphi = \kappa\) and \(\varphi(X_\lambda) = X_\lambda\) for all \(\lambda\). As \(\kappa\) is surjective, so is \(\varphi\). But \(\text{Ker}(\varphi)\) consists of the polynomials whose coefficients map to 0 under \(\kappa\), that is, lie in \(a\). Hence \(\text{Ker}(\varphi) = a P\) by (1.15). Thus \(\varphi\) induces an isomorphism \(P/a P \cong (R/a)[X]\) by (1.5.1), as desired.

Alternatively, the two \(R\)-algebras are equal, as they have the same UMP: each is universal among \(R\)-algebras \(R'\) with distinguished elements \(x_\lambda\) and with \(a R' = 0\). Namely, the structure map \(\varphi: R \to R'\) factors through a unique map \(\pi: P \to R'\) such that \(\pi(X_\lambda) = x_\lambda\) for all \(\lambda\) by (1.3); then \(\pi\) factors through a unique map \(P/a P \to R'\) as \(a R' = 0\) by (1.5). On the other hand, \(\varphi\) factors through a unique map \(\psi: R/a \to R'\) as \(a R' = 0\) by (1.5); then \(\psi\) factors through a unique map \((R/a)[X] \to R'\) such that \(\pi(X_\lambda) = x_\lambda\) for all \(\lambda\) by (1.3).

Exercise (1.17) . — Let \(R\) be a ring, \(P := R[\{X_\lambda\}]\) the polynomial ring in variables \(X_\lambda\) for \(\lambda \in \Lambda\), and \((x_\lambda) \in R^\Lambda\) a vector. Let \(\pi_{(x_\lambda)}: P \to R\) denote the \(R\)-algebra map defined by \(\pi_{(x_\lambda)} X_\mu := x_\mu + a_\mu\) for all \(\mu \in \Lambda\). Show:

1. Any \(F \in P\) has the form \(F = \sum a_{(i_1, \ldots, i_n)}(X_{\lambda_1} - x_{\lambda_1})^{i_1} \cdots (X_{\lambda_n} - x_{\lambda_n})^{i_n}\) for unique \(a_{(i_1, \ldots, i_n)} \in R\).
2. Then \(\text{Ker}(\pi_{(x_\lambda)}) = \{F \in P \mid F((x_\lambda)) = 0\}\).
3. Then \(\pi\) induces an isomorphism \(P/\{X_{\lambda} - x_{\lambda}\} \cong R\).
4. Given \(F \in P\), its residue in \(P/\{X_{\lambda} - x_{\lambda}\}\) is equal to \(F((x_\lambda))\).
5. Let \(\gamma\) be a second set of variables. Then \(P[\gamma]/\{X_{\lambda} - x_{\lambda}\} \cong R[\gamma]\).

Solution: For (1), as in (1.8), let \(\varphi_{(x_\lambda)}\) be the \(R\)-automorphism of \(P\) defined by \(\varphi_{(x_\lambda)} X_\mu := x_\mu + a_\mu\) for all \(\mu \in \Lambda\). Say \(\varphi_{(x_\lambda)} F = \sum a_{(i_1, \ldots, i_n)} X_{\lambda_1}^{i_1} \cdots X_{\lambda_n}^{i_n}\). Note the \(a_{(i_1, \ldots, i_n)} \in R\) are unique. Also \(\varphi_{(x_\lambda)}^{-1} \varphi_{(x_\lambda)} F = F\). Recall \(\varphi_{(x_\lambda)}^{-1} = \varphi_{(-x_\lambda)}\). Thus (1.3.1) with \(\pi := \varphi_{(x_\lambda)}^{-1}\) yields (1).

For (2), given \(F \in P\), note \(\pi_{(x_\lambda)} F = F((x_\lambda))\) by (1.3.1). Thus \(F \in \text{Ker}(\pi_{(x_\lambda)})\) if and only if \(F((x_\lambda)) = 0\). Now, if \(F = \sum (X_\lambda - x_\lambda) F_\lambda\) with \(F_\lambda \in P\), then \(F((x_\lambda)) = \sum 0 \cdot F_\lambda((x_\lambda)) = 0\). Conversely, if \(F((x_\lambda)) = 0\), then \(a_{(0, \ldots, 0)} = 0\) in (1), and so \(F \in \{X_{\lambda} - x_{\lambda}\}\) by (1) again. Thus (2) holds.

For (3), note \(\pi_{(x_\lambda)}\) is surjective as it’s an \(R\)-map. Thus (2) and (1.5.1) yield (3).

For (4), again note \(\pi_{(x_\lambda)} F = F((x_\lambda))\) by (1.3.1). Thus (3) yields (4).

For (5), set \(R' := R[\gamma]\). So \(P[\gamma] = R'[\{X_\lambda\}]\). So (3) with \(R'\) for \(R\) yields (4).

Exercise (1.18) . — Let \(R\) be a ring, \(P := R[X_1, \ldots, X_n]\) the polynomial ring in variables \(X_i\). Given \(F = \sum a_{(i_1, \ldots, i_n)} X_1^{i_1} \cdots X_n^{i_n} \in P\), formally set

\[
\partial F/\partial X_j := \sum i_j a_{(i_1, \ldots, i_n)} X_1^{i_1} \cdots X_j^{i_j} X_j X_j \in P \quad \text{for } j = 1, \ldots, n. \tag{1.18.1}
\]

Given \((x_1, \ldots, x_n) \in R^n\), set \(x := (x_1, \ldots, x_n)\), set \(a_j := (\partial F/\partial X_j)(x)\), and set \(\mathfrak{M} := \langle X_1 - x_1, \ldots, X_n - x_n \rangle\). Show \(F = F(x) + \sum a_j (X_j - x_j) + G\) with \(G \in \mathfrak{M}^2\).

First show that, if \(F = (x_1 - x_1)^{i_1} \cdots (X_n - x_n)^{i_n}\), then \(\partial F/\partial X_j = i_j F/(X_j - x_j)\).
Solutions (1.19) / (1.21) Rings and Ideals

Solution: For any i, note $(X_j - x_j)^i = \sum_{p=0}^{i} \binom{i}{p} X_j^p (x_j - x_j)^{i-p}$ and

$$\sum_p \binom{i}{p} p X_j^{i-p} x_j = \sum_p i \binom{i-1}{p-1} X_j^{i-1} x_j = i(X_j - x_j)^i - 1.$$
Thus, if $F = (X_1 - x_1)^i \cdots (X_n - x_n)^i$, then $\partial F/\partial x_j = iF/(X_j - x_j)$.

In general, by (1.17)(1), there are (unique) $b(i_1, \ldots, i_n) \in R$ such that

$$F = \sum_{i_1=0}^{\infty} \cdots \sum_{i_n=0}^{\infty} b(i_1, \ldots, i_n) (X_1 - x_1)^{i_1} \cdots (X_n - x_n)^{i_n}.$$

Plainly, $b(0, \ldots, 0) = F(x)$. Moreover, by linearity, the first case yields

$$\partial F/\partial x_j = \sum i_j b(i_1, \ldots, i_n) (X_1 - x_1)^{i_1} \cdots (X_n - x_n)^{i_n}/(X_j - x_j).$$

Thus $(\partial F/\partial x_j)(x) = b(\delta_{ij}, \ldots, \delta_{ij}, \ldots)$ where δ_{ij} is the Kronecker delta, as desired.

Exercise (1.19). — Let R be a ring, X a variable, $F \in P := R[s]$, and $a \in R$. Set $F' := \partial F/\partial x$; see (1.18.1). We call a a root of F if $F(a) = 0$, a simple root if also $F'(a) \neq 0$, and a supersimple root if also $F''(a)$ is a unit.

Show that a is a root of F if and only if $F = (X - a)G$ for some $G \in P$, and if so, then G is unique: that a is a simple root if and only if also $G(a) \neq 0$; and that a is a supersimple root if and only if also $G(a)$ is a unit.

Solution: By (1.17)(1), there are $a_i \in R$ such that $F = \sum_{i=0}^{n} a_i (X - a)^i$. Set $G(X) := \sum_{i=0}^{n} a_i (X - a)^i$. Then $F(a) = a_0$. So a is a root if and only if $a_0 = 0$; thus (if and only) if $F = (X - a)G(X)$.

Suppose $F = (X - a)H$. Then $F(a) = 0$, or a is a root. So $(X - a)(G - H) = 0$. But $X - a$ is monic. So $G - H = 0$. Thus G is unique.

Assume a is a root. Then $F = F'(a)(X - a) + H$ with $H \in (X - a)^2$ by (1.18). But $F = a_1(X - a) + (X - a)^2 \sum_{i=2}^{n} a_i (X - a)^i$. So $F'(a) - a_1)(X - a) \in (X - a)^2$.

But $F''(a) - a_1 \in R$. So $F''(a) - a_1 = 0$. But also $G(a) = a_1$. Thus a is simple if and only if $G(a) \neq 0$, and a is supersimple if and only if $G(a)$ is a unit.

Exercise (1.20). — Let R be a ring, $P := R[X_1, \ldots, X_n]$ the polynomial ring, $F \in P$ of degree d, and $F_i := X_i^d + a_i X_i^{d-1} + \cdots$ a monic polynomial in X_i alone for all i. Find $G, G_i \in P$ such that $F = \sum_{i=1}^{n} F_i G_i + G$ where $G_i = 0$ or $\deg(G_i) \leq d - d_i$ and where the highest power of X_i in G is less than d_i.

Solution: By linearity, we may assume $F := X_1^{m_1} \cdots X_n^{m_n}$. If $m_i < d_i$ for all i, set $G_i := 0$ and $G := F$, and we’re done. Else, fix i with $m_i \geq d_i$, and set $G_i := F/X_i^{d_i}$ and $G := (-a_i X_i^{d_i-1} - \cdots) G_i$. Plainly, $F = F_i G_i + G$ and $\deg(G_i) d - d_i$. Replace F by G, and repeat from the top. The algorithm terminates because on each iteration, $\deg(G) < \deg(F)$.

Exercise (1.21) (Chinese Remainder Theorem). — Let R be a ring.

1. Let a and b be comaximal ideals; that is, $a + b = R$. Show

(a) $ab = a \cap b$ and (b) $R/ab = (R/a) \times (R/b)$.

2. Let a be comaximal to both b and b'. Show a is also comaximal to $b b'$.

3. Given $m, n \geq 1$, show a and b are comaximal if and only if a^m and b^n are.

4. Let a_1, \ldots, a_n be pairwise comaximal. Show:

(a) a_1 and $a_2 \cdots a_n$ are comaximal;

(b) $a_1 \cap \cdots \cap a_n = a_1 \cap \cdots \cap a_n$;

(c) $R/(a_1 \cdots a_n) \cong \prod(R/a_i)$.

232
(5) Find an example where \(a \) and \(b \) satisfy (1)(a), but aren’t comaximal.

Solution: For (1)(a), note that always \(ab \subseteq a \cap b \). Conversely, \(a + b = R \) implies \(x + y = 1 \) with \(x \in a \) and \(y \in b \). So given \(z \in a \cap b \), we have \(z = xz + yz \in ab \).

For (1)(b), form the map \(R \to R/a \times R/b \) that carries an element to its pair of residues. The kernel is \(a \cap b \), which is \(ab \) by (1)(a). So we have an injection

\[
\varphi: R/ab \to R/a \times R/b.
\]

To show that \(\varphi \) is surjective, take any element \((\bar{x}, \bar{y})\) in \(R/a \times R/b \). Say \(\bar{x} \) and \(\bar{y} \) are the residues of \(x \) and \(y \). Since \(a + b = R \), we can find \(a \in a \) and \(b \in b \) such that \(a + b = y - x \). Then \(\varphi(x+a) = (\bar{x}, \bar{y}) \), as desired. Thus \(\varphi \) is surjective, so bijective.

For (2), note \(R = (a + b)(a + b') = (a^2 + ba + ab') + bb' \subseteq a + ab' \subseteq R \).

For (3), first assume \(a \) and \(b \) are comaximal. Then (2) implies \(a \) and \(b^n \) are comaximal by induction on \(n \). Thus \(ab^n \) and \(a^{n+1} \) are comaximal.

Alternatively, there are \(x \in a \) and \(y \in b \) with \(1 = x + y \). Thus the binomial theorem yields \(1 = (x + y)^m+n = x' + y' \) with \(x' \in a^m \) and \(y' \in b^n \), as desired.

Conversely, if \(a^m \) and \(b^n \) are comaximal, then \(a \) and \(b \) are, as \(a^m \subset a \) and \(b^n \subset b \).

For (4)(a), assume \(a_1 \) and \(a_2 \cdots a_{n-1} \) are comaximal by induction on \(n \). By hypothesis, \(a_1 \) and \(a_n \) are comaximal. Thus (2) yields (a).

For (4)(b) and (4)(c), again proceed by induction on \(n \). Thus (1) yields

\[
a_1 \cap (a_2 \cap \cdots \cap a_n) = a_1 \cap (a_2 \cdots a_n) = a_1 a_2 \cdots a_n;
\]

\[
R/(a_1 \cdots a_n) \cong R/a_1 \times R/(a_2 \cdots a_n) \cong \prod R/a_i.
\]

For (5), let \(k \) be a field, and \(X, Y \) variables. Take \(R := k[X, Y] \) and \(a := \langle X \rangle \) and \(b := \langle Y \rangle \). Given \(f \in \langle X \rangle \cap \langle Y \rangle \), note that every monomial of \(f \) contains both \(X \) and \(Y \), and so \(f \in \langle X \rangle \langle Y \rangle \). Thus (1)(a) holds. But \(\langle X \rangle \) and \(\langle Y \rangle \) are not comaximal, as both are contained in \(\langle X, Y \rangle \).

Exercise (1.22). — First, given a prime number \(p \) and a \(k \geq 1 \), find the idempotents in \(\mathbb{Z}/(p^k) \). Second, find the idempotents in \(\mathbb{Z}/(12) \). Third, find the number of idempotents in \(\mathbb{Z}/(n) \) where \(n = \prod_{i=1}^{N} p_i^{n_i} \) with \(p_i \) distinct prime numbers.

Solution: First, let \(m \in \mathbb{Z} \) be idempotent modulo \(p^k \). Then \(m(m-1) \) is divisible by \(p^k \). So either \(m \) or \(m-1 \) is divisible by \(p^k \), as \(m \) and \(m-1 \) have no common prime divisor. Hence 0 and 1 are the only idempotents in \(\mathbb{Z}/(p^k) \).

Second, since \(-3 + 4 = 1\), the Chinese Remainder Theorem (1.21)(1)(b) yields \(\mathbb{Z}/(12) = \mathbb{Z}/(3) \times \mathbb{Z}/(4) \).

Hence \(m \) is idempotent modulo 12 if and only if \(m \) is idempotent modulo 3 and modulo 4. By the previous case, we have the following possibilities:

\[
m \equiv 0 \pmod{3} \quad \text{and} \quad m \equiv 0 \pmod{4};
\]
\[
m \equiv 1 \pmod{3} \quad \text{and} \quad m \equiv 1 \pmod{4};
\]
\[
m \equiv 0 \pmod{3} \quad \text{and} \quad m \equiv 0 \pmod{4};
\]
\[
m \equiv 0 \pmod{3} \quad \text{and} \quad m \equiv 1 \pmod{4}.
\]

Therefore, \(m \equiv 0, 1, 4, 9 \pmod{12} \).

Third, for each \(i \), the two numbers \(p_1^{n_1} \cdots p_{i-1}^{n_{i-1}} \) and \(p_i^{n_i} \) have no common prime divisor. Hence some linear combination is equal to 1 by the Euclidean Algorithm. So the principal ideals they generate are comaximal. Hence by induction on \(N \), the
Chinese Remainder Theorem yields

\[\mathbb{Z}/\langle n \rangle = \prod_{i=1}^{N} \mathbb{Z}/\langle p_i^{m_i} \rangle. \]

So \(m \) is idempotent modulo \(n \) if and only if \(m \) is idempotent modulo \(p_i^{m_i} \) for all \(i \); hence, if and only if \(m \) is \(0 \) or \(1 \) modulo \(p_i^{m_i} \) for all \(i \) by the first case. Thus there are \(2^N \) idempotents in \(\mathbb{Z}/\langle n \rangle \). \(\square \)

Exercise (1.23). — Let \(R := R' \times R'' \) be a product of rings, \(a \subset R \) an ideal. Show \(a = a' \times a'' \) with \(a' \subset R' \) and \(a'' \subset R'' \) ideals. Show \(R/a = (R'/a') \times (R''/a'') \).

Solution: Set \(a' := \{ x' \mid (x',0) \in a \} \) and \(a'' := \{ x'' \mid (0,x'') \in a \} \). Clearly \(a' \subset R' \) and \(a'' \subset R'' \) are ideals. Clearly,

\[a \supset a' \times 0 + 0 \times a'' = a' \times a''. \]

The opposite inclusion holds, because if \(a \ni (x',x'') \), then

\[a \ni (x',x'') \cdot (1,0) = (x',0) \quad \text{and} \quad a \ni (x',x'') \cdot (0,1) = (0,x''). \]

Finally, the equation \(R/a = (R'/a') \times (R''/a'') \) is now clear from the construction of the residue class ring. \(\square \)

Exercise (1.24). — Let \(R \) be a ring; \(e, e' \) idempotents (see (10.23) also). Show:

1. Set \(a := \langle e \rangle \). Then \(a \) is idempotent: that is, \(a^2 = a \).
2. Let \(a \) be a principal idempotent ideal. Then \(a = \langle f \rangle \) with \(f \) idempotent.
3. Set \(e'' := e + e' - ee' \). Then \(\langle e, e' \rangle = \langle e'' \rangle \), and \(e'' \) is idempotent.
4. Let \(e_1, \ldots, e_r \) be idempotents. Then \(\langle e_1, \ldots, e_r \rangle = \langle f \rangle \) with \(f \) idempotent.
5. Assume \(R \) is Boolean. Then every finitely generated ideal is principal.

Solution: For (1), note \(a^2 = \langle e^2 \rangle \) since \(a = \langle e \rangle \). But \(e^2 = e \). Thus (1) holds.

For (2), say \(a = \langle g \rangle \). Then \(a^2 = \langle g^2 \rangle \). But \(a^2 = a \). So \(g = xg^2 \) for some \(x \). Set \(f := xg \). Then \(f = x(xg^2) = f^2 \). Thus \(f \) is idempotent. Furthermore, \(f \in a \); so \(\langle f \rangle \subset a \). And \(g = fg \). So \(a \subset \langle f \rangle \). So \(a = \langle f \rangle \). Thus (2) holds.

For (3), note \(\langle e'' \rangle \subset \langle e, e' \rangle \). Conversely, \(ee'' = e^2 + ee' - e^2 e' = e + ee' - ee' = e \).

By symmetry, \(e' e'' = e' \). So \(\langle e, e' \rangle \subset \langle e'' \rangle \) and \(e''^2 = ee'' + e' e'' - ee' e'' = e'' \). So \(\langle e, e' \rangle = \langle e'' \rangle \) and \(e'' \) is idempotent, as desired. Thus (3) holds.

For (4), if \(r = 2 \), appeal to (3). If \(r \geq 3 \), induct on \(r \). Thus (4) holds.

For (5), recall that every element of \(R \) is idempotent. Thus (4) implies (5). \(\square \)

Exercise (1.25). — Let \(L \) be a lattice, that is, a partially ordered set in which every pair \(x, y \in L \) has a sup \(x \lor y \) and an inf \(x \land y \). Assume \(L \) is Boolean; that is:

1. \(L \) has a least element \(0 \) and a greatest element \(1 \).
2. The operations \(\land \) and \(\lor \) distribute over each other; that is,

\[x \land (y \lor z) = (x \land y) \lor (x \land z) \quad \text{and} \quad x \lor (y \land z) = (x \lor y) \land (x \lor z). \]

3. Each \(x \in L \) has a unique complement \(x' \); that is, \(x \land x' = 0 \) and \(x \lor x' = 1 \).
Show that the following six laws are obeyed:

\[x \land x = x \quad \text{and} \quad x \lor x = x. \quad \text{(idempotent)} \]
\[x \land 0 = 0 \quad \text{and} \quad x \lor 1 = 1, \quad x \lor 0 = x. \quad \text{(unitary)} \]
\[x \land y = y \land x \quad \text{and} \quad x \lor y = y \lor x. \quad \text{(commutative)} \]
\[x \land (y \land z) = (x \land y) \land z \quad \text{and} \quad x \lor (y \lor z) = (x \lor y) \lor z. \quad \text{(associative)} \]
\[x'' = x \quad \text{and} \quad 0' = 1, \quad 1' = 0. \quad \text{(involutory)} \]
\[(x \land y)' = x' \lor y' \quad \text{and} \quad (x \lor y)' = x' \land y'. \quad \text{(De Morgan’s)} \]

Moreover, show that \(x \leq y \) if and only if \(x = x \land y \).

Solution: By definition, \(x \land y \) is the greatest element smaller than both \(x \) and \(y \), and \(x \lor y \) is the least element larger than both \(x \) and \(y \). It follows easily that the first four laws are obeyed and that \(x \leq y \) if and only if \(x = x \land y \).

For the involutory law, by commutativity \(x' = x \land x' \) and \(x'' = x \). Moreover, by the unitary law, \(0 \land 1 = 0 \) and \(0 \lor 1 = 1 \); thus by uniqueness, \(0'' = 0 \). Thus \(1' = 0'' = 0 \).

For De Morgan’s laws, note \((x \land y) \land (x' \lor y') = ((x \land y) \land x') \lor ((x \land y) \land y') \) by distributivity. Now, \((x \land y) \land x' = y \land x \land x' = y \land 0 = 0 \) by the commutative, associative, complementary, and unitary laws. Similarly, \((x \land y) \land y' = 0 \). But \(0 \lor 0 = 0 \). Thus \((x \land y) \land (x' \lor y') = 0 \). Similarly, \((x \land y) \lor (x' \lor y') = 0 \). Thus, by uniqueness, De Morgan’s first law holds. The second can be proved similarly; alternatively, it follows directly and formally from the first by symmetry.

Exercise (1.26). — Let \(L \) be a Boolean lattice; see (1.25). For all \(x, y \in L \), set \(x + y := (x \land y') \lor (x' \land y) \) and \(xy := x \land y \).

Show: (1) \(x + y = (x \lor y)(x' \lor y') \) and (2) \((x + y)' = (x' y') \lor (x y) \). Furthermore, show \(L \) is a Boolean ring.

Solution: For (1), note \(x + y = ((x \lor y') \lor (x' \land y)) \lor (x \land y') \) by distributivity. Now, \((x \lor y') \lor (x' \land y) = x \lor (y' \land (x \land x')) = x \lor y \) by associativity, commutativity, and distributivity. But \(x \lor x' = 1 \) and \(1 \land (y' \lor x') = y' \lor x' \). Similarly, \((x \land y') \lor y = x \lor y \). Thus distributivity gives (1).

For (2), note \((x + y)' = ((x \lor y')(x' \lor y'))' \) by (1). So \((x + y)' = (x \lor y') \lor (x' \lor y')' \) by De Morgan’s first law. So \((x + y)' = (x' y') \lor (x y) \lor (x' y') \lor (x y) \) by De Morgan’s second law applied twice. Thus the involutory law yields (2).

Furthermore, \(x(yz) = (xy)z \) and \(x \cdot 1 = x \) and \(x^2 = x \) and \(xy = yx \) and \(x \lor y = y \lor x \) by (1.25). And so \(x + y := (xy') \lor (x' y) \lor (y' x) = xy' \lor y' x = y + x \).

Let’s check + is associative. Set \(w := x + y \). Then \(w + z := (wz') \lor (w' z) \).

But \(wz' = ((xy)z') \lor ((x'y)z') \) by distributivity. Now, \((x'y)z' \lor (x'y)z' \) may be written as \(xy'z' \) and \(x'yz' \) by associativity. Thus \(wz' = (x'y)z' \lor (x'y)z' \).

Similarly, \(w' z = (x'y)z' \lor (xy)z' \) by (2), distributivity, and associativity. Thus \((x+y)+z = (xy)'z \lor (x'y)'z \lor (xyz) \) by associativity of \(\lor \). But the right-hand side is invariant under permutation of \(x, y, z \) by the commutativity of \(\lor \) and the associativity of \(\lor \). So, \((x+y)+z = (y+z)+x \). Thus commutativity of \(+ \) yields \(x + y + z = x + (y + z) \).

Finally, let’s check distributivity of \(\cdot \) over \(+ \). Recall \(y + z := (yz') \lor (y' z) \). Hence, distributivity of \(\cdot \) over \(\lor \) yields \(x(y + z) = (x(yz')) \lor (x(y' z)) \).

However, \(xy + xz := ((xy)(xz))' \lor ((xy)'(xz)) \). Now, \((xy)(xz)' = (xy)x' \lor (xy)z' \) by De Morgan’s first law and distributivity of \(\cdot \) over \(\lor \). And \((xy)x' = (xx')y' \) by associativity and commutativity But \(xx' = 0 \) and \(0 \cdot y = 0 \) and \(0 \lor u = u \) for any \(u \).
Thus \((xy)(xz)' = (xy)z'\). Similarly, \((xy)'(xz) = y'(xz)\). Thus, by associativity and commutativity, \(x(y + z) = xy + xz\), as desired. In sum, \(L\) is a Boolean ring. \(\square\)

Exercise (1.27). — Given a Boolean ring \(R\), order \(R\) by \(x \leq y\) if \(x = xy\). Show \(R\) is thus a Boolean lattice. Viewing this construction as a map \(\rho\) from the set of Boolean-ring structures on the set \(R\) to the set of Boolean-lattice structures on \(R\), show \(\rho\) is bijective with inverse the map \(\lambda\) associated to the construction in (1.26).

Solution: Let’s check \(R\) is partially ordered. First, \(x \leq x\) as \(x = x^2\) since \(R\) is Boolean. Second, if \(x \leq y\) and \(y \leq z\), then \(x = xy\) and \(y = yz\), and so \(x = xy = x(yz) = (xy)z = xz\); thus, \(x \leq z\). Third, if \(x \leq y\) and \(y \leq x\), then \(x = xy\) and \(y = yx\); however, \(xy = yx\), and thus \(x = y\). Thus \(R\) is partially ordered.

Given \(x, y \in R\), set \(x \lor y := x + y + xy\) and \(x \land y := xy\). Then \(x \leq x \lor y\) as \(x(x + y + xy) = x^2 + xy + x^2y = x + 2xy = x\) since \(x^2 = x\) and \(2xy = 0\). By symmetry, \(y \leq x \lor y\). Also, if \(z \leq x\) and \(z \leq y\), then \(z = zx\) and \(z = zy\), and so \(z(x \lor y) = zx + zy + zxy = z + z + z = z = 2z = 0\); thus \(z \leq x \lor y\). Thus \(x \lor y = \sup\{x, y\}\). Similarly, \(x \land y = \inf\{x, y\}\). Moreover, \(0 \leq x\) and \(x \leq 1\) as \(0 = 0 \cdot x\) and \(x = x \cdot 1\). Thus \(R\) is a lattice with a least element and a greatest.

Let’s check the distributive laws. First, \((x + y + xy)z = xz + yz + (xz)(yz)\) as \(z = z^2\); thus, \((x \lor y) \land z = (x \land z) \lor (y \land z)\). Second, \((x + z + xz)(y + z + yz) = xy + xz + yz\) as \(z = z^2\) and \(2w = 0\) for all \(w\); thus, \((x \lor z) \land (y \lor z) = (x \land y) \lor (z \land z)\), as desired.

Finally, given \(x \in R\), if there’s \(y \in R\) with \(x \land y = 0\) and \(x \lor y = 1\), then \(1 = x + y + xy = x + y\), and so \(y = 1 - x\); thus, \(y\) is unique if it exists. Now, set \(x' := 1 - x\). Then \(x \land x' := xx' = x - x^2 = 0\) and \(x \lor x' := x + x' + xx' = 1\). Thus \(x'\) is a complement of \(x\). In sum, \(R\) is a Boolean lattice.

To show \(\lambda \rho = 1\), given \(x, y \in R\), let \(x + y\) and \(x \cdot y\) be the sum and product in the ring structure on \(R\) constructed in (1.26) with the above lattice as \(L\). Then \(x + y = x \lor y\). But \(x \land y = xy\). Thus \(x \cdot y = xy\). Now, \(2xy = 0\) and \(x(1 - x) = 0\) imply \(x(1 - y) + (1 - x)y + (x(1 - y))(1 - x) = x + y\). So \(x + y = (x \land y') \lor (x' \land y)\). But \(x + y = (x \land y') \lor (x' \land y)\). Thus \(x + y = x + y\). Thus \(\lambda \rho = 1\).

To show \(\rho \lambda = 1\), assume the ring structure on \(R\) is constructed as in (1.26) from a given Boolean lattice structure on \(R\), whose order and inf are denoted by \(\leq_0\) and \(\land_0\). Given \(x, y \in R\), we just have to show that \(x \leq y\) if and only if \(x \leq_0 y\).

By definition, \(x \leq y\) if and only if \(x = xy\). But \(xy := x \land_0 y\). Also, \(x = x \land_0 y\) if and only if \(x \leq_0 y\) by (1.25). Thus \(x \leq y\) if and only if \(x \leq_0 y\). Thus \(\rho \lambda = 1\). In sum, \(\rho\) is bijective with inverse \(\lambda\). \(\square\)

Exercise (1.28). — Let \(X\) be a set, and \(L\) the set of all subsets of \(X\), partially ordered by inclusion. Show that \(L\) is a Boolean lattice and that the ring structure on \(L\) constructed in (1.2) coincides with that constructed in (1.26).

Assume \(X\) is a topological space, and let \(M\) be the set of all its open and closed subsets. Show that \(M\) is a sublattice of \(L\), and that the subring structure on \(M\) of (1.2) coincides with the ring structure of (1.26) with \(M\) for \(L\).

Solution: Given \(S, T \in L\), plainly \(S \cap T\) is the largest set contained in both \(S\) and \(T\), and \(S \cup T\) is the smallest set containing both \(S\) and \(T\). Also, every subset of \(X\) contains \(\emptyset\), and is contained in \(X\). And, given \(U \in L\), the distributive laws

\[
S \cap (T \cup U) = (S \cap T) \cup (S \cap U), \quad \text{and} \quad S \cup (T \cap U) = (S \cup T) \cap (S \cup U)
\]

are easy to check by double inclusion.

Finally, \((X - S)\) is a complement of \(S\), as \((X - S) \cap S = \emptyset\) and \((X - S) \cup S = X\).
Moreover, $X - S$ is the only complement, because, if $S \cap T = \emptyset$, then $T \subseteq (X - S)$, and if $T \cup S = X$, then $T \supseteq (X - S)$. Thus L is a Boolean lattice.

The product of S and T is equal to $S \cap T$ in both (1.29) and (1.26). Their sum is equal to $(S - T) \cup (T - S)$ in (1.2) and to $(S \cap (X - T)) \cup ((X - S) \cap T)$ in (1.26). But $S - T = S \cap (X - T)$. So the two sums are also the same. Thus the two ring structures on L coincide.

Assume $S, T \in M$. Then also $S \cap T, S \cup T, \emptyset, X \in M$. It follows that M is a Boolean sublattice of L. Lastly, the construction in (1.26) plainly turns a Boolean sublattice into a subring. But we just showed that, the two ring structures on L coincide. Thus the two induced ring structures on M also coincide.

Exercise (1.29). — Let R be a ring, $P := R[X_1, \ldots, X_m]$ the polynomial ring in variables X_i, and $V \subseteq R^m$ the set of common zeros of a set of polynomials $F_\lambda \in P$.

(1) Let $I(V)$ be the ideal of all $F \in P$ vanishing on V, and $P(V)$ the R-algebra of all functions $\gamma: V \rightarrow R$ given by evaluating some $G \in P$. Show $I(V)$ is the largest set of polynomials with V as set of common zeros. Show $P/I(V) = P(V)$. And show $I = I(V)$ (or $P(V) = 0$) if and only if $V = \emptyset$.

(2) Let $W \subseteq R^n$ be like V, and $\rho: V \rightarrow W$ any map. Call ρ regular if there are $G_i \in P$ with $\rho(v) = (G_1(v), \ldots, G_n(v))$ for all $v \in V$. If ρ is regular, define $\rho^*: P(W) \rightarrow P(V)$ by $\rho^*(\delta) := \delta \circ \rho$, and show ρ^* is a well-defined algebra map.

(3) Let $Q := R[Y_1, \ldots, Y_n]$ be the polynomial ring, and $\zeta_i \in P(W)$ the function given by evaluating the variable Y_i. Let $\varphi: P(W) \rightarrow P(V)$ be an algebra map. Define $\varphi^*: V \rightarrow W$ by $\varphi^*(v) := (w_1, \ldots, w_n)$ where $w_i := (\varphi\zeta_i)(v)$, and show φ^* is a well-defined regular map.

(4) Show $\rho \mapsto \rho^*$ and $\varphi \mapsto \varphi^*$ define inverse bijective correspondences between the regular maps $\rho: V \rightarrow W$ and the algebra maps $\varphi: P(W) \rightarrow P(V)$.

Solution: For (1), recall V is the set of zeros of the F_λ. So $F_\lambda \in I(V)$ for all λ. So V contains the zero set V' of all the $F \in I(V)$. Conversely, $V \subseteq V'$ as every $F \in I(V)$ vanishes on V. Thus $V = V'$. Trivially, $I(V)$ contains every set I of polynomials with V as set of common zeros. Thus $I(V)$ is the largest I.

Next, form the evaluation map ev_V from P to the R-algebra R^V of all $\gamma: V \rightarrow R$. Note $P(V) := \text{Im}(ev_V)$ and $I(V) := \text{Ker}(ev_V)$. So (1.5.1) gives $P/I(V) = P(V)$.

Finally, if $V = \emptyset$, then 1 vanishes on every point in V, and so 1 $\in I(V)$. Conversely, if $V \neq \emptyset$, then 1 doesn’t vanish on V, and so $1 \notin I(V)$. Thus (1) holds.

For (2), define $R^W \rightarrow R^V$ by $\delta \mapsto \delta \circ \rho$; plainly, it’s an algebra map. Suppose ρ is regular and $\delta \in P(W)$. Say $\rho(v) := (G_1(v), \ldots, G_n(v))$ with $G_i \in P$. Say δ is given by evaluating a polynomial $D(Y_1, \ldots, Y_n)$. Set $G := D(G_1, \ldots, G_n)$. Then $G \in P$, and $\rho^*(\delta)$ is given by evaluating G; so $\rho^*(\delta) \in P(V)$. Thus (2) holds.

For (3), let $H \in Q$. In general, an algebra map, plainly, carries a polynomial combination of elements to the same combination of their images. Thus

\[
\varphi(H(\zeta_1, \ldots, \zeta_n)) = H(\varphi\zeta_1, \ldots, \varphi\zeta_n).
\]

Let $v \in V$. Evaluation at v gives an algebra map $P(V) \rightarrow R$. Hence

\[
(H(\varphi\zeta_1, \ldots, \varphi\zeta_n))(v) = H(\varphi\zeta_1(v), \ldots, \varphi\zeta_n(v)) =: H(\varphi^*(v)).
\]

Together, (1.29.1) and (1.29.2) yield

\[
(\varphi(H(\zeta_1, \ldots, \zeta_n)))(v) = H(\varphi^*(v)).
\]

237
Let $w \in W$. Evaluation at w gives an algebra map $P(W) \to R$. Hence
\[(H(\zeta_1, \ldots, \zeta_n))(w) = H(\zeta_1(w), \ldots, \zeta_n(w)) = H(w).\] (2.9.4)

Suppose $H \in I(W)$; so $H(w) = 0$ for all $w \in W$. Hence $H(\zeta_1, \ldots, \zeta_n) = 0$ in $P(W)$ by (2.9.4). But $\varphi(0) = 0$. So $\varphi(H(\zeta_1, \ldots, \zeta_n)) = 0$ in $P(V)$. So (2.9.3) implies $H(\varphi^*(v)) = 0$ for all $v \in V$. But $H \in I(W)$ is arbitrary. Hence (1) implies $\varphi^*(v) \in W$ for all $v \in V$. Thus $\varphi^*(V) \subseteq W$. Thus φ^* is well-defined.

For all i, since $\varphi \zeta_i \in P(V)$, there’s $G_i \in P$ with $(\varphi \zeta_i)(v) = G_i(v)$ for all $v \in V$. Thus φ^* is regular. Thus (3) holds.

For (4), first, given an algebra map $\varphi: P(W) \to P(V)$, let’s check $\varphi^{**} = \varphi$.

Given $\delta \in P(W)$, we must check $\varphi^{**}(\delta) = \varphi(\delta)$. Say δ is given by evaluating $D \in Q$; so $\delta(w) = D(w)$ for all $w \in W$. Hence $\delta = D(\zeta_1, \ldots, \zeta_n)$ in $P(W)$ by (2.9.4). Therefore, (2.9.3) implies $(\varphi(\delta))(v) = \delta(\varphi^*(v))$ for all $v \in V$.

On the other hand, $\varphi^{**}(\delta) := \delta \circ \varphi^*$. So $(\varphi^{**}(\delta))(v) = \delta(\varphi^*(v))$ for all $v \in V$. Hence $(\varphi^{**}(\delta))(v) = (\varphi(\delta))(v)$ for all $v \in V$. Thus $\varphi^{**}(\delta) = \varphi(\delta)$, as desired.

Lastly, given a regular map $\rho: V \to W$, let’s check $\rho^{**} = \rho$. Let $v \in V$. Then $\rho^{**}(v) := (\rho^*(\zeta_1)(v), \ldots, (\rho^*(\zeta_n)(v))$. However, $\rho^*(\zeta_i)(v) := \zeta_i(\rho(v))$. Therefore, $\rho^{**}(v) = \rho(v)$. But $v \in V$ is arbitrary. Thus $\rho^{**} = \rho$. Thus (4) holds. □

2. Prime Ideals

Exercise (2.9). — Let R be a ring, $P := R[\underline{X}, \underline{Y}]$ the polynomial ring in two sets of variables \underline{X} and \underline{Y}. Set $p := (\underline{X})$. Show p is prime if and only if R is a domain.

Solution: Note that p is prime if and only if P/p is a domain by (2.8). But $P/p = R[\underline{Y}]$ by (1.17)(5). Finally, $R[\underline{Y}]$ is a domain if R is by (2.4), and the converse is trivial, as desired. □

Exercise (2.18). — Show that, in a PID, nonzero elements x and y are relatively prime (share no prime factor) if and only if they’re coprime.

Solution: Say $\langle x \rangle + \langle y \rangle = \langle d \rangle$. Then $d = \gcd(x, y)$, as is easy to check. The assertion is now obvious. □

Exercise (2.23). — Let a and b be ideals, and p a prime ideal. Prove that these conditions are equivalent: (1) $a \subseteq p$ or $b \subseteq p$; and (2) $a \cap b \subseteq p$; and (3) $ab \subseteq p$.

Solution: Trivially, (1) implies (2). If (2) holds, then (3) follows as $ab \subseteq a \cap b$. Finally, assume $a \not\subseteq p$ and $b \not\subseteq p$. Then there are $x \in a$ and $y \in b$ with $x, y \not\in p$. Hence, since p is prime, $xy \not\in p$. However, $xy \in ab$. Thus (3) implies (1). □

Exercise (2.24). — Let R be a ring, p a prime ideal, and m_1, \ldots, m_n maximal ideals. Assume $m_1 \cdots m_n = 0$. Show $p = m_i$ for some i.

Solution: Note $p \supseteq 0 = m_1 \cdots m_n$. So $p \supseteq m_1$ or $p \supseteq m_2 \cdots m_n$ by (2.23). So $p \supseteq m_i$ for some i by induction on n. But m_i is maximal. Thus $p = m_i$. □

Exercise (2.25). — Let R be a ring, and p, a_1, \ldots, a_n ideals with p prime.

1. Assume $p \supseteq \bigcap_{i=1}^n a_i$. Show $p \supseteq a_j$ for some j.
2. Assume $p = \bigcap_{i=1}^n a_i$. Show $p = a_j$ for some j, 238
Solutions

(2.26) / (2.32) Prime Ideals

Solution: For (1), note \(p \supset a_1 \) or \(p \supset \bigcap_{i=2}^{n} a_i \) by (2.23). So \(p \supset a_j \) for some \(j \)
by induction on \(n \). Thus (1) holds.

For (2), note \(p \supset a_j \) for some \(j \) by (1). But \(p \subset a_j \) now. Thus (2) holds. \(\square \)

Exercise (2.26). Let \(R \) be a ring, \(S \) the set of all ideals that consist entirely of zerodivisors. Show that \(S \) has maximal elements and they’re prime. Conclude that \(z \text{div}(R) \) is a union of primes.

Solution: Given a totally ordered subset \(\{a_\lambda\} \) of \(S \), set \(a := \bigcup a_\lambda \). Plainly \(a \) is an upper bound of \(\{a_\lambda\} \) in \(S \). Thus by Zorn’s Lemma, \(S \) has maximal elements \(p \).

Given \(x, x' \in R \) with \(xx' \in p \), but \(x, x' \notin p \), note \(\langle x \rangle + p, \langle x' \rangle + p \notin S \). So there are \(a, a' \in R \) and \(p, p' \in p \) such that \(y := ax + p \) and \(y' := a'x + p' \) are nonzerodivisors. Then \(yy' \in p \). So \(yy' \in z \text{div}(R) \), a contradiction. Thus \(p \) is prime.

Finally, given \(x \in z \text{div}(R) \), note \(\langle x \rangle \in S \). So \(\langle x \rangle \) lies in a maximal element \(p \) of \(S \). Thus \(x \in p \) and \(p \) is prime, as desired. (For an alternative proof, see (3.24).) \(\square \)

Exercise (2.27). Let a prime number \(p \) and an integer \(n \geq 2 \), prove that the residue ring \(\mathbb{Z}/(p^n) \) does not contain a domain as a subring.

Solution: Any subring of \(\mathbb{Z}/(p^n) \) must contain 1, and 1 generates \(\mathbb{Z}/(p^n) \) as an abelian group. So \(\mathbb{Z}/(p^n) \) contains no proper subrings. However, \(\mathbb{Z}/(p^n) \) is not a domain, because in it, \(p \cdot p^{n-1} = 0 \) but neither \(p \) nor \(p^{n-1} \) is 0. \(\square \)

Exercise (2.28). Let \(R := R' \times R'' \) be a product of two rings. Show that \(R \) is a domain if and only if either \(R' \) or \(R'' \) is a domain and the other is 0.

Solution: Assume \(R \) is a domain. As \((1, 0) \cdot (0, 1) = (0, 0) \), either \((1, 0) = (0, 0) \) or \((0, 1) = (0, 0) \). Correspondingly, either \(R' = 0 \) and \(R = R'' \), or \(R'' = 0 \) and \(R = R' \). The assertion is now obvious. \(\square \)

Exercise (2.29). Let \(R := R' \times R'' \) be a product of rings, \(p \subset R \) an ideal. Show \(p \) is prime if and only if either \(p = p' \times R'' \) with \(p' \subset R' \) prime or \(p = R' \times p'' \) with \(p'' \subset R'' \) prime.

Solution: Simply combine (1.23), (2.8), and (2.28). \(\square \)

Exercise (2.30). Let \(R \) be a domain, and \(x, y \in R \). Assume \(\langle x \rangle = \langle y \rangle \). Show \(x = uy \) for some unit \(u \).

Solution: By hypothesis, \(x = uy \) and \(y = vx \) for some \(u, v \in R \). So \(x = 0 \) if and only if \(y = 0 \); if so, take \(u := 1 \). Assume \(x \neq 0 \). Now, \(x = uvx \), or \(x(1 - uv) = 0 \). But \(R \) is a domain. So \(1 - uv = 0 \). Thus \(u \) is a unit. \(\square \)

Exercise (2.31). Let \(k \) be a field, \(R \) a nonzero ring, \(\varphi : k \to R \) a ring map. Prove \(\varphi \) is injective.

Solution: By (1.1), \(1 \neq 0 \) in \(R \). So \(\text{Ker}(\varphi) \neq k \). So \(\text{Ker}(\varphi) = 0 \) by (2.12). Thus \(\varphi \) is injective. \(\square \)

Exercise (2.32). Let \(R \) be a ring, \(p \) a prime, \(X \) a set of variables. Let \(p[X] \) denote the set of polynomials with coefficients in \(p \). Prove these statements:

1) \(p[R[X]] \) and \(p[X] \) and \(p[R[X]] + \langle X \rangle \) are primes of \(R[X] \), which contract to \(p \).
2) Assume \(p \) is maximal. Then \(p[R[X]] + \langle X \rangle \) is maximal.

239
Solutions (2.33) / (2.37)

Prime Ideals

Solution: For (1), note that \(R[x]/pR[x] = (R/p)[x] \) by (1.16). But \(R/p \) is a domain by (2.8). So \(R[x]/pR[x] \) is a domain by (2.4). Thus, by (2.8) again, \(pR[x] \) is prime.

Moreover, \(pR[x] = p[x] \) by (1.15) (1). Thus \(p[x] \) is prime. Plainly, \(p[x] \) contracts to \(p \); so \(pR[x] \) does too.

Note \((pR[x] + \langle x \rangle)/pR[x] \) is equal to \(\langle x \rangle \subset (R/p)[x] \). But \((R/p)[x]/\langle x \rangle \) is equal to \(R/p \) by (1.17) (3). So \(R[x]/(pR[x] + \langle x \rangle) \) is equal to \(R/p \) by (1.9). But as noted above, \(R/p \) is a domain by (2.8). Thus \(pR[x] + \langle x \rangle \) is prime again by (2.8).

Since the canonical map \(R/p \to R[x]/(pR[x] + \langle x \rangle) \) is bijective, it’s injective. Thus \(pR[x] + \langle x \rangle \) contracts to \(p \). Thus (1) holds.

In (2), \(R/p \) is a field by (2.13). But, as just noted, \(R/p \to R[x]/(pR[x] + \langle x \rangle) \). Thus \(pR[x] + \langle x \rangle \) is maximal again by (2.13).

Exercise (2.33). — Let \(R \) be a ring, \(X \) a variable, \(H \in P := R[x] \), and \(a \in R \). Given \(n \geq 1 \), show \((X - a)^n \) and \(H \) are coprime if and only if \(H(a) \) is a unit.

Solution: By (2.16), \((X - a)^n \) and \(H \) are coprime if and only if \(X - a \) and \(H \) are, if and only if, modulo \(X - a \), the residue of \(H \) is a unit. But by (1.17) (4), that residue is equal to \(H(a) \). Thus the desired equivalence holds.

Exercise (2.34). — Let \(R \) be a ring, \(X \) a variable, \(F \in P := R[x] \), and \(a \in R \). Set \(F' := \partial F/\partial X \); see (1.18.1). Show the following statements are equivalent:

1. \(a \) is a supersimple root of \(F \).
2. \(a \) is a root of \(F \), and \(X - a \) and \(F' \) are coprime.
3. \(F = (X - a)G \) for some \(G \) in \(P \) coprime to \(X - a \).

Show that, if (3) holds, then \(G \) is unique.

Solution: Owing to (2.33) with \(n = 1 \), the definition and the assertion in (1.19) yield (1) \(\Leftrightarrow \) (2) and (1) \(\Leftrightarrow \) (3) and the uniqueness of \(G \).

Exercise (2.35). — Let \(R \) be a ring, \(p \) a prime; \(X \) a set of variables; \(F, G \in R[X] \). Let \(c(F), c(G), c(FG) \) be the ideals of \(R \) generated by the coefficients of \(F, G, FG \).

1. Assume \(p \not\supset c(F) \) and \(p \not\supset c(G) \). Show \(p \not\supset c(FG) \).
2. Show \(c(F) = R \) and \(c(G) = R \) if and only if \(c(FG) = R \).

Solution: For (1), denote the residues of \(F, G, FG \) in \((R/p)[X]\) by \(\bar{F}, \bar{G}, \bar{FG} \). Now, \(p \not\supset c(F) \); so \(F \neq 0 \). Similarly, \(G \neq 0 \). But \(R/p \) is a domain by (2.8). So \((R/p)[X] \) is too by (2.4). So \(FG \neq 0 \). But \(FG = \bar{FG} \). Thus \(p \not\supset c(FG) \).

For (2), first assume \(c(F) = R \) and \(c(G) = R \). Then \(p \not\supset c(F) \) and \(p \not\supset c(G) \). So \(p \not\supset c(FG) \) by (1). But \(p \) is arbitrary. Thus (2.21) and (2.15) imply \(c(FG) = R \).

Conversely, assume \(c(FG) = R \). Plainly, in general, \(c(FG) \subset c(F) \). So \(c(F) = R \). Similarly, \(c(G) = R \), as desired.

Exercise (2.36). — Let \(B \) be a Boolean ring. Show that every prime \(p \) is maximal, and that \(B/p = \mathbb{F}_2 \).

Solution: Given \(x \in B/p \), plainly \(x(x - 1) = 0 \). But \(B/p \) is a domain by (2.8). So \(x = 0, 1 \). Thus \(B/p = \mathbb{F}_2 \). Plainly, \(\mathbb{F}_2 \) is a field. So \(p \) is maximal by (2.13).

Exercise (2.37). — Let \(R \) be a ring. Assume that, given any \(x \in R \), there is an \(n \geq 2 \) with \(x^n = x \). Show that every prime \(p \) is maximal.

240
Solution: Given $y \in R/p$, say $y(y^{n-1} - 1) = 0$ with $n \geq 2$. By (2.8), R/p is a domain. So $y = 0$ or $yy^{n-2} = 1$. So R/p is a field. So by (2.13), p is maximal. \qed

Exercise (2.38) . Prove the following statements, or give a counterexample.

1. The complement of a multiplicative subset is a prime ideal.
2. Given two prime ideals, their intersection is prime.
3. Given two prime ideals, their sum is prime.
4. Given a ring map $\varphi: R \to R'$, the operation φ^{-1} carries maximal ideals of R' to maximal ideals of R.

Solution: (1) False. In the ring \mathbb{Z}, consider the set S of powers of 2. The complement T of S contains 3 and 5, but not 8, so T is not an ideal.

(2) False. In the ring \mathbb{Z}, consider the prime ideals (2) and (3); their intersection $(2) \cap (3)$ is equal to (6), which is not prime.

(3) False. Since $2 \cdot 3 - 5 = 1$, we have $(3) + (5) = \mathbb{Z}$.

(4) True. By (1.9), the operation $\varphi' \mapsto \kappa^{-1}\varphi'$ sets up an inclusion-preserving bijective correspondence between the ideals $\varphi' \supset \kappa'$ and the ideals $\varphi \supset \kappa^{-1}\lambda'$.

Exercise (2.39) . Preserve the setup of (2.20). Let $F := a_0X^n + \cdots + a_n$ be a polynomial of positive degree n. Assume that R has infinitely many prime elements p, or simply that there is a p such that $p \nmid a_0$. Show that $\langle F \rangle$ is not maximal.

Solution: Set $a := \langle p, F \rangle$. Then $a \not\subseteq \langle F \rangle$, because p is not a multiple of F. Set $k := R/\langle p \rangle$. Since p is irreducible, k is a domain by (2.5) and (2.7). Let $F' \in k[X]$ denote the image of F. By hypothesis, $\deg(F') = n \geq 1$. Hence F' is not a unit by (2.4.1) since k is a domain. Therefore, $\langle F' \rangle$ is proper. But $P/a \rightarrow k[X]/\langle F' \rangle$ by (1.16) and (1.9). So a is proper. Thus $\langle F \rangle$ is not maximal. \qed

Exercise (2.40) . Preserve the setup of (2.20). Let $\langle 0 \rangle \subsetneq p_1 \subsetneq \cdots \subsetneq p_n$ be a chain of primes in P. Show $n \leq 2$, with equality if the chain is maximal—or, not a proper subchain of a longer chain—and if R has infinitely many primes.

Solution: Recall that R is a UFD, and so P is one too, and that, in any UFD, an element is irreducible if and only if it generates a prime ideal; see (2.17) and (2.5). Now, in any domain, consider nested principal ideals $\langle p_1 \rangle \subset \langle p_2 \rangle$ with p_1 and p_2 irreducible. Then $p_1 = xp_2$ for some x. So x is a unit. Thus $\langle p_1 \rangle = \langle p_2 \rangle$.

Suppose $n \geq 2$. Then p_1, \ldots, p_{n-1} aren’t maximal. So they’re all principal by (2.20)(1). They’re nonzero, so equal by the above. So $1 = n - 1$. Thus $n \leq 2$.

Assume the chain is maximal. Then p_n is maximal. Indeed, p_n lies in a maximal ideal m by (2.21), and m is prime by (2.15). So adjoining m results in a longer chain unless $p_n = m$.

Assume R has infinitely many primes. Then p_n isn’t principal by (2.39). So $p_n = \langle p, G \rangle$ with $p \in R$ prime and $G \in P$ prime by (2.20). So $\langle 0 \rangle \subsetneq \langle (G) \rangle \subsetneq p_n$ are both longer chains than $\langle 0 \rangle \subsetneq p_n$. But the given chain is maximal. So $n \neq 1$. Thus $n = 2$. \qed

Exercise (2.41) (Schwartz–Zippel Theorem with multiplicities) . Let R be a domain, $T \subset R$ a subset of q elements, $P := R[X_1, \ldots, X_n]$ the polynomial ring in n variables, and $F \in P$ a nonzero polynomial of degree d.

1. Show by induction on n that $\sum_{x \in T} \text{ord}_{(x_1, \ldots, x_n)} F \leq dq^{n-1}$. 241
(2) Show that at most $d q^n - 1$ points $(x_1, \ldots, x_n) \in T^n$ satisfy $F(x_1, \ldots, x_n) = 0.$

(3) Assume $d < q.$ Show that $F(x_1, \ldots, x_n) \neq 0$ for some $x_i \in T_i.$

Solution: In (1), if $F(x, X_2, \ldots, X_n) = 0$ for some $x \in T,$ then $F = (X_1 - x)G$ for some $G \in P$ by (1.6) with $R[X_2, \ldots, X_n]$ for $R.$ Repeating, we obtain $F = G \prod_{x \in T}(X_1 - x)^{r_x}$ for some $G \in P$ with $G(x, X_2, \ldots, X_n) \neq 0$ for all $x \in T,$ and for some $r_x \geq 0.$ Then (2.4.1) yields

$$\deg(G) = d - \sum_{x \in T} r_x.$$ \hfill (2.4.1.1)

Given $x_1, \ldots, x_n \in T,$ set $H := \prod_{x \in (T-x_1)}(X_1 - x)^{r_x}.$ Then $H(x_1, \ldots, x_n) \neq 0.$ So $\text{ord}_{(x_1, \ldots, x_n)} H = 0$ by (1.8). Also ord$_{(x_1, \ldots, x_n)} (X_1 - x)^{r_x} = r_x$ by (1.8). Hence (2.4.2) yields

$$\text{ord}_{(x_1, \ldots, x_n)} F = r_{x_1} + \text{ord}_{(x_1, \ldots, x_n)} G.$$ \hfill (2.4.2.1)

Assume $n = 1.$ Then $G(x) \neq 0$ for all $x \in T$. So ord$_{(x)} G = 0$ by (1.8). So (2.4.2.1) yields ord$_{(x)} F = r_{x_1}.$ Thus (2.4.1.1) yields $\sum_{x \in T} \text{ord}_{(x)} F \leq d,$ as desired.

Assume $n > 1.$ Summing (2.4.2.1) over all $x_1, \ldots, x_n \in T$ yields

$$\sum_{x \in T} \text{ord}_{(x_1, \ldots, x_n)} F = q^{n-1} \sum_{x \in T} r_{x_1} + \sum_{x \in T} \text{ord}_{(x_1, \ldots, x_n)} G.$$ \hfill (2.4.3.1)

Note ord$_{(x_1, \ldots, x_n)} G \leq \text{ord}_{(x_1, \ldots, x_n)} G_{1,x_1}$ with $G_{1,x_1} := G(x_1, X_2, \ldots, X_n)$ by (1.8.1). But $G_{1,x_1} \in R[X_2, \ldots, X_n];$ so by induction on n and (2.4.1.1),

$$\sum_{x \in T} \text{ord}_{(x_2, \ldots, x_n)} G_{1,x_1} \leq \left(d - \sum_{x \in T} r_{x_1}\right) q^{n-2}.$$ \hfill (2.4.4.1)

But ord$_{(x_2, \ldots, x_n)} G_{1,x_1} = \text{ord}_{(x_1, \ldots, x_n)} G_{1,x_1}$ by (1.8.2). Hence, summing (2.4.4.1) over $x_1 \in T$ yields

$$\sum_{x_1 \in T} \text{ord}_{(x_1, \ldots, x_n)} G \leq \sum_{x_1 \in T} \text{ord}_{(x_1, \ldots, x_n)} G_{1,x_1} \leq \left(d - \sum_{x_1 \in T} r_{x_1}\right) q^{n-1}.$$ \hfill (2.4.5.1)

Finally, (2.4.3.1) and (2.4.5.1) yield the desired bound.

For (2), note ord$_{(x_1, \ldots, x_n)} F \geq 0$ with equality (if and) only if $F(x_1, \ldots, x_n) \neq 0$ by (1.8). Thus (1) yields the desired bound.

In (3), note $d q^n - 1 < q^n.$ Thus (2) yields the desired $x_i.$ \hfill \square

Exercise (2.42). — Let R be a domain, $P := R[X_1, \ldots, X_n]$ the polynomial ring, $F \in P$ nonzero, and $T_i \subset R$ subsets with t_i elements for $i = 1, \ldots, n.$ For all $i,$ assume that the highest power of X_i in F is at most $t_i - 1.$ Show by induction on n that $F(x_1, \ldots, x_n) \neq 0$ for some $x_i \in T_i.$

Solution: Say $F = \sum_{j=0}^{t_n-1} F_j X_j^n$ with $F_j \in R[X_1, \ldots, X_{n-1}].$ As $F \neq 0,$ there’s j with $F_j \neq 0.$ For all $i,$ the largest exponent of X_i in F_j is at most $t_i - 1.$ If $n = 1,$ then $F_j \in R;$ else, by induction, $F_j(x_1, \ldots, x_{n-1}) \neq 0$ for some $x_i \in T_i.$ So $F(x_1, \ldots, x_{n-1}, X_n) \neq 0.$ So (2.41)(3) yields $x_n \in T_n$ with $F(x_1, \ldots, x_n) \neq 0.$ \hfill \square

Exercise (2.43) (Alon’s Combinatorial Nullstellensatz [1]). — Let R be a domain, $P := R[X_1, \ldots, X_n]$ the polynomial ring, $F \in P$ nonzero of degree $d,$ and $T_i \subset R$ a subset with t_i elements for $i = 1, \ldots, n.$ Let $M := \prod_{i=1}^n X_i^{m_i}$ be a monomial with $m_i < t_i$ for all $i.$ Assume F vanishes on $T_1 \times \cdots \times T_n.$ Set $F_i(X_i) := \prod_{x \in T_i} (X_i - x).$

(1) Find $G_i \in P$ with $\deg(G_i) \leq d - t_i$ such that $F = \sum_{i=1}^n F_i G_i.$

242
(2) Assume M appears in F. Show $\deg(M) < d$.

(3) Assume R is a field K. Set $a := (F_1, \ldots, F_n)$ and $t := \prod_{i=1}^{n} t_i$. Define the evaluation map $ev: P \to K^t$ by $ev(G) := (G(x_1, \ldots, x_n))$ where (x_1, \ldots, x_n) runs over $T_1 \times \cdots \times T_n$. Show that ev induces a K-algebra isomorphism $\varphi: P/a \overset{\sim}{\to} K^t$.

Solution: By (1.20), there are $G, G_i \in P$ such that $F = \sum_{n=1}^{m} F_i G_i + G$ where $G_i = 0$ or $\deg(G_i) \leq d - t_i$ and $0 \leq t_i$.

For (1), note that F and all F_i vanish on $T_1 \times \cdots \times T_n$, so G does too. Hence (2.42) implies $G = 0$, as desired.

For (2), note (1) implies M appears in some $F_i G_i$. But $\deg(G_i) \leq d - t_i$; so $X_i^{t_i}$ divides every monomial in $F_i G_i$ of degree d. Thus $\deg(M) < d$, as desired.

For (3), note ev is a K-algebra map; also, $ev(F_i) = 0$ for all i. So ev induces a K-algebra map $\varphi: P/a \to K^t$. Further, (1) implies $\ker(\varphi) = 0$, so φ is injective.

Finally, (1.20) implies that P/a is generated by the residues $a_1^{i_1} \cdots a_n^{i_n}$ of the monomials $X_1^{i_1} \cdots X_n^{i_n}$ with $0 \leq k_i < t_i$. If some linear combination H of those monomials has residue 0, then $\ev(H) = 0$, and so $H = 0$ by (2.42). Hence the $a_1^{i_1} \cdots a_n^{i_n}$ are linearly independent. Thus $\dim_K(P/a) = t$. But K is a field, φ is injective, and $\dim_K(K^t) = t$. Thus φ is bijective, as desired.

Exercise (2.44) (Cauchy–Davenport Theorem). Let $A, B \subset \mathbb{F}_p$ be nonempty subsets. Set $C := \{a + b : a \in A \text{ and } b \in B\}$. Say A, B, C have α, β, γ elements.

(1) Assume $C \subseteq \mathbb{F}_p$. Use $F(X, Y) := \prod_{c \in C}(X + Y - c)$ to show $\gamma \geq \alpha + \beta - 1$.

(2) Show $\gamma \geq \min\{\alpha + \beta - 1, p\}$.

Solution (Alon [1, Thm. 3.2]): For (1), note that F vanishes on $A \times B$ and has degree γ. Set $m_1 := \alpha - 1$ and $m_2 := \gamma - \alpha + 1$. Then $X^{m_1} Y^{m_2}$ has degree γ, and appears in F with coefficient $\left(\alpha \atop \gamma\right)$, which is nonzero as $\gamma < p$. So $m_2 < \beta$ would contradict (2.43)(2). Thus $m_2 \geq \beta$, as desired.

For (2), notice that if $C = \mathbb{F}_p$, then $\gamma = p$ (and conversely), and that if $C \subset \mathbb{F}_p$, then $\gamma \geq \alpha + \beta - 1$ by (1).

Exercise (2.45) (Chevalley–Warning Theorem). Let $P := \mathbb{F}_q[X_1, \ldots, X_n]$ be the polynomial ring, $F_1, \ldots, F_n \in P$, and $(c_1, \ldots, c_n) \in \mathbb{F}_q^n$ a common zero of the F_i. Assume $n > \sum_{i=1}^{n} \deg(F_i)$. Set

$$G_1 := \prod_{i=1}^{m}(1 - F_i^{q-1}), \quad G_2 := \delta \prod_{j=1}^{n} \prod_{c \in \mathbb{F}_q, c \neq c_j}(X_j - c), \quad F := G_1 - G_2,$$

and choose δ so that $F(c_1, \ldots, c_n) = 0$.

(1) Show that $X_1^{q-1} \cdots X_n^{q-1}$ has coefficient $-\delta$ in F and that $\delta \neq 0$.

(2) Use (1) and (2.43)(2) to show that the F_j have another common zero.

Solution (Alon [1, Thm. 3.2]): For (1), note $\deg(G_1) = (q - 1) \sum \deg(F_i)$. So $\deg(G_1) < (q - 1)n$. So $X_1^{q-1} \cdots X_n^{q-1}$ doesn’t appear in G_1, but does in $-G_2$, with coefficient $-\delta$, as desired. But $G_1(c_1, \ldots, c_n) = 1$. Thus $\delta \neq 0$, as desired.

For (2), note $\deg(F) = (q - 1)n$. So (1) and (2.43)(2) yield $x_j \in \mathbb{F}_q$ with $F(x_1, \ldots, x_n) \neq 0$. But $G_2(x_1, \ldots, x_n) = 0$. So $G_1(x_1, \ldots, x_n) \neq 0$. Given i, then $F_i(x_1, \ldots, x_n)^{q-1} \neq 1$. But \mathbb{F}_q^\times has order $q - 1$. So $F_i(x_1, \ldots, x_n) = 0$, as desired.
3. Radicals

Exercise (3.10). — Let $\varphi: R \to R'$ be a map of rings, p an ideal of R. Show:

1. There is an ideal q of R' with $\varphi^{-1}(q) = p$ if and only if $\varphi^{-1}(pR') = p$.
2. If p is prime with $\varphi^{-1}(pR') = p$, then there's a prime p of R' with $\varphi^{-1}(q) = p$.

Solution: In (1), given q, note $\varphi(p) \subset q$, as always $\varphi(\varphi^{-1}(q)) \subset q$. So $pR' \subset q$. Hence $\varphi^{-1}(pR') \subset \varphi^{-1}(q) = p$. But, always $p \subset \varphi^{-1}(pR')$. Thus $\varphi^{-1}(pR') = p$.

The converse is trivial: take $q := pR'$.

In (2), set $S := \varphi(R - p)$. Then $S \cap pR' = \emptyset$, as $\varphi(x) \in pR'$ implies $x \in \varphi^{-1}(pR')$ and $\varphi^{-1}(pR') = p$. So there's a prime q of R' containing pR' and disjoint from S by (3.9). So $\varphi^{-1}(q) \supset \varphi^{-1}(pR') = p$ and $\varphi^{-1}(q) \cap (R - p) = \emptyset$. Thus $\varphi^{-1}(q) = p$. □

Exercise (3.16). — Use Zorn’s lemma to prove that any prime ideal p contains a prime ideal q that is minimal containing any given subset $s \subset p$.

Solution: Let S be the set of all prime ideals q such that $s \subset q \subset p$. Then $p \in S$, so $\emptyset \neq S$. Order S by reverse inclusion. To apply Zorn’s Lemma, we must show that, for any decreasing chain $\{q_\lambda\}$ of prime ideals, the intersection $q := \bigcap q_\lambda$ is a prime ideal. Plainly q is always an ideal. So take $x, y \notin q$. Then there exists λ such that $x, y \notin q_\lambda$. Since q_λ is prime, $xy \notin q_\lambda$. So $xy \notin q$. Thus q is prime.

Exercise (3.19). — Let R be a ring, a an ideal, X a variable, $R[[X]]$ the formal power series ring, $M \subset R[[X]]$ an ideal, $F := \sum a_n X^n \in R[[X]]$. Set $m := M \cap R$ and $\mathfrak{A} := \{ \sum b_n X^n \mid b_n \in a \}$. Prove the following statements:

1. If F is nilpotent, then a_n is nilpotent for all n. The converse is false.
2. Then $F \in \text{rad}(R[[X]])$ if and only if $a_0 \in \text{rad}(R)$.
3. Assume $X \in M$. Then X and m generate M.
4. Assume M is maximal. Then $X \in M$ and m is maximal.
5. If a is finitely generated, then $aR[[X]] = \mathfrak{A}$. However, there's an example of an R with a prime ideal a such that $aR[[X]] \neq \mathfrak{A}$.

Solution: For (1), assume F and a_i for $i < n$ nilpotent. Set $G := \sum_{i \geq n} a_i X^i$. Then $G = F - \sum_{i < n} a_i X^i$. So G is nilpotent by (3.15); say $G^m = 0$ with $m \geq 1$. Then $a_n^m = 0$. Thus a_n is nilpotent, and by induction on n, all a_n are too.

For a counterexample to the converse, set $P := \mathbb{Z}[X_2, X_3, \ldots]$ for variables X_n. Set $R := P/(X_2^2, X_3^3, \ldots)$. Let a_n be the residue of X_n. Then $a_n^m = 0$, but $\sum a_n X^n$ is not nilpotent. Thus (1) holds.

For (2), given $G = \sum b_n X^n \in \text{rad}(R[[X]])$, note that $1 + FG$ is a unit if and only if $1 + a_0 b_0$ is a unit by (3.7). Thus (3.2) yields (2).

For (3), note M contains X and m, so the ideal they generate. But $F = a_0 + X G$ for some $G \in R[[X]]$. So if $F \in M$, then $a_0 \in M \cap R = m$. Thus (3) holds.

For (4), note that $X \in \text{rad}(R[[X]])$ by (2). But M is maximal. So $X \in M$. So X and m generate M by (3). So $R/X/M = R/m$ by (3.7). Thus (2.13) yields (4).

In (5), plainly $aR[[X]] \subset \mathfrak{A}$. Now, assume $F := \sum a_n X^n \in \mathfrak{A}$, so all $a_n \in a$. Say $b_1, \ldots, b_m \in a$ generate. Then $a_n = \sum_{i=1}^m c_{ni} b_i$ for some $c_{ni} \in R$. Thus, as desired,

$$F = \sum_{n \geq 0} \left(\sum_{i=1}^m c_{ni} b_i \right) X^n = \sum_{i=1}^m b_i \left(\sum_{n \geq 0} c_{ni} X^n \right) \in aR[[X]].$$

For the desired example, take a_1, a_2, \ldots to be variables. Take $R := \mathbb{Z}[a_1, a_2, \ldots]$
and $a := \langle a_1, a_2, \ldots \rangle$. Then $R/a = \mathbb{Z}$ by (1.17)(3). Thus (2.8) implies a is prime.

Given $G \subseteq aR[[X]]$, say $G = \sum_{i=1}^m b_iG_i$ with $b_i \in a$ and $G_i = \sum_{n \geq 0} b_{in}X^n$. Choose p greater than the maximum n such that a_n occurs in any b_i. Then $\sum_{i=1}^m b_i b_{in} \in \langle a_1, \ldots, a_{p-1} \rangle$, but $a_p \notin \langle a_1, \ldots, a_{p-1} \rangle$. Set $F := \sum a_nX^n$. Then $F \notin G$ for any $G \subseteq aR[[X]]$. Thus $F \notin aR[[X]]$, but $F \in \mathfrak{A}$.

Exercise (3.21). — Let R be a ring, $a \subset \text{rad}(R)$ an ideal, $w \in R$, and $w' \in R/a$ its residue. Prove that $w \in R^\times$ if and only if $w' \in (R/a)^\times$. What if $a \notin \text{rad}(R)$?

Solution: Plainly, $w \in R^\times$ implies $w' \in (R/a)^\times$, whether $a \subset \text{rad}(R)$ or not.

Assume $a \subset \text{rad}(R)$. As every maximal ideal of R contains rad(R), the operation $m \mapsto m/a$ establishes a bijective correspondence between the maximal ideals of R and those of R/a owing to (1.9). So w belongs to a maximal ideal of R if and only if w' belongs to one of R/a. Thus $w \in R^\times$ if and only if $w' \in (R/a)^\times$ by (2.22).

Assume $a \not\subset \text{rad}(R)$. Then there is a maximal ideal $m \subset R$ with $a \not\subset m$. So $a + m = R$. So there are $a \in a$ and $v \in m$ with $a + v = w$. Then $v \notin R^\times$, but the residue of v is w', even if $w' \in (R/a)^\times$. For example, take $R := \mathbb{Z}$ and $a := \langle 2 \rangle$ and $w := 3$. Then $w \notin R^\times$, but the residue of w is $1 \in (R/a)^\times$.

Exercise (3.22). — Let A be a local ring, e an idempotent. Show $e = 1$ or $e = 0$.

Solution: Let m be the maximal ideal. Then $1 \notin m$, so either $e \notin m$ or $1 - e \notin m$. Say $e \notin m$. Then e is a unit by (3.5). But $e(1 - e) = 0$. Thus $e = 1$. Similarly, if $1 - e \notin m$, then $e = 0$.

Alternatively, (3.6) implies that A is not the product of two nonzero rings. So (1.12) implies that either $e = 0$ or $e = 1$.

Exercise (3.23). — Let A be a ring, m a maximal ideal such that $1 + m$ is a unit for every $m \in m$. Prove A is local. Is this assertion still true if m is not maximal?

Solution: Take $y \in A - m$. Since m is maximal, $\langle y \rangle + m = A$. Hence there exist $x \in R$ and $m \in m$ such that $xy + m = 1$, or in other words, $xy = 1 - m$. So xy is a unit by hypothesis; whence, y is a unit. Thus A is local by (3.5).

No, the assertion is not true if m is not maximal. Indeed, take any ring that is not local, for example \mathbb{Z}, and take $m := \langle 0 \rangle$.

Exercise (3.24). — Let R be a ring, S a subset. Show that S is saturated multiplicative if and only if $R - S$ is a union of primes.

Solution: First, assume S is saturated multiplicative. Take $x \in R - S$. Then $xy \notin S$ for all $y \in R$; in other words, $\langle x \rangle \cap S = \emptyset$. Then (3.9) gives a prime $p \supset \langle x \rangle$ with $p \cap S = \emptyset$. Thus $R - S$ is a union of primes.

Conversely, assume $R - S$ is a union of primes p. Then $1 \in S$ as 1 lies in no p. Take $x, y \in R$. Then $x, y \in S$ if and only if x, y lie in no p; if and only if xy lies in no p, as every p is prime; if and only if $xy \in S$. Thus S is saturated multiplicative.

Exercise (3.25). — Let R be a ring, and S a multiplicative subset. Define its **saturation** to be the subset

$$\overline{S} := \{ x \in R \mid \text{there is } y \in R \text{ with } xy \in S \}.$$

(1) Show (a) that $\overline{S} \supset S$, and (b) that \overline{S} is saturated multiplicative, and (c) that any saturated multiplicative subset T containing S also contains \overline{S}.

(2) Set $U := \bigcup_{p \cap S = \emptyset} p$. Show that $R - S = U$.

245
(3) Let a be an ideal; assume $S = 1 + a$; set $W := \bigcup_{p \supset a} p$. Show $R - S = W$.

(4) Given $f, g \in R$, show that $S_f \subset S_g$ if and only if $\sqrt{(f)} \supset \sqrt{(g)}$.

Solution: Consider (1). Trivially, if $x \in S$, then $x \cdot 1 \in S$. Thus (a) holds.

Hence $1 \in S$ as $1 \in S$. Now, take $x, x' \in S$. Then there are $y, y' \in R$ with $xy, x'y' \in S$. But S is multiplicative. So $(x(x'))(y(y')) \in S$. Hence $xx' \in S$. Thus S is multiplicative. Further, take $x, x' \in R$ with $xx' \in S$. Then there is $y \in R$ with $xx'y \in S$. So $x, x' \in S$. Thus S is saturated. Thus (b) holds.

Finally, consider (c). Given $x \in S$, there is $y \in R$ with $xy \in S$. So $xy \in T$. But T is saturated multiplicative. So $x \in T$. Thus $T \supset S$. Thus (c) holds.

In (2), plainly, $R - U \supset S$. Further, $R - U$ is saturated multiplicative by (3.24).

So $R - U \supset S$ by (1)(c). Thus $U \subset R - S$. Conversely, $R - S$ is a union of primes p by (3.24). Plainly, $p \cap S = \emptyset$ for all p. So $U \supset R - S$. Thus $R - S = U$, as desired.

For (3), first take a prime p with $p \cap S = \emptyset$. Then $1 \notin p + a$; else, $1 = p + a$ with $p \in p$ and $a \in a$, and so $1 - p = a \in p \cap S$. So $p + a$ lies in a maximal ideal m by (2.21). Then $a \subseteq m$; so $m \subseteq W$. But also $p \subseteq m$. Thus $U \subset W$.

Conversely, take $p \supset a$. Then $1 + p \supset 1 + a = S$. But $p \cap (1 + p) = \emptyset$. So $p \cap S = \emptyset$. Thus $U \supset W$. Thus (2) implies (3).

Consider (4). By (1)(a), $S_f \subset S_g$ if and only if $f \in S_g$. By definition of saturation, $f \in S_g$ if and only if $h f = g^n$ for some h and n. By definition of radical, $h f = g^n$ for some h and n if and only if $g \in \sqrt{(f)}$. Plainly, $g \in \sqrt{(f)}$ if and only if $\sqrt{(g)} \subset \sqrt{(f)}$. Thus $S_f \subset S_g$ if and only if $\sqrt{(f)} \supset \sqrt{(g)}$, as desired. \qed

Exercise (3.26). Let R be a nonzero ring, S a subset. Show S is maximal in the set \mathcal{S} of multiplicative subsets T of R with $0 \notin T$ if and only if $R - S$ is a minimal prime of R.

Solution: First, assume S is maximal in \mathcal{S}. Then S is equal to its saturation \overline{S}, as $S \subset \overline{S}$ and \overline{S} is multiplicative by (3.25) (1)(a),(b) and as $0 \in \overline{S}$ would imply $0 = 0 \cdot y \in S$ for some y. So $R - S$ is a union of primes p by (3.24). Fix a p. Then (3.16) yields p a minimal prime q. Then $S \subset R - q$. But $R - q \in \mathcal{S}$ by (2.2). As S is maximal, $S = R - q$, or $R - S = q$. Thus $R - S$ is a minimal prime.

Conversely, assume $R - S$ is a minimal prime q. Then $S \in \mathcal{S}$ by (2.2). Given $T \in \mathcal{S}$ with $S \subset T$, note $R - T = \bigcup p$ with p prime by (3.24). Fix a p. Now, $S \subset T \subset T$. So $q \supset p$. But q is minimal. So $q = p$. But p is arbitrary, and $R = S - T$. Hence $q = R - T$. So $S = T$. Hence S is maximal. \qed

Exercise (3.27). Let k be a field, X_λ for $\lambda \in \Lambda$ variables, and Λ_π for $\pi \in \Pi$ disjoint subsets of Λ. Set $P := k\{X_\lambda\}_{\lambda \in \Lambda}$ and $p_\pi := \langle \{X_\lambda\}_{\lambda \in \Lambda_\pi} \rangle$ for all $\pi \in \Pi$. Let $F, G \in P$ be nonzero, and $a \subset F$ a nonzero ideal. Set $U := \bigcup_{\pi \in \Pi} p_\pi$. Show:

(1) Assume $F \in p_\pi$ for some $\pi \in \Pi$. Then every monomial of F is in p_π.

(2) Assume there are $\pi, \rho \in \Pi$ such that $F + G \in p_\pi$ and $G \in p_\rho$ but p_ρ contains no monomial of F. Then p_π contains every monomial of F and of G.

(3) Assume $a \subset U$. Then $a \subset p_\pi$ for some $\pi \in \Pi$.

Solution: In (1), $F = \sum_{\lambda \in \Lambda_\pi} F_\lambda X_\lambda$ for some $F_\lambda \in P$. So every monomial of F is a multiple of X_λ for some $\lambda \in \Lambda_\pi$. Thus (1) holds.

In (2), every monomial of G is in p_π by (1). So F and G have distinct monomials. So there’s no cancellation in $F + G$. But $F + G \in p_\pi$. Thus (1) implies (2).

For (3), fix a nonzero $F \in a$. Then for any $G \in a$, also $F + G \in a$. But $a \subset U$. 246
Solutions

(3.28) / (3.32) Radicals

So there are \(\pi, \rho \in \Pi \) such that \(F + G \in p_\pi \) and \(G \in p_\rho \). So (2) implies that either \(p_\pi \) or \(p_\rho \) contains \(G \) and some monomial of \(F \). So \(a \) lies in the union of all \(p_\rho \) that contain some monomial of \(F \). But the \(\Lambda_\rho \) are disjoint. So this union is finite. Thus Prime Avoidance (3.12) yields (3).

Exercise (3.28). — Let \(k \) be a field, \(S \subset k \) a subset of cardinality \(d \) at least 2.

1. Let \(P := k[X_1, \ldots, X_n] \) be the polynomial ring, \(F \in P \) nonzero. Assume the highest power of any \(X_i \) in \(F \) is less than \(d \). Proceeding by induction on \(n \), show there are \(a_1, \ldots, a_n \in S \) with \(F(a_1, \ldots, a_n) \neq 0 \).

2. Let \(V \) be a \(k \)-vector space, and \(W_1, \ldots, W_r \) proper subspaces. Assume \(r < d \). Show \(\bigcup W_i \neq V \).

3. In (2), let \(W \) be a subspace. Show \(W \neq W_i \) for some \(i \).

4. Let \(R \) a \(k \)-algebra, \(a, a_1, \ldots, a_r \) ideals with \(a \subset \bigcup W_i \) and \(a_i \) for some \(i \).

Solution: For (1), first assume \(n = 1 \). Then \(F \) has degree at most \(d \), so at most \(d \) roots by [3, (1.8), p. 392]. So there’s \(a_1 \in S \) with \(F(a_1) \neq 0 \).

Assume \(n > 1 \). Say \(F = \sum G_j X_j^d \) with \(G_j \in k[X_2, \ldots, X_n] \). But \(F \neq 0 \). So \(G_i \neq 0 \) for some \(i \). By induction, there are \(a_2, \ldots, a_n \in S \) with \(G_i(a_2, \ldots, a_n) \neq 0 \). So there’s \(a_1 \in S \) with \(F(a_1, \ldots, a_n) = \sum G_j(a_2, \ldots, a_n) a_i^d \neq 0 \), as desired.

For (2), for all \(i \), take \(v_i \in V - W_i \). Form their span \(V' \subset V \). Set \(n := \dim V' \) and \(W'_i := W_i \cap V' \). Then \(n < \infty \), and it suffices to show \(\bigcup W'_i \neq V' \).

Identify \(V' \) with \(k^n \). Form the polynomial ring \(P := k[X_1, \ldots, X_n] \). For each \(i \), take a linear form \(L_i \in P \) that vanishes on \(W'_i \). Set \(F := L_1 \cdots L_r \). Then \(r \) is the highest power of any variable in \(F \). But \(r < d \). So (1) yields \(a_1, \ldots, a_n \in S \) with \(F(a_1, \ldots, a_n) \neq 0 \). Then \((a_1, \ldots, a_n) \in V' - \bigcup W'_i \), as desired.

For (3), for all \(i \), set \(U_i := W \cap W_i \). Then \(\bigcup U_i = W \). So (2) implies \(U_i = W \) for some \(i \). Thus \(W \subset W_i \) as desired.

Finally, (4) is a special case of (3), as every ideal is a \(k \)-vector space.

Exercise (3.29). — Let \(k \) be a field, \(R := k[X, Y] \) the polynomial ring in two variables, \(m := (X, Y) \). Show \(m \) is a union of strictly smaller primes.

Solution: Since \(R \) is a UFD, and \(m \) is maximal, so prime, any nonzero \(F \in m \) has a prime factor \(P \in m \). Thus \(m = \bigcup_P \langle P \rangle \), but \(m \neq \langle P \rangle \) as \(m \) is not principal.

Exercise (3.30). — Find the nilpotents in \(\mathbb{Z}/(n) \). In particular, take \(n = 12 \).

Solution: An integer \(m \) is nilpotent modulo \(n \) if and only if some power \(m^k \) is divisible by \(n \). The latter holds if and only if every prime factor of \(n \) occurs in \(m \). In particular, in \(\mathbb{Z}/(12) \), the nilpotents are 0 and 6.

Exercise (3.31) (Nakayama’s Lemma for a nilpotent ideal). — Let \(R \) be a ring, \(a \) an ideal, \(M \) a module. Assume \(aM = M \) and \(a \) is nilpotent. Show \(M = 0 \).

Solution: Since \(M = aM \), also \(a^{n-1}M = a^n M \) for all \(n \geq 1 \). So \(M = a^n M \) for all \(n \geq 1 \). But \(a^n = 0 \) for some \(n \geq 1 \) by hypothesis. Thus \(M = 0 \).

Exercise (3.32). — Let \(R \) be a ring; \(a, b \) ideals; \(p \) a prime. Prove the following:

1. \(\sqrt{ab} = \sqrt{a} \cap \sqrt{b} = \sqrt{a \cap b} \).
2. \(\sqrt{a} = R \) if and only if \(a = R \).
3. \(\sqrt{a + b} = \sqrt{a} + \sqrt{b} \).
4. \(\sqrt{p^n} = p \) for all \(n > 0 \).
For (1), note
\[
\text{Let } R = R_1 \cap R_2 \subset \sqrt{\sqrt{a}} \cap \sqrt{\sqrt{b}}. \text{ So } \sqrt{R} \subset \sqrt{\sqrt{a}} \cap \sqrt{\sqrt{b}} \subset \sqrt{a} \cap \sqrt{b} \text{ by } (3.13).
\]
But, given \(x \in \sqrt{a} \cap \sqrt{b} \), note \(x^n \in a \) and \(x^m \in b \) for some \(n, m. \) So \(x^{n+m} \in ab. \) Thus (1) holds.

For (2), note \(1 \in \sqrt{a} \) if and only if \(1 \in a, \) as \(1^n = 1 \) for all \(n. \) So (1.4) yields (2).

For (3), note \(a \subset \sqrt{\sqrt{a}} \) and \(b \subset \sqrt{\sqrt{b}}. \) So \(a + b \subset \sqrt{a} + \sqrt{b}. \) So (3.13) yields \(\sqrt{a + b} \subset \sqrt{\sqrt{a} + \sqrt{b}}. \) Conversely, say \(x^n \in \sqrt{\sqrt{a} + \sqrt{b}} \) with \(n > 0. \) Then \(x^n = a + b \) with \(a^p \in a \) and \(b^q \in b \) with \(p, q > 0. \) Hence \(x^{n(p+q-1)} \in a + b; \) see the proof of (3.15). So \(x \in \sqrt{\sqrt{a} + \sqrt{b}} \). Thus (3) holds.

For (4), note \(p^n \subset p. \) So \(\sqrt{p^n} \subset \sqrt{p}. \) But \(p \) is prime; so \(\sqrt{p} \subset p. \) Conversely, given \(x \in p, \) note \(x^n \in p^n. \) So \(x \in \sqrt{p^n}. \) Thus (4) holds.

Exercise (3.33). — Let \(R \) be a ring. Prove these statements: (1) Assume every ideal not contained in nil(\(R \)) contains a nonzero idempotent. Then nil(\(R \)) = rad(\(R \)).

(2) Assume \(R \) is Boolean. Then nil(\(R \)) = rad(\(R \)) = (0).

Solution: For (1), recall (3.13.1), that nil(\(R \)) \(\subset \) rad(\(R \)). To prove the opposite inclusion, set \(R' := R/\text{nil}(R). \) Assume rad(\(R' \)) \(\neq (0). \) Then there is a nonzero idempotent \(e \in \text{rad}(R'). \) Then \(e(1-e) = 0. \) But \(1-e \) is a unit by (3.2). So \(e = 0, \) a contradiction. Hence rad(\(R' \)) = (0). Thus (1.9) yields (1).

For (2), recall from (1.2) that every element of \(R \) is idempotent. So nil(\(R \)) = (0), and every nonzero ideal contains a nonzero idempotent. Thus (1) yields (2).

Exercise (3.34). — Let \(e, e' \in \text{Idem}(R). \) Assume \(\sqrt{\langle e \rangle} = \sqrt{\langle e' \rangle}. \) Show \(e = e'. \)

Solution: By hypothesis, \(e^n \in \langle e' \rangle \) for some \(n \geq 1. \) But \(e^2 = e, \) so \(e^n = e. \) So \(e = xe' \) for some \(x. \) So \(e = xe'^2 = ee'. \) By symmetry, \(e' = e'e. \) Thus \(e = e'. \)

Exercise (3.35). — Let \(R \) be a ring, \(a_1, a_2 \) comaximal ideals with \(a_1a_2 \subset \text{nil}(R). \) Show there are complementary idempotents \(e_1 \) and \(e_2 \) with \(e_1 \in a_i. \)

Solution: Since \(a_1 \) and \(a_2 \) are comaximal, there are \(x_1 \in a_i \) with \(x_1 + x_2 = 1. \) Given \(n \geq 1, \) expanding \((x_1 + x_2)^n = 1 \) and collecting terms yields \(a_1x_1^n + a_2x_2^n = 1 \) for suitable \(a_i \in R. \) Now, \(x_1x_2 \in \text{nil}(R); \) take \(n \geq 1 \) so that \((x_1x_2)^n = 0. \) Set \(e_i := a_ix_i^n \in a_i. \) Then \(e_1 + e_2 = 1 \) and \(e_1e_2 = 0. \) Thus \(e_1 \) and \(e_2 \) are complementary idempotents by (1.10).

Exercise (3.36). — Let \(R \) be a ring, \(a \) an ideal, \(\kappa: R \to R/\text{nil}(R) \) the quotient map. Assume \(a \subset \text{nil}(R). \) Prove that \(\text{Idem}(\kappa) \) is bijective.

Solution: Note that \(\text{Idem}(\kappa) \) is injective by (3.13.1) and (3.3). As to surjectivity, given \(e' \in \text{Idem}(R/\text{nil}(R)), \) take \(z \in R \) with residue \(e'. \) Then \(\langle z \rangle \) and \(\langle 1-z \rangle \) are trivially comaximal. And \(\langle z \rangle\langle 1-z \rangle \subset a \subset \text{nil}(R) \) as \(\kappa(z - z^2) = 0. \) So (3.35) yields complementary idempotents \(e_1 \in \langle z \rangle \) and \(e_2 \in \langle 1-z \rangle. \)

Say \(e_1 = xz \) with \(x \in R. \) Then \(\kappa(e_1) = xe' \). So \(\kappa(e_1) = xe'^2 = \kappa(e_1)e'. \) Similarly, \(\kappa(e_2) = \kappa(e_2)(1-e'). \) So \(\kappa(e_2)e' = 0. \) But \(\kappa(e_2) = 1 - \kappa(e_1). \) So \((1 - \kappa(e_1))e' = 0, \) or \(e' = \kappa(e_1)e'. \) But \(\kappa(e_1) = e'. \) Thus \(\text{Idem}(\kappa) \) is surjective.

Exercise (3.37). — Let \(R \) be a ring. Prove the following statements equivalent:

1. \(R \) has exactly one prime \(p; \)
2. every element of \(R \) is either nilpotent or a unit;
3. \(R/\text{nil}(R) \) is a field.
Solution: Assume (1). Let \(x \in R \) be a nonunit. Then \(x \in \mathfrak{p} \). So \(x \) is nilpotent by the Scheinnullstellensatz (3.14). Thus (2) holds.

Assume (2). Then every \(x \notin \text{nil}(R) \) has an inverse. Thus (3) holds.

Assume (3). Then \(\text{nil}(R) \) is maximal by (2.12). But any prime of \(R \) contains \(\text{nil}(R) \) by (3.14). Thus (1) holds.

Exercise (3.38). — Let \(R \) be a ring, \(a \) and \(b \) ideals. Assume that \(b \) is finitely generated modulo \(a \) and that \(b \subset \sqrt{a} \). Show there’s \(n \geq 1 \) with \(b^n \subset a \).

Solution: Say \(x_1, \ldots, x_m \) generate \(b \) modulo \(a \). For each \(i \), there’s \(n_i \geq 1 \) with \(x_i^{n_i} \in a \). Set \(n := \sum(n_i - 1) \). Given \(x \in b \), say \(x = \sum y_i x_i + a \) with \(y_i \in R \) and \(a \in a \). Then \(x^n \) is, modulo \(a \), a linear combination of terms of the form \(x_1^{n_1} \cdots x_m^{n_m} \) with \(\sum i=1 j_i = n \). But \(j_i \geq n_i \) for some \(i \), because if \(j_i \leq n_i - 1 \) for all \(i \), then \(\sum j_i \leq \sum(n_i - 1) \). Thus \(x^n \in a \).

Exercise (3.39). — Let \(\varphi: R \to R' \) be a ring map, \(a \subset R \) and \(b \subset R' \) subsets. Prove these two relations: (1) \((\varphi(\sqrt{a}))^{R} \subset \sqrt{\varphi(a)^{R'}} \) and (2) \(\varphi^{-1}\sqrt{b} = \sqrt{\varphi^{-1}b} \).

Solution: For (1), given \(y \in (\varphi(\sqrt{a}))^{R'} \), say \(y = \sum_{i=1} y_i x_i \) with \(x_i \in \sqrt{a} \) and \(y_i \in R' \). Then \(x_i^{n_i} \in a \) for some \(n_i > 0 \). Hence \(y^n \in (\varphi(a))^{R'} \) for any \(n > \sum(n_i - 1) \), see the solution of (3.38). So \(y \in \sqrt{\varphi(a)^R} \). Thus (1) holds.

For (2), note that below, (a) is plainly equivalent to (b); and (b), to (c); etc.:

(a) \(x \in \varphi^{-1}\sqrt{b} \); \hspace{1cm} (b) \(\varphi x \in \sqrt{b} \);
(c) \((\varphi x)^n \in b \) for some \(n \); \hspace{1cm} (d) \(\varphi(x^n) \in b \) for some \(n \);
(e) \(x^n \in \varphi^{-1}b \) for some \(n \); \hspace{1cm} (f) \(x \in \sqrt{\varphi^{-1}b} \).

Exercise (3.40). — Let \(R \) be a ring, \(q \) an ideal, \(p \) a prime. Assume \(p \) is finitely generated modulo \(q \). Show \(p = \sqrt{q} \) if and only if there’s \(n \geq 1 \) with \(p \supset q \supset p^n \).

Solution: If \(p = \sqrt{q} \), then \(p \supset q \supset p^n \) by (3.38). Conversely, if \(q \supset p^n \), then clearly \(\sqrt{q} \supset p \). Further, since \(p \) is prime, if \(p \supset q \), then \(p \supset \sqrt{q} \).

Exercise (3.41). — Let \(R \) be a ring. Assume \(R \) is reduced and has finitely many minimal prime ideals \(p_1, \ldots, p_n \). Prove that \(\varphi: R \to \prod(R/p_i) \) is injective, and for each \(i \), there is some \((x_1, \ldots, x_n) \in \text{Im}(\varphi) \) with \(x_i \neq 0 \) but \(x_j = 0 \) for \(j \neq i \).

Solution: Clearly \(\text{Ker}(\varphi) = \bigcap p_i \). Now, \(R \) is reduced and the \(p_i \) are its minimal primes; hence, (3.14) and (3.16) yield

\[
\{0\} = \sqrt{\{0\}} = \bigcap p_i.
\]

Thus \(\text{Ker}(\varphi) = \{0\} \), and so \(\varphi \) is injective.

Finally, fix \(i \). Since \(p_i \) is minimal, \(p_i \not\supset p_j \) for \(j \neq i \); say \(a_j \in p_j - p_i \). Set \(a := \prod_{j \neq i} a_j \). Then \(a \in p_j - p_i \) for all \(j \neq i \). So take \((x_1, \ldots, x_n) := \varphi(a) \).

Exercise (3.42). — Let \(R \) be a ring, \(X \) a variable, \(F := a_0 + a_1X + \cdots + a_nX^n \).

(1) Prove \(F \) is nilpotent if and only if \(a_0, \ldots, a_n \) are nilpotent.

(2) Prove \(F \) is a unit if and only if \(a_0 \) is a unit and \(a_1, \ldots, a_n \) are nilpotent.

Solution: In (1), if \(a_0, \ldots, a_n \) are nilpotent, so is \(F \) owing to (3.15).

Conversely, say \(a_i \notin \text{nil}(R) \). Then (3.14) yields a prime \(\mathfrak{p} \subset R \) with \(a_i \notin \mathfrak{p} \). So \(F \notin \mathfrak{p}R[X] \). But \(\mathfrak{p}R[X] \) is prime by (2.32). Thus plainly \(F \notin \text{nil}(R[X]) \).

Alternatively, say \(F^k = 0 \). Then \((a_nX^n)^k = 0 \). So \(F - a_nX^n \) is nilpotent owing
Solutions

(3.43) / (4.3)

Modules

3.43. Then for (1), given any a_0, \ldots, a_n are nilpotent by induction on n. Thus (1) is proved.

For (2), suppose a_0 is a unit and a_1, \ldots, a_n are nilpotent. Then $a_1X + \cdots + a_nX^n$ is nilpotent by (1), so belongs to $\text{rad}(R)$ by (3.13.1). Thus F is a unit by (3.2).

Conversely, say $FG = 1$ and $G = b_0 + \cdots + b_m X^m$. So $a_0b_0 = 1$. Thus $a_0 \in R^\times$.

Further, given a prime $p \subset R$, let $\kappa: R[X] \to (R/p)[X]$ be the canonical map. Then $\kappa(F)\kappa(G) = 1$. But R/p is a domain by (2.8). So $\deg \kappa(F) = 0$ owing to (2.4.1). So $a_1, \ldots, a_n \in p$. But p is arbitrary. Thus $a_1, \ldots, a_n \in \text{nil}(R)$ by (3.14).

Alternatively, let’s prove $a_n^{n+1} b_{m-r} = 0$ by induction on r. Set $c_i := \sum_{j+k=i} a_j b_k$. Then $\sum c_i X^i = FG$. But $FG = 1$. So $c_i = 0$ for $i > 0$. Taking $i := m + n$ yields $a_n b_m = 0$. But $c_{m+n-r} = 0$. So $a_n b_{m-r} + a_{n-1} b_{m-(r-1)} + \cdots = 0$. Multiply by a_n^{m-r}; then $a_n^{n+1} b_{m-r} = 0$ by induction. So $a_n^{m+1} b_0 = 0$. But b_0 is a unit. So $a_n X \in \text{rad}(R[X])$ by (3.13.1). But F is a unit. So $F - a_n X$ is too by (3.21). So a_1, \ldots, a_n are nilpotent by induction on n. Thus (2) is proved.

Exercise (3.43). — Generalize (3.42) to the polynomial ring $P := R[X_1, \ldots, X_r]$.

Solution: Let $F \in P$. Say $F = \sum a_{(i)} X^i$ where $(i) := (i_1, \ldots, i_r)$ and where $X^{(i)} := X_1^{i_1} \cdots X_r^{i_r}$. Set $(0) := (0, \ldots, 0)$. Then (1) and (2) generalize as follows:

(1’) Then F is nilpotent if and only if $a_{(i)}$ is nilpotent for all (i).

(2’) Then F is a unit if and only if $a_{(0)}$ is a unit and $a_{(i)}$ is nilpotent for $(i) \neq (0)$.

To prove them, let $R' := R[X_2, \ldots, X_r]$, and say $F = \sum F_iX_1^{i_1}$ with $F_i \in R'$.

In (1’), if F is nilpotent, so are all F_i by (3.42)(1); hence by induction on r, so are all $a_{(i)}$. Conversely, if all $a_{(i)}$ are nilpotent, so is F by (3.15). Thus (1’) holds.

In (2’), if $a_{(0)}$ is a unit and $a_{(i)}$ is nilpotent for $(i) \neq (0)$, then $\sum_{(i) \neq (0)} a_{(i)} X^{(i)}$ is nilpotent by (1), so belongs to $\text{rad}(R)$ by (3.13.1). Then F is a unit by (3.2).

Conversely, suppose F is a unit. Then F_0 is a unit, and F_i is nilpotent for $i > 0$ by (3.42)(2). So $a_{(0)}$ is a unit, and $a_{(i)}$ is nilpotent if $i_1 = 0$ and $(i) \neq (0)$, by induction on r. Also, $a_{(i)}$ is nilpotent if $i_1 > 0$ by (1’). Thus (2’) holds.

Exercise (3.44). — Let R be a ring, R' an algebra, X a variable. Show:

1. $\text{nil}(R)R' \subset \text{nil}(R')$ and 2. $\text{rad}(R[X]) = \text{nil}(R[X]) = \text{nil}(R)R[X]$.

Solution: For (1), given any $y \in \text{nil}(R)R'$, say $y = \sum x_i y_i$ with $x_i \in \text{nil}(R)$ and $y_i \in R'$. Then $x_i y_i \in \text{nil}(R')$. So (3.15)) yields $y \in \text{nil}(R')$. Thus (1) holds.

For (2), note $\text{rad}(R[X]) \supset \text{nil}(R[X])$ by (3.13.1). And $\text{nil}(R[X]) \supset \text{nil}(R)R[X]$ by (1) or by (3.42)(1). Now, given $F := a_0 + \cdots + a_n X^n$ in $\text{rad}(R[X])$, note that $1 + XF$ is a unit by (3.2). So a_0, \ldots, a_n are nilpotent by (3.42)(2). So $F \in \text{nil}(R)R[X]$. Thus $\text{nil}(R)R[X] \supset \text{rad}(R[X])$. Thus (2) holds.

4. Modules

Exercise (4.3). — Let R be a ring, M a module. Consider the set map $\rho: \text{Hom}(R, M) \to M$ defined by $\rho(\theta) := \theta(1)$.

Show that ρ is an isomorphism, and describe its inverse.

250
Solutions: First off, ρ is R-linear, because
\[
\rho(x\theta + x'\theta') = (x\theta + x'\theta')(1) = x\theta(1) + x'\theta'(1) = x\rho(\theta) + x'\rho(\theta').
\]
Set $H := \text{Hom}(R, M)$. Define $\alpha: M \to H$ by $\alpha(m)(x) := xm$. It is easy to check that $\alpha\rho = 1_H$ and $\rho\alpha = 1_M$. Thus ρ and α are inverse isomorphisms by (4.2). □

Exercise (4.14) . — Let R be a ring, a and b ideals, M and N modules. Set
\[
\Gamma_a(M) := \left\{ m \in M \mid a \subset \sqrt{\text{Ann}(m)} \right\}.
\]
Show: (1) Assume $a \supset b$. Then $\Gamma_a(M) \subset \Gamma_b(M)$.
(2) Assume $M \subset N$. Then $\Gamma_a(M) = \Gamma_a(N) \cap M$.
(3) Then $\Gamma_a(\Gamma_b(M)) = \Gamma_{a+b}(M) = \Gamma_a(M) \cap \Gamma_b(M)$.
(4) Then $\Gamma_a(M) = \sqrt{\text{rad}(M)}$.
(5) Assume a is finitely generated. Then $\Gamma_a(M) = \bigcup_{n \geq 1} \{ m \in M \mid a^nm = 0 \}$.

Solution: For (1), given $m \in \Gamma_a(M)$, note $b \subset a \subset \sqrt{\text{Ann}(m)}$. So $m \in \Gamma_b(M)$. Thus (1) holds.

For (2), given $m \in \Gamma_a(M)$, note $\sqrt{\text{Ann}(m)}$ is the same ideal whether m is viewed in M or in N. Thus (2) holds.

For (3), given $m \in M$, note $a \subset \sqrt{\text{Ann}(m)}$ and $b \subset \sqrt{\text{Ann}(m)}$ if and only if $a + b \subset \sqrt{\text{Ann}(m)}$. Thus (3) holds.

For (4), given $m \in M$, note $a \subset \sqrt{\text{Ann}(m)}$ if and only if $\sqrt{a} \subset \sqrt{\text{Ann}(m)}$. Thus (4) holds.

For (5), given $m \in M$ and $n \geq 1$ with $a^nm = 0$, note $a \subset \sqrt{\text{Ann}(m)}$. Conversely, given $m \in \Gamma_a(M)$, note $a \subset \sqrt{\text{Ann}(m)}$. But a is finitely generated. So (3.38) gives $n \geq 1$ with $a^nm = 0$. Thus (5) holds. □

Exercise (4.15) . — Let R be a ring, M a module, $x \in \text{rad}(M)$, and $m \in M$. Assume $(1 + x)m = 0$. Show $m = 0$.

Solution: Set $a := \text{Ann}(M)$ and $R' := R/a$. Then $\text{rad}(R') = \text{rad}(M)/a$ by (4.1.1). Let x' be the residue of x. Then $x' \in \text{rad}(R')$. So $1 + x'$ is a unit in R' by (3.2). But $x'm = xm$. Thus $m = (1 + x')^{-1}(1 + x')m = 0$.

Exercise (4.16) . — Let R be a ring, M a module, N and N_λ submodules for $\lambda \in \Lambda$, and a, a_λ, b ideals for $\lambda \in \Lambda$. Set $(N : a) := \{ m \in M \mid am \subset N \}$. Show:

(1) $(N : a)$ is a submodule.
(2) $N \subset (N : a)$.
(3) $(N : a)a \subset N$.
(4) ($(N : a) : b) = (N : ab) = ((N : b) : a)$.
(5) $(\bigcap N_\lambda : a) = \bigcap (N_\lambda : a)$.
(6) $(N : \sum a_\lambda) = \bigcap (N : a_\lambda)$.

Solution: For (1), given $m, n \in (N : a)$ and $x \in R$, $a \in a$, note $am, xn \in N$. So $a(m + xn) \in N$. So $m + xn \in (N : a)$. Thus (1) holds.

For (2), given $m \in N$, note $am \subset N$. So $n \in (N : a)$. Thus (2) holds.

For (3), given $m \in (N : a)$ and $a \in a$, note $am \in N$. Thus (3) holds.

For (4), fix $m \in M$. Given $b \in b$, note $bm \in (N : a)$ if and only if $a(bm) \in N$ for all $a \in a$. Also, $m \in (N : ab)$ if and only if $(ab)m \in N$ for all $a \in a$ and $b \in b$. But $a(bm) = (ab)m$. Thus $(N : a) : b) = (N : ab)$. Similarly, $(N : ab) = ((N : b) : a)$.

Thus (4) holds.

For (5), given $m \in M$, note $am \subset \bigcap N_\lambda$ if and only if $am \subset N_\lambda$ for all λ. Thus (5) holds.

For (6), given $m \in M$, note $(\sum a_\lambda)m \subset N$ if and only if $a_\lambda m \subset N$ for all λ. Thus (5) holds.
Thus (6) holds. □

Exercise (4.17). — Let \(R \) be a ring, \(M \) a module, \(N, N_\lambda, L, L_\lambda \) submodules for \(\lambda \in \Lambda \). Set \((N : L) := \{ x \in R \mid xL \subseteq N \} \). Show:

1. \((N : L) \) is an ideal.
2. \((N : L) = \text{Ann}((L + N)/N) \).
3. \((0 : L) = \text{Ann}(L) \).
4. \((N : L) = R \) if \(L \subseteq N \).
5. \(\bigcap N_\lambda : L = \bigcap (N_\lambda : L) \).

Solution: Assertions (1), (3), (5), (6) can be proved like (4.16)(1), (5), (6).

For (2), given \(x \in R \), note \(xL \subseteq N \) if and only if \(x(L + N) \subseteq N \). Thus (2) holds.

As to (3), it’s the special case of (2) where \(N = 0 \). Finally, (4) is trivial.

Exercise (4.18). — Let \(R \) be a ring, \(\mathcal{X} := \{ X_\lambda \} \) a set of variables, \(M \) a module, \(N \) a submodule. Set \(P := R[\mathcal{X}] \). Prove these statements:

1. \(M[\mathcal{X}] \) is universal among \(P \)-modules \(Q \) with a given \(R \)-map \(\alpha : M \to Q \); namely, there’s a unique \(P \)-map \(\beta : M[\mathcal{X}] \to Q \) with \(\beta M = \alpha \).
2. \(M[\mathcal{X}] \) has this UMP: given a \(P \)-module \(Q \) and \(R \)-maps \(\alpha : M \to Q \) and \(\chi_\lambda : Q \to Q \) for all \(\lambda \), there’s a unique \(R \)-map \(\beta : M[\mathcal{X}] \to Q \) with \(\beta M = \alpha \) and \(\beta \mu_{X_\lambda} = \chi_\lambda \beta \) for all \(\lambda \).
3. \(M[\mathcal{X}] / N[\mathcal{X}] = (M/N)[\mathcal{X}] \).

Solution: For (1), given a \(P \)-map \(\beta : M[\mathcal{X}] \to Q \), note \(\beta(\sum m_i M_i) \) is equal to \(\sum \beta(m_i) M_i \) with \(m_i \in M \) and \(M_i \) a monomial. So \(\beta \) is unique if \(\beta M = \alpha \), as then \(\beta(\sum m_i M_i) = \sum \alpha(m_i) M_i \). But the latter equation serves to define a map \(\beta : M[\mathcal{X}] \to Q \) with \(\beta M = \alpha \). Plainly \(\beta \) is an \(R \)-map. Thus (1) holds.

For (2), recall that to give the \(\chi_\lambda \) is the same as to give a \(P \)-module structure on \(Q \) compatible with the \(R \)-module structure on \(Q \); see (4.5). Furthermore, given an \(R \)-map \(\beta : M[\mathcal{X}] \to Q \), the condition \(\beta \mu_{X_\lambda} = \chi_\lambda \beta \) for all \(\lambda \) just means that \(\beta \) is an \(R[\mathcal{X}] \)-map. Thus (2) is equivalent to (1).

For (3), let \(\kappa_M : M \to M/N \) be the quotient map. Define \(\lambda : M[\mathcal{X}] \to (M/N)[\mathcal{X}] \) by \(\lambda(\sum m_i M_i) := \sum \kappa_M(m_i) M_i \). Plainly \(\lambda \) is a \(P \)-map, and \(N[\mathcal{X}] \subseteq \ker \lambda \). Also \(\lambda \) is surjective as \(\kappa_M \) is. Suppose that \(\lambda(\sum m_i M_i) = 0 \). Then \(\kappa_M(m_i) = 0 \). So \(m_i \in N \). So \(\sum m_i M_i \in N[\mathcal{X}] \). Thus \(\ker \lambda \subseteq N[\mathcal{X}] \). So \(\lambda \) induces an isomorphism \(M[\mathcal{X}] / N[\mathcal{X}] \xrightarrow{\sim} (M/N)[\mathcal{X}] \) by (4.6.1). Thus (3) holds.

Alternatively, in (3) the two \(P \)-modules are equal, as each is universal among \(P \)-modules \(Q \) with a given \(R \)-map \(\alpha : M \to Q \) vanishing on \(N \). Indeed, first, each is, plainly, a \(P \)-module with a canonical \(R \)-map from \(M \) vanishing on \(N \).

Next, (1) yields a unique \(P \)-map \(\beta : M[\mathcal{X}] \to Q \) with \(\beta M = \alpha \). But \(\alpha \) vanishes on \(N \). Hence \(\beta \) vanishes on \(N[\mathcal{X}] \). Thus \(\beta \) induces a \(P \)-map \(M[\mathcal{X}] / N[\mathcal{X}] \to Q \) whose composition with the canonical map \(M \to M[\mathcal{X}] / N[\mathcal{X}] \) is \(\alpha \).

Lastly, \(\alpha \) factors via \(M/N \). So (1) yields a unique \(P \)-map \((M/N)[\mathcal{X}] \to Q \) whose composition with the map \(M \to (M/N)[\mathcal{X}] \) is \(\alpha \). Thus (3) holds.

Exercise (4.19). — Let \(R \) be a ring, \(\mathcal{X} \) a set of variables, \(M \) a module, and \(N_1, \ldots, N_r \) submodules. Set \(N = \bigcap N_i \). Prove the following equations:

1. \(\text{Ann}(M[\mathcal{X}]) = \text{Ann}(M)[\mathcal{X}] \).
2. \(N[\mathcal{X}] = \bigcap N_i[\mathcal{X}] \).

Solution: For (1), use double inclusion. Given \(f \in R[\mathcal{X}] \), say \(f = \sum a_i M_i \) for monomials \(M_i \). First, assume \(f \in \text{Ann}(M[\mathcal{X}]) \). Given \(m \in M \), note that \(0 = fm = \sum a_i m M_i \). So \(a_i m = 0 \) for all \(i \). Thus \(f \in \text{Ann}(M)[\mathcal{X}] \).

252
Conversely, assume \(f \in \text{Ann}(M)[x] \). Then \(a_i \in \text{Ann}(M) \) for all \(i \). Given \(g \in M[x] \), say that \(g = \sum m_j M_j \) for \(m_j \in M \) and monomials \(M_j \). Then \(fg = \sum_{i,j} a_i m_j M_j M_j' = 0 \). Thus \(f \in \text{Ann}(M)[x] \). Thus (1) holds.

For (2), use double inclusion. Given \(m \in M[x] \), say \(m = \sum m_j M_j \) for \(m_j \in M \) and monomials \(M_j \). First, assume \(m \in N[x] \). Then for all \(j \), note \(m_j \in N \), so \(m_j \in N_i \) for all \(i \). So \(m \in N_i[x] \) for all \(i \). Thus \(m \in \bigcap N_i[x] \).

Conversely, assume \(m \in \bigcap N_i[x] \). Then, for all \(i \), as \(m \in N_i[x] \), each \(m_j \in N_i \). So each \(m_j \in N \). Thus \(m \in N[x] \). Thus (2) holds.

Exercise (4.20). — Let \(R \) be a ring, \(M \) a module, \(X \) a variable, \(F \in R[X] \). Assume there’s a nonzero \(G \in M[X] \) with \(FG = 0 \). Show there’s a nonzero \(m \in M \) with \(Fm = 0 \). Proceed as follows. Say \(G = m_0 + m_1 X + \cdots + m_s X^s \) with \(m_s \neq 0 \). Assume \(s \) is minimal among all possible \(G \). Show \(Fm_s = 0 \) (so \(s = 0 \)).

Solution: Suppose \(Fm_s \neq 0 \). Say \(F = a_0 + a_1 X + \cdots + a_r X^r \). Then there’s \(t \geq 0 \) with \(a_t m_s \neq 0 \), but \(a_{t+1} m_s = 0 \) for \(i > 0 \). Fix \(i > 0 \), and set \(H := a_{t+1} G \). Then \(FH = 0 \). But \(H = a_{t+1} m_0 + \cdots + a_r m_{s-1} X^{s-1} \). As \(s \) is minimal, \(H = 0 \). So \(a_{t+1} m_{s-1} = 0 \). But \(i > 0 \) is arbitrary. Also \(FG = 0 \) yields \(a_t m_s + a_{t+1} m_{s-1} + \cdots = 0 \). So \(a_t m_s = 0 \), a contradiction. Thus \(Fm_s = 0 \).

Exercise (4.21). — Let \(R \) be a ring, \(a \) and \(b \) ideals, and \(M \) a module. Set \(N := M/aM \). Show that \(M/(a+b)M \rightarrow N/bN \).

Solution: Note \(bN = (a+b)M/aM \). Thus (4.8.1) yields the isomorphism.

Exercise (4.22). — Show that a finitely generated free module has finite rank.

Solution: Say \(e_\lambda \) for \(\lambda \in \Lambda \) form a free basis, and \(m_1, \ldots, m_r \) generate. Then \(m_i = \sum x_{ij} e_\lambda \) for some \(x_{ij} \). Consider the \(e_\lambda \) that occur. Plainly, they are finite in number, and generate. So they form a finite free basis, as desired.

Exercise (4.23). — Let \(R \) be a domain, and \(x \in R \) nonzero. Let \(M \) be the submodule of \(\text{Frac}(R) \) generated by \(1, x^{-1}, x^{-2}, \ldots \). Suppose that \(M \) is finitely generated. Prove that \(x^{-1} \in R \), and conclude that \(M = R \).

Solution: Suppose \(M \) is generated by \(m_1, \ldots, m_k \). Say \(m_i = \sum_{j=0}^n a_{ij} x^{-j} \) for some \(n_i \) and \(a_{ij} \in R \). Set \(n := \max\{n_i\} \). Then \(1, x^{-1}, \ldots, x^{-n} \) generate \(M \). So

\[
x^{-(n+1)} = a_n x^{-n} + \cdots + a_1 x^{-1} + a_0
\]

for some \(a_i \in R \). Thus

\[
x^{-1} = a_n + \cdots + a_1 x^{-1} + a_0 x^n \in R.
\]

Finally, as \(x^{-1} \in R \) and \(R \) is a ring, also \(1, x^{-1}, x^{-2}, \ldots \in R \); so \(M \subset R \). Conversely, \(M \supset R \) as \(1 \in M \). Thus \(M = R \).

Exercise (4.24). — Let \(\Lambda \) be an infinite set, \(R_\lambda \) a nonzero ring for \(\lambda \in \Lambda \). Endow \(\prod R_\lambda \) and \(\bigoplus R_\lambda \) with componentwise addition and multiplication. Show that \(\prod R_\lambda \) has a multiplicative identity (so is a ring), but that \(\bigoplus R_\lambda \) does not (so is not a ring).

Solution: Consider the vector \((1) \) whose every component is \(1 \). Obviously, \((1) \) is a multiplicative identity of \(\prod R_\lambda \). On the other hand, no restricted vector \((x_\lambda) \) can be a multiplicative identity in \(\bigoplus R_\lambda \); indeed, because \(\Lambda \) is infinite, \(x_\mu \) must be zero for some \(\mu \). So \((x_\lambda) \cdot (y_\lambda) \neq (y_\lambda) \) if \(y_\mu \neq 0 \).
Exercise (4.25). — Let R be a ring, M a module, and M', M'' submodules. Show that $M = M' \oplus M''$ if and only if $M = M' + M''$ and $M' \cap M'' = 0$.

Solution: Assume $M = M' \oplus M''$. Then M is the set of pairs (m', m'') with $m' \in M'$ and $m'' \in M''$ by (4.13); further, M' is the set of $(m', 0)$, and M' is that of $(0, m'')$. So plainly $M = M' + M''$ and $M' \cap M'' = 0$.

Conversely, consider the map $M' \oplus M'' \to M$ given by $(m', m'') \mapsto m' + m''$. It is surjective if $M = M' + M''$. It is injective if $M' \cap M'' = 0$; indeed, if $m' + m'' = 0$, then $m' = -m'' \in M' \cap M'' = 0$, and so $(m', m'') = 0$ as desired. □

Exercise (4.26). — Let L, M, and N be modules. Consider a diagram

$$L \xrightarrow{\alpha} M \xrightarrow{\beta} N$$

where $\alpha, \beta, \rho,$ and σ are homomorphisms. Prove that

$$M = L \oplus N \quad \text{and} \quad \alpha = \iota_L, \quad \beta = \pi_N, \quad \sigma = \iota_N, \quad \rho = \pi_L$$

if and only if the following relations hold:

$$\beta \alpha = 0, \quad \beta \sigma = 1, \quad \rho \sigma = 0, \quad \rho \alpha 1, \quad \text{and} \quad \alpha \rho + \sigma \beta = 1.$$

Solution: If $M = L \oplus N$ and $\alpha = \iota_L, \beta = \pi_N, \sigma = \iota_N, \rho = \pi_L$, then the definitions immediately yield $\alpha \rho + \sigma \beta = 1$ and $\beta \alpha = 0, \beta \sigma = 1, \rho \sigma = 0, \rho \alpha 1$.

Conversely, assume $\alpha \rho + \sigma \beta = 1$ and $\beta \alpha = 0, \beta \sigma = 1, \rho \sigma = 0, \rho \alpha 1$. Consider the maps $\varphi : M \to L \oplus N$ and $\theta : L \oplus N \to M$ given by $\varphi m := (\rho m, \beta m)$ and $\theta(l, n) := \alpha l + \sigma n$. They are inverse isomorphisms, because

$$\varphi \theta(l, n) = (\rho \rho + \sigma \rho n, \beta \alpha l + \beta \sigma m) = (l, n) \quad \text{and} \quad \theta \varphi m = \alpha \rho m + \sigma \beta m = m.$$

Lastly, $\beta = \pi_N \varphi$ and $\rho = \pi_L \varphi$ by definition of φ, and $\alpha = \theta \iota_L$ and $\sigma = \theta \iota_N$ by definition of θ. □

Exercise (4.27). — Let L be a module, Λ a nonempty set, M_Λ a module for $\lambda \in \Lambda$. Prove that the injections $\iota_\kappa : M_\kappa \to \bigoplus M_\lambda$ induce an injection

$$\bigoplus \text{Hom}(L, M_\lambda) \to \text{Hom}(L, \bigoplus M_\lambda),$$

and that it is an isomorphism if L is finitely generated.

Solution: For $\lambda \in \Lambda$, let $\alpha_\lambda : L \to M_\lambda$ be maps, almost all 0. Then

$$(\sum \iota_\kappa \alpha_\lambda)(l) = (\alpha_\lambda(l)) \in \bigoplus M_\lambda.$$

So if $\sum \iota_\kappa \alpha_\lambda = 0$, then $\alpha_\lambda = 0$ for all λ. Thus the ι_κ induce an injection.

Assume L is finitely generated, say by l_1, \ldots, l_k. Let $\alpha : L \to \bigoplus M_\lambda$ be a map. Then each $\alpha(l_i)$ lies in a finite direct sum of $\bigoplus M_\lambda$. So $\alpha(L)$ lies in one too. Set $\alpha_\kappa := \pi_\kappa \alpha$ for all $\kappa \in \Lambda$. Then almost all α_κ vanish. So (α_κ) lies in $\bigoplus \text{Hom}(L, M_\lambda)$, and $\sum \iota_\kappa \alpha_\kappa = \alpha$. Thus the ι_κ induce a surjection, so an isomorphism. □

Exercise (4.28). — Let a be an ideal, Λ a nonempty set, M_Λ a module for $\lambda \in \Lambda$. Prove $a(\bigoplus M_\lambda) = \bigoplus aM_\lambda$. Prove $a(\prod M_\lambda) = \prod aM_\lambda$ if a is finitely generated.

Solution: First, $a(\bigoplus M_\lambda) \subset \bigoplus aM_\lambda$ because $a \cdot (m_\lambda) = (am_\lambda)$. Conversely, $a(\bigoplus M_\lambda) \supset \bigoplus aM_\lambda$ because $(a_\lambda m_\lambda) = \sum a_\lambda M_\lambda$ since the sum is finite.

Second, $a(\prod M_\lambda) \subset \prod aM_\lambda$ as $a(m_\lambda) = (am_\lambda)$. Conversely, say a is generated by f_1, \ldots, f_n. Then $a(\prod M_\lambda) \supset \prod aM_\lambda$. Indeed, take $(m_\lambda') \in \prod aM_\lambda$. Then for each λ, there is n_λ such that $m_\lambda' = \sum_{j=1}^{n_\lambda} a_{\lambda j} m_{\lambda j}$ with $a_{\lambda j} \in a$ and $m_{\lambda j} \in M_\lambda$. 254
Write $a_{\lambda j} = \sum_{i=1}^{n} x_{\lambda ji} f_i$ with the $x_{\lambda ji}$ scalars. Then

$$(m'_{\lambda}) = \left(\sum_{j=1}^{n} \sum_{i=1}^{n} f_i x_{\lambda ji} m_{\lambda j} \right) = \sum_{i=1}^{n} f_i \left(\sum_{j=1}^{n} x_{\lambda ji} m_{\lambda j} \right) \in \mathfrak{a}(\prod M_{\lambda}). \quad \square$$

Exercise (4.29). — Let R be a ring, Λ a set, M_{λ} a module for $\lambda \in \Lambda$, and $N_{\lambda} \subset M_{\lambda}$ a submodule. Set $M := \bigoplus M_{\lambda}$ and $N := \bigoplus N_{\lambda}$ and $Q := \bigoplus M_{\lambda}/N_{\lambda}$. Show $M/N = Q$.

Solution: For each λ, let $\kappa_{\lambda} : M_{\lambda} \to M_{\lambda}/N_{\lambda}$ be the quotient map. Define $\kappa : M \to Q$ by $\kappa((m_{\lambda})) = (\kappa_{\lambda}(m_{\lambda}))$.

Given $(q_{\lambda}) \in Q$, say $q_{\lambda} = \kappa_{\lambda}(m_{\lambda})$. Then $\kappa((m_{\lambda})) = (q_{\lambda})$. Thus κ is surjective.

Exercise (4.29). — Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence. Prove that, if M' and M'' are finitely generated, then so is M.

Solution: Let $m''_1, \ldots, m''_n \in M$ map to elements generating M''. Let $m \in M$, and write its image in M'' as a linear combination of the images of the m''_i. Let $m'' \in M$ be the same combination of the m''_i. Set $m' := m - m''$. Then m' maps to 0 in M''; so m' is the image of an element of M'.

Exercise (5.5). — Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence. Prove that, if M' and M'' are finitely generated, then so is M.

Exercise (5.15). — Show that a free module $R^{\oplus \Lambda}$ is projective.

Exercise (5.18). — Let R be a ring, and $0 \to L \to R^n \to M \to 0$ an exact sequence. Prove M is finitely presented if and only if L is finitely generated.

Exercise (5.21). — Let M' and M'' be modules, $N \subset M'$ a submodule. Set $M := M' \oplus M''$. Using (5.2) (1) and (5.3) and (5.4), prove $M/N = M'/N \oplus M''$.

Solution: By (5.2) (1) and (5.3), the two sequences $0 \to M'' \to M'' \to 0$ and $0 \to N \to M' \to M'/N \to 0$ are exact. So by (5.4), the sequence

$$0 \to N \to M' \oplus M'' \to (M'/N) \oplus M'' \to 0$$

is exact. Thus (5.3) yields the assertion. \[\square\]
Exercise (5.22). — Let \(M', M'' \) be modules, and set \(M := M' \oplus M'' \). Let \(N \) be a submodule of \(M \) containing \(M' \), and set \(N' := N \cap M' \). Prove \(N = M' \oplus N'' \).

Solution: Form the sequence \(0 \to M' \to N \to \pi_M'N \to 0 \). It splits by (5.8) as \((\pi_M'|N) \circ \iota_{M'} = 1_{M'} \). Finally, if \((m',m'') \in N \), then \((0,m'') \in N \) as \(M' \subset N \); hence, \(\pi_{M''}N = N'' \).

Exercise (5.23) (Five Lemma). — Consider this commutative diagram:

\[
\begin{array}{ccccccccc}
M_4 & \xrightarrow{\alpha_4} & M_3 & \xrightarrow{\alpha_3} & M_2 & \xrightarrow{\alpha_2} & M_1 & \xrightarrow{\alpha_1} & M_0 \\
\gamma_4 & & \gamma_3 & & \gamma_2 & & \gamma_1 & & \gamma_0 \\
N_4 & \xrightarrow{\beta_4} & N_3 & \xrightarrow{\beta_3} & N_2 & \xrightarrow{\beta_2} & N_1 & \xrightarrow{\beta_1} & N_0
\end{array}
\]

Assume it has exact rows. Via a chase, prove these two statements:

1. If \(\gamma_3 \) and \(\gamma_1 \) are surjective and if \(\gamma_0 \) is injective, then \(\gamma_2 \) is surjective.
2. If \(\gamma_3 \) and \(\gamma_1 \) are injective and if \(\gamma_4 \) is surjective, then \(\gamma_2 \) is injective.

Solution: Let’s prove (1). Take \(n_2 \in N_2 \). Since \(\gamma_1 \) is surjective, there is \(m_1 \in M_1 \) such that \(\gamma_1(m_1) = \beta_2(n_2) \). Then \(\gamma_0\alpha_1(m_1) = \beta_1\gamma_1(m_1) = \beta_1\beta_2(n_2) = 0 \) by commutativity and exactness. Since \(\gamma_0 \) is injective, \(\alpha_1(m_1) = 0 \). Hence exactness yields \(m_2 \in M_2 \) with \(\alpha_2(m_2) = m_1 \). So \(\beta_2(\gamma_2(m_2) - n_2) = \gamma_1\alpha_2(m_2) - \beta_2(n_2) = 0 \).

Hence exactness yields \(n_3 \in N_3 \) with \(\beta_3(n_3) = \gamma_2(m_2) - n_2 \). Since \(\gamma_3 \) is surjective, there is \(m_3 \in M_3 \) with \(\gamma_3(m_3) = n_3 \). Then \(\gamma_2\alpha_3(m_3) = \beta_3\gamma_3(m_3) = \gamma_2(m_2) - n_2 \). Hence \(\gamma_3(m_2 - \alpha_3(m_3)) = n_2 \). Thus \(\gamma_2 \) is surjective.

The proof of (2) is similar.

Exercise (5.24) (Nine Lemma). — Consider this commutative diagram:

\[
\begin{array}{ccccccccc}
0 & \to & L' & \to & L & \to & L'' & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & M' & \to & M & \to & M'' & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & N' & \to & N & \to & N'' & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & & & 0 & & & & 0
\end{array}
\]

Assume all the columns are exact and the middle row is exact. Prove that the first row is exact if and only if the third is.

Solution: The first row is exact if the third is owing to the Snake Lemma (5.10) applied to the bottom two rows. The converse is proved similarly.

Exercise (5.25). — Referring to (4.8), give an alternative proof that \(\beta \) is an isomorphism by applying the Snake Lemma to the diagram

\[
\begin{array}{ccccccccc}
0 & \to & M & \to & N & \to & N/M & \to & 0 \\
\downarrow & & \kappa & & \downarrow & & \beta & & \downarrow \\
0 & \to & M/L & \to & N/L & \to & (N/L)/(M/L) & \to & 0
\end{array}
\]

256
Solutions (5.26) / (5.29)

Exact Sequences

Solution: The Snake Lemma yields an exact sequence,

\[L \xrightarrow{1} L \to \text{Ker}(\beta) \to 0; \]

hence, \(\text{Ker}(\beta) = 0 \). Moreover, \(\beta \) is surjective because \(\kappa \) and \(\lambda \) are. \(\square \)

Exercise (5.26). — Consider this commutative diagram with exact rows:

\[
\begin{array}{ccc}
M' & \xrightarrow{\beta} & M \\
\downarrow{\alpha'} & & \downarrow{\alpha} \\
N' & \xrightarrow{\beta'} & N
\end{array}
\]

Assume \(\alpha' \) and \(\gamma \) are surjective. Given \(n \in N \) and \(m'' \in M'' \) with \(\alpha''(m'') = \gamma(n) \), show that there is \(m \in M \) such that \(\alpha(m) = n \) and \(\gamma(m) = m'' \).

Solution: Since \(\gamma \) is surjective, there is \(m_1 \in M \) with \(\gamma(m_1) = m'' \). Then \(\gamma(n - \alpha(m_1)) = 0 \) as \(\alpha''(m'') = \gamma(n) \) and as the right-hand square is commutative. So by exactness of the bottom row, there is \(n' \in N' \) with \(\beta'(n') = n - \alpha(m_1) \). Since \(\alpha' \) is surjective, there is \(m' \in M' \) with \(\alpha'(m') = n' \). Set \(m := m_1 + \beta(m') \). Then \(\gamma(m) = m'' \) as \(\gamma \beta = 0 \). Further, \(\alpha(m) = \alpha(m_1) + \beta(n') = n \) as the left-hand square is commutative. Thus \(m \) works. \(\square \)

Exercise (5.27). — Let \(R \) be a ring. Show that a module \(P \) is finitely generated and projective if and only if it’s a direct summand of a free module of finite rank.

Solution: Assume \(P \) is generated by \(n \) elements. Then (5.13) yields an exact sequence \(0 \to K \to R^n \to P \to 0 \). Assume \(P \) is projective too, then this sequence splits by (5.16), as desired.

Conversely, assume \(P \oplus K \cong R^n \) for some \(K \) and \(n \). Then \(P \) is projective by (5.16). Also, the projection \(R^n \to P \) is surjective; so \(P \) is finitely generated. \(\square \)

Exercise (5.28). — Let \(R \) be a ring, \(P \) and \(N \) finitely generated modules with \(P \) projective. Prove \(\text{Hom}(P, N) \) is finitely generated, and is finitely presented if \(N \) is.

Solution: Say \(P \) is generated by \(n \) elements. Then (5.13) yields an exact sequence \(0 \to K \to R^n \to P \to 0 \). It splits by (5.16). So (4.13.2) yields

\[\text{Hom}(P, N) \oplus \text{Hom}(K, N) = \text{Hom}(R^\oplus n, N). \]

But \(\text{Hom}(R^\oplus n, N) = \text{Hom}(R, N)^\oplus n = N^\oplus n \) by (4.13.2) and (4.3). Also \(N \) is finitely generated. Hence \(\text{Hom}(R^\oplus n, N) \) is too. But \(\text{Hom}(P, N) \) and \(\text{Hom}(K, N) \) are quotients of \(\text{Hom}(R^\oplus n, N) \) by (5.8). Thus they’re finitely generated too.

Suppose now there is a finite presentation \(F_2 \to F_1 \to N \to 0 \). Then (5.15) and (5.16) yield the exact sequence

\[\text{Hom}(R^\oplus n, F_2) \to \text{Hom}(R^\oplus n, F_1) \to \text{Hom}(R^\oplus n, N) \to 0. \]

But the \(\text{Hom}(R^\oplus n, F_i) \) are free of finite rank by (4.13.1) and (4.13.2). Thus \(\text{Hom}(R^\oplus n, N) \) is finitely presented.

As in (5.2), form the (split) exact sequence

\[0 \to \text{Hom}(K, N) \to \text{Hom}(R^\oplus n, N) \to \text{Hom}(P, N) \to 0. \]

Apply (5.19). Thus \(\text{Hom}(P, N) \) is finitely presented. \(\square \)

Exercise (5.29). — Let \(R \) be a ring, \(X_1, X_2, \ldots \) infinitely many variables. Set \(P := R[X_1, X_2, \ldots] \) and \(M := P/\langle X_1, X_2, \ldots \rangle \). Is \(M \) finitely presented? Explain.

257
Solutions (5.30) / (5.37) App: Fitting Ideals

Solution: No, otherwise by (5.18), the ideal \(\langle X_1, X_2, \ldots \rangle \) would be generated by some \(f_1, \ldots, f_n \in P \), so also by \(X_1, \ldots, X_m \) for some \(m \), but plainly it isn’t. \(\square \)

Exercise (5.30). — Let \(0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0 \) be a short exact sequence with \(M \) finitely generated and \(N \) finitely presented. Prove \(L \) is finitely generated.

Solution: Let \(R \) be the ground ring. Say \(M \) is generated by \(m \) elements. They yield a surjection \(\mu : R^m \to M \) by (4.10)(1). As in (5.19), \(\mu \) induces the following commutative diagram, with \(\lambda \) surjective:

\[
\begin{array}{ccc}
0 & \to & K \\
\downarrow \lambda & & \downarrow \mu \\
0 & \to & L \\
\end{array}
\]

By (5.18), \(K \) is finitely generated. Thus \(L \) is also, as \(\lambda \) is surjective. \(\square \)

5. Appendix: Fitting Ideals

Exercise (5.36). — Let \(R \) be a ring, and \(a_1, \ldots, a_m \in R \) with \(\langle a_1 \rangle \supset \cdots \supset \langle a_m \rangle \). Set \(M := R/(a_1) \oplus \cdots \oplus R/(a_m) \). Show that \(F_r(M) = \langle a_1 \cdots a_{m-r} \rangle \).

Solution: Form the presentation \(R^m \xrightarrow{\alpha} R^m \to M \to 0 \) where \(\alpha \) has matrix

\[
A = \begin{pmatrix} a_1 & 0 \\ & \ddots \\ 0 & a_m \end{pmatrix}
\]

Set \(s := m - r \). Now, \(a_i \in \langle a_{i-1} \rangle \) for all \(i > 1 \). Hence \(a_{i_1} \cdots a_{i_s} \in \langle a_{1} \cdots a_s \rangle \) for all \(1 \leq i_1 < \cdots < i_s \leq m \). Thus \(L_s(A) = \langle a_1 \cdots a_s \rangle \), as desired. \(\square \)

Exercise (5.37). — In the setup of (5.36), assume \(a_1 \) is a nonunit. Show:

1. Then \(m \) is the smallest integer such that \(F_m(M) = R \).
2. Let \(n \) be the largest integer with \(F_n(M) = \langle 0 \rangle \); set \(k := m - n \). Assume \(R \) is a domain. Then (a) \(a_i \neq 0 \) for \(i < k \) and \(a_i = 0 \) for \(i \geq k \), and (b) each \(a_i \) is unique up to unit multiple.

Solution: For (1), note there’s a presentation \(R^m \to R^m \to M \to 0 \); see the solution to (5.36). So \(F_m(M) = R \) by (5.35). On the other hand, \(F_{m-1}(M) = \langle a_1 \rangle \) by (5.36). So \(F_{m-1}(M) \neq R \) as \(a_1 \) is a nonunit. Thus (1) holds.

For (2)(a), note \(F_{n+1}(M) \neq \langle 0 \rangle \) and \(F_n(M) = \langle 0 \rangle \). Hence \(a_1 \cdots a_{k-1} \neq 0 \) and \(a_1 \cdots a_k = 0 \) by (5.36). But \(R \) is a domain. Hence \(a_1, \ldots, a_{i} \neq 0 \) for \(i < k \) and \(a_k = 0 \). But \(\langle k \rangle \supset \cdots \supset \langle a_m \rangle \). Hence \(a_i = 0 \) for \(i \geq k \). Thus (2)(a) holds.

For (2)(b), given \(b_1, \ldots, b_p \in R \) with \(b_1 \) a nonunit, with \(\langle b_1 \rangle \supset \cdots \supset \langle b_p \rangle \) and \(M = (R/b_1) \oplus \cdots \oplus (R/b_p) \), note that (1) yields \(p = m \) and that (2)(a) yields \(b_i \neq 0 \) for \(i < k \) and \(b_i = 0 \) for \(i \geq k \).

Given \(i, (5.36) \) yields \(\langle a_1 \cdots a_i \rangle = \langle b_1 \cdots b_i \rangle \). But \(R \) is a domain. So (2.30) yields a unit \(u_i \) such that \(a_1 \cdots a_i = u_i b_1 \cdots b_i \).

If \(i < k \), then \(b_1 \cdots b_{i-1} \neq 0 \); whence, \(u_{i-1} a_i = u_i b_i \). Thus (2)(b) holds. \(\square \)

258
Exercise (5.41) (Structure Theorem). — Let R be a PID, M a finitely generated module. Set $T := \{m \in M \mid xm = 0$ for some nonzero $x \in R\}$. Show:

1. Then M has a free submodule F of finite rank with $M = T \oplus F$.
2. Then $T \cong \bigoplus_{i=1}^{n} R/(d_i)$ with the d_i nonzero norms in R, unique up to unit multiple, and $d_j \mid d_{j+1}$ for $1 \leq j < n$.
3. Then $T \cong \bigoplus_{i=1}^{n} M(p_i)$ with $M(p_i) := \bigoplus_{i=1}^{n} R/(p_i^{e_{ij}})$, the p_i primes in R, unique up to unit multiple, and the e_{ij} unique with $0 \leq e_{ij} \leq e_{i j + 1}$ and $1 \leq e_{in}$.
4. If M isn’t finitely generated, there may be no free F with $M = T \oplus F$.

Solution: Note (4.10)(1) yields a free module E of finite rank and a surjection $E \twoheadrightarrow M$. Let N be the kernel. Then N is free of finite rank by (4.12). So (5.38) yields a decomposition $E = E' \oplus F$, a basis e_1, \ldots, e_n of E', and essentially unique $d_1, \ldots, d_n \in R$ with $N = Rd_1 e_1 + \cdots + Rd_n e_n$ and $(d_1) \supset \cdots \supset (d_n) \neq 0$. Moreover, $E' = \{m \in M \mid xm \in N$ for some nonzero $x \in R\}$; so $E'/N = T \subset M$.

Note (1) holds as $M = T \oplus F$ by (5.21), and F is free of finite rank by (4.12).

Note (2) holds as $E'/N = R/(d_1) \oplus \cdots \oplus R/(d_n)$ by (4.29).

For (3), recall R is a UFD: see (2.17). Say $d_n = p_1^{e_{1n}} \cdots p_m^{e_{mn}}$ with the p_i primes in R, unique up to unit multiple, and the e_{ij} unique with $1 \leq e_{in}$. Now, $d_j \mid d_{j+1}$ for $1 \leq j < n$; so $d_j = p_1^{e_{1j}} \cdots p_m^{e_{mj}}$ for unique e_{ij} and $0 \leq e_{ij} \leq e_{i j + 1}$. Finally, $R/(d_j) = R/(p_1^{e_{1j}}) \oplus \cdots \oplus R/(p_m^{e_{mj}})$ by (1.21)(4)(c). Thus (3) holds.

For (4), take $R := \mathbb{Z}$ and $M := \mathbb{Q}$. Then $T = 0$, but \mathbb{Q} isn’t free by (4.11). □

Exercise (5.42). — Criticize the following misstatement of (5.8): given a 3-term exact sequence $M' \overset{\alpha}{\rightarrow} M \overset{\beta}{\rightarrow} M''$, there is an isomorphism $M \cong M' \oplus M''$ if and only if there is a section $\sigma: M'' \rightarrow M$ of β and α is injective.

Moreover, show that this construction (due to B. Noohi) yields a counterexample: For each integer $n \geq 2$, let M_n be the direct sum of countably many copies of $\mathbb{Z}/\langle n \rangle$. Set $M := \bigoplus M_n$. Then let p be a prime number, and take M' to be a cyclic subgroup of order p of one of the components of M isomorphic to $\mathbb{Z}/\langle p^2 \rangle$.

Solution: We have $\alpha: M' \rightarrow M$, and $\iota_{M'}: M' \rightarrow M' \oplus M''$, but (5.8) requires that they be compatible with the isomorphism $M \cong M' \oplus M''$, and similarly for $\beta: M \rightarrow M''$ and $\iota_M: M' \oplus M'' \rightarrow M''$.

Moreover, for the counterexample, let’s first check these two statements:

1. For any finite abelian group G, we have $G \oplus M \cong M$.
2. For any finite subgroup $G \subset M$, we have $M/G \cong M$.

Statement (1) holds since G is isomorphic to a direct sum of copies of $\mathbb{Z}/\langle n \rangle$ for various n by the structure theorem for finite abelian groups (5.41).

To prove (2), write $M = B \bigoplus M'$, where B contains G and involves only finitely many components of M. Then $M' \cong M$. Therefore, (5.22) and (1) yield

$$M/G \cong (B/G) \oplus M' \cong M.$$

Finally, there’s no retraction $\mathbb{Z}/\langle p^2 \rangle \rightarrow M'$; so there is no retraction $M \rightarrow M'$ either, since the latter would induce the former. Finally, take $M'' := M/M'$. Then (1) and (2) yield $M \cong M' \oplus M''$. □
6. Direct Limits

Exercise (6.13) — (1) Show that the condition (6.2)(1) is equivalent to the commutativity of the corresponding diagram:

\[
\begin{array}{ccc}
\Hom_{\mathcal{C}}(B, C) & \to & \Hom_{\mathcal{C}'}(F(B), F(C)) \\
\downarrow & & \downarrow \\
\Hom_{\mathcal{C}}(A, C) & \to & \Hom_{\mathcal{C}'}(F(A), F(C))
\end{array}
\]

(6.13.1)

(2) Given \(\gamma : C \to D\), show (6.2)(1) yields the commutativity of this diagram:

\[
\begin{array}{ccc}
\Hom_{\mathcal{C}}(B, C) & \to & \Hom_{\mathcal{C}'}(F(B), F(C)) \\
\downarrow & & \downarrow \\
\Hom_{\mathcal{C}}(A, D) & \to & \Hom_{\mathcal{C}'}(F(A), F(D))
\end{array}
\]

Solution: In (6.13.1), the left-hand vertical map is given by composition with \(\alpha\), and the right-hand vertical map is given by composition with \(F(\alpha)\). So the composition of the top map and the right-hand map sends \(\beta\) to \(F(\beta)F(\alpha)\), whereas the composition of the left-hand map with the bottom map sends \(\beta\) to \(F(\beta\alpha)\). These two images are always equal if and only if (6.13.1) commutes. Thus (6.2)(1) is equivalent to the commutativity of (6.13.1).

As to (2), the argument is similar.

Exercise (6.14) — Let \(\mathcal{C}\) and \(\mathcal{C}'\) be categories, \(F : \mathcal{C} \to \mathcal{C}'\) and \(F' : \mathcal{C}' \to \mathcal{C}\) an adjoint pair. Let \(\varphi_{A,A'} : \Hom_{\mathcal{C}'}(FA, A') \to \Hom_{\mathcal{C}}(A, F'A)\) denote the natural bijection, and set \(\eta_A := \varphi_{A,FA}(1_{FA})\). Do the following:

1. Prove \(\eta_A\) is natural in \(A\); that is, given \(g : A \to B\), the induced square

\[
\begin{array}{ccc}
A & \to & F'FA \\
\downarrow & & \downarrow \\
B & \to & F'FB
\end{array}
\]

is commutative. We call the natural transformation \(A \mapsto \eta_A\) the unit of \((F, F')\).

2. Given \(f' : FA \to A'\), prove \(\varphi_{A,A'}(f') = F'f' \circ \eta_A\).

3. Prove the canonical map \(\eta_A : A \to F'FA\) is universal from \(A\) to \(F'\); that is, given \(f : A \to F'A'\), there is a unique map \(f' : FA \to A'\) with \(F'f' \circ \eta_A = f\).

4. Conversely, instead of assuming \((F, F')\) is an adjoint pair, assume given a natural transformation \(\eta : 1_{\mathcal{C}} \to F'\) satisfying (1) and (3). Prove the equation in (2) defines a natural bijection making \((F, F')\) an adjoint pair, whose unit is \(\eta\).

5. Identify the units in the two examples in (6.3): the “free module” functor and the “polynomial ring” functor.

(Dually, we can define a counit \(\varepsilon : FF' \to 1_{\mathcal{C}'}\), and prove similar statements.)

Solution: For (1), form this canonical diagram, with horizontal induced maps:

\[
\begin{array}{ccc}
\Hom_{\mathcal{C}'}(FA, FA) & \to & \Hom_{\mathcal{C}'}(FA, FB) \\
\downarrow \varphi_{A,FA} & & \downarrow \varphi_{A,FB} \\
\Hom_{\mathcal{C}}(A, F'FA) & \to & \Hom_{\mathcal{C}}(A, F'FB)
\end{array}
\]

(6.13.1)

\[
\begin{array}{ccc}
\Hom_{\mathcal{C}'}(FB, FB) & \leftarrow & \Hom_{\mathcal{C}'}(FB, FA) \\
\downarrow \varphi_{B,FB} & & \downarrow \varphi_{B,FA} \\
\Hom_{\mathcal{C}}(B, F'FB) & \leftarrow & \Hom_{\mathcal{C}}(B, F'FA)
\end{array}
\]

(6.14.1)
Solutions (6.15) / (6.16) Direct Limits

It commutes since \(\varphi \) is natural. Follow \(1_{FA} \) out of the upper left corner to find \(F'Fg \circ \eta_A = \varphi_{A,FB}(Fg) \) in \(\text{Hom}_C(A, F'FB) \). Follow \(1_{FB} \) out of the upper right corner to find \(\varphi_{A,FB}(Fg) = \eta_B \circ g \) in \(\text{Hom}_C(A, F'FB) \). Thus \((F'Fg) \circ \eta_A = \eta_B \circ g \).

For (2), form this canonical commutative diagram:

\[
\begin{array}{c}
\text{Hom}_C(FA, FA) \\
\downarrow \quad \varphi_{A,FA} \\
\text{Hom}_C(A, F'FA) \\
\end{array} \quad \begin{array}{c}
\longrightarrow \\
\varphi_{A,A'} \\
\longrightarrow \\
\end{array} \\
\begin{array}{c}
\text{Hom}_C(FA, A') \\
\downarrow \quad \varphi_{A,A'} \\
\text{Hom}_C(A, F'A') \\
\end{array}
\]

Follow \(1_{FA} \) out of the upper left-hand corner to find \(\varphi_{A,A'}(f') = F'f' \circ \eta_A \).

For (3), given an \(f \), note that (2) yields \(\varphi_{A,A'}(f') = f \); whence, \(f' = \varphi^{-1}_{A,A'}(f) \).

Thus \(f' \) is unique. Further, an \(f' \) exists: just set \(f' := \varphi^{-1}_{A,A'}(f) \).

For (4), set \(\psi_{A,A'}(f') := F'f' \circ \eta_A \). As \(\eta_A \) is universal, given \(f : A \to F'A' \), there is a unique \(f' : FA \to A' \) with \(F'f' \circ \eta_A = f \). Thus \(\psi_{A,A'} \) is a bijection:

\[
\psi_{A,A'}: \text{Hom}_C(FA, A') \cong \text{Hom}_C(A, F'A').
\]

Also, \(\psi_{A,A'} \) is natural in \(A \), as \(\eta_A \) is natural in \(A \) and \(F' \) is a functor. And, \(\psi_{A,A'} \) is natural in \(A' \), as \(F' \) is a functor. Clearly, \(\psi_{A,FA}(1_{FA}) = \eta_A \). Thus (4) is done.

For (5), use the notation of (6.3). Clearly, if \(F \) is the “free module" functor, then \(\eta_{\Lambda} : \Lambda \to R^{\oplus \Lambda} \) carries an element of \(\Lambda \) to the corresponding standard basis vector. Further, if \(F \) is the “polynomial ring" functor and if \(A \) is the set of variables \(X_1, \ldots, X_n \), then \(\eta_A(X_i) \) is just \(X_i \) viewed in \(R[X_1, \ldots, X_n] \).

\(\square \)

Exercise (6.15). — Let \(\Lambda, \mathcal{C}, \mathcal{C}' \) be categories with \(\Lambda \) small. Let \(F, F' : \mathcal{C} \to \mathcal{C}' \) be functors, and \(\theta : F \to F' \) a natural transformation. Let \(\lambda \mapsto M_\lambda \) be a functor from \(\Lambda \) to \(\mathcal{C} \); assume \(\lim_{\Lambda} M\lambda \), \(\lim_{\Lambda} F(M\lambda) \), and \(\lim_{\Lambda} F'(M\lambda) \) exist; and form this diagram:

\[
\begin{array}{c}
\lim_{\Lambda} F(M_\lambda) \\
\downarrow \theta(M_\lambda) \\
\lim_{\Lambda} F'(M_\lambda)
\end{array} \quad \begin{array}{c}
\phi_F \downarrow \quad \phi_{F'} \quad \phi_{F'} \\
\lim_{\Lambda} F(M_\lambda) \\
\downarrow \theta(M_\lambda) \\
\lim_{\Lambda} F'(M_\lambda)
\end{array}
\]

Assuming \(\phi_{F'} \) is an isomorphism, show the diagram is commutative.

Solution: Augment the diagram with a commutative square as follows:

\[
\begin{array}{c}
\lim_{\Lambda} F(M_\lambda) \\
\downarrow \theta(M_\lambda) \\
\lim_{\Lambda} F'(M_\lambda)
\end{array} \quad \begin{array}{c}
\phi_F \downarrow \quad \phi_{F'} \quad \phi_{F'} \\
\lim_{\Lambda} F(M_\lambda) \\
\downarrow \theta(M_\lambda) \\
\lim_{\Lambda} F'(M_\lambda)
\end{array}
\]

where the new horizontal maps are the insertions. By the construction of \(\phi_F \) and \(\phi_{F'} \), the horizontal compositions are equal to the images under \(F \) and \(F' \) of the insertions \(M_\lambda \to \lim_{\Lambda} M\lambda \). So \(\phi_{F'}^{-1}(\lim_{\Lambda} M\lambda) \phi_F \) can replace \(\lim_{\Lambda} \theta(M\lambda) \) to make the left-hand square commutative. Hence, those two maps are equal by uniqueness. Thus the right square is commutative, as desired.

\(\square \)

Exercise (6.16). — Let \(\alpha : L \to M \) and \(\beta : L \to N \) be two maps in a category \(\mathcal{C} \). Their pushout is defined as the object of \(\mathcal{C} \) universal among objects \(P \) equipped with a pair of maps \(\gamma : M \to P \) and \(\delta : N \to P \) such that \(\gamma \alpha = \delta \beta \). Express the pushout as a direct limit. Show that, in \((\text{Sets})\), the pushout is the disjoint union
Let \(M \cup N \) modulo the smallest equivalence relation \(\sim \) with \(m \sim n \) if there is \(\ell \in L \) with \(\alpha(\ell) = m \) and \(\beta(\ell) = n \). Show that, in \((\mathcal{R}\text{-mod})\), the pushout is equal to the direct sum \(M \oplus N \) modulo the image of \(L \) under the map \((\alpha, -\beta) \).

Solution: Let \(\Lambda \) be the category with three objects \(\lambda, \mu, \) and \(\nu \) and two nonidentity maps \(\lambda \to \mu \) and \(\lambda \to \nu \). Define a functor \(\lambda \mapsto M_\lambda \) by \(M_\lambda := L \), \(M_\mu := M \), \(M_\nu := N \), \(\alpha_\mu := \alpha \), and \(\alpha_\nu := \beta \). Set \(Q := \lim_\to M_\lambda \). Then writing \(N \leftarrow^\beta L \twoheadrightarrow^\alpha M \)

\[
\begin{array}{ccc}
N & \leftarrow & L \\
\eta_\lambda & \downarrow & \eta_\mu \\
Q & \leftarrow & Q
\end{array}
\]

we see that \(Q \) is equal to the pushout of \(\alpha \) and \(\beta \); here \(\gamma = \eta_\mu \) and \(\delta = \eta_\nu \).

In \((\text{Sets})\), take \(\gamma \) and \(\delta \) to be the inclusions followed by the quotient map. Clearly \(\gamma \alpha = \delta \beta \). Further, given \(P \) and maps \(\gamma' : M \to P \) and \(\delta' : N \to P \), they define a unique map \(M \cup N \to P \), and it factors through the quotient if and only if \(\gamma' \alpha = \delta' \beta \). Thus \((M \cup N)/\sim \) is the pushout.

In \((\mathcal{R}\text{-mod})\), take \(\gamma \) and \(\delta \) to be the inclusions followed by the quotient map. Then for all \(\ell \in L \), clearly \(\iota_M \alpha(\ell) - \iota_N \beta(\ell) = (\alpha(\ell), -\beta(\ell)) \). Hence \(\iota_M \alpha(\ell) - \iota_N \beta(\ell) \) have the same image in the quotient. Thus \(\gamma \alpha = \delta \beta \). Given \(\gamma' : M \to P \) and \(\delta' : N \to P \), they define a unique map \(M \oplus N \to P \), and it factors through the quotient if and only if \(\gamma' \alpha = \delta' \beta \). Thus \((M \oplus N)/\sim \) is the pushout. \(\square \)

Exercise (6.17). Let \(R \) be a ring, \(M \) a module, \(N \) a submodule, \(X \) a set of variables. Prove \(M \to M[X] \) is the left adjoint of the restriction of scalars from \(R[X] \) to \(R \). As a consequence, reprove the equation \((M/N)[X] = M[X]/N[X]\).

Solution: First, (4.18)(1) yields, for any \(R[X] \)-module \(P \), a bijection

\[
\varphi_{M,P} : \text{Hom}_{R[X]}(M[X], P) \cong \text{Hom}_R(M, P) \quad \text{with} \quad \varphi_{M,P}(\beta) := \beta|_M.
\]

Plainly, \(\varphi_{M,P} \) is natural in \(M \) and \(P \). Thus the first assertion holds.

Next, recall a quotient is a direct limit; see (6.6). But every left adjoint preserves direct limits by (6.9). Thus the first assertion yields the desired equation. \(\square \)

Exercise (6.18). Let \(\mathcal{C} \) be a category, \(\Sigma \) and \(\Lambda \) small categories. Prove:

1. Then \(\mathcal{C}^{\Sigma \times \Lambda} = (\mathcal{C}^\Lambda)^\Sigma \) with \((\sigma, \lambda) \mapsto M_{\sigma,\lambda} \) corresponding to \(\sigma \mapsto (\lambda \mapsto M_{\sigma,\lambda}) \).
2. Assume \(\mathcal{C} \) has direct limits indexed by \(\Sigma \) and by \(\Lambda \). Then \(\mathcal{C} \) has direct limits indexed by \(\Sigma \times \Lambda \), and \(\lim_{\sigma \in \Sigma} \lim_{\lambda \in \Lambda} M_{\sigma,\lambda} = \lim_{(\sigma,\lambda) \in \Sigma \times \Lambda} M_{\sigma,\lambda} \).

Solution: Consider (1). In \(\Sigma \times \Lambda \), a map \((\sigma, \lambda) \to (\tau, \mu) \) factors in two ways:

\[
(\sigma, \lambda) \to (\tau, \lambda) \to (\tau, \mu) \quad \text{and} \quad (\sigma, \lambda) \to (\sigma, \mu) \to (\tau, \mu).
\]

So, given a functor \((\sigma, \lambda) \mapsto M_{\sigma,\lambda} \), there is a commutative diagram like (6.10.1).

It shows that the map \(\sigma \to \tau \) in \(\Sigma \) induces a natural transformation from \(\lambda \mapsto M_{\sigma,\lambda} \) to \(\lambda \mapsto M_{\lambda,\lambda} \). Thus the rule \(\sigma \mapsto (\lambda \mapsto M_{\sigma,\lambda}) \) is a functor from \(\Sigma \) to \(\mathcal{C}^\Lambda \).

A map from \((\sigma, \lambda) \mapsto M_{\sigma,\lambda} \) to a second functor \((\sigma, \lambda) \mapsto N_{\sigma,\lambda} \) is a collection of
maps \(\theta_{\sigma, \lambda} : M_{\sigma, \lambda} \to N_{\sigma, \lambda} \) such that, for every map \((\sigma, \lambda) \to (\tau, \mu)\), the square

\[
\begin{array}{ccc}
M_{\sigma, \lambda} & \to & M_{\tau, \mu} \\
\downarrow \theta_{\sigma, \lambda} & & \downarrow \theta_{\tau, \mu} \\
N_{\sigma, \lambda} & \to & N_{\tau, \mu}
\end{array}
\]

is commutative. Factoring \((\sigma, \lambda) \to (\tau, \mu)\) in two ways as above, we get a commutative cube. It shows that the \(\theta_{\sigma, \lambda}\) define a map in \((\mathcal{C}^\lambda)^\Sigma\).

This passage from \(\mathcal{C}^{\Sigma \times \Lambda}\) to \((\mathcal{C}^\lambda)^\Sigma\) is reversible. Thus \((1)\) holds.

As to \((2)\), assume \(\mathcal{C}\) has direct limits indexed by \(\Sigma\) and \(\Lambda\). Then \(\mathcal{C}^\lambda\) has direct limits indexed by \(\Sigma\) by \((6.10)\). So the functors \(\lim_{\lambda \in \Lambda} : \mathcal{C}^\lambda \to \mathcal{C}\) and \(\lim_{\sigma \in \Sigma} : (\mathcal{C}^\lambda)^\Sigma \to \mathcal{C}^\lambda\) exist, and they are the left adjoints of the diagonal functors \(\mathcal{C} \to \mathcal{C}^\lambda\) and \(\mathcal{C}^\lambda \to (\mathcal{C}^\lambda)^\Sigma\) by \((6.4)\). Hence the composition \(\lim_{\lambda \in \Lambda} \lim_{\tau \in \Sigma}\) is the left adjoint of the composition of the two diagonal functors. But the latter is just the diagonal \(\mathcal{C} \to \mathcal{C}^{\Sigma \times \Lambda}\) owing to \((1)\). So this diagonal has a left adjoint, which is necessarily \(\lim_{(\sigma, \lambda) \in \Sigma \times \Lambda}\) by the uniqueness of adjoints. Thus \((2)\) holds.

Exercise \((6.19)\). — Let \(\lambda \mapsto M_\lambda\) and \(\lambda \mapsto N_\lambda\) be two functors from a small category \(\Lambda\) to \(((R\text{-mod}))\), and \(\{\theta_\lambda : M_\lambda \to N_\lambda\}\) a natural transformation. Show

\[
\lim \text{Coker}(\theta_\lambda) = \text{Coker}(\lim M_\lambda \to \lim N_\lambda).
\]

Show that the analogous statement for kernels can be false by constructing a counterexample using the following commutative diagram with exact rows:

\[
\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{\mu} & \mathbb{Z} \\
\downarrow \mu_2 & & \downarrow \mu_2 \\
\mathbb{Z} & \xrightarrow{\mu} & \mathbb{Z}/(2)
\end{array}
\to 0
\]

Solution: By \((6.6)\), the cokernel is a direct limit, and by \((6.11)\), direct limits commute; thus, the asserted equation holds.

To construct the desired counterexample using the given diagram, view its rows as expressing the cokernel \(\mathbb{Z}/(2)\) as a direct limit over the category \(\Lambda\) of \((6.6)\). View the left two columns as expressing a natural transformation \(\{\theta_\lambda\}\), and view the third column as expressing the induced map between the two limits. The latter map is 0; so its kernel is \(\mathbb{Z}/(2)\). However, \(\text{Ker}(\theta_\lambda) = 0\) for \(\lambda \in \Lambda\); so \(\lim \text{Ker}(\theta_\lambda) = 0\).

Exercise \((6.20)\). — Let \(R\) be a ring, \(M\) a module. Define the map

\[
D(M) : M \to \text{Hom}(\text{Hom}(M, R), R)
\]

by \((D(M))(\alpha) := \alpha(m)\).

If \(D(M)\) is an isomorphism, call \(M\) reflexive. Show:

1. \(D : 1_{((R\text{-mod}))} \to \text{Hom}(\text{Hom}(\bullet, R), R)\) is a natural transformation.
2. Let \(M_i\) for \(1 \leq i \leq n\) be modules. Then \(D(\bigoplus_{i=1}^n M_i) = \bigoplus_{i=1}^n D(M_i)\).
3. Assume \(M\) is finitely generated and projective. Then \(M\) is reflexive.

Solution: For \((1)\), given an \(R\)-map \(\beta : M \to N\), note that the induced diagram

\[
\begin{array}{ccc}
M & \xrightarrow{D(M)} & \text{Hom}(\text{Hom}(M, R), R) \\
\downarrow \beta & & \downarrow \beta_* \\
N & \xrightarrow{D(N)} & \text{Hom}(\text{Hom}(N, R), R)
\end{array}
\]

263
commutes, as \((D(N)\beta(m))(\gamma) = \gamma(\beta(m)) = (\beta, (D(M)(m)))(\gamma)\) where \(m \in M\) and \(\gamma \in \text{Hom}(N, R)\). Thus (1) holds.

For (2), form the following diagram:

\[
\begin{array}{ccc}
\bigoplus_{i=1}^{n} M_i & \xrightarrow{\bigoplus_{i=1}^{n} D(M_i)} & \bigoplus_{i=1}^{n} M_i \\
\downarrow & & \downarrow D(\bigoplus_{i=1}^{n} M_i) \\
\bigoplus_{i=1}^{n} \text{Hom}(M_i, R) & \rightarrow & \text{Hom}\left(\bigoplus_{i=1}^{n} M_i, R\right)
\end{array}
\]

The bottom map is an isomorphism by (4.13.2) applied twice. Thus (1) and (6.15), applied with \(\theta := D\) and \(\lim_{\downarrow} := \bigoplus\), yield (2).

For (3), note \(D(R)\) is an isomorphism owing to (4.3). Thus (2) implies that \(D(F)\) is an isomorphism for any free module \(F\) of finite rank.

By (4.10), there is a surjection \(\rho: F \rightarrow M\) where \(F\) is free of finite rank. Set \(K := \ker(\rho)\). Then \(F = K \oplus M\) by (5.16)(1)\(\Rightarrow\)(2). Since \(D(F)\) is an isomorphism, \(D(M)\) is an isomorphism, again owing to (2). Thus (3) holds.

\[\square\]

7. Filtered direct limits

Exercise (7.2). — Let \(R\) be a ring, \(M\) a module, \(\Lambda\) a set, \(M_\lambda\) a submodule for each \(\lambda \in \Lambda\). Assume \(\bigcup M_\lambda = M\). Assume, given \(\lambda, \mu \in \Lambda\), there is \(\nu \in \Lambda\) such that \(M_\lambda, M_\mu \subset M_\nu\). Order \(\Lambda\) by inclusion: \(\lambda \le \mu\) if \(M_\lambda \subset M_\mu\). Prove \(M = \bigcup M_\lambda\).

Solution: Let us prove that \(M\) has the UMP characterizing \(\bigcup M_\lambda\). Given homomorphisms \(\beta_\lambda: M_\lambda \rightarrow P\) with \(\beta_\lambda = \beta_\mu|_{M_\lambda}\) when \(\lambda \le \mu\), define \(\beta: M \rightarrow P\) by \(\beta(m) := \beta_\mu(m)\) if \(m \in M_\lambda\). Such an \(\lambda\) exists as \(\bigcup M_\lambda = M\). If also \(m \in M_\mu\) and \(M_\lambda, M_\mu \subset M_\nu\), then \(\beta_\lambda(m) = \beta_\mu(m) = \beta_\nu(m)\); so \(\beta\) is well defined. Clearly, \(\beta: M \rightarrow P\) is the unique set map such that \(\beta|_{M_\lambda} = \beta_\lambda\). Further, given \(m, n \in M\) and \(x \in R\), there is \(\nu\) such that \(m, n \in M_\nu\). So \(\beta(m+n) = \beta_\nu(m+n) = \beta_\mu(m) + \beta_\mu(n)\) and \(\beta(xm) = \beta_\nu(xm) = x\beta(m)\). Thus \(\beta\) is \(R\)-linear. Thus \(M = \bigcup M_\lambda\).

Exercise (7.11). — Show that every module \(M\) is the filtered direct limit of its finitely generated submodules.

Solution: Every element \(m \in M\) belongs to the submodule generated by \(m\); hence, \(M\) is the union of all its finitely generated submodules. Any two finitely generated submodules are contained in a third, for example, their sum. So the assertion results from (7.2) with \(\Lambda\) the set of all finite subsets of \(M\).

Exercise (7.12). — Show that every direct sum of modules is the filtered direct limit of its finite direct subsums.

Solution: Consider an element of the direct sum. It has only finitely many nonzero components. So it lies in the corresponding finite direct sum. Thus the union of the subsums is the whole direct sum. Now, given any two finite direct subsums, their sum is a third. Thus the finite subsets of indices form a directed partially ordered set \(\Lambda\). So the assertion results from (7.2).

Exercise (7.13). — Keep the setup of (7.3). For each \(n \in \Lambda\), set \(N_n := \mathbb{Z}/(n)\); if \(n = ms\), define \(\alpha^m_n: N_m \rightarrow N_n\) by \(\alpha^m_n(x) := xs \pmod{n}\). Show \(\lim_{\downarrow} N_n = \mathbb{Q}/\mathbb{Z}\).
Solutions

(7.14) / (7.16) Filtered direct limits

Solution: For each \(n \in \Lambda \), set \(Q_n := M_n/\mathbb{Z} \subset \mathbb{Q}/\mathbb{Z} \). If \(n = ms \), then clearly Diagram (7.3.1) induces this one:

\[
\begin{array}{c}
N_m \xrightarrow{\alpha^m} N_n \\
\gamma_m \approx \gamma_n \approx \\
Q_m \xrightarrow{\eta^m} Q_n
\end{array}
\]

where \(\eta^m \) is the inclusion. Now, \(\bigcup Q_n = \mathbb{Q}/\mathbb{Z} \) and \(Q_n, Q_{n'} \subset Q_{nn'} \). So (7.2) yields \(\mathbb{Q}/\mathbb{Z} = \varinjlim M_n \). Thus \(\varinjlim N_n = \mathbb{Q}/\mathbb{Z} \).

Exercise (7.14). — Let \(M := \varprojlim M_\lambda \) be a filtered direct limit of modules, with transition maps \(\alpha^\lambda_\mu : M_\lambda \to M_\mu \) and insertions \(\alpha_\lambda : M_\lambda \to M \).

1. Prove that all \(\alpha_\lambda \) are injective if and only if all \(\alpha^\lambda_\mu \) are. What if \(\varprojlim M_\lambda \) isn’t filtered?

2. Assume that all \(\alpha_\lambda \) are injective. Prove \(M = \bigcup \alpha_\lambda M_\lambda \).

Solution: For (1), recall that \(\alpha_\mu \circ \alpha^\lambda_\mu = \alpha_\lambda \). So if \(\alpha_\lambda \) is injective, then so is \(\alpha^\lambda_\mu \), whether \(\varprojlim M_\lambda \) is filtered, or not.

Conversely, suppose all \(\alpha^\lambda_\mu \) are injective. Given \(m_\lambda \in M_\lambda \) with \(\alpha_\lambda m_\lambda = 0 \), there’s \(\alpha^\lambda_\mu m_\lambda = 0 \) by (7.5)(3). So \(m_\lambda = 0 \). Thus \(\alpha_\lambda \) is injective.

However, if \(M := \varprojlim M_\lambda \) isn’t filtered, then all \(\alpha_\lambda \) aren’t necessarily injective. For example, take any nonzero module \(M_1 \), and set \(M_2 := M_1 \bigcup M_1 \). Define \(\alpha, \alpha' : M_1 \to M_2 \) by \(\alpha(m) := (m, m) \) and \(\alpha'(m) := (m, -m) \). Then \(\alpha \) and \(\alpha' \) are injective. But \(M = \text{Coker}(\alpha - \alpha') \), and \(\alpha_2 : M_2 \to M \) is the quotient map by (6.6). So \(\alpha_2(m, n) = (0, \pi) \) where \(\pi \) is the residue of \(n \) in \(M_1/2M_1 \). Thus \(\alpha_2 \) isn’t injective.

For (2), note each \(\alpha^\lambda_\mu : M_\lambda \to M_\mu \) corresponds to an inclusion \(\alpha_\lambda M_\lambda \subseteq \alpha_\mu M_\mu \). So \(M = \varinjlim \alpha_\lambda M_\lambda \). Moreover, given \(\lambda, \mu, \nu \), there’s \(\nu \) with \(\alpha_\lambda M_\lambda, \alpha_\mu M_\mu \subseteq \alpha_\nu M_\nu \) owing to (7.1)(1). Thus (7.2) yields \(M = \bigcup \alpha_\lambda M_\lambda \).

Exercise (7.15). — Let \(R \) be a ring, \(\mathfrak{a} \) a finitely generated ideal, \(M \) a module. Show \(\Gamma_\mathfrak{a}(M) = \varprojlim \text{Hom}(R/\mathfrak{a}^n, M) \).

Solution: Define a map \(\text{Hom}(R/\mathfrak{a}^n, M) \to \{ m \in M \mid \mathfrak{a}^nm = 0 \} \) by sending \(\alpha \) to \(\alpha(1) \). Plainly it’s an isomorphism. Thus (7.4) and (4.14)(5) yield

\[
\varprojlim \text{Hom}(R/\mathfrak{a}^n, M) = \bigcup_{n \geq 1} \{ m \in M \mid \mathfrak{a}^nm = 0 \} = \Gamma_\mathfrak{a}(M).
\]

Exercise (7.16). — Let \(R := \varprojlim R_\lambda \) be a filtered direct limit of rings. Show:

1. Then \(R = 0 \) if and only if \(R_\lambda = 0 \) for some \(\lambda \).
2. Assume each \(R_\lambda \) is a domain. Then \(R \) is a domain.
3. Assume each \(R_\lambda \) is a field. Then each insertion \(\alpha_\lambda : R_\lambda \to R \) is injective, \(R = \bigcup \alpha_\lambda R_\lambda \), and \(R \) is a field.

Solution: For (1), first assume \(R = 0 \). Fix any \(\kappa \). Then \(1 \in R_\kappa \) maps to \(0 \in R \). So (7.5)(3) with \(\mathbb{Z} \) for \(R \) yields some transition map \(\alpha^\lambda_\kappa : R_\kappa \to R_\lambda \) with \(\alpha^\lambda_\kappa 1 = 0 \). But \(\alpha^\lambda_\lambda 1 = 1 \). Thus \(1 = 0 \) in \(R_\lambda \). Thus \(R_\lambda = 0 \) by (1.1).

Conversely, assume \(R_\lambda = 0 \). Then \(1 = 0 \) in \(R_\lambda \). So \(1 = 0 \) in \(R \), as the transition map \(\alpha_\lambda : R_\lambda \to R \) carries \(1 \) to \(1 \) and \(0 \) to \(0 \). Thus \(R = 0 \) by (1.1). Thus (1) holds.

In (2), given \(x, y \in R \) with \(xy = 0 \), we can lift \(x, y \) back to some \(x_\lambda, y_\lambda \in R_\lambda \) for some \(\lambda \) by (7.5)(1) and (7.1)(1). Then \(x_\lambda y_\lambda \) maps to \(0 \in R \). So (7.5)(3) yields a transition map \(\alpha^\lambda_\mu \) with \(\alpha^\lambda_\mu (x_\lambda y_\lambda) = 0 \) in \(R_\mu \). But \(\alpha^\lambda_\mu (x_\lambda y_\lambda) = \alpha^\lambda_\mu (x_\lambda) \alpha^\lambda_\mu (y_\lambda) \), and

265
Solutions

(7.17) / (7.20) Filtered direct limits

R_μ is a domain. So either $\alpha_\lambda^\mu(x_\lambda) = 0$ or $\alpha_\lambda^\mu(y_\lambda) = 0$. Hence, either $x = 0$ or $y = 0$. Thus R is a domain. Thus (2) holds.

In (3), each $\alpha_\lambda^\mu : R_\lambda \to R$ is injective as each R_λ is a field. So $R = \bigcup_\lambda \alpha_\lambda R_\lambda$ by (7.14). Finally, given $x \in R - 0$, say $x \in \alpha_\lambda R_\lambda$. As R_λ is a field, there’s $y \in \alpha_\lambda R_\lambda$ with $xy = 1$. So R is a field. Thus (3) holds. □

Exercise (7.17). — Let $M := \varprojlim M_\lambda$ be a filtered direct limit of modules, with transition maps $\alpha_\lambda^\mu : M_\lambda \to M_\mu$ and insertions $\alpha_\lambda : M_\lambda \to M$. For each λ, let $N_\lambda \subset M_\lambda$ be a submodule, and let $N \subset M$ be a submodule. Prove that $N_\lambda = (\alpha_\lambda^\mu)^{-1}N_\mu$ for all λ if and only if (a) $\bigcup_\lambda N_\lambda = (\alpha_\mu^\lambda)^{-1}N_\mu$ for all α_μ^λ and (b) $\bigcup_\lambda \alpha_\lambda N_\lambda = N$.

Solution: First, assume $N_\lambda = (\alpha_\lambda^\mu)^{-1}N$ for all λ. Recall $\alpha_\lambda = \alpha_\mu^\lambda \alpha_\mu^\lambda$ for all α_μ^λ. So $\alpha_\lambda^{-1}N(\alpha_\lambda^\mu)^{-1} = \alpha_\mu^{-1}N$. Thus (a) holds.

Further, $N_\lambda = (\alpha_\lambda^\mu)^{-1}N$ implies $\alpha_\lambda N_\lambda \subset N$. So $\bigcup_\lambda \alpha_\lambda N_\lambda \subset N$. Finally, for any $m \in M$, there is λ and $m_\lambda \in M_\lambda$ with $m = \alpha_\lambda m_\lambda$ by (7.5)(1). But $N_\lambda := (\alpha_\lambda^\mu)^{-1}N$; hence, if $m \in N$, then $m_\lambda \in N_\lambda$, so $m \in \alpha_\lambda N_\lambda$. Thus (b) holds too.

Conversely, assume (b). Then $\alpha_\lambda N_\lambda \subset N$, or $N_\lambda \subset (\alpha_\lambda^\mu)^{-1}N$, for all λ.

Assume (a) too. Given λ and $m_\lambda \in (\alpha_\lambda^\mu)^{-1}N$, note $\alpha_\lambda m_\lambda \in N = \bigcup_\mu \alpha_\mu N_\mu$. So there is μ and $n_\mu \in N_\mu$ with $\alpha_\mu n_\mu = \alpha_\mu m_\lambda$. So (7.5)(2) yields ν and $\alpha_\mu^\mu \nu$ with $\alpha_\mu^\mu \nu \alpha_\mu^\mu = \alpha_\mu^\mu m_\lambda$. But $\alpha_\mu^\mu N_\mu \subset N_\lambda$ and $(\alpha_\mu^\mu)^{-1}N_\lambda = \alpha_\mu N_\lambda$ by (a). Hence $m_\lambda \in N_\lambda$. Thus $N_\lambda \supset (\alpha_\lambda^\mu)^{-1}N$. Hence, either $\bigcup_\lambda \alpha_\lambda N_\lambda \supset (\alpha_\mu^\lambda)^{-1}N$, as desired. □

Exercise (7.18). — Let $R := \varprojlim R_\lambda$ be a filtered direct limit of rings, $a_\lambda \subset R_\lambda$ an ideal for each λ. Assume $a_\lambda \alpha_\lambda^\lambda \subset a_\mu$ for each transition map α_λ^λ. Set $a := \varprojlim a_\lambda$. If each a_λ is prime, show a is prime. If each a_λ is maximal, show a is maximal.

Solution: The functor $\lambda \mapsto a_\lambda$ induces functors $\lambda \mapsto a_\lambda$ and $\lambda \mapsto (R_\lambda/a_\lambda)$. So (7.4) implies that $a := \varprojlim a_\lambda$ and $\varprojlim (R_\lambda/a_\lambda)$ exist, and (7.9) implies that $\varprojlim (R_\lambda/a_\lambda) = R/a$. Thus (7.16) yields the assertions. □

Exercise (7.19). — Let $M := \varprojlim M_\lambda$ be a filtered direct limit of modules, with transition maps $\alpha_\lambda^\mu : M_\lambda \to M_\mu$ and insertions $\alpha_\lambda : M_\lambda \to M$. Let $N_\lambda \subset M_\lambda$ be a submodule for all λ. Assume $\alpha_\lambda^\mu N_\lambda \subset N_\mu$ for all α_λ^μ. Prove $\varprojlim N_\lambda = \bigcup_\lambda \alpha_\lambda N_\lambda$.

Solution: The functor $\lambda \mapsto M_\lambda$ induces a functor $\lambda \mapsto N_\lambda$. So $\varprojlim N_\lambda$ exists by (7.4). Also, by (7.9), the inclusions $N_\lambda \hookrightarrow M_\lambda$ induce an injection $\varprojlim N_\lambda \hookrightarrow M$ such that the insertions $\alpha_\lambda : M_\lambda \to M$ restrict to the insertions $N_\lambda \to \varprojlim N_\lambda$. Hence $\varprojlim N_\lambda \supset \bigcup_\lambda \alpha_\lambda N_\lambda$. Finally, let $n \in \varprojlim N_\lambda$. Then (7.5)(1) yields a λ and a $M_\lambda \in N_\lambda$ with $n = \alpha_\lambda M_\lambda \subset \alpha_\lambda N_\lambda$. Thus $\varprojlim N_\lambda = \bigcup_\lambda \alpha_\lambda N_\lambda$. □

Exercise (7.20). — Let $R := \varprojlim R_\lambda$ be a filtered direct limit of rings. Prove that $\varprojlim \text{nil}(R_\lambda) = \text{nil}(R)$.

Solution: Set $n_\lambda := \text{nil}(R_\lambda)$ and $n := \text{nil}(R)$. As usual, denote the transition maps by $\alpha_\lambda^\mu : R_\lambda \to R_\mu$ and the insertions by $\alpha_\lambda : R_\lambda \to R$. Then $\alpha_\lambda^\mu n_\lambda \subset n_\mu$ for all α_λ^μ. So (7.19) yields $\varprojlim n_\lambda = \bigcup_\lambda \alpha_\lambda n_\lambda$. Now, $\alpha_\lambda n_\lambda \subset n$ for all λ. So $\bigcup_\lambda \alpha_\lambda n_\lambda \subset n$.

Conversely, given $x \in n$, say $x_\lambda = 0$. Then (7.5)(1) yields a λ and $x_\lambda \in R_\lambda$ with $\alpha_\lambda x_\lambda = x$. So $\alpha_\lambda x_\lambda = 0$. So (7.5)(3) yields $\alpha_\mu^\lambda x_\lambda = 0$. Set $x_\mu := \alpha_\mu x_\lambda$. Then $x_\mu = 0$. So $x_\mu \in n_\mu$. Thus $x \in \alpha_\mu n_\mu$. Thus $\bigcup_\lambda \alpha_\lambda n_\lambda = n$, as desired. □
Exercise (7.21). — Let \(R := \lim_{\lambda} R_\lambda \) be a filtered direct limit of rings. Assume each ring \(R_\lambda \) is local, say with maximal ideal \(m_\lambda \), and assume each transition map \(\alpha^\lambda_\mu : R_\lambda \to R_\mu \) is local. Set \(m := \lim m_\lambda \). Prove that \(R \) is local with maximal ideal \(m \) and that each insertion \(\alpha_\lambda : R_\lambda \to R \) is local.

Solution: As each \(\alpha^\lambda_\mu \) is local, \((\alpha^\lambda_\mu)^{-1} m_\lambda = m_\mu \). So \(\alpha^\lambda_\mu m_\lambda \subset m_\mu \). So (7.19) yields \(m = \bigcup \alpha_\lambda m_\lambda \). Now, given \(x \in R - m \), there is \(\lambda \) and \(x_\lambda \in R_\lambda \) with \(\alpha_\lambda x_\lambda = x \) by (7.5)(1). Then \(x_\lambda \notin m_\lambda \) as \(x \notin m = \bigcup \alpha_\lambda m_\lambda \). So \(x_\lambda \) is invertible as \(R_\lambda \) is local with maximal ideal \(m_\lambda \). Hence \(x \) is invertible. Thus \(R \) is local with maximal ideal \(m \) by (3.4). Finally, (7.17) yields \(\alpha^{-1}_\lambda m = m_\lambda \); that is, \(\alpha_\lambda \) is local.

Exercise (7.22). — Let \(\Lambda \) and \(\Lambda' \) be small categories, \(C : \Lambda' \to \Lambda \) a functor. Assume \(\Lambda' \) is filtered. Assume \(C \) is **cofinal**; that is,

1. given \(\lambda \in \Lambda \), there is a map \(\lambda \to C\lambda' \) for some \(\lambda' \in \Lambda' \), and
2. given \(\psi, \varphi : \lambda \to \lambda' \), there is \(\chi : \lambda' \to \lambda'' \) with \((C\lambda')\psi = (C\lambda')\varphi \).

Let \(\lambda \mapsto M_\lambda \) be a functor from \(\Lambda \) to \(\mathcal{C} \) whose direct limit exists. Show that

\[
\lim_{\lambda' \in \Lambda'} M_{C\lambda'} = \lim_{\lambda \in \Lambda} M_\lambda;
\]

more precisely, show that the right side has the UMP characterizing the left.

Solution: Let \(P \) be an object of \(\mathcal{C} \). For \(\lambda' \in \Lambda' \), take maps \(\gamma_{\lambda'} : M_{C\lambda'} \to P \) compatible with the transition maps \(M_{C\lambda'} \to M_{C\lambda''} \). Given \(\lambda \in \Lambda \), choose a map \(\lambda \to C\lambda' \), and define \(\beta_\lambda : M_\lambda \to P \) to be the composition

\[
\beta_\lambda : M_\lambda \to M_{C\lambda'} \stackrel{\gamma_{\lambda'}}\longrightarrow P.
\]

Let’s check that \(\beta_\lambda \) is independent of the choice of \(\lambda \to C\lambda' \).

Given a second choice \(\lambda \to C\lambda'' \), there are maps \(\lambda'' \to \mu' \) and \(\lambda' \to \mu' \) for some \(\mu' \in \Lambda' \) since \(\Lambda' \) is filtered. So there is a map \(\mu' \to \mu' \) such that the compositions \(\lambda \to C\lambda' \to C\mu' \to C\mu_1' \) and \(\lambda \to C\lambda'' \to C\mu' \to C\mu_1' \) are equal since \(C \) is cofinal. Therefore, \(\lambda \to C\lambda'' \) gives rise to the same \(\beta_\lambda \), as desired.

Clearly, the \(\beta_\lambda \) are compatible with the transition maps \(M_\lambda \to M_\lambda \). So the \(\beta_\lambda \) induce a map \(\lim\beta : \lim M_\lambda \to P \) with \(\beta \alpha_\lambda = \beta \bar{\lambda} \) for every insertion \(\alpha_\lambda : M_\lambda \to \lim M_\lambda \).

In particular, this equation holds when \(\lambda = C\lambda' \) for any \(\lambda' \in \Lambda' \), as required.

Exercise (7.23). — Show that every \(R \)-module \(M \) is the filtered direct limit over a directed set of finitely presented modules.

Solution: By (5.13), there is a presentation \(R^{\oplus \Phi_1} \xrightarrow{\rho} R^{\oplus \Phi_2} \to M \to 0 \). For \(i = 1, 2 \), let \(\Lambda_i \) be the set of finite subsets \(\Psi_i \) of \(\Phi_i \), and order \(\Lambda_i \) by inclusion. Clearly, an inclusion \(\Psi_i \hookrightarrow \Phi_i \) yields an injection \(R^{\oplus \Psi_i} \hookrightarrow R^{\oplus \Phi_i} \), which is given by extending vectors by \(0 \). Hence (7.2) yields \(\lim R^{\oplus \Psi_i} = R^{\oplus \Phi_1} \).

Let \(\Lambda \subset \Lambda_1 \times \Lambda_2 \) be the set of pairs \(\alpha := (\Phi_1, \Phi_2) \) such that \(\alpha \) induces a map \(\alpha : R^{\oplus \Psi_1} \to R^{\oplus \Psi_2} \). Order \(\Lambda \) by componentwise inclusion. Clearly, \(\Lambda \) is directed. For \(\lambda \in \Lambda \), set \(M_\lambda := \text{Coker}(\alpha_\lambda) \). Then \(M_\lambda \) is finitely presented.

For \(i = 1, 2 \), the projection \(C_i : \Lambda \to \Lambda_i \) is surjective, so cofinal. Hence, (7.22) yields \(\lim M_{\lambda C_i} = \lim M_\lambda \). Thus (6.19) yields \(\lim M_\lambda = M \).
8. Tensor Products

Exercise (8.7). — Let R be a ring, R' an R-algebra, and M, N two R'-modules.

1. Show that there is a canonical R-linear map $\tau: M \otimes_R N \to M \otimes_{R'} N$.

2. Let $K \subseteq M \otimes_R N$ denote the R-submodule generated by all the differences $(x'm) \otimes n - m \otimes (x'n)$ for $x' \in R'$ and $m \in M$ and $n \in N$. Show that $K = \ker(\tau)$ and that τ is surjective.

3. Suppose that R' is a quotient of R. Show that τ is an isomorphism.

4. Let $\{t_r\}$ be a set of algebra generators of R' over R. Let $\{m_\mu\}$ and $\{n_\nu\}$ be sets of generators of M and N over R'. Regard $M \otimes_R N$ as an $(R' \otimes_R R')$-module. Let K' denote the $(R' \otimes_R R')$-submodule generated by all differences $(t_r m_\mu) \otimes n_\nu - m_\mu \otimes (t_r n_\nu)$. Show that $K' = K$.

Solution: For (1), form the canonical map $\beta': M \times N \to M \otimes_{R'} N$. It is R'-bilinear, so R-bilinear. Hence, (8.3) yields $\beta' = \tau\beta$ where $\beta: M \times N \to M \otimes_R N$ is the canonical map and τ is the desired map, as desired.

For (2), note that each generator $(x'm)\otimes n - m \otimes (x'n)$ of K maps to 0 in $M \otimes_{R'} N$. Set $Q := (M \otimes_R N)/K$. Then τ factors through a map $\tau': Q \to M \otimes_{R'} N$.

By (8.6), there is an R'-structure on $Q \otimes R N$ with $y'(m \otimes n) = m \otimes (y'n)$, and so by (8.5)(1), another one with $y'(m \otimes n) = (y'm) \otimes n$. Clearly, K is a submodule for each structure, so Q is too. But on Q the two structures coincide. Further, the canonical map $M \times N \to Q$ is R'-bilinear. Hence the latter factors through $M \otimes_R N$, furnishing an inverse to τ'. So $\tau': Q \to M \otimes_{R'} N$. Hence $\ker(\tau)$ is equal to K, and τ is surjective, as desired.

In (3), each $x' \in R'$ is the residue of some $x \in R$. So each $(x'm) \otimes n - m \otimes (x'n)$ is 0 in $M \otimes_{R'} N$, as $x'm = xm$ and $x'n = xn$. Thus $\ker(\tau) = 0$, so (2) yields (3).

In (4), trivially $K' \subseteq K$. Given any t_r, t'_r and m_μ, n_ν, note that

$$ (t_r t'_r m_\mu) \otimes n_\nu - m_\mu \otimes (t_r t'_r n_\nu) = (t_r \otimes 1)((t_r m_\mu) \otimes n_\nu - m_\mu \otimes (t'_r n_\nu)) $$

$$ + (1 \otimes t'_r)((t_r m_\mu) \otimes n_\nu - m_\mu \otimes (t_r n_\nu)) \in K'. $$

Hence given any monomial M_α in the t_r, it follows via induction on $\deg(M_\alpha)$ that $(M_\alpha m_\mu) \otimes n_\nu - m_\mu \otimes (M_\alpha n_\nu) \in K'$.

Given any $x' = \sum x_\alpha M_\alpha \in R'$ with $x_\alpha \in R$ and M_α a monomial in the t_r, note

$$(x'm_\mu) \otimes n_\nu - m_\mu \otimes (x'n_\nu) = \sum x_\alpha ((M_\alpha m_\mu) \otimes n_\nu - m_\mu \otimes (M_\alpha n_\nu)) \in K'. $$

Finally, given any $m = \sum y_\mu m_\mu$ and $n = \sum z_\nu n_\nu$ with $y_\mu, z_\nu \in R'$, note that

$$(x'm) \otimes n - m \otimes (x'n) = \sum (y_\mu \otimes 1)(1 \otimes z_\nu)((x'm_\mu) \otimes n_\nu - m_\mu \otimes (x'n_\nu)) \in K', $$

as desired. \square

Exercise (8.14). — Let $F: ((R\text{-mod}) \to (\mathcal{C}\text{-mod}))$ be a linear functor, and \mathcal{C} the category of finitely generated modules. Show that F always preserves finite direct sums. Show that $\theta(M): M \otimes F(R) \to F(M)$ is surjective if F preserves surjections in \mathcal{C} and M is finitely generated, and that $\theta(M)$ is an isomorphism if F preserves cokernels in \mathcal{C} and M is finitely presented.

Solution: The first assertion follows from the characterization of the direct sum of two modules in terms of maps (4.26), since F preserves the relations there.

The second assertion follows from the first via the second part of the proof of Watt’s Theorem (8.13), but with Λ, then Σ and Δ finite. \square
Exercise (8.20).— Let R be a ring, R' and R'' algebras, M' an R'-module and M'' an R''-module. Say \(\{ m'_{\alpha} \} \) generates M' over R' and \(\{ m''_{\mu} \} \) generates M'' over R''. Show \(\{ m'_{\alpha} \otimes m''_{\mu} \} \) generates $M' \otimes_R M''$ over $R' \otimes_R R''$.

Solution: Owing to (8.2), $M' \otimes M''$ is generated by all the $m' \otimes m''$ with $m' \in M'$ and $m'' \in M''$. But $m' = \sum_{\alpha} x_{\alpha}' m'_{\alpha}$ and $m'' = \sum_{\mu} x''_{\mu} m''_{\mu}$ with $x'_{\alpha} \in R'$ and $x''_{\mu} \in R''$. Thus $m' \otimes m'' = \sum_{\alpha, \mu} (x'_{\alpha} \otimes x''_{\mu})(m'_{\alpha} \otimes m''_{\mu})$, as desired.

Exercise (8.21).— Let R be a ring, R' an R-algebra, and M an R'-module. Set $M' := R' \otimes_R M$. Define $\alpha: M \to M'$ by $\alpha m := 1 \otimes m$. Prove M is a direct summand of M' with $\alpha = i_M$, and find the retraction (projection) $\pi_M: M' \to M$.

Solution: As the canonical map $R' \times M \to M'$ is bilinear, α is linear. Define $\mu: M \times R' \to M$ by $\mu(x, m) := xm$. Plainly μ is R-bilinear. So μ induces an R-linear map $\rho: M' \to M$. Then ρ is a retraction of α, as $\rho(\alpha(m)) = 1 \cdot m$. Let $\beta: M \to \text{Coker}(\alpha)$ be the quotient map. Then (5.8) implies that M is a direct summand of M' with $\alpha = i_M$ and $\rho = \pi_M$.

Exercise (8.22).— Let R be a domain, a a nonzero ideal. Set $K := \text{Frac}(R)$. Show that $a \otimes_R K = K$.

Solution: Define a map $\beta: a \times K \to K$ by $\beta(x, y) := xy$. It is clearly R-bilinear. Given any R-bilinear map $\alpha: a \times K \to P$, fix a nonzero $z \in a$, and define an R-linear map $\gamma: K \to P$ by $\gamma(y) := \alpha(z, y/z)$. Then $\alpha = \gamma \beta$ as
\[
\alpha(x, y) = \alpha(xz, y/z) = \alpha(z, xy/z) = \gamma(xy) = \gamma(x, y).
\]
Clearly, β is surjective. So γ is unique with this property. Thus the UMP implies that $K = a \otimes_R K$. (Also, as γ is unique, γ is independent of the choice of z.)

Alternatively, form the linear map $\varphi: a \otimes K \to K$ induced by the bilinear map β. Since β is surjective, so is φ. Now, given any $w \in a \otimes K$, say $w = \sum a_i \otimes x_i / x$ with all x_i and x in R. Set $a := \sum a_i x_i \in a$. Then $w = a \otimes (1/x)$. Hence, if $\varphi(w) = 0$, then $a/x = 0$; so $a = 0$ and so $w = 0$. Thus φ is injective, so bijective.

Exercise (8.23).— In the setup of (8.9), find the unit η_M of each adjunction.

Solution: Consider the left adjoint $FM := M \otimes_R R'$ of restriction of scalars. A map $\theta: FM \to P$ corresponds to the map $M \to P$ carrying m to $\theta(m \otimes 1_{R'})$. Take $P := FM$ and $\theta := 1_{FM}$. Thus $\eta_M: M \to FM$ is given by $\eta_M m = m \otimes 1_{R'}$.

Consider the right adjoint $FP := \text{Hom}_R(R', P)$ of restriction of scalars. A map $\mu: M \to P$ corresponds to the map $M \to FP$ carrying m to the map $\nu : R' \to P$ defined by $\nu x := x(\mu m)$. Take $P := M$ and $\mu := 1_M$. Thus $\eta_M: M \to FM$ is given by $\eta_M m(x) = xm$.

Exercise (8.24).— Let M and N be nonzero k-vector spaces. Prove $M \otimes N \neq 0$.

Solution: Vector spaces are free modules; say $M = k^{\oplus \Phi}$ and $N = k^{\oplus \Psi}$. Then (8.10) yields $M \otimes N = k^{\oplus (\Phi \times \Psi)}$ as $k \otimes k = k$ by (8.5)(2). Thus $M \otimes N \neq 0$.

Exercise (8.25).— Let R be a nonzero ring. Show:

1. Assume there is a surjective map $\alpha: R^n \to R^m$. Then $n \geq m$.
2. Assume $R^n \simeq R^m$. Then $n = m$.

269
Solutions (8.26) / (8.30) Tensor Products

Solution: For (1), let \(m \) be a maximal ideal. Set \(k := R/m \). Then \(k \) is a field. Now, \(\alpha \otimes 1_k : R^n \otimes k \to R^m \otimes k \) is surjective by (8.10). But (8.10) and (8.5)(2) yield \(R^r \otimes k = (R \otimes k)^r = k^r \) for any \(r \geq 0 \). Thus \(\alpha \otimes 1_k \) is a surjective map of vector spaces. So \(n \geq m \). Thus (1) holds.

Note (2) holds as (1) implies both \(n \geq m \) and \(m \geq n \). \(\square \)

Exercise (8.26). — Under the conditions of (5.41)(1), set \(K := \text{Frac}(R) \). Show \(\text{rank}(F) = \dim_K(M \otimes K) \).

Solution: Recall \(M = T \oplus F \). So \(M \otimes K = (T \otimes K) \oplus (F \otimes K) \) by (8.10).

Given \(m \in T \), say \(xm = 0 \) with \(x \in R \) nonzero. Given \(y \in K \), note that \(m \otimes y = xm \otimes (y/x) = 0 \). Thus \(T \otimes K = 0 \). Thus \(M \otimes K = F \otimes K \).

Set \(r = \text{rank}(F) \); so \(F \cong R^r \). Then \(F \otimes K \cong K^r \) again by (8.10) as \(R \otimes K = K \) by (8.5)(1)–(2). But \(\dim_K(K^r) = r \). Thus \(\dim_K(F \otimes K) = r \), as desired. \(\square \)

Exercise (8.27). — Let \(R \) be a ring, \(a \) and \(b \) ideals, and \(M \) a module.

1. Use (8.10) to show that \((R/a) \otimes M = M/aM \).
2. Use (1) and (4.21) to show that \((R/a) \otimes (M/bM) = M/(a+b)M \).

Solution: For (1), view \(R/a \) as the cokernel of the inclusion \(a \to R \). Then (8.10) implies that \((R/a) \otimes M \) is the cokernel of \(a \otimes M \to R \otimes M \). Now, \(R \otimes M = M \) and \(x \otimes m = xm \) by (8.5)(2). Correspondingly, \(a \otimes M \to M \) has \(aM \) as image. The assertion follows. (Caution: \(a \otimes M \to M \) needn’t be injective; if it’s not, then \(a \otimes M \neq aM \). For example, take \(R := \mathbb{Z} \), take \(a := \langle 2 \rangle \), and take \(M := \mathbb{Z}/\langle 2 \rangle \); then \(a \otimes M \to M \) is just multiplication by 2 on \(\mathbb{Z}/\langle 2 \rangle \), and so \(aM = 0 \).)

For (2), set \(N := M/bM \). Then (1) yields \((R/a) \otimes NN/aN \). But (4.21) yields \(N/aN = M/(a+b)M \), as desired. \(\square \)

Exercise (8.28). — Let \(R \) be a ring, \(B \) an algebra, \(B' \) and \(B'' \) algebras over \(B \). Regard \(B \) as an \((B \otimes_R B) \)-algebra via the multiplication map. Set \(C := B' \otimes_R B'' \).

Prove these formulas: (1) \(B' \otimes_B B'' = C/\partial_B C \) and (2) \(B' \otimes_B B'' = B \otimes_{B \otimes_R B} C \).

Solution: Consider the natural map \(C \to B' \otimes B'' \). It’s surjective, and its kernel is generated by all differences \(xx' \otimes x'' - x' \otimes xx'' \) for \(x \in B \) and \(x' \in B' \) and \(x'' \in B'' \) by (8.7). But \(xx' \otimes x'' - x' \otimes xx'' = (x' \otimes x'')(x \otimes 1 - 1 \otimes x) \). Thus the kernel is equal to \(\partial_B C \). So (1.5.1) yields (1).

Finally, \(C/\partial_B C = (B \otimes_R B)/\partial_B \otimes_{B \otimes_R B} C \) by (8.27)(1). But \((B \otimes_R B)/\partial_B = B \) by (1.5.1). Thus (1) yields (2). \(\square \)

Exercise (8.29). — Show \(\mathbb{Z}/\langle m \rangle \otimes_{\mathbb{Z}} \mathbb{Z}/\langle n \rangle = 0 \) if \(m \) and \(n \) are relatively prime.

Solution: Note \(\langle m \rangle + \langle n \rangle = \mathbb{Z} \) by (2.18). Thus (8.27)(2) yields \(\mathbb{Z}/\langle m \rangle \otimes_{\mathbb{Z}} \mathbb{Z}/\langle n \rangle = \mathbb{Z}/\langle \langle m \rangle + \langle n \rangle \rangle = 0 \). \(\square \)

Exercise (8.30). — Let \(R \) be a ring, \(R' \) and \(R'' \) algebras, \(a' \subset R' \) and \(a'' \subset R'' \) ideals. Let \(b \subset R' \otimes_R R'' \) denote the ideal generated by \(a' \) and \(a'' \). Show that \((R' \otimes_R R'')/b = (R'/a') \otimes_R (R''/a'') \).

270
Solutions: Set $C := R' \otimes_R R''$. Then $C/\alpha' C = (R'/\alpha') \otimes_{R'} C$ by (8.27)(1). But $(R'/\alpha') \otimes_{R'} C = (R'/\alpha') \otimes_R R''$ by (8.9) and (8.5). Similar reasoning yields
$\left((R'/\alpha') \otimes_{R'} R''\right)/\left((R'/\alpha') \otimes_R R''\right)\alpha'' = (R'/\alpha') \otimes_R (R'/\alpha'')$.

But plainly the canonical map $C \to (R'/\alpha') \otimes_R R''$ takes b onto $\left((R'/\alpha') \otimes_R R''\right)\alpha''$. So (1.9) yields the desired result. \qed

Exercise (8.31). — Let R be a ring, M a module, X a set of variables. Prove the equation $M \otimes_R R[X] = M[X]$.

Solution: Both sides are “the” left adjoint of the restriction of scalars from P to R owing to (8.9) and (6.17). Thus by (6.3), they are equal.

Alternatively, define $b: M \times R[X] \to M[X]$ by $b(m, \sum a_i M_i) := \sum a_i m M_i$ for monomials M_i. Then b is bilinear, so induces a linear map $\beta: M \otimes_R R[X] \to M[X]$.

Note β is surjective: given $u := \sum m_i M_i$ in $M[X]$, set $t := \sum m_i \otimes M_i$; then $\beta t = u$. Finally, β is injective: by (8.16), any $t \in M \otimes_R R[X]$ is of the form $t = \sum m_i \otimes M_i$, so $\beta t = \sum m_i M_i$; if $\beta t = 0$, then $m_i = 0$ for all i, so $t = 0$. \qed

Exercise (8.32). — Generalize (4.20) to several variables X_1, \ldots, X_r via this standard device: reduce to the case of one variable Y by taking a suitably large d and defining $\varphi: R[X_1, \ldots, X_r] \to R[Y]$ by $\varphi(X_i) := Y^{d_i}$ and setting $\alpha := 1_M \otimes \varphi$.

Solution: Let $F \in R[X_1, \ldots]$. Assume there’s a nonzero $G \in M[X_1, \ldots]$ with $FG = 0$. Let’s show there’s a nonzero $m \in M$ with $Fm = 0$.

Recall $M[X_1, \ldots] = M \otimes_R R[X_1, \ldots]$ by (8.31), so $\alpha: M[X_1, \ldots] \to M[Y]$. Moreover, $\varphi(F)\alpha(G) = \alpha(FG) = 0$.

Take d larger than any exponent in F or G. Note $\varphi(X_1^{i_1} \cdots X_r^{i_r}) = Y^{i_1 d_1} \cdots Y^{i_r d_r}$. So φ carries distinct monomials of F to distinct monomials of $\varphi(F)$, and α carries distinct monomials of G to distinct monomials of $\alpha(G)$. So $\varphi(F)$ has the same coefficients as F, and $\alpha(G)$ has the same coefficients as G. Thus $\alpha(G) \neq 0$.

So (4.20) yields a nonzero $m \in M$ with $\varphi(F)m = 0$. Thus $Fm = 0$. \qed

Exercise (8.33). — Let R be a ring, R_σ for $\sigma \in \Sigma$ algebras. For each finite subset J of Σ, let R_J be the tensor product of the R_σ for $\sigma \in J$. Prove that the assignment $J \mapsto R_J$ extends to a filtered direct system and that $\varinjlim R_J$ exists and is the coproduct $\coprod R_\sigma$.

Solution: Let Λ be the set of subsets of Σ, partially ordered by inclusion. Then Λ is a filtered small category by (7.1). Further, the assignment $J \mapsto R_J$ extends to a functor from Λ to $\langle (R\text{-alg}) \rangle$ as follows: by induction, (8.17) implies that R_J is the coproduct of the family $(R_\sigma)_{\sigma \in J}$, so that, first, for each $\sigma \in J$, there is a canonical algebra map $\iota_\sigma: R_\sigma \to R_J$, and second, given $J \subset K$, the ι_σ for $\sigma \in K$ induce an algebra map $\iota^J_K: R_J \to R_K$. So $\varinjlim R_J$ exists in $\langle (R\text{-alg}) \rangle$ by (7.4).

Given a family of algebra maps $\varphi_\sigma: R_\sigma \to R'$, for each J, there is a compatible map $\varphi_J: R_J \to R'$, since R_J is the coproduct of the R_σ. Further, the various φ_J are compatible, so they induce a compatible map $\varphi: \varinjlim R_J \to R'$. Thus $\varinjlim R_J$ is the coproduct of the R_σ. \qed

Exercise (8.34). — Let X be a variable, ω a complex cube root of 1, and $\sqrt{2}$ the real cube root of 2. Set $k := \mathbb{Q}(\omega)$ and $K := k[\sqrt{2}]$. Show $K = k[X]/(X^3 - 2)$ and then $K \otimes_k K = K \times K \times K$.

271
9. Flatness

Exercise (9.17) . — Let \(R \) be a ring, \(a \) an ideal. Show \(\Gamma_a(\bullet) \) is a left exact functor.

Solution: Given an \(R \)-map \(\alpha : M \rightarrow N \), note that \(\text{Ann}(m) \subset \text{Ann}(\alpha(m)) \) for all \(m \in M \). Assume that \(m \in \Gamma_a(M) \); that is, \(a \subset \sqrt{\text{Ann}(m)} \). It follows that \(\alpha(m) \in \Gamma_a(N) \). Thus \(\Gamma_a(\bullet) \) is a functor.

Given an exact sequence of \(R \)-modules \(0 \rightarrow M \xrightarrow{\alpha} N \xrightarrow{\beta} P \). form the sequence \(0 \rightarrow \Gamma_a(M) \xrightarrow{\alpha} \Gamma_a(N) \xrightarrow{\beta} \Gamma_a(P) \). Trivially, it is exact at \(\Gamma_a(M) \). Owing to (4.14)(2), it is exact at \(\Gamma_a(N) \). Thus \(\Gamma_a(\bullet) \) is left exact. \(\square \)

Exercise (9.18) . — Let \(R \) be a ring, \(N \) a module, \(N_1 \) and \(N_2 \) submodules, \(R' \) an algebra, \(F \) an exact \(R \)-linear functor from \((R\text{-mod}) \) to \((R'\text{-mod}) \). Prove:
\[
F(N_1 \cap N_2) = F(N_1) \cap F(N_2) \quad \text{and} \quad F(N_1 + N_2) = F(N_1) + F(N_2).
\]

Solution: Define \(\sigma_N : N_1 \oplus N_2 \rightarrow N \) by \(\sigma_N(n_1, n_2) := n_1 + n_2 \). Identifying its kernel and image yields the following exact sequence, where \(\alpha(n) := (n,-n) \):
\[
0 \rightarrow N_1 \cap N_2 \xrightarrow{\alpha} N_1 \oplus N_2 \rightarrow N_1 + N_2 \rightarrow 0.
\]
As \(F \) is exact, applying \(F \) yields the following exact sequence:
\[
0 \rightarrow F(N_1 \cap N_2) \rightarrow F(N_1 \oplus N_2) \rightarrow F(N_1 + N_2) \rightarrow 0.
\]
But \(F(\sigma_N) = \sigma_{F(N)} \) owing to (8.15). So the above sequence is equal to this one
\[
0 \rightarrow F(N_1) \cap F(N_2) \rightarrow F(N_1) \oplus F(N_2) \rightarrow F(N_1) + F(N_2) \rightarrow 0,
\]
which identifies the kernel and image of \(\sigma_{F(N)} \), as desired. \(\square \)

Exercise (9.14) (Equational Criterion for Flatness) . — Prove that Condition (9.13)(4) can be reformulated as follows: Given any relation \(\sum x_i m_i = 0 \) with \(x_i \in R \) and \(m_i \in M \), there are \(x_{ij} \in R \) and \(m'_{ij} \in M \) such that
\[
\sum x_{ij} m'_{ij} = m_i \quad \text{for all } i \quad \text{and} \quad \sum x_{ij} x_i = 0 \quad \text{for all } j. \quad (9.14.1)
\]
Solutions (9.19) / (9.22) Flatness

Solution: Assume (9.13)(4) holds. Let \(e_1, \ldots, e_m \) be the standard basis of \(R^m \). Given a relation \(\sum_1^m x_1 m_1 = 0 \), define \(\alpha : R^m \to M \) by \(\alpha(e_i) := m_i \) for each \(i \). Set \(k := \sum x_i e_i \). Then \(\alpha(k) = 0 \). So (9.13)(4) yields a factorization \(\alpha : R^m \xrightarrow{\delta} \delta M \) with \(\varphi(k) = 0 \). Let \(e'_1, \ldots, e'_n \) be the standard basis of \(R^n \), and set \(m'_j := \beta(e'_j) \) for each \(j \). Let \((x_{ij}) \) be the \(n \times m \) matrix of \(\varphi \); that is, \(\varphi(e_i) = \sum_{j=1}^n x_{ij} e'_j \). Then \(m_i = \sum x_{ij} m'_j \). Now, \(\varphi(k) = 0 \); hence, \(\sum_{j=1}^n x_{ij} x_i e'_j = 0 \). Thus (9.14.1) holds.

Conversely, given \(\alpha : R^m \to M \) and \(k \in \text{Ker}(\alpha) \), say \(k = \sum x_i e_i \). Assume (9.14.1). Define \(\varphi : R^m \to R^n \) via the matrix \((x_{ij}) \); that is, \(\varphi(e_i) = \sum x_{ij} e'_j \). Then \(\varphi(k) = \sum x_i x_{ij} e'_j = 0 \). Define \(\beta : R^n \to M \) by \(\beta(e'_j) := m'_j \). Then \(\beta \varphi(e_i) = m_i \); hence, \(\beta \varphi = \alpha \). Thus (9.13)(4) holds.

Exercise (9.19): Let \(R \) be a ring, \(R' \) an algebra, \(F \) an \(R \)-linear functor from \(((R\text{-mod})) \) to \(((R'\text{-mod})) \). Assume \(F \) is exact. Prove the following equivalent:

1. \(F \) is faithful.
2. An \(R \)-module \(M \) vanishes if \(FM \) does.
3. \(F(R/m) \neq 0 \) for every maximal ideal \(m \) of \(R \).
4. A sequence \(M' \xrightarrow{\delta} M \xrightarrow{\beta} M'' \) is exact if \(FM' \xrightarrow{F\alpha} FM \xrightarrow{F\beta} FM'' \) is.

Solution: To prove (1) implies (2), suppose \(FM = 0 \). Then \(1_{FM} = 0 \). But always \(1_{FM} = F(1_M) \). Hence (1) yields \(1_M = 0 \). So \(M = 0 \). Thus (2) holds.

Conversely, assume (2). Given \(\alpha : M \to N \) with \(F\alpha = 0 \), set \(I := \text{Im}(\alpha) \). As \(F \) is exact, (9.3) yields \(FI = \text{Im}(F\alpha) \). Hence \(FI = 0 \). So (2) yields \(I = 0 \). Thus \(\alpha = 0 \).

Thus (1) holds. Thus (1) and (2) are equivalent.

To prove (2) implies (3), take \(M := R/m \).

Conversely, assume (3). Given \(0 \neq m \in M \), form \(\alpha : R \to M \) by \(\alpha(x) := xm \). Set \(a := \text{Ker}(\alpha) \). Let \(m \supset a \) be a maximal ideal. We get a surjection \(R/a \to R/m \) and an injection \(R/a \to M \). They induce a surjection \(F(R/a) \to F(R/m) \) and an injection \(F(R/a) \to FM \) as \(F \) is exact. But \(F(R/m) \neq 0 \) by (3). So \(F(R/a) \neq 0 \). So \(FM \neq 0 \). Thus (2) holds. Thus (1) and (2) and (3) are equivalent.

To prove (1) implies (4), set \(I := \text{Im}(\alpha) \) and \(K := \text{Ker}(\beta) \). Now, \(F(\beta \alpha) = 0 \). So (1) yields \(\beta \alpha = 0 \). Hence \(I \subseteq K \). But \(F \) is exact; so \(F(K/I) = FK/FI \), and (9.3) yields \(FI = \text{Im}(FK) \) and \(FK = \text{Ker}(F\beta) \). Hence \(F(K/I) = 0 \). But (1) implies (2).

Thus \(K/I = 0 \). Thus (4) holds.

Conversely, assume (4). Given \(\alpha : M \to N \) with \(F\alpha = 0 \), set \(K := \text{Ker}(\alpha) \). As \(F \) is exact, (9.3) yields \(FK = \text{Ker}(F\alpha) \). Hence \(FK \to FM \to 0 \) is exact. So (4) implies \(K \to M \to 0 \) is exact. So \(\alpha = 0 \). Thus (1) holds, as desired.

Exercise (9.20): Show that a ring of polynomials \(P \) is faithfully flat.

Solution: The monomials form a free basis, so \(P \) is faithfully flat by (9.6).

Exercise (9.21): Let \(R \) be a ring, \(M \) and \(N \) flat modules. Show that \(M \otimes N \) is flat. What if “flat” is replaced everywhere by “faithfully flat”?

Solution: Associativity (8.8) yields \((M \otimes N) \otimes \bullet = M \otimes (N \otimes \bullet) \); in other words, \((M \otimes N) \otimes \bullet = (M \otimes \bullet) \circ (N \otimes \bullet)\). So \((M \otimes N) \otimes \bullet \) is the composition of two exact functors. Hence it is exact. Thus \(M \otimes N \) is flat.

Similarly if \(M \) and \(N \) are faithfully flat, then \(M \otimes N \otimes \bullet \) is faithful and exact. So \(M \otimes N \) is faithfully flat.

Exercise (9.22): Let \(R \) be a ring, \(M \) a flat module, \(R' \) an algebra. Show that \(M \otimes_R R' \) is flat over \(R' \). What if “flat” is replaced everywhere by “faithfully flat”?
Solution: Cancellation (8.9) yields \((M \otimes_R R') \otimes_{R'} \bullet = M \otimes_R \bullet\). But \(M \otimes_R \bullet\) is exact, as \(M\) is flat over \(R\). Thus \(M \otimes_R R'\) is flat over \(R'\).

Similarly, if \(M\) is faithfully flat over \(R\), then \(M \otimes_R \bullet\) is faithful too. Thus \(M \otimes_R R'\) is faithfully flat over \(R'\).

Exercise (9.23). — Let \(R\) be a ring, \(R'\) a flat algebra, \(M\) a flat \(R'\)-module. Show that \(M\) is flat over \(R\). What if “flat” is replaced everywhere by “faithfully flat”? □

Solution: Cancellation (8.9) yields \(M \otimes_R \bullet = M \otimes_{R'} (R' \otimes_R \bullet)\). But \(R' \otimes_R \bullet\) and \(M \otimes_{R'} \bullet\) are exact; so their composition \(M \otimes_R \bullet\) is too. Thus \(M\) is flat over \(R\).

Similarly, as the composition of two faithful functors is, plainly, faithful, the assertion remains true if “flat” is replaced everywhere by “faithfully flat.” □

Exercise (9.24). — Let \(R\) be a ring, \(R'\) and \(R''\) algebras, \(M'\) a flat \(R'\)-module, and \(M''\) a flat \(R''\)-module. Show that \(M' \otimes_R M''\) is a flat \((R' \otimes_R R'')\)-module. What if “flat” is replaced everywhere by “faithfully flat”? □

Solution: Given an \((R' \otimes_R R'')\)-module \(N\), apply Associativity (8.8) liberally, apply Cancellation (8.9) twice, and apply Commutativity (8.5) once to get
\[N \otimes_{R''} M'' = N_{R' \otimes_{R''} R''} (R' \otimes_R R''') \otimes_{R''} M'' N \otimes_{R' \otimes_{R''} R''} (R' \otimes_R M'')\]
Hence (8.9) yields \(M' \otimes_{R'} (N \otimes_{R''} M'') = (M' \otimes_R M'') \otimes_{R' \otimes_{R''} R''} N\). Therefore, \((M' \otimes_R M') \otimes_{R' \otimes_{R''} R''} \bullet\) is equal to the composition of two exact functors, \(M' \otimes_R \bullet\) and \(\bullet \otimes_{R''} M''\). Thus \(M' \otimes_R M''\) is flat.

Similarly, as the composition of two faithful functors is, plainly, faithful, the assertion remains true if “flat” is replaced everywhere by “faithfully flat.” □

Exercise (9.25). — Let \(R\) be a ring, \(R'\) an algebra, and \(M\) an \(R'\)-module. Assume that \(M\) is flat over \(R\) and faithfully flat over \(R'\). Show that \(R'\) is flat over \(R\).

Solution: Cancellation (8.9) yields \(\bullet \otimes_R M = (\bullet \otimes_R R') \otimes_{R'} M\). But \(\bullet \otimes_R M\) is exact, and \(\bullet \otimes_{R'} M\) is faithful. Thus, by (9.19), \(\bullet \otimes_R R'\) is exact, as desired. □

Exercise (9.26). — Let \(R\) be a ring, \(R'\) an algebra, \(R''\) an \(R'\)-algebra, and \(M\) an \(R''\)-module. Assume that \(R''\) is flat over \(R'\) and that \(M\) is flat over \(R\). Show that \(R'' \otimes_{R'} M\) is flat over \(R\). Conversely, assume that \(R'' \otimes_R \bullet\) is faithful and that \(R'' \otimes_{R'} R'\) is flat over \(R\). Show that \(M\) is flat over \(R\).

Solution: Associativity (8.8) yields \((R'' \otimes_{R'} M) \otimes_R R'' \otimes_R R' (M \otimes_R \bullet)\). Thus \((R'' \otimes_{R'} M) \otimes_R \bullet\) is exact if \(R'' \otimes_R \bullet\) and \(M \otimes_R \bullet\) are. Conversely, by (9.19), \(M \otimes_{R'} \bullet\) is exact if \(R'' \otimes_{R'} \bullet\) is faithful and \((R'' \otimes_{R'} M) \otimes_{R'} \bullet\) is exact. □

Exercise (9.27). — Let \(R\) be a ring, \(a\) an ideal. Assume \(R/a\) is flat. Show \(a = a^2\).

Solution: Since \(R/a\) is flat, tensoring it with the inclusion \(a \mapsto R\) yields an injection \(a \otimes_R (R/a) \hookrightarrow R \otimes_R (R/a)\). But the image vanishes: \(a \otimes r = 1 \otimes ar = 0\). Further, \(a \otimes_R (R/a) = a/a^2\) by (8.27). Hence \(a/a^2 = 0\). Thus \(a = a^2\). □

Exercise (9.28). — Let \(R\) be a ring, \(R'\) a flat algebra. Prove equivalent:

1. \(R'\) is faithfully flat over \(R\).
2. For every \(R\)-module \(M\), the map \(M \to M \otimes_R R'\) by \(\alpha m = m \otimes 1\) is injective.
3. Every ideal \(a\) of \(R\) is the contraction of its extension, or \(a = (aR')^c\).
4. Every prime \(p\) of \(R\) is the contraction of some prime \(q\) of \(R'\), or \(p = q^c\).

274
(5) Every maximal ideal \(m \) of \(R \) extends to a proper ideal, or \(mR' \neq R' \).
(6) Every nonzero \(R \)-module \(M \) extends to a nonzero module, or \(M \otimes_R R' \neq 0 \).

Solution: Assume (1). In (2), set \(K := \ker \alpha \). Then the canonical sequence

\[
0 \rightarrow K \otimes R' \rightarrow M \otimes R' \xrightarrow{\alpha \otimes 1} M \otimes R' \otimes R' \rightarrow 0
\]

is exact. But \(\alpha \otimes 1 \) has a retraction, namely \(m \otimes x \otimes y \mapsto m \otimes xy \). So \(\alpha \otimes 1 \) is injective. Hence \(K \otimes R' = 0 \). So (1) implies \(K = 0 \) by (9.19). Thus (2) holds.

Assume (2). Then \(R/a \rightarrow (R/a) \otimes R' \) is injective. But \((R/a) \otimes R' = R'/aR' \) by (8.27)(1). Thus (3) holds.

Assume (3). Then (3.10)(2) yields (4).

Assume (4). Then every maximal ideal \(m \) of \(R \) is the contraction of some prime \(q \) of \(R' \). So \(mR' \subset q \). Thus (5) holds.

Assume (5). Consider (6). Take a nonzero \(m \in M \), and set \(M' := Rm \). As \(R' \) is flat, the inclusion \(M' \hookrightarrow M \) yields an injection \(M' \otimes R' \rightarrow M \otimes R' \).

Note \(M' = R/a \) for some \(a \) by (4.7). So \(M' \otimes R' = R'/aR' \) by (8.27)(1). Take a maximal ideal \(m \supset \mathfrak{a} \). Then \(aR' \subset mR' \). But \(mR' \not\subset R' \) by (5). Hence \(R'/aR' \neq 0 \). So \(M' \otimes_R R' \neq 0 \). Hence \(M \otimes R' \neq 0 \). Thus (6) holds.

Finally, (6) and (1) are equivalent by (9.19). \(\Box \)

Exercise (9.29). Let \(R \) be a ring, \(R' \) a faithfully flat algebra. Assume \(R' \) is local. Prove \(R \) is local too.

Solution: Let \(\mathfrak{m}' \) be the maximal ideal of \(R' \). Given a proper ideal \(\mathfrak{a} \) of \(R \), note that \(\mathfrak{a} = (aR')^c \) by (9.28)(3) as \(R' \) is faithfully flat. So \(1 \notin aR' \). Hence \(aR' \subset \mathfrak{m}' \). So \(\mathfrak{a} \subset \mathfrak{m}' \). \(\Box \)

Exercise (9.30). Let \(R \) be a ring, \(0 \rightarrow M' \xrightarrow{\alpha} M \rightarrow M'' \rightarrow 0 \) an exact sequence with \(M \) flat. Assume \(N \otimes M' \xrightarrow{\alpha \otimes 1} N \otimes M \) is injective for all \(N \). Prove \(M'' \) is flat.

Solution: Let \(\beta : N \rightarrow P \) be an injection. It yields the following commutative diagram with exact rows by hypothesis and by (8.10):

\[
\begin{array}{ccc}
0 & \rightarrow & N \otimes M' \\
\downarrow \beta \otimes M' & & \downarrow \beta \otimes M \\
0 & \rightarrow & P \otimes M' \\
\downarrow & & \downarrow \\
0 & \rightarrow & P/N \otimes M' \\
\end{array}
\]

Since \(M \) is flat, \(\ker(\beta \otimes M) = 0 \). So the Snake Lemma (5.10) applied to the top two rows yields \(\ker(\beta \otimes M'') = 0 \). Thus \(M'' \) is flat. \(\Box \)

Exercise (9.31). Prove that an \(R \)-algebra \(R' \) is faithfully flat if and only if the structure map \(\varphi : R \rightarrow R' \) is injective and the quotient \(R'/\varphi R \) is flat over \(R \).

Solution: Assume \(R' \) is faithfully flat. Then for every \(R \)-module \(M \), the map \(M \xrightarrow{\varphi} M \otimes_R R' \) is injective by (9.28). Taking \(M := R \) shows \(\varphi \) is injective. And, since \(R' \) is flat, \(R'/\varphi(R) \) is flat by (9.30).

Conversely, assume \(\varphi \) is injective and \(R'/\varphi(R) \) is flat. Then \(M \rightarrow M \otimes_R R' \) is injective for every module \(M \) by (9.8)(1), and \(R' \) is flat by (9.8)(2). Thus \(R' \) is faithfully flat by (9.28). \(\Box \)
Exercise (9.32) . — Let \(R \) be a ring, \(0 \to M_n \to \cdots \to M_1 \to 0 \) an exact sequence of flat modules, and \(N \) any module. Then the following sequence is exact:
\[
0 \to M_n \otimes N \to \cdots \to M_1 \otimes N \to 0. \tag{9.32.1}
\]

Solution: Set \(K := \text{Ker}(M_2 \to M_1) \). Then the following sequences are exact:
\[
0 \to M_n \to \cdots \to M_3 \to K \to 0 \quad \text{and} \quad 0 \to K \to M_2 \to M_1 \to 0.
\]
Since \(M_1 \) is flat, the sequence
\[
0 \to K \otimes N \to M_2 \otimes N \to M_1 \otimes N \to 0
\]
is exact by (9.8)(1). Since \(M_1 \) and \(M_2 \) are flat, \(K \) is flat by (9.8)(2). So
\[
0 \to M_n \otimes N \to \cdots \to M_3 \otimes N \to K \otimes N \to 0
\]
is exact by induction on \(n \). Thus (9.32.1) is exact. \(\square \)

Exercise (9.33) . — Let \(R \) be a ring, \(R' \) an algebra, \(M \) and \(N \) modules.

1. Show that there is a canonical \(R' \)-homomorphism \(\sigma_M : \text{Hom}_R(M, N) \otimes_R R' \to \text{Hom}_R(M \otimes_R R', N \otimes_R R') \).

2. Assume \(M \) is finitely generated and projective. Show that \(\sigma_M \) is injective.

3. Assume \(R' \) is flat over \(R \). Show that if \(M \) is finitely generated, then \(\sigma_M \) is injective, and that if \(M \) is finitely presented, then \(\sigma_M \) is bijective.

Solution: For (1) and (3), set \(R' := R \) and \(P := R' \) in (9.10), set \(P := N \otimes_R R' \) in the second equation in (8.9), and combine the two results.

For (2), note that (5.27) yields \(K, n \) and \(M \otimes K \rightarrowtail R' \). Form the functors
\[
F(\bullet) := \text{Hom}_R(\bullet, N) \otimes_R R' \quad \text{and} \quad F'(\bullet) := \text{Hom}_R(\bullet \otimes_R R', N \otimes_R R').
\]
Plainly, \(F \) and \(F' \) are linear. So they preserve finite direct sums by (8.14). Plainly, \(\sigma_\bullet : F \to F' \) is a natural transformation. Also, \(\bullet \otimes R' \) preserves direct sums by (8.10). Putting it all together yields this diagram, with horizontal isomorphisms:
\[
\begin{array}{ccc}
(F(M) \otimes_R R') \oplus (F(M') \otimes_R R') & \longrightarrow & F(R^n) \otimes_R R' \\
\sigma_M \oplus \sigma_{M'} & & \sigma_{R^n}
\end{array}
\]
\[
\begin{array}{ccc}
F'(M) \oplus F'(M') & \longrightarrow & F'(R^n)
\end{array}
\]
Direct sum is a special case of direct limit by (6.5). So the above diagram is commutative by (6.15). By (5.4), therefore, \(\sigma_M \) is an isomorphism if \(\sigma_{R^n} \) is. Similarly, \(\sigma_{R^n} \) is an isomorphism if \(\sigma_R \) is. Thus we must show \(\sigma_R \) is an isomorphism.

It is not hard to check that the following diagram is commutative:
\[
\begin{array}{ccc}
\text{Hom}_R(R, N) \otimes_R R' & \longrightarrow & N \otimes_R R' \\
\sigma_R & & 1_{N \otimes_R R'}
\end{array}
\]
\[
\begin{array}{ccc}
\text{Hom}_R(R \otimes_R R', N \otimes_R R') & \longrightarrow & N \otimes_R R'
\end{array}
\]
where the horizontal maps are the isomorphisms arising from (4.3) and (8.5)(2). Thus \(\sigma_R \) is an isomorphism, as required. \(\square \)

Exercise (9.34) . — Let \(R \) be a ring, \(M \) a module, and \(R' \) an algebra. Prove \(\text{Ann}(M)R' \subset \text{Ann}(M \otimes_R R') \), with equality if \(M \) is finitely generated and \(R' \) is flat.
By construction, every element of $M \otimes R'$ is a sum of elements of the form $m \otimes r$ with $m \in M$ and $r \in R'$. But given $x \in \text{Ann}(M)$ and $s \in R'$, note $xs(m \otimes r) = x \otimes xsr = xmr \otimes sr = 0$ by (8.6). Thus $\text{Ann}(M)R' \subset \text{Ann}(M \otimes R')$.

Assume M is finitely generated, say by m_1, \ldots, m_r. Set $a := \text{Ann}(M)$. Form $0 \to a \to R \xrightarrow{\beta} M'$ with $\beta(x) : (xm_1, \ldots, xm_r)$. Plainly, it is exact. Assume R' is flat. Then $0 \to a \otimes R' \to R' \xrightarrow{\beta \otimes 1} M' \otimes R'$ is exact. And $a \otimes R' = aR'$ by (9.15).

Given $y \in \text{Ann}(M \otimes R')$, note $(m_i \otimes 1)y = 0$ for all i. But $M' \otimes R' = (M \otimes R')^r$ by (8.10); hence $(\beta \otimes 1)y((m_1 \otimes 1)y, \ldots, (m_r \otimes 1)y)$. So $(\beta \otimes 1)y = 0$. Hence $y \in aR'$ by the above. Thus $\text{Ann}(M \otimes R') \subset aR'$, and so equality holds.

Exercise (9.35). — Let R be a ring, M a module. Prove (1) if M is flat, then for $x \in R$ and $m \in M$ with $xm = 0$, necessarily $m \in \text{Ann}(x)M$, and (2) the converse holds if R is a Principal Ideal Ring (PIR); that is, every ideal a is principal.

Solution: For (1), assume M is flat and $xm = 0$. Then (9.14) yields $x_j \in R$ and $m_j \in M$ with $\sum x_jm_j = m$ and $x_jx = 0$ for all j. Thus $m \in \text{Ann}(x)M$.

Alternatively, $0 \to \text{Ann}(x) \to R \xrightarrow{\mu_2} R$ is always exact. Tensoring with M gives $0 \to \text{Ann}(x) \otimes M \to M \xrightarrow{\mu_2} M$, which is exact as M is flat. So $\text{Im}(\text{Ann}(x) \otimes M)$ is exact. Assume $\text{Ann}(x) \otimes M = \text{Ann}(x)M$. Then (1) holds.

For (2), it suffices, by (9.15), to show $\alpha : a \otimes M \to aM$ is injective. Since R is a PIR, $a = \langle x \rangle$ for some $x \in R$. So, given $z \in a \otimes M$, there are $y_i \in R$ and $m_i \in M$ such that $z = \sum y_i \otimes m_i$. Set $m := \sum_i y_i m_i$. Then

$$z = \sum_i x \otimes y_i m_i = x \otimes \sum_i y_i m_i = x \otimes m.$$

Suppose $z \in \text{Ker}(\alpha)$. Then $xm = 0$. Hence $m \in \text{Ann}(x)M$ by hypothesis. So $m = \sum_j z_j n_j$ for some $z_j \in \text{Ann}(x)$ and $n_j \in M$. Hence

$$z = x \otimes \sum_j z_j n_j = \sum_j z_j x \otimes n_j = 0.$$

Thus α is injective. Thus (2) holds.

10. Cayley–Hamilton Theorem

Exercise (10.9). — Let A be a local ring, m the maximal ideal, M a finitely generated A-module, and $m_1, \ldots, m_n \in M$. Set $k := A/m$ and $M' := M/mM$, and write n_i for the image of m_i in M'. Prove that $m_1', \ldots, m_n' \in M'$ form a basis of the k-vector space M' if and only if m_1, \ldots, m_n form a minimal generating set of M (that is, no proper subset generates M), and prove that every minimal generating set of M has the same number of elements.

Solution: By (10.8), reduction mod m gives a bijective correspondence between generating sets of M as an A-module, and generating sets of M' as an A-module, or equivalently by (4.5), as an k-vector space. This correspondence preserves inclusion. Hence, a minimal generating set of M corresponds to a minimal generating set of M', that is, to a basis. But any two bases have the same number of elements.

Exercise (10.10). — Let A be a local ring, k its residue field, M and N finitely generated modules. (1) Show that $M = 0$ if and only if $M \otimes_A k = 0$. (2) Show that $M \otimes_A N \neq 0$ if $M \neq 0$ and $N \neq 0$.

277
Solutions (10.23) / (10.26) Cayley–Hamilton Theorem

Solution: Let \(m \) be the maximal ideal. Then \(M \otimes k = M/mM \) by (8.27)(1). So (1) is nothing but a form of Nakayama’s Lemma (10.6).

In (2), \(M \otimes k \neq 0 \) and \(N \otimes k \neq 0 \) by (1). So \((M \otimes k) \otimes (N \otimes k) \neq 0 \) by (8.24) and (8.7). But \((M \otimes k) \otimes (N \otimes k) = (M \otimes N) \otimes (k \otimes k) \) by the associative and commutative laws, (8.8) and (8.5). Finally, \(k \otimes k = k \) by (8.27)(1). \(\square \)

Exercise (10.23). — Let \(R \) be a ring, \(a \) an ideal. Assume \(a \) is finitely generated and idempotent (or \(a = a^2 \)). Prove there is a unique idempotent \(e \) with \(\langle e \rangle = a \).

Solution: By (10.3) with \(a \) for \(M \), there is \(e \in a \) such that \((1 - e)a = 0 \). So for all \(x \in a \), we have \((1 - e)x = 0 \), or \(x = ex \). Thus \(a = \langle e \rangle \) and \(e = e^2 \).

Finally, \(e \) is unique by (3.34). \(\square \)

Exercise (10.24). — Let \(R \) be a ring, \(a \) an ideal. Prove the following conditions are equivalent:

1. \(R/a \) is projective over \(R \).
2. \(R/a \) is flat over \(R \), and \(a \) is finitely generated.
3. \(a \) is finitely generated and idempotent.
4. \(a \) is generated by an idempotent.
5. \(a \) is a direct summand of \(R \).

Solution: Suppose (1) holds. Then \(R/a \) is flat by (9.6). Further, the sequence \(0 \to a \to R \to R/a \to 0 \) splits by (5.16). So (5.8) yields a surjection \(\rho: R \to a \).

Hence \(a \) is principal. Thus (2) holds.

If (2) holds, then (3) holds by (9.27). If (3) holds, then (4) holds by (10.23). If (4) holds, then (5) holds by (1.12). If (5) holds, then \(R \cong a \bigoplus R/a \), and so (1) holds by (5.16). \(\square \)

Exercise (10.25). — Prove the following conditions on a ring \(R \) are equivalent:

1. \(R \) is absolutely flat: that is, every module is flat.
2. Every finitely generated ideal is a direct summand of \(R \).
3. Every finitely generated ideal is idempotent.
4. Every principal ideal is idempotent.

Solution: Assume (1). Let \(a \) be a finitely generated ideal. Then \(R/a \) is flat by hypotheses. So \(a \) is a direct summand of \(R \) by (10.24). Thus (2) holds.

Conditions (2) and (3) are equivalent by (10.24).

Trivially, if (3) holds, then (4) does. Conversely, assume (4). Given a finitely generated ideal \(a \), say \(a = \langle x_1, \ldots, x_n \rangle \). Then each \(\langle x_i \rangle \) is idempotent by hypothesis.

So \(\langle x_i \rangle = \langle f_i \rangle \) for some idempotent \(f_i \) by (1.24)(2). Then \(a = \langle f_1, \ldots, f_n \rangle \). Hence \(a \) is idempotent by (1.24)(4), (1). Thus (3) holds.

Assume (2). Let \(M \) be a module, and \(a \) a finitely generated ideal. Then \(a \) is a direct summand of \(R \) by hypothesis. So \(R/a \) is flat by (9.5). Hence \(a \otimes M \to aM \) by (9.8)(1); cf. the proof of (8.27)(1). So \(M \) is flat by (9.15). Thus (1) holds. \(\square \)

Exercise (10.26). — Let \(R \) be a ring. Prove the following statements:

1. Assume \(R \) is Boolean. Then \(R \) is absolutely flat.
2. Assume \(R \) is absolutely flat. Then any quotient ring \(R' \) is absolutely flat.
3. Assume \(R \) is absolutely flat. Then every nonunit \(x \) is a zerodivisor.
4. Assume \(R \) is absolutely flat and local. Then \(R \) is a field.

278
Solutions (10.27) / (10.31) Cayley–Hamilton Theorem

Solution: In (1), as R is Boolean, every element is idempotent. Hence every principal ideal is idempotent by (1.24)(1). Thus (10.25) yields (1).

For (2), let $b \subset R'$ be principal, say $b = \langle \varpi \rangle$. Let $x \in R$ lift ϖ. Then $\langle x \rangle$ is idempotent by (10.25). Hence b is also idempotent. Thus (10.25) yields (2).

For (3) and (4), take a nonunit x. Then $\langle x \rangle$ is idempotent by (10.25). So $x = ax^2$ for some a. Then $x(ax - 1) = 0$. But x is a nonunit. So $ax - 1 \neq 0$. Thus (3) holds.

Suppose R is local, say with maximal ideal m. Since x is a nonunit, $x \in m$. So $ax \in m$. So $ax - 1 \notin m$. So $ax - 1$ is a unit. But $x(ax - 1) = 0$. So $x = 0$. Thus 0 is the only nonunit. Thus (4) holds.

Exercise (10.27). — Let R be a ring, $\alpha: M \to N$ a map of modules, m an ideal. Assume that $m \subset \text{rad}(N)$, that N is finitely generated, and that the induced map \(\overline{\alpha}: M/mM \to N/mN\) is surjective. Show that α is surjective too.

Solution: As \overline{x} is surjective, $\alpha(M) + mN = N$. As N is finitely generated, so is $N/\alpha(M)$. But $m \subset \text{rad}(N)$. So $\alpha(M) = N$ by (10.8)(1). Thus α is surjective. □

Exercise (10.28). — Let R be a ring, m an ideal, E a module, M, N submodules. Assume N is finitely generated, $m \subset \text{rad}(N)$, and $N \subset M + mN$. Show $N \subset M$.

Solution: Set $L := M + N$. Then $M + mN \supset L$ as $N \subset mN + M$. Hence $M + mN = L$. So $M + mL = L$. So $M = L$ by (10.8)(1). Thus $N \subset M$. □

Exercise (10.29). — Let R be a ring, m an ideal, and $\alpha, \beta: M \to N$ two maps of finitely generated modules. Assume α is an isomorphism, $m \subset \text{rad}(N)$, and $\beta(M) \subset mN$. Set $\gamma := \alpha + \beta$. Show γ is an isomorphism.

Solution: As α is surjective, given $n \in N$, there is $m \in M$ with $\alpha(m) = n$. So $n = \alpha(m) + \beta(m) - \beta(m) \in \gamma(M) + mN$.

But M/N is finitely generated as M is. Hence $\gamma(M) = N$ by (10.8)(1). So γ^{-1} is surjective, and therefore an isomorphism by (10.4). Thus γ is an isomorphism. □

Exercise (10.30). — Let $A \to B$ be a local homomorphism, M a finitely generated B-module. Prove that M is faithfully flat over A if and only if M is flat over A and nonzero. Conclude that, if B is flat over A, then B is faithfully flat over A.

Solution: Plainly, to prove the first assertion, it suffices to show that $M \otimes_A \bullet$ is faithful if and only if $M \neq 0$. Now, if $M \otimes_A \bullet$ is faithful, then $M \otimes N \neq 0$ whenever $N \neq 0$ by (9.19). But $M \otimes A = M$ by the Unitary Law, and $A \neq 0$. Thus $M \neq 0$.

Conversely, suppose $M \neq 0$. Denote the maximal ideals of A and B by m and n. Then $nM \neq M$ by Nakayama’s Lemma (10.6). But $mB \subset n$ as $A \to B$ is a local homomorphism. So $M/mM \neq 0$. But $M/mM = M \otimes (A/m)$ by (8.27)(1). Thus (9.19) implies $M \otimes_A \bullet$ is faithful.

Finally, the second assertion is the special case with $M := B$. □

Exercise (10.31). — Let $A \to B$ be a flat local homomorphism, M a finitely generated A-module. Set $N := M \otimes B$. Assume N is cyclic. Show M is cyclic too. Conclude that an ideal a of A is principal if its extension aB is so.

279
Solutions

Exercise (10.32) . — Let R be a ring, X a variable, R' an algebra, $n \geq 0$. Assume R' is a free R-module of rank n. Let $m := \text{rad}(R)$ and $k := R/m$. Given a k-isomorphism $\bar{\varphi} : k[X]/\langle \bar{F} \rangle \rightarrow R'/mR'$ with \bar{F} monic, show we can lift $\bar{\varphi}$ to an R-isomorphism $\varphi : R[X]/\langle F \rangle \rightarrow R'$ with F monic. Show F must then lift \bar{F}.

Solution: As R' is free of rank n over R, so is R'/mR' over k. Let $\bar{x} \in R'/mR'$ be the image of X, and $x \in R$ a lift of \bar{x}. Then $1, \bar{x}, \ldots, \bar{x}^{n-1}$ generate R'/mR' over k by (10.15)(1) ⇒ (4). So $1, x, \ldots, x^{n-1}$ generate R' over R by (10.8)(2). Thus (10.5) implies $1, x, \ldots, x^{n-1}$ form a free basis of R' over R.

Form the R-algebra map $\kappa : R[X] \rightarrow R'$ with $\kappa(X) = x$. As the x^i generate, κ is surjective. So $\text{Ker}(\kappa)$ is generated by a monic polynomial F of degree n by (10.15)(4) ⇒ (1). Thus κ induces an R-isomorphism $\varphi : R[X]/\langle F \rangle \rightarrow R'$ lifting $\bar{\varphi}$.

Finally, let $\bar{F} \in k[X]$ be the residue of F. Then \bar{F} is monic of degree n. Also, $k[X]/\langle \bar{F} \rangle = k[X]/\langle F \rangle$. So $\bar{F} = \bar{F}$. Thus F lifts \bar{F}.

Exercise (10.33) . — Let R be a ring, a an ideal, $P := R[X]$ the polynomial ring in one variable X, and $G_1, G_2, H \in P$ with G_1 monic of degree n. Show:

1. Assume G_1 and G_2 are coprime. Then there are unique $H_1, H_2 \in P$ with $H = H_1G_1 + H_2G_2$ and $\deg(H_2) < n$.
2. Assume the images of G_1 and G_2 are coprime in $(R/a)[X]$ and $a \subset \text{rad}(R)$.

Then G_1 and G_2 are coprime.

Solution: Set $M := \sum_{i=0}^{n-1} RX^i \subset P$ and $R' := P/\langle G_1 \rangle$. Let $\kappa : P \rightarrow R'$ be the canonical map. By (1) ⇒ (2) of (10.15), κ induces an R-linear bijection $M \rightarrow R'$. In (1), $\kappa(G_2) \subset R'$ by (2.16). Hence $\kappa(H) = \kappa(H_2)\kappa(G_2)$ for a unique $H_2 \in M$. Hence there’s $H_1 \in P$ with $H = H_1G_1 + H_2G_2$. If $H = H_1'G_1 + H_2'G_2$ too, then $0 = (H_1 - H_1')G_1$. But G_1 is monic. So $H_1 - H_1' = 0$. Thus (1) holds.

In (2), the residue of G_2 is a unit in R'/aR' by (2.16). Hence $G_2R' + aR' = R'$. But R' is R-module finite as $M \rightarrow R'$. Also $a \subset \text{rad}(R) \subset \text{rad}(R')$. So $G_2R' = R'$ by (10.8)(1). So $\kappa(G_2) \subset R'$. Thus (2.16) yields (2).

Exercise (10.34) . — Let R be a ring, $a \subset \text{rad}(R)$ an ideal, $P := R[X]$ the polynomial ring in one variable X, and $F, G, H \in P$. Assume that $F = GH \pmod{aP}$, that G and H are coprime, and that G is monic, say of degree n. Show that there are coprime polynomials $G', H' \in P$ with G' monic of degree n, with
\[\text{deg}(H') \leq \max\{\text{deg}(H), \text{deg}(F) - n\}, \] and with

\[G = G' \quad \text{and} \quad H = H' \pmod{ap} \quad \text{and} \quad F = G'H' \pmod{a^2P}. \]

Solution: Note (10.33)(1) yields (unique) \(A, B \in P \) with \(F - GH = AG + BH \) and \(\text{deg}(B) < n \). Then \(AG + BH \equiv 0 \pmod{ap} \). But the residues of \(G \) and \(H \) in \(P/ap \) are coprime; see (2.16). Also, the residue of \(G \) is monic of degree \(n \). Thus the uniqueness statement in (10.33)(1) yields \(A, B \equiv 0 \pmod{ap} \).

Set \(G' := G + B \) and \(H' := H + A \). Then \(F - G'H' = -AB \). Thus \(F \equiv G'H' \pmod{a^2P} \). Also, \(G' \) is monic of degree \(n \), as \(G \) is so and \(\text{deg}(B) < n \).

The residues of \(G' \) and \(H' \) in \(P/ap \) are the same as those of \(G \) and \(H \). But \(G \) and \(H \) are coprime, and \(a \subset \text{rad}(R) \). Thus (10.33)(2) implies \(G' \) and \(H' \) are coprime.

Finally, assume \(\text{deg}(H') > \text{deg}(H) \). Then \(\text{deg}(H') = \text{deg}(A) \) as \(H' := H + A \).

But \(F - G'H' = -AB \). Also \(\text{deg}(AB) \leq \text{deg}(A) + \text{deg}(B) < \text{deg}(H') + n \), and \(\text{deg}(G'H') = n + \text{deg}(H') \) as \(G' \) is monic of degree \(n \). Hence \(\text{deg}(F) = \text{deg}(G'H') \).

Thus \(\text{deg}(H') \leq \max\{\text{deg}(H), \text{deg}(F) - n\} \). \(\square \)

Exercise (10.35). — Let \(G \) be a finite group acting on a ring \(R \). Show that every \(x \in R \) is integral over \(R^G \), in fact, over its subring \(R' \) generated by the elementary symmetric functions in the conjugates \(gx \) for \(g \in G \).

Solution: Given an \(x \in R \), form \(F(X) := \prod_{g \in G} (X - gx) \). The coefficients of \(F(X) \) are the elementary symmetric functions in the conjugates \(gx \) for \(g \in G \). Thus \(F(x) = 0 \) is an equation of integral dependence for \(x \) over \(R' \), so also over \(R^G \). \(\square \)

Exercise (10.36). — Let \(R \) be a ring, \(R' \) an algebra, \(G \) a group that acts on \(R'/R \), and \(\overline{R} \) the integral closure of \(R \) in \(R' \). Show that \(G \) acts canonically on \(\overline{R}/R \).

Solution: Given \(x \in \overline{R} \), say \(x^n + a_1x^{n-1} + \cdots + a_n = 0 \) with \(a_i \in R \). Given \(g \in G \), then \(g\cdot a_i = a_i \). So \(g(x^n + a_1gx^{n-1} + \cdots + a_n) = 0 \). So \(gx \in \overline{R} \). Thus \(g\overline{R} \subset \overline{R} \).

Similarly, \(g^{-1}\overline{R} \subset \overline{R} \). Thus \(g\overline{R} = \overline{R} \). \(\square \)

Exercise (10.37). — Let \(R \) be a normal domain, \(K \) its fraction field, \(L/K \) a Galois extension with group \(G \), and \(\overline{R} \) the integral closure of \(R \) in \(L \). (By definition, \(G \) is the group of automorphisms of \(L/K \) and \(K = L^G \).) Show \(R \subset \overline{R}^G \).

Solution: As \(G \) is the group of automorphisms of \(L/K \), it acts on \(L/R \). So \(G \) acts canonically on \(\overline{R}/R \) by (10.36). So \(\overline{R}^G \) is an \(R \)-algebra. Thus \(R \subset \overline{R}^G \).

Conversely, given \(x \in \overline{R}^G \), also \(x \in K \), as \(K = L^G \) by definition of Galois extension with group \(G \). But \(x \) is in \(\overline{R} \); so \(x \) is integral over \(R \). But \(R \) is normal. So \(x \in R \). Thus \(R \subset \overline{R}^G \). Thus \(R = \overline{R}^G \). \(\square \)

Exercise (10.38). — Let \(R'/R \) be an extension of rings. Assume \(R' - R \) is closed under multiplication. Show that \(R \) is integrally closed in \(R' \).

Solution: By way of contradiction, suppose there’s \(x \in R' - R \) integral over \(R \). Say \(x^n + a_1x^{n-1} + \cdots + a_n = 0 \) with \(a_i \in R \) and \(n \) minimal. Then \(n > 1 \) as \(x \notin R \). Set \(y := x^{n-1} + \cdots + a_{n-1} \). Then \(y \notin R \); else, \(x^{n-1} + \cdots + (a_{n-1} - y) = 0 \), contradicting minimality. But \(xy = -a_n \in R \). Thus \(R' - R \) is not closed under multiplication, a contradiction. \(\square \)

Exercise (10.39). — Let \(R \) be a ring; \(C \), \(R' \) two \(R \)-algebras; \(R'' \) an \(R' \)-algebra. If \(R'' \) is either (1) integral over \(R' \), or (2) module finite over \(R' \), or (3) algebra finite over \(R' \), show \(R'' \otimes_R C \) is so over \(R' \otimes_R C \).

281
Solution: For (1), given $x \in R''$, say $x^n + a_1 x^{n-1} + \cdots + a_n = 0$ with $a_i \in R'$. Further, given $c \in C$, note $x \otimes c$ is integral over $R' \otimes C$, because
\[
(x \otimes c)^n + (a_1 \otimes c)(x \otimes c)^{n-1} + \cdots + (a_n \otimes c^n) = (x^n + a_1 x^{n-1} + \cdots + a_n) \otimes c^n = 0.
\]
But every element of $R'' \otimes C$ is a sum of elements of the form $x \otimes c$. Thus (10.20) implies that $R'' \otimes C$ is integral over $R' \otimes C$.

For (2), say x_1, \ldots, x_n generate R'' as an R'-module. Given $x \in R''$, write $x = \sum a_i x_i$ with $a_i \in R'$. Then $x \otimes c = \sum (a_i \otimes c)(x_i \otimes 1)$. But every element of $R'' \otimes C$ is a sum of elements of the form $x \otimes c$. Thus the $x_i \otimes 1$ generate $R'' \otimes C$ as an $R' \otimes C$-module.

For (3), argue as for (2), but use algebra generators and polynomials in them. □

Exercise (10.40). — Let k be a field, $P := k[X]$ the polynomial ring in one variable, $F \in P$. Set $R := k[X^2] \subset P$. Using the free basis $1, X$ of P over R, find an explicit equation of integral dependence of degree 2 on R for F.

Solution: Write $F = F_e + F_o$, where F_e and F_o are the polynomials formed by the terms of F of even and odd degrees. Say $F_o = Gx$. Then the matrix of μ_F is $(\frac{G}{F} \frac{F_o}{2})$. Its characteristic polynomial is $T^2 - 2F_eT + F_e^2 - F_o^2$. So the Cayley–Hamilton Theorem (10.1) yields $F^2 - 2F_eF + F_e^2 - F_o^2 = 0$. □

Exercise (10.41). — Let R_1, \ldots, R_n be R-algebras that are integral over R. Show that their product $\prod R_i$ is integral over R.

Solution: Let $y = (y_1, \ldots, y_n) \in \prod_{i=1}^n R_i$. Since R_i/R is integral, $R[y_i]$ is a module-finite R-subalgebra of R_i by (10.18). Hence $\prod_{i=1}^n R[y_i]$ is a module-finite R-subalgebra of $\prod_{i=1}^n R_i$ by (4.24) and induction on n. Now, $y \in \prod_{i=1}^n R[y_i]$. Therefore, y is integral over R by (10.18). Thus $\prod_{i=1}^n R_i$ is integral over R. □

Exercise (10.42). — For $1 \leq i \leq r$, let R_i be a ring, R'_i an extension of R_i, and $x_i \in R'_i$. Set $R := \prod R_i$, set $R' := \prod R'_i$, and set $x := (x_1, \ldots, x_r)$. Prove
1. x is integral over R if and only if each x_i is integral over R_i for each i;
2. R is integrally closed in R' if and only if each R_i is integrally closed in R'_i.

Solution: Assume x is integral over R. Say $x^n + a_1 x^{n-1} + \cdots + a_n = 0$ with $a_j \in R$. Say $a_j := (a_{1j}, \ldots, a_{rj})$. Fix i. Then $x_i^n + a_{1i} x_i^{n-1} + \cdots + a_{ni} = 0$. So x_i is integral over R_i.

Conversely, assume each x_i is integral over R_i. Say $x_i^n + a_{1i} x_i^{n-1} + \cdots + a_{ni} = 0$. Set $n := \max n_i$, set $a_{ij} := 0$ for $j > n_i$, and set $a_{ij} := (a_{1j}, \ldots, a_{rj}) \in R$ for each j. Then $x^n + a_1 x^{n-1} + \cdots + a_n = 0$. Thus x is integral over R. Thus (1) holds.

Assertion (2) is an immediate consequence of (1). □

Exercise (10.43). — Let k be a field, X and Y variables. Set
\[R := k[X, Y]/\langle Y^2 - X^2 - X^3 \rangle, \]
and let $x, y \in R$ be the residues of X, Y. Prove that R is a domain, but not a field. Set $t := y/x \in \operatorname{Frac}(R)$. Prove that $k[t]$ is the integral closure of R in $\operatorname{Frac}(R)$.
Solutions (11.5) / (11.21) Localization of Rings

Solution: As $k[X, Y]$ is a UFD and $Y^2 - X^2 - X^3$ is irreducible, $\langle Y^2 - X^2 - X^3 \rangle$ is prime by (2.5); however, it is not maximal by (2.39). Hence R is a domain by (2.8), but not a field by (2.13).

Note $y^2 - x^2 - x^3 = 0$. Hence $x = t^2 - 1$ and $y = t^3 - t$. So $k[t] \supset k[x, y] = R$. Further, t is integral over R; so $k[t]$ is integral over R by (2)\Rightarrow(1) of (10.18).

Finally, $k[t]$ has Frac(R) as fraction field. Further, Frac(R) $\neq R$, so x and y cannot be algebraic over k; hence, t must be transcendental. So $k[t]$ is normal by (10.22)(1). Thus $k[t]$ is the integral closure of R in Frac(R).

11. Localization of Rings

Exercise (11.5). — Let R' and R'' be rings. Consider $R := R' \times R''$ and set $S := \{(1,1), (1,0)\}$. Prove $R' = S^{-1}R$.

Solution: Let’s show that the projection map $\pi: R' \times R'' \rightarrow R'$ has the UMP of (11.3). First, note that $\pi S = \{1\} \subset R'^\times$. Let $\psi: R' \times R'' \rightarrow B$ be a ring map such that $\psi(1,0) \in B^\times$. Then in B,

$\psi(1,0) \cdot \psi(0,x) = \psi((1,0) \cdot (0,x)) = \psi(0,0) = 0$ in B.

Hence $\psi(0,x) = 0$ for all $x \in R''$. So ψ factors uniquely through π by (1.5). □

Exercise (11.19). — Let R be a ring, S a multiplicative subset. Prove $S^{-1}R = 0$ if and only if S contains a nilpotent element.

Solution: By (1.1), $S^{-1}R = 0$ if and only if $1/1 = 0/1$. But by construction, $1/1 = 0/1$ if and only if $0 \in S$. Finally, since S is multiplicative, $0 \in S$ if and only if S contains a nilpotent element. □

Exercise (11.20). — Find all intermediate rings $Z \subset R \subset \mathbb{Q}$, and describe each R as a localization of Z. As a starter, prove $Z[2/3] = S_3^{-1}Z$ where $S_3 := \{3^i | i \geq 0\}$.

Let $P \subset Z$ be the set of all prime numbers that appear as factors of the denominators of elements of R in lowest terms; recall that $x = r/s \in \mathbb{Q}$ is in lowest terms if r and s have no common prime divisor. Let S denote the multiplicative subset generated by P, that is, the smallest multiplicative subset containing P. Clearly, S is equal to the set of all products of elements of P.

First note that, if $p \in P$, then $1/p \in R$. Indeed, take an element $x = r/ps \in R$ in lowest terms. Then $sx = r/p \in R$. Also the Euclidean algorithm yields $m, n \in \mathbb{Z}$ such that $mp + nr = 1$. Then $1/p = m + nsx \in R$, as desired. Hence $S^{-1}Z \subset R$.

But the opposite inclusion holds because, by the very definition of S, every element of R is of the form r/s for some $s \in S$. Thus $S^{-1}Z = R$. □

Exercise (11.21). — Take R and S as in (11.5). On $R \times S$, impose this relation:

$$(x, s) \sim (y, t) \quad \text{if} \quad xt = ys.$$

Prove that it is not an equivalence relation.
Solutions

(11.22) / (11.23) Localization of Rings

Solution: Observe that, for any \(T\), we have
\[
((1, z), (1, 1)) \sim ((1, 0), (1, 0)).
\]

However, if \(z \neq 0\), then
\[
((1, z), (1, 1)) \not\sim ((1, 0), (1, 1)).
\]

Thus although \(\sim\) is reflexive and symmetric, it is not transitive if \(T' \neq 0\). \(\square\)

Exercise (11.22). — Let \(R\) be a ring, \(S\) a multiplicative subset, \(G\) be a group acting on \(R\), Assume \(g(S) \subset S\) for all \(g \in G\). Set \(S^G := S \cap R^G\). Show:

1. The group \(G\) acts canonically on \(S^{-1}R\).
2. If \(G\) is finite, there’s a canonical isomorphism \(\rho: (S^{-1}R)^G \xrightarrow{\sim} (S^{-1}R)^G\).

Solution: For (1), given \(g \in G\), note \(\varphi_g(S) \subset (S^{-1}R)^x\) as \(g(S) \subset S\). So \(g\) induces a map \(S^{-1}(g): S^{-1}R \xrightarrow{} S^{-1}R\) by (11.3). By naturality, \(S^{-1}(g^{-1})\) is an inverse. Thus (1) holds.

For (2), note \(\varphi_g(S^G) \subset (S^{-1}R)^x\) as \(S^G \subset S\). So \((\varphi_gR^G): R^G \xrightarrow{} S^{-1}R\) induces a map \(\rho: (S^G)^{-1}R^G \xrightarrow{} S^{-1}R\) by (11.3). Assume \(G\) is finite. Let’s show \(\rho\) works.

First, given \(x \in R^G\) and \(s \in S^G\), suppose \(g(x/s) = 0\). Then there’s \(t \in S\) with \(tx = 0\) in \(R\). Set \(t' := \prod_{g \in G} g(t)\). Then \(t'x = 0\). And \(t' \in R^G\), so \(t' \in S^G\). So \(x/s = 0\) in \((S^G)^{-1}R^G\). Thus \(\rho\) is injective.

Second, given \(x \in R^G\) and \(s \in S^G\) and \(g \in G\), note \(gp(x/s) = \rho(g(x/g(s))\). But \(g(x) = x\) and \(g(s) = s\). So \(g(x/s) = \rho(x/s)\). Thus \(\text{Im}(\rho) \subset (S^{-1}R)^G\).

Conversely, given \(y/t \in (S^{-1}R)^G\), set \(t' := \prod_{g \notin 1} g(t)\). Then \(tt' \in S^G\) and \(y/t = yt'/tt'\). Fix \(g \in G\). Then \(g(y/t) = g(yt'/g(tt'))\). But \(g(tt') = tt'\). Also \(g(yt') = y/t\). So \(g(yt')/tt' = yt'/tt'\). So there is \(u_g \in S\) with \(u_g(g(yt') - yt') = 0\).

Set \(u := \prod_{g \in G} u_g\). Then \(u(g(yt') - yt') = 0\) for all \(g\). Set \(u' := \prod_{g \in G} u_g\). Then \(u' \in S^G\), and \(u'(g(yt') - yt') = 0\) for all \(g\). So \(u'y't' \in R^G\) and \(\rho(u'y't'/u't't') = y/t\). Thus \(\text{Im}(\rho) \supset (S^{-1}R)^G\). Thus \(\text{Im}(\rho) = (S^{-1}R)^G\). Thus (2) holds. \(\square\)

Exercise (11.23). — Let \(R\) be a ring, \(S \subset T\) a multiplicative subsets, \(\overline{S}\) and \(\overline{T}\) their saturations; see (3.25). Set \(U := (S^{-1}R)^x\). Show the following:

1. \(U = \{ x/s \mid x \in \overline{S} \text{ and } s \in S \}\).
2. \(\varphi_{\overline{S}}^{-1}U = \overline{S}\).
3. \(S^{-1}R = T^{-1}R\) if and only if \(\overline{S} = \overline{T}\).
4. \(\overline{S}^{-1}R = S^{-1}R\).

Solution: In (1), given \(x \in \overline{S}\) and \(s \in S\), take \(y \in R\) such that \(xy \in S\). Then \(x/s \cdot sy/xy = 1 \in S^{-1}R\). Thus \(x/s \in U\). Conversely, say \(x/s \cdot y/t = 1 \in S^{-1}R\) with \(x, y \in R\) and \(s, t \in S\). Then there’s \(u \in S\) with \(xyu = stu \in R\). But \(stu \in S\). Thus \(x \in \overline{S}\). Thus (1) holds.

For (1), set \(V := \varphi_{\overline{S}}^{-1}T\). Then \(V\) is saturated multiplicative by (3.11). Further, \(V \supset S\) by (11.1). Thus (1)(c) of (3.25) yields \(V \supset \overline{S}\). Conversely, take \(x \in V\). Then \(x/1 \in T\). So (1) yields \(x/1 = y/s\) with \(y \in \overline{S}\) and \(s \in S\). So there’s \(t \in S\) with \(xst = yt \in R\). But \(\overline{S} \supset S\) by (1)(a) of (3.25), and \(\overline{S}\) is multiplicative by (1)(b) of (3.25); so \(yt \in \overline{S}\). But \(\overline{S}\) is saturated again by (1)(b). Thus \(x \in \overline{S}\). Thus \(V = \overline{S}\).

In (3), if \(S^{-1}R = T^{-1}R\), then (2) implies \(\overline{S} = \overline{T}\). Conversely, if \(\overline{S} = \overline{T}\), then (4) implies \(S^{-1}R = T^{-1}R\).

As to (4), note that, in any ring, a product is a unit if and only if each factor is. So a ring map \(\varphi: R \to R'\) carries \(\overline{S}\) into \(R'^x\) if and only if \(\varphi\) carries \(S\) into \(R'^x\).
Solutions (11.24) / (11.27) Localization of Rings

Thus $S^{-1}R$ and $S^{-1}R$ are characterized by equivalent UMPs. Thus (4) holds. □

Exercise (11.24) . — Let R be a ring, $S \subseteq T \subseteq U$ and W multiplicative subsets.

1. Show there’s a unique R-algebra map $\varphi_{\tau}^S: S^{-1}R \to T^{-1}R$ and $\varphi_{\tau}^W\varphi_{\tau}^S = \varphi_{\tau}^S$.
2. Given a map $\varphi: S^{-1}R \to W^{-1}R$, show $S \subseteq S \subseteq W$ and $\varphi = \varphi_{\tau}^S_{\tau}W$.

Solution: For (1), note $\varphi_{\tau}^T S \subseteq \varphi_{\tau}^T T \subseteq (T^{-1}R)^\times$. So (11.3) yields a unique R-algebra map $\varphi_{\tau}^T: S^{-1}R \to T^{-1}R$. By uniqueness, $\varphi_{\tau}^T \varphi_{\tau}^S = \varphi_{\tau}^S$, as desired.

For (2), note $\varphi(S^{-1}R)^\times \subseteq (W^{-1}R)^\times$. So $\varphi_{\tau}^S(S^{-1}R)^\times \subseteq \varphi_{\tau}^W(W^{-1}R)^\times$. But $\varphi_{\tau}^{-1}(S^{-1}R)^\times = S$ and $\varphi_{\tau}^{-1}(W^{-1}R)^\times = W$ by (11.23). Also $S \subseteq S$ by (3.25), as desired. □

Exercise (11.25) . — Let $R = \varinjlim R_\lambda$ be a filtered direct limit of rings with transition maps $\varphi^S_\mu: R_\lambda \to R_\mu$ and insertions $\varphi_\mu: R_\mu \to R$. For all λ, let $S_\lambda \subseteq R_\lambda$ be a multiplicative subset. For all φ^S_μ, assume $\varphi^S_\mu(S_\lambda) \subseteq S_\mu$. Set $S := \bigcup \varphi^S_\mu S_\lambda$. Then $\varinjlim S^{-1}_\lambda R_\lambda = S^{-1}R$.

Solution: Owing to the UMP of localization (11.3), the maps φ^S_μ and φ_μ induce unique maps ψ^S_μ and ψ_μ such that the following two squares are commutative:

\[
\begin{array}{ccc}
R_\lambda & \xrightarrow{\varphi^S_\mu} & R_\mu \\
\downarrow{\varphi^S_\lambda} & & \downarrow{\varphi^S_\mu} \\
S^{-1}_\lambda R_\lambda & \xrightarrow{\psi^S_\mu} & S^{-1}_\mu R_\mu \\
& \xrightarrow{\psi_\mu} & S^{-1}R
\end{array}
\]

Owing to uniqueness, $\psi_\mu \psi^S_\mu = \psi_\lambda$ as $\varphi^S_\mu \varphi^S_\mu = \varphi_\lambda$. Similarly, $\psi^S_\mu \psi_\mu = \psi^S_\mu$ for all ψ_μ.

Let’s show that $S^{-1}R$ has the UMP characterizing $\varinjlim S^{-1}_\lambda R_\lambda$. Fix a ring R' and ring maps $\theta_\mu: S^{-1}_\mu R_\mu \to R'$ with $\theta_\mu \psi^S_\mu = \theta_\lambda$ for all ψ^S_μ. Set $\rho_\mu := \theta_\mu \varphi_\mu$ for all μ.

The $\rho_\mu: R_\mu \to R'$ induce a unique ring map $\rho: R \to R'$ with $\rho \varphi_\mu = \rho_\mu$. Now, given $s \in S$, say $s = \varphi_\mu(s_\mu)$ with $s_\mu \in S_\mu$. Then $\varphi_\mu(s_\mu)$ is a unit. So $\theta_\mu \varphi_\mu(s_\mu)$ is a unit. But $\rho_\mu = \theta_\mu \varphi_\mu$ and $\rho_\mu(s_\mu) = \rho(s)$. Thus the UMP of localization (11.3) yields a unique map $\theta: S^{-1}R \to R'$ with $\theta \varphi_\mu = \rho$.

So $\theta \varphi_\mu \varphi_\mu = \rho_\mu$. But $\varphi_\mu \varphi_\mu = \varphi_\mu \varphi_\mu$. So $\theta \psi_\mu \psi_\mu = \rho_\mu$. But $\theta \psi_\mu \psi_\mu = \psi_\mu$ and ρ_μ factors uniquely via φ_μ. Thus $\theta \psi_\mu = \theta_\mu$, as desired. □

Exercise (11.26) . — Let R be a ring, S_0 the set of nonzerodivisors. Show:

1. Then S_0 is the largest multiplicative subset S with $\varphi_S: R \to S^{-1}R$ injective.
2. Every element x/s of $S_0^{-1}R$ is either a zerodivisor or a unit.
3. Suppose every element of R is either a zerodivisor or a unit. Then $R = S_0^{-1}R$.

Solution: For (1), recall φ_{S_0} is injective by (11.2). Conversely, let $s \in S$ and $x \in R$ with $sx = 0$. Then $\varphi_S(sx) = 0$. So $\varphi_S(s) \varphi_S(x) = 0$. But $\varphi_S(s)$ is a unit. So $\varphi_S(x) = 0$. But φ_S is injective. So $x = 0$. Thus $S \subseteq S_0$. Thus (1) holds.

For (2), take $x/s \in S_0^{-1}R$, and suppose it is a nonzerodivisor. Then $x/1$ is also a nonzerodivisor. Hence $x \in S_0$, for if $xy = 0$, then $x/1 \cdot y/1 = 0$, so $\varphi_{S_0}(y) = y/1 = 0$, so $y = 0$ as φ_{S_0} is injective. Hence x/s is a unit, as desired. Thus (2) holds.

In (3), by hypothesis, $S_0 \subseteq R^\times$. So $R \twoheadrightarrow S_0^{-1}R$ by (11.4). Thus (3) holds. □

Exercise (11.27) . — Let R be a ring, S a multiplicative subset, a and b ideals. Show: (1) if $a \subseteq b$, then $a^S \subseteq b^S$; (2) $(a^S)^S = a^S$; and (3) $(a^Sb^S)^S = (ab)^S$.

285
Solutions \((11.28) / (11.31)\) Localization of Rings

Solution: For (1), take \(x \in a^S\). Then there is \(s \in S\) with \(sx \in a\). If \(a \subseteq b\), then \(sx \in b^S\). Thus (1) holds.

To show (2), proceed by double inclusion. First, note \(a^S \supseteq a\) by \((11.10)\)(2). So \((a^S)^S \supseteq a^S\) again by \((11.10)\)(2). Conversely, given \(x \in (a^S)^S\), there is \(s \in S\) with \(sx \in a^S\). So there is \(t \in S\) with \(tsx \in a\). But \(ts \in S\). So \(x \in a^S\). Thus (2) holds.

To show (3), proceed by double inclusion. First, note \(a \subseteq a^S\) and \(b \subseteq b^S\) by \((11.10)\)(2). So \((ab)^S \subseteq (a^S b^S)^S\). Conversely, given \(x \in a^S b^S\), say \(x := \sum y_i z_i\) with \(y_i \in a^S\) and \(z_i \in b^S\). Then there are \(s_i, t_i \in S\) such that \(s_i y_i \in a\) and \(t_i z_i \in b\). Set \(u := \prod s_i t_i\). Then \(u \in S\) and \(ux \in ab\). So \(x \in (ab)^S\). Thus \(a^S b^S \subseteq (ab)^S\). So \((a^S b^S)^S \subseteq ((ab)^S)^S\) by (1). But \(((ab)^S)^S = (ab)^S\) by (2). Thus (3) holds.

Exercise (11.28). Let \(R\) be a ring, \(S\) a multiplicative subset. Prove that
\[
\text{nil}(R)(S^{-1}R) = \text{nil}(S^{-1}R).
\]

Solution: Proceed by double inclusion. Given an element of \(\text{nil}(R)(S^{-1}R)\), put it in the form \(x/s\) with \(x \in \text{nil}(R)\) and \(s \in S\) using \((11.8)\)(1). Then \(x^n = 0\) for some \(n \geq 1\). So \((x/s)^n = 0\). Thus \(\text{nil}(R)(S^{-1}R) \subseteq \text{nil}(S^{-1}R)\).

Conversely, take \(x/s \in \text{nil}(S^{-1}R)\). Then \((x/s)^m = 0\) with \(m \geq 1\). So there’s \(t \in S\) with \(tx^n = 0\) by \((11.10)\)(1). Then \((tx)^n = 0\). So \(tx \in \text{nil}(R)\). But \(tx/ts = x/s\). So \(x/s \in \text{nil}(R)(S^{-1}R)\) by \((11.8)\)(1). Thus \(\text{nil}(R)(S^{-1}R) \supseteq \text{nil}(S^{-1}R)\).

Exercise (11.29). Let \(R\) be a ring, \(S\) a multiplicative subset, \(R'\) an algebra. Assume \(R'\) is integral over \(R\). Show \(S^{-1}R'\) is integral over \(S^{-1}R\).

Solution: Given \(x/s \in S^{-1}R'\), let \(x^n + a_{n-1} x^{n-1} + \cdots + a_0 = 0\) be an equation of integral dependence of \(x\) on \(R\). Then
\[
(x/s)^n + (a_{n-1}/1/s)(x/s)^{n-1} + \cdots + a_0(1/s)^n = 0
\]
is an equation of integral dependence of \(x/s\) on \(S^{-1}R\), as required.

Exercise (11.30). Let \(R\) be a domain, \(K\) its fraction field, \(L\) a finite extension field, and \(\overline{L}\) the integral closure of \(R\) in \(L\). Show that \(L\) is the fraction field of \(\overline{R}\).

Show that, in fact, every element of \(L\) can be expressed as a fraction \(b/a\) where \(b\) is in \(\overline{L}\) and \(a\) is in \(R\).

Solution: Let \(x \in L\). Then \(x\) is algebraic (integral) over \(K\), say
\[
x^n + y_1 x^{n-1} + \cdots + y_n = 0
\]
with \(y_i \in K\). Write \(y_i = a_i/a\) with \(a_1, \ldots, a_n, a \in R\). Then
\[
(ax)^n + a_1 (ax)^{n-1} + \cdots + a^{n-1} a_0 = 0.
\]
Set \(b := ax\). Then \(b \in \overline{R}\) and \(x = b/a\).

Exercise (11.31). Let \(R \subseteq R'\) be domains, \(K\) and \(L\) their fraction fields. Assume that \(R'\) is a finitely generated \(R\)-algebra, and that \(L\) is a finite dimensional \(K\)-vector space. Find an \(f \in R\) such that \(R'_f\) is module finite over \(R_f\).

Solution: Let \(x_1, \ldots, x_m\) generate \(R'\) over \(R\). Using \((11.30)\), write \(x_i = b_i/a_i\) with \(b_i\) integral over \(R\) and \(a_i \in R\). Set \(f := \prod a_i\). The \(x_i\) generate \(R'_f\) as an \(R_f\)-algebra; so the \(b_i\) do too. Thus \(R'_f\) is module finite over \(R_f\) by \((10.18)\).
Exercise (11.32) (Localization and normalization commute). — Given a domain \(R \) and a multiplicative subset \(S \) with \(0 \not\in S \). Show that the localization of the normalization \(S^{-1}R \) is equal to the normalization of the localization \(S^{-1}R \).

Solution: Since \(0 \not\in S \), clearly \(\text{Frac}(S^{-1}R) = \text{Frac}(R) \) owing to (11.2). Now, \(S^{-1}R \) is integral over \(S^{-1}R \) by (11.29). Thus \(S^{-1}R \subset S^{-1}R \).

Conversely, given \(x \in S^{-1}R \), consider an equation of integral dependence:

\[
x^n + a_1x^{n-1} + \cdots + a_n = 0.
\]

Say \(a_i = b_i/s_i \) with \(b_i \in R \) and \(s_i \in S \); set \(s := \prod s_i \). Multiplying by \(s^n \) yields

\[
(sx)^n + sa_1(sx)^{n-1} + \cdots + s^na_n = 0.
\]

Hence \(sx \in R \). So \(x \in S^{-1}R \). Thus \(S^{-1}R \supset S^{-1}R \), as desired. \(\square \)

Exercise (11.33). — Let \(k \) be a field, \(A \) a local \(k \)-algebra with maximal ideal \(m \). Assume that \(A \) is a localization of a \(k \)-algebra \(R \) and that \(A/m = k \). Find a maximal ideal \(n \) of \(R \) with \(R_n = A \).

Solution: By hypothesis, \(A = T^{-1}R \) for some multiplicative subset \(T \) of \(R \). Take \(n := \varphi_T^{-1}m \). Then \(k \rightarrow R/n \rightarrow A/m = k \). Hence \(R/n = A/m \). So \(n \) is maximal. But, given any \(t \in T \), note \(\varphi_T(t) \in A^n \) by (11.1). So \(\varphi_T(t) \notin m \) by (3.5). Hence \(T \subset R - n \). Thus (11.16) yields \(R_n = A \), as desired. \(\square \)

Exercise (11.34). — Let \(R \) be a ring, \(p \subset q \) primes, \(S \) a multiplicative subset with \(S \cap p = \emptyset \). Show that \(R_p \) is the localization of \(S^{-1}R \) at the prime \(pS^{-1}R \), and that in particular, \(R_p \) is the localization of \(R_q \) at \(pR_q \).

Solution: Set \(T := S^{-1}R - pS^{-1}R \) and \(T := \varphi_S^{-1}(T') \). Then \(T = R - p \) owing to (11.12)(2). So \(S \subset T \), and (11.16) yields the first assertion. For the second, just set \(S := R - q \) in the first. \(\square \)

Exercise (11.35). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(\mathcal{X} := \{X_\lambda\} \) a set of variables. Show \((S^{-1}R)[\mathcal{X}] = S^{-1}\left(R[\mathcal{X}]\right) \).

Solution: In spirit, the proof is like that of (1.16): the two rings are equal, as each is universal among \(R \)-algebras with distinguished elements \(x_\lambda \) and in which all \(s \in S \) become units. \(\square \)

Exercise (11.36). — Let \(R \) be a ring, \(S \) a multiplicative subset, \(\mathcal{X} \) a set of variables, \(p \) an ideal of \(R[\mathcal{X}] \). Set \(R' := S^{-1}R \), and let \(\varphi: R[\mathcal{X}] \to R'[\mathcal{X}] \) be the canonical map. Show \(p \) is prime and \(p \cap S = \emptyset \) if and only if \(p R'[\mathcal{X}] \) is prime and \(p = \varphi^{-1}(p R'[\mathcal{X}]) \).

Solution: The assertion results directly from (11.35) and (11.12)(2). \(\square \)
12. Localization of Modules

Exercise (12.4) . — Let \(R \) be a ring, \(S \) a multiplicative subset, and \(M \) a module. Show that \(M = S^{-1}M \) if and only if \(M \) is an \(S^{-1}R \)-module.

Solution: If \(M = S^{-1}M \), then \(M \) is an \(S^{-1}R \)-module since \(S^{-1}M \) is by (12.3). Conversely, if \(M \) is an \(S^{-1}R \)-module, then \(M \) equipped with the identity map has the UMP that characterizes \(S^{-1}M \); whence, \(M = S^{-1}M \).

Exercise (12.5) . — Let \(R \) be a ring, \(S \subset T \) multiplicative subsets, \(M \) a module. Set \(T_i := \varphi S(T) \subset S^{-1}R \). Show \(T^{-1}M = T^{-1}(S^{-1}M) = T_i^{-1}(S^{-1}M) \).

Solution: Let’s check that both \(T^{-1}(S^{-1}M) \) and \(T_i^{-1}(S^{-1}M) \) have the UMP characterizing \(T^{-1}M \). Let \(\psi: M \to N \) be an \(R \)-linear map into an \(T^{-1}R \)-module. Then the multiplication map \(\mu_s: N \to N \) is bijective for all \(s \in T \) by (12.1), so for all \(s \in S \) since \(S \subset T \). Hence \(\psi \) factors via a unique \(S^{-1}R \)-linear map \(\rho: S^{-1}M \to N \) by (12.3) and by (12.1) again.

Similarly, \(\rho \) factors through a unique \(T^{-1}R \)-linear map \(\rho': T^{-1}(S^{-1}M) \to N \). Hence \(\psi = \rho' \varphi S \), and \(\rho' \) is clearly unique, as required. Also, \(\rho \) factors through a unique \(T_i^{-1}(S^{-1}R) \)-linear map \(\rho'_i: T_i^{-1}(S^{-1}M) \to N \). Hence \(\psi = \rho'_i \varphi S \), and \(\rho'_i \) is clearly unique, as required.

Exercise (12.6) . — Let \(R \) be a ring, \(S \) a multiplicative subset. Show that \(S \) becomes a filtered category when equipped as follows: given \(s, t \in S \), set

\[
\hom(s, t) := \{ x \in R \mid xs = t \},
\]

Given a module \(M \), define a functor \(S \to ((R \text{-mod})) \) as follows: for \(s \in S \), set \(M_s := M \); to each \(x \in \hom(s, t) \), associate \(\mu_x: M_s \to M_t \). Define \(\beta_s: M_s \to S^{-1}M \) by \(\beta_s(m) := m/s \). Show the \(\beta_s \) induce an isomorphism \(\lim M_s \cong S^{-1}M \).

Solution: Clearly, \(S \) is a category. Now, given \(s, t \in S \), set \(u := st \). Then \(u \in S \); also \(t \in \hom(s, u) \) and \(s \in \hom(t, u) \). Given \(x, y \in \hom(s, t) \), we have \(xs = t \) and \(ys = t \). So \(s \in \hom(t, u) \) and \(xs = ys \) in \(\hom(s, u) \). Thus \(S \) is filtered.

Further, given \(x \in \hom(s, t) \), we have \(\beta_\mu \mu_x = \beta_s \) since \(m/s = xs/t \) as \(xs = t \). So the \(\beta_s \) induce a homomorphism \(\beta: \lim M_s \to S^{-1}M \). Now, every element of \(S^{-1}M \) is of the form \(m/s \), and \(m/s := \beta_s(m) \); hence, \(\beta \) is surjective.

Each \(m \in \lim M_s \) lifts to an \(m' \in M_s \) for some \(s \in S \) by (7.5)(1). Assume \(\beta m = 0 \). Then \(\beta_s m' = 0 \) as the \(\beta_s \) induce \(\beta \). But \(\beta_s m' = m'/s \). So there is \(t \in S \) with \(tm' = 0 \). So \(\mu t m' = 0 \) in \(M_{st} \), and \(\mu t m' \to m \). So \(m = 0 \). Thus \(\beta \) is injective, so an isomorphism.

Exercise (12.17) . — Let \(R \) be a ring, \(S \) a multiplicative subset, \(M \) a module. Show: (1) \(S^{-1} \Ann(M) \subset \Ann(S^{-1}M) \), with equality if \(M \) is finitely generated; (2) \(S^{-1}M = 0 \) if \(\Ann(M) \cap S \neq \emptyset \), and conversely if \(M \) is finitely generated.

Solution: First off, (1) results from (9.34) owing to (12.10) and (12.13).

Alternatively, here’s a direct proof of (1). Given \(x \in \Ann(M) \) and \(m \in M \) and \(s, t \in S \), note \(x/s \cdot m/t \) is 0. Thus \(S^{-1} \Ann(M) \subset \Ann(S^{-1}M) \).

Conversely, say \(m_1, \ldots, m_n \) generate \(M \). Given \(x \in R \) and \(s \in S \) such that \(x/s \in \Ann(S^{-1}M) \), note \(x/s \cdot m_i/t_i = 0 \) for all \(i \). So there’s \(t_i \in S \) with \(t_i x m_i = 0 \). Set \(t = \prod t_i \). Then \(txM = 0 \). So \(tx \in \Ann(M) \). But \(tx/tx = x/s \). Thus \(x/s \in S^{-1} \Ann(M) \). Thus \(\Ann(S^{-1}M) \subset S^{-1} \Ann(M) \). Thus (1) holds.
For (2), note $\text{Ann}(M) \cap S \neq \emptyset$ if and only if $S^{-1} \text{Ann}(M) = S^{-1}R$ by (12.8). But $\text{Ann}(S^{-1}M) = S^{-1}R$ if and only if $S^{-1}M = 0$. Thus (1) yields (2).

Exercise (12.24). — Let R be a ring, M a finitely generated module, a an ideal.
(1) Set $S := 1 + a$. Show that $S^{-1}a$ lies in the radical of $S^{-1}R$.
(2) Use (1), Nakayama’s Lemma (10.6), and (12.17)(2), but not the determinant trick (10.2), to prove this part of (10.3): if $M = aM$, then $sM = 0$ for an $s \in S$.

Solution: For (1), use (3.2) as follows. Take $a/(1 + b) \in S^{-1}a$ with $a, b \in a$. Then for $x \in R$ and $c \in a$, we have

$$1 + (a/(1 + b))(x/(1 + c)) = (1 + (b + c + bc + ax))/(1 + b)(1 + c).$$

The latter is a unit in $S^{-1}R$, as $b + c + bc + ax \in a$. So $a/(1 + b) \in \text{rad}(S^{-1}R)$ by (3.2), as desired.

For (2), assume $M = aM$. Then $S^{-1}M = S^{-1}aS^{-1}M$ by (12.2). So $S^{-1}M = 0$ by (1) and (10.6). So (12.17)(2) yields an $s \in S$ with $sM = 0$, as desired.

Exercise (12.25). — Let R be a ring, S a multiplicative subset, a an ideal, M a module, N a submodule. Prove $(aN)^S = (a^S N^S)^S$.

Solution: Use double inclusion. First, trivially, $a \subset a^S$ and $N \subset N^S$. Hence, $aN \subset a^S N^S$. Thus (12.12)(5)(a) yields $(aN)^S \subset (a^S N^S)^S$.

Conversely, given $m \in a^S N^S$, say $m := \sum x_i m_i$ with $x_i \in a^S$ and $m_i \in N^S$. Say $s_i x_i \in a$ and $t_i m_i \in N$ for $s_i, t_i \in S$. Set $u := \prod s_i t_i$. Then $u \in S$ and $um \in aN$. So $m \in (aN)^S$. Thus $a^S N^S \subset (aN)^S$. So $(a^S N^S)^S \subset ((aN)^S)^S$ by (12.12)(5)(a). But $((aN)^S)^S = (aN)^S$ by (12.12)(4)(a) as $SS = S$. Thus $(aN)^S \subset (a^S N^S)^S$. □

Exercise (12.26). — Let R be a ring, S a multiplicative subset, P a projective module. Then $S^{-1}P$ is a projective $S^{-1}R$-module.

Solution: By (5.16), there is a module K such that $F := K \oplus P$ is free. So (12.8) yields that $S^{-1}F = S^{-1}P \oplus S^{-1}K$ and that $S^{-1}F$ is free over $S^{-1}R$. Hence $S^{-1}P$ is a projective $S^{-1}R$-module again by (5.16). □

Exercise (12.27). — Let R be a ring, S a multiplicative subset, M, N modules. Show $S^{-1}(M \otimes_R N) = S^{-1}M \otimes_{S^{-1}R} S^{-1}N = S^{-1}M \otimes_{S^{-1}R} S^{-1}N$.

Solution: By (12.10), $S^{-1}(M \otimes_R N) = S^{-1}R \otimes_R (M \otimes_R N)$. The latter is equal to $(S^{-1}R \otimes_R M) \otimes_{S^{-1}R} N$. By associativity (8.8). Again by (12.10), the latter is equal to $S^{-1}M \otimes_{S^{-1}R} S^{-1}N$. Thus the second equality holds.

By cancellation (8.9), $S^{-1}M \otimes_{S^{-1}R} N = S^{-1}M \otimes_{S^{-1}R} (S^{-1}R \otimes_R N)$, and the latter is equal to $S^{-1}M \otimes_{S^{-1}R} S^{-1}N$ by (12.10). Thus the second equality holds.

Lastly by (8.7)(2), map $S^{-1}M \otimes_R S^{-1}N \to S^{-1}M \otimes_{S^{-1}R} S^{-1}N$ is surjective, and its kernel is generated by the elements $p := (xm/s) \otimes (n/1) - (m/1) \otimes (xn/s)$ with $m \in M$, $n \in N$, $x \in R$, and $s \in S$. But $p = 0$, because $sp = 0$, and μ_s is an isomorphism on the R-module $S^{-1}M \otimes_{S^{-1}R} S^{-1}N$. Thus the third equality holds. □

Exercise (12.28). — Let R be a ring, S a multiplicative subset, X a set of variables, and M a module. Prove $(S^{-1}M)[X] = S^{-1}(M[X])$.

Solution: In spirit, the proof is like that of (11.35): the left side is a module over $(S^{-1}R)[X]$, and the right side, over $S^{-1}(R[X])$, but the two ring are equal by (11.35); the two sides are equal, as each is universal among $(S^{-1}R)[X]$-modules Q with a given R-map $M \to Q$, owing to (12.3) and (4.18)(1). □
Let \(R \) be a ring, \(M \) a module, \(S, T \) multiplicative subsets.

1. Set \(T' := \varphi_S(T) \) and assume \(S \subset T \). Prove
 \[T'^{-1}(S^{-1}M) = T^{-1}M. \] \hspace{1cm} (12.29.1)

2. Set \(U := ST := \{ st \mid s \in S \text{ and } t \in T \} \). Prove
 \[(ST)^{-1}M = T^{-1}(S^{-1}M) = S^{-1}(T^{-1}M). \] \hspace{1cm} (12.29.2)

3. Let \(\varphi : R \to R' \) be a map of rings, \(M' \) and \(R' \)-module. Prove
 \[(\varphi S)^{-1}M' = S^{-1}M'. \] \hspace{1cm} (12.29.3)

Solution: For (12.29.1), adapt the proof of (11.16). For (2), note \(1 \in T \), so \(S \subset U \). So (1) yields \(U^{-1}M = U^{-1}(S^{-1}M) \). But plainly \(U^{-1}(S^{-1}M) = T^{-1}(S^{-1}M) \). Similarly, \(U^{-1}M = S^{-1}(T^{-1}M) \), as desired.

For (12.29.3), adapt the proof of (11.15.1).

Exercise (12.30). — Let \(R \) be a ring, \(S \) a multiplicative subset. For \(i = 1, 2 \), let \(\varphi_i : R \to R_i \) be a ring map, \(S_i \subset R_i \) a multiplicative subset with \(\varphi_i S \subset S_i \), and \(M_i \) an \(R_i \)-module. Set \(T := \{ s_1 \otimes s_2 \mid s_i \in S_i \} \subset R_1 \otimes_R R_2 \). Prove
 \[S_1^{-1}M_1 \otimes_{S^{-1}} R_1 S_2^{-1}M_2 = S_1^{-1}M_1 \otimes_R S_2^{-1}M_2 = T^{-1}(M_1 \otimes_R M_2). \]

Solution: Note that \(S_i^{-1}M_i = S_i^{-1}M_i' \) by (12.4) since \(\varphi_i S \subset S_i \). Thus (12.27) yields the first equality.

In \(R_1 \otimes_R R_2 \), form \(T_1 := \{ s_1 \otimes 1 \mid s_1 \in S_1 \} \) and \(T_2 := \{ 1 \otimes s_2 \mid s_2 \in S_2 \} \). Then (12.29)(3) and (12.10) and (8.8) and again (12.10) yield
 \[T_1^{-1}(M_1 \otimes_R M_2) = S_1^{-1}(M_1 \otimes_R M_2) = (S_1^{-1}R_1) \otimes_{R_1} (M_1 \otimes_R M_2) \]
 \[= (S_1^{-1}R_1 \otimes_{R_1} M_1) \otimes_R M_2 = (S_1^{-1}M_1) \otimes_R M_2. \]

Similarly, \(T_2^{-1}((S_1^{-1}M_1) \otimes_R M_2) = S_1^{-1}M_1 \otimes_R S_2^{-1}M_2 \). Those two results yield
 \[S_1^{-1}M_1 \otimes_R S_2^{-1}M_2 = T_2^{-1}(T_1^{-1}(M_1 \otimes_R M_2)). \] \hspace{1cm} (12.30.1)

Apply (12.29)(2), (3) to (12.30.1) to get the second desired equation:
 \[S_1^{-1}M_1 \otimes_R S_2^{-1}M_2 = (T_2T_1)^{-1}(M_1 \otimes_R M_2) = T^{-1}(M_1 \otimes_R M_2). \] \hspace{1cm} □

Exercise (12.31). — Let \(R \) be a ring, \(m \) a maximal ideal, \(n \geq 1 \), and \(M \) a module. Show \(M/m^nM = M_m/m^nM_m \).

Solution: Note that \(R/m^n \) is a local ring with maximal ideal \(m/m^n \). So the elements of \(R - m \) become units in \(R/m^n \). But \(M/m^nM \) is an \(R/m^n \)-module. So any \(s \in R - m \) induces a bijection \(\mu_s \) on \(M/m^nM \). Hence \(M/m^nM \) has a compatible \(R_m \)-structure by (12.1). So \(M/m^nM = (M/m^nM)_m \) by (12.4). Moreover, (12.15) yields \((M/m^nM)_m = M_m/m^nM_m \). Thus \(M/m^nM = M_m/m^nM_m \). □

Exercise (12.32). — Let \(k \) be a field. For \(i = 1, 2 \), let \(R_i \) be an algebra, and \(n_i \subset R_i \) a maximal ideal with \(R_i/n_i = k \). Let \(n \subset R_1 \otimes_k R_2 \) denote the ideal generated by \(n_1 \) and \(n_2 \). Set \(A_i := (R_i)_{n_i} \) and \(m := n(A_1 \otimes_k A_2) \). Prove that both \(n \) and \(m \) are maximal with \(k \) as residue field and that \((A_1 \otimes_k A_2)_m = (R_1 \otimes_k R_2)_n \).
Solutions

(12.33) / (12.35) Localization of Modules

Solution: First off, note that (8.30), the hypotheses, and (8.5)(2) yield
\[(R_1 \otimes_k R_2)/n = (R_1/n_1) \otimes_k (R_2/n_2) = k \otimes_k k = k.\]
Thus \(n\) has \(k\) as residue ring. But \(k\) is a field. Thus \(n\) is maximal, as desired.

Second, set \(m_i := n_iA_i\). Plainly, the \(m_i\) generate \(m\). Also, \(A_i/m_i = R_i/n_i\) by (12.16). So as above, \(m\) is maximal with \(k\) as residue field, as desired.

Third, set \(S_i := S_{n_i} = R_i - n_i\). Then \(A_i := S_{n_i}^{-1}R_i\). So (12.30) yields
\[A_1 \otimes A_2 = (S_1 \otimes S_2)^{-1}(R_1 \otimes_k R_2).\] \hfill (12.32.1)

Set \(\varphi := \varphi_{S_1 \otimes S_2}\) and \(T' := (A_1 \otimes_k A_2) - m\) and \(T := (R_1 \otimes_k R_2) - n\). Then (11.16)

yields \((A_1 \otimes_k A_2)\cdot m = (R_1 \otimes_k R_2)\cdot n\) provided (a) \(T = \varphi^{-1}T'\) and (b) \(\varphi(S_1 \otimes S_2) \subset T'\).

To check (a), note \(n \subset \varphi^{-1}m\). But \(n\) is maximal. So \(n = \varphi^{-1}m\). Thus (a) holds.

To check (b), note that \(\varphi(S_1 \otimes S_2)\) consists of units by (11.1). But \(m\) is a proper ideal. Thus (12.32.1) yields (b), as desired.

Exercise (12.33). — Let \(R\) be a ring, \(R'\) an algebra, \(S\) a multiplicative subset, \(M\) a finitely presented module. Prove these properties of the \(rth\) Fitting ideal:
\[F_r(M \otimes_R R') = F_r(M)R' \quad \text{and} \quad F_r(S^{-1}M) = F_r(M)S^{-1}R = S^{-1}F_r(M).\]

Solution: Let \(R^n \xrightarrow{\alpha} R^m \to M \to 0\) be a presentation. Then, by (8.10),
\[(R')^n \xrightarrow{\alpha \otimes 1} (R')^m \to M \otimes_R R' \to 0\]
is a presentation. Further, the matrix \(A\) of \(\alpha\) induces the matrix of \(\alpha \otimes 1\). Thus
\[F_r(M \otimes_R R') = I_{m-r}(A)R' = F_r(M)R'.\]

For the last equalities, take \(R' := S^{-1}R\). Then \(F_r(S^{-1}M) = F_r(M)S^{-1}R\) by (12.10). Finally, \(F_r(M)S^{-1}R = S^{-1}F_r(M)\) by (12.2).

Exercise (12.34). — Let \(R\) be a ring, \(S\) a multiplicative subset. Prove this:

(1) Let \(M_1 \xrightarrow{\alpha} M_2\) be a map of modules, which restricts to a map \(N_1 \to N_2\) of submodules. Then \(\alpha(N_1^S) \subset N_2^S\); that is, there is an induced map \(N_1^S \to N_2^S\).

(2) Let \(0 \to M_1 \xrightarrow{\alpha} M_2 \xrightarrow{\beta} M_3\) be a left exact sequence, which restricts to a left exact sequence \(0 \to N_1 \to N_2 \to N_3\) of submodules. Then there is an induced left exact sequence of saturations: \(0 \to N_1^S \to N_2^S \to N_3^S\).

Solution: For (1), take \(m \in N_1^S\). Then there is \(s \in S\) with \(sm \in N_1\). So \(\alpha(sm) \in N_2^S\). But \(\alpha(sm) = s\alpha(m)\). Thus (1) holds.

In (2), \(\alpha(N_1^S) \subset N_2^S\) and \(\beta(N_2^S) \subset N_3^S\) by (1). Trivially, \(\alpha|N_1^S\) is injective, and \(\beta|N_2^S\) is injective. Finally, given \(m_2 \in \text{Ker}(\beta|N_2^S)\), there is \(s \in S\) with \(sm_2 \in N_2\), and exactness yields \(m_1 \in M_1\) with \(\alpha(m_1) = m_2\). Then \(\beta(sm_2) = s\beta(m_2) = 0\). So exactness yields \(n_1 \in N_1\) with \(\alpha(n_1) = sm_2\). Also \(\alpha(sm_1) = s\alpha(m_1) = sm_2\). But \(\alpha\) is injective. Hence \(sm_1 = n_1\). So \(m_1 \in N_1^S\), and \(\alpha(m_1) = m_2\). Thus (2) holds.

Exercise (12.35). — Let \(R\) be a ring, \(M\) a module, and \(S\) a multiplicative subset. Set \(T^S M := (0)^S\). We call it the \(S\)-torsion submodule of \(M\). Prove the following:

(1) \(T^S(M/T^S M) = 0\). (2) \(T^S M = \text{Ker}(\varphi_S)\).

(3) Let \(\alpha: M \to N\) be a map. Then \(\alpha(T^S M) \subset T^S N\).

(4) Let \(0 \to M' \to M \to M''\) be exact. Then so is \(0 \to T^S M' \to T^S M \to T^S M''\).

(5) Let \(S_1 \subset S\) be a multiplicative subset. Then \(T^S(S_1^{-1}M) = S_1^{-1}(T^S M)\).
Solutions (12.36) / (12.39) Localization of Modules

Solution: For (1), given an element of $T^S(M/T^S(M))$, let $m \in M$ represent it. Then there is $s \in S$ with $sm \in T^S(M)$. So there is $t \in S$ with $tsm = 0$. So $m \in T^S(M)$. Thus (1) holds. Assertion (2) holds by (12.12)(3).

Assertions (3) and (4) follow from (12.34)(1) and (2).

For (5), given $m/s_1 \in S^{-1}T^S(M)$ with $s_1 \in S_1$ and $m \in T^S(M)$, take $s \in S$ with $sm = 0$. Then $sm/s_1 = 0$. So $m/s_1 \in T^S(S_1^{-1}M)$. Thus $S_1^{-1}T^S(M) \subseteq T^S(S_1^{-1}M)$.

For the opposite inclusion, given $m/s_1 \in T^S(S_1^{-1}M)$ with $m \in M$ and $s_1 \in S_1$, take t/t_1 with $t \in S$ and $t_1 \in S_1$ and $t/t_1 \cdot m/s_1 = 0$. Then $tm/1 = 0$. So there is $s' \in S_1$ with $s'tm = 0$ by (12.12)(3). But $s't \in S$ as $S_1 \subseteq S$. So $m \in T^S(M)$.

Thus $m/s_1 \in S^{-1}T^S(M)$. Thus (5) holds.

Exercise (12.36). Set $R := \mathbb{Z}$ and $S := S_0 := \mathbb{Z} - \langle 0 \rangle$. Set $M := \bigoplus_{n \geq 2} \mathbb{Z}/\langle n \rangle$ and $N := M$. Show that the map σ of (12.19) is not injective.

Solution: Given $m > 0$, let e_n be the nth standard basis element for some $n > m$. Then $m \cdot e_n \neq 0$. Hence $e_n \in \text{Ann}(M)$ is injective. But $S^{-1}M = 0$, as any $x \in M$ has only finitely many nonzero components; so $kx = 0$ for some nonzero integer k. So $\text{Hom}(S^{-1}M, S^{-1}M) = 0$. Thus σ is not injective.

Exercise (12.37). Let R be a ring, S a multiplicative subset, M a module. Show that $S^{-1}\text{nil}(M) \subseteq \text{nil}(S^{-1}M)$, with equality if M is finitely generated.

Solution: Given an element x/s of $S^{-1}\text{nil}(M)$ with $x \in \text{nil}(M)$ and $s \in S$, there’s $n \geq 1$ with $x^n \in \text{Ann}(M)$. So $x^nM = 0$. So $(x/s)^nS^{-1}M = 0$. So $x/s \in \text{nil}(S^{-1}M)$. Thus $S^{-1}\text{nil}(M) \subseteq \text{nil}(S^{-1}M)$.

Assume M is finitely generated, say by m_1, \ldots, m_r. Given $x/s \in \text{nil}(S^{-1}M)$, there’s $n \geq 1$ with $(x/s)^n \in \text{Ann}(S^{-1}M)$. So $(x^n m_i)/s = 0$ for all i. So there’s $t_i \in S$ with $t_i x^n m_i = 0$. Set $t := \prod t_i$. Then $(tx)^n m_i = 0$. So $tx \in \text{nil}(M)$. Hence $x/s \in S^{-1}\text{nil}(M)$. Thus $S^{-1}\text{nil}(M) \supseteq \text{nil}(S^{-1}M)$, as desired.

Exercise (12.38). Let R be a ring, S a multiplicative subset, M a module, and N a submodule. Set $n := \text{nil}(M/N)$. Show:

1. Then $n \cap S \neq \emptyset$ if and only if $n^S = R$.
2. Assume $n \cap S \neq \emptyset$. Then $S^{-1}N = S^{-1}M$ and $N^S = M$.
3. Then $n^S \subseteq \text{nil}(M/N^S)$, with equality if M is finitely generated.

Solution: In (1), there’s $s \in n \cap S$ if and only if there are $s \in S$ and $n \geq 1$ with $s^n M \subseteq N$, so if and only if $1 \in n^S$. Thus (1) holds.

In (2), given $s \in S \cap n$, there’s $n \geq 1$ with $s^n M \subseteq N$. So $S^{-1}M \subseteq S^{-1}N$. Thus $S^{-1}M = S^{-1}N$. So $N^S = M$ by (12.12)(2)(a). Thus (2) holds.

In (3), given $x \in n^S$, there is $s \in S$ such that $sx \in n$. So there is $n \geq 1$ such that $(sx)^n M \subseteq N$. So $x^n M \subseteq N^S$. Hence $x \in \text{nil}(M/N^S)$. Thus $n^S \subseteq \text{nil}(M/N^S)$.

Assume $m_1, \ldots, m_r \in M$ generate. Given $x \in \text{nil}(M/N^S)$, there is $n \geq 1$ such that $x^n M \subseteq N^S$. So there are $s_i \in S$ with $s_i x^n m_i \in N$. Set $s := \prod s_i$. Then $(sx)^n M \subseteq N$. So $sx \in n$. So $x \in n^S$. Thus $n^S \supseteq \text{nil}(M/N^S)$. Thus (3) holds.

Exercise (12.39). Let R be a ring, M a module, N, N' submodules. Show:

1. $\sqrt{\text{nil}(M)} = \text{nil}(M)$.
2. $\text{nil}(M/(N \cap N')) = \text{nil}(M/N) \cup \text{nil}(M/N')$.
3. $\text{nil}(M/N) = R$ if and only if $N = M$.
4. $\text{nil}(M/(N + N')) \supseteq \sqrt{\text{nil}(M/N) + \text{nil}(M/N')}$.

292
Solutions

(13.10) / (13.16)

Support

Find an example where equality fails in (4), yet R is a field k.

Solution: For (1), recall $\text{nil}(M) = \sqrt{\text{Ann}(M)}$. Thus (3.13) yields (1).

For (2), given $x \in \text{nil}(M/(N \cap N'))$, say $x^nM \subset N \cap N'$. So $x^nM \subset N$ and $x^nM \subset N'$. Thus $x \in \text{nil}(M/(N \cap N'))$.

Conversely, given $x \in \text{nil}(M/(N \cap N'))$, say $x^nM \subset N$ and $x^nM \subset N'$. Then $x^{n+m}M \subset N \cap N'$. Thus $x \in \text{nil}(M/(N \cap N'))$. Thus (2) holds.

For (3), note $\text{nil}(M/N) = \mathbb{R}$ if and only if $1 \in \text{Ann}(M/N)$, so if and only if $N = M$. Thus (3) holds.

For (4), given $x \in \sqrt{\text{nil}(M/N) + \text{nil}(M/N')}$, say $x^m = y + z$ where $y^nM \subset N$ and $z^nM \subset N'$. Then $x^{m(n+p-1)}M \subset N + N'$, as in the proof of (3.15). So $x \in \text{nil}(M/(N + N'))$. Thus (4) holds.

For an example, take $N := N' := k$ and $M := N \oplus N'$. Then $M/(N + N') = 0$, so $\text{nil}(M/(N + N')) = k$. But $M/N = k$, so $\text{nil}(M/N) = 0$. Similarly, $\text{nil}(M/N') = 0$. Thus equality fails in (4).

13. Support

Exercise (13.10). — Let R be a ring, M a module, and $m_\lambda \in M$ elements. Prove the m_λ generate M if and only if, at every maximal ideal m, the fractions $m_\lambda/1$ generate M_m over R_m.

Solution: The m_λ define a map $\alpha : R^\oplus(\lambda) \to M$. By (13.9), it is surjective if and only if $\alpha_\lambda : (R^\oplus(\lambda))_m \to M_m$ is surjective for all m. But $(R^\oplus(\lambda))_m = R^\oplus(\lambda)_m$ by (12.9). Hence (4.10)(1) yields the assertion.

Exercise (13.17). — Describe Spec(\mathbb{R}), Spec(\mathbb{Z}), Spec($\mathbb{C}[X]$), and Spec($\mathbb{R}[X]$).

Solution: First, \mathbb{R} is a field, so has only one prime, (0). Thus Spec(\mathbb{R}) is the unique topological space with only one point.

The rings \mathbb{Z}, $\mathbb{C}[X]$, and $\mathbb{R}[X]$ are PIDs. For any PID R, the points x_p of Spec(R) represent the ideals (p) with p a prime or 0. By (13.1), the closed sets are the $V((a))$ with $a \in R$; moreover, $V((a)) = \emptyset$ if a is a unit, $V((0)) = \text{Spec}(R)$, and $V((a)) = x_{p_1} \cup \cdots \cup x_{p_n}$ if $a = p_1^{n_1} \cdots p_n^{n_n}$ with p_i a prime and $n_i \geq 1$.

Exercise (13.16). — Let R be a ring, $X := \text{Spec}(R)$, and $p, q \in X$. Show:

1. The closure $\overline{(p)}$ of p is equal to $V(p)$; that is, $q \in \overline{(p)}$ if and only if $p \subset q$.
2. Then p is a closed point, that is, $\{p\} = \overline{(p)}$, if and only if p is maximal.
3. Then X is T_0; that is, if $p \neq q$ but every neighborhood of q contains p, then some neighborhood of p doesn’t contain q.

Solution: For (1) first assume $q \in \overline{(p)}$. Given $f \in R - p$, note $q \in D(f)$. But $D(f)$ is open. So $p \in D(f)$. So $f \notin p$. Thus $p \subset q$.

Conversely, assume $p \subset q$. Given $f \in R$ with $q \in D(f)$, note $f \notin q$. So $f \notin p$. So $p \in D(f)$. Thus $q \in \overline{(p)}$. Thus (1) holds.

For (2), note $\{p\} = \overline{(p)}$ means, owing to (1), that if $p \subset q$, then $p = q$; that is, p is maximal. Thus (2) holds.

For (3), assume every neighborhood of q contains p. Then $q \in \overline{(p)}$. So $p \subset q$ by (1). If also $p \neq q$, then $p \in X - V(q)$. But $q \notin X - V(q)$. Thus (3) holds.
Exercise (13.18). — Let R be a ring, and set $X := \text{Spec}(R)$. Let $X_1, X_2 \subset X$ be closed subsets. Show that the following four statements are equivalent:

1. Then $X_1 \cup X_2 = X$; that is, $X_1 \cup X_2 = X$ and $X_1 \cap X_2 = \emptyset$.
2. There are complementary idempotents $e_1, e_2 \in R$ with $V((e_i)) = X_i$.
3. There are comaximal ideals $a_1, a_2 \subset R$ with $a_1a_2 = 0$ and $V(a_i) = X_i$.
4. There are ideals $a_1, a_2 \subset R$ with $a_1 + a_2 = R$ and $V(a_i) = X_i$.

Finally, given any e_i and a_i satisfying (2) and either (3) or (4), necessarily $e_i \in a_i$.

Solution: Assume (1). Take ideals a_1, a_2 with $V(a_i) = X_i$. Then (13.1) yields

$$V(a_1a_2) = V(a_1) \cup V(a_2) = X = V(0) \quad \text{and} \quad V(a_1 + a_2) = V(a_1) \cap V(a_2) = \emptyset = V(R).$$

So $\sqrt{a_1a_2} = \sqrt{0}$ and $\sqrt{a_1 + a_2} = \sqrt{R}$ again by (13.1). Hence (3.35) yields (2).

Assume (2). Set $a_i := \langle e_i \rangle$. As $e_1 + e_2 = 1$ and $e_1e_2 = 0$, plainly (3) holds.

Assume (3). As the a_i are comaximal, the Chinese Remainder Theorem (1.21) yields $a_1 \cap a_2 = a_1a_2$. But $a_1a_2 = 0$. So $a_1 + a_2 = R$ by (4.25). Thus (4) holds.

Assume (4). Then (13.1) yields (1) as follows:

$$X_1 \cup X_2 = V(a_1) \cup V(a_2) = V(a_1a_2) = V(0) = X \quad \text{and} \quad X_1 \cap X_2 = V(a_1) \cap V(a_2) = V(a_1 + a_2) = V(R) = \emptyset.$$

Finally, say e_i and a_i satisfy (2) and either (3) or (4). Then $\sqrt{e_i} = \sqrt{a_i}$ by (13.1). So $e_i^n \in a_i$ for some $n \geq 1$. But $e_i^2 = e_i$, so $e_i^n = e_i$. Thus $e_i \in a_i$. □

Exercise (13.19). — Let R be a ring, a an ideal, and M a module. Show:

1. Then $\Gamma_a(M) = \{ m \in M \mid \text{Supp}(Rm) \subset V(a) \}$.
2. Then $\Gamma_a(M) = \{ m \in M \mid m/1 = 0 \text{ in } M_p \text{ for all primes } p \not\supset a \}$.
3. Then $\Gamma_a(M) = M$ if and only if $\text{Supp}(M) \subset V(a)$.

Solution: For (1), note that $\text{Supp}(Rm) = V(\text{Ann}(m))$ by (13.4)(3). However, $V(\text{Ann}(m)) \subset V(a)$ if and only if $a \subset \sqrt{\text{Ann}(m)}$ by (13.1). Thus (1) holds.

For (2), note $(Rm)_p = R_p(m/1)$. So $p \not\supset \text{Supp}(Rm)$ if and only if $m/1 = 0$ in M_p. Thus (2) holds.

For (3), note $\text{Supp}(M) = \bigcup_{m \in M} \text{Supp}(Rm)$ by (13.4)(2). Thus (1) gives (3). □

Exercise (13.20). — Let R be a ring, $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ a short exact sequence of finitely generated modules, and a a finitely generated ideal. Assume $\text{Supp}(M') \subset V(a)$. Show that $0 \to \Gamma_a(M') \to \Gamma_a(M) \to \Gamma_a(M'') \to 0$ is exact.

Solution: Exactness holds at $\Gamma_a(M')$ and $\Gamma_a(M)$ by (7.15)(2). Let’s show it at $\Gamma_a(M'')$. Given $m'' \in \Gamma_a(M'')$ and $x \in a$, say $x''m'' = 0$. As β is surjective, there’s $m \in M$ with $\beta(m) = m''$. Then $\beta(x''m) = 0$. So by exactness, there’s $m' \in M'$ with $a(m') = x''m$. But $M' = \Gamma_a(M')$ by (13.19). So there’s r with $x'r = 0$. Hence $x'r+m'' = 0$. But a is finitely generated. Hence there’s s with $as'm = 0$. So $m \in \Gamma_a(M)$. Thus $\Gamma_a(\beta)$ is surjective, as desired. □

Exercise (13.21). — Let R be a ring, S a multiplicative subset. Prove this:

1. Assume R is absolutely flat. Then $S^{-1}R$ is absolutely flat.
2. Then R is absolutely flat if and only if R_m is a field for each maximal m. 294
Solutions (13.22) / (13.23) Support

Solution: In (1), given \(x \in R \), note that \(\langle x \rangle \) is idempotent by (10.25). Hence \(\langle x \rangle = (x)^2 = (x^2) \). So there is \(y \in R \) with \(x = x^2 y \).

Given \(a/s \in S^{-1}R \), there are, therefore, \(b, t \in R \) with \(a = a^2 b \) and \(s = s^2 t \). So \(s(st - 1) = 0 \). But \(st - 1 \) is a unit. Hence \(st - 1 = 1 \).\(\text{Thus } a/s = (a/s)^2 \cdot b/t. \) So \(a/s \in (a/s)^2 \). Thus \(a/s \) is idempotent. Hence \(S^{-1}R \) is absolutely flat by (10.25). Thus (1) holds.

Alternatively, given an \(S^{-1}R \)-module, \(M \), note \(M \) is also an \(R \)-module, so \(R \)-flat by (1). Hence \(M \otimes S^{-1}R \) is \(S^{-1}R \)-flat by (9.22). But \(M \otimes S^{-1}R = S^{-1}M \) by (12.10), and \(S^{-1}M = M \) by (12.4). Thus \(M \) is \(S^{-1}R \)-flat. Thus again (1) holds.

For (2), first assume \(R \) is absolutely flat. By (1), each \(R_m \) is absolutely flat. So by (10.26)(4), each \(R_m \) is a field.

Conversely, assume each \(R_m \) is a field. Then, given an \(R \)-module, each \(M_m \) is \(R_m \)-flat. So \(M \) is \(R \)-flat by (13.12). Thus (2) holds.

Exercise (13.22). Let \(R \) be a ring; set \(X := \text{Spec}(R) \). Prove that the four following conditions are equivalent:

1. \(R/ \text{nil}(R) \) is absolutely flat.
2. \(X \) is Hausdorff.
3. \(X \) is \(T_1 \); that is, every point is closed.
4. Every prime \(p \) of \(R \) is maximal.

Assume (1) holds. Prove that \(X \) is totally disconnected; namely, no two distinct points lie in the same connected component.

Solution: Note \(X = \text{Spec}(R/ \text{nil}(R)) \) as \(X = \mathcal{V}(0) = \mathcal{V}(\sqrt{0}) = \text{Spec}(R/ \sqrt{0}) \) by (13.1). Hence we may replace \(R \) by \(R/ \text{nil}(R) \), and thus assume \(\text{nil}(R) = 0 \).

Assume (1). Given distinct primes \(p, q \in X \), take \(x \in p - q \). Then \(x \in (x^2) \) by (10.25)(4). So there is \(y \in R \) with \(x = x^2 y \). Set \(a_1 := (x) \) and \(a_2 := (1 - xy) \).

Set \(X_1 := \mathcal{V}(a_1) \). Then \(p \in X_1 \) as \(x \in p \). Further, \(q \in X_2 \) as \(1 - xy \in q \) since \(x(1 - xy) = 0 \in q \), but \(x \notin q \).

The \(a_i \) are comaximal as \(xy + (1 - xy) = 1 \). Further \(a_1 a_2 = 0 \) as \(x(1 - xy) = 0 \).

So \(X_1 \cup X_2 = X \) and \(X_1 \cap X_2 = \emptyset \) by (13.18). Hence the \(X_i \) are disjoint open and closed sets. Thus (2) holds, and \(X \) is totally disconnected.

In general, a Hausdorff space is \(T_1 \). Thus (2) implies (3).

Conditions (3) and (4) are equivalent by (13.16)(2).

Assume (4). Then every prime \(m \) is both maximal and minimal. So \(R_m \) is a local ring with \(m R_m \) as its only prime by (11.12). Hence \(m_R_m = \text{nil}(R_m) \) by the Scheinnullstellensatz (3.14). But \(\text{nil}(R_m) = \text{nil}(R)_m \) by (11.28). And \(\text{nil}(R) = 0 \). Thus \(R_m/m R_m = R_m \). So \(R_m \) is a field. Hence \(R \) is absolutely flat by (13.21)(2). Thus (1) holds.

Exercise (13.23). Let \(R \) be a ring, and \(\alpha \) an ideal. Assume \(\alpha \subseteq \text{nil}(R) \). Set \(X := \text{Spec}(R) \). Show that the following three statements are equivalent:

1. \(R \) is decomposable.
2. \(\text{Hyp}(R/\alpha) \) is decomposable.
3. \(X = \bigcup_{i=1}^n X_i \) where \(X_i \subseteq X \) is closed and has a unique closed point.

Solution: Assume (1), say \(R = \prod_{i=1}^n R_i \) with \(R_i \) local. Set \(X_i := \text{Spec}(R_i) \).

Then the projection \(R \to R_i \) induces the inclusion \(X_i \to X \) as a closed subset by (13.1.7). Moreover, \(X_i \) has a unique closed point by (13.16)(2). Let’s show \(X = \bigcup_{i=1}^n X_i \) so (3) holds. If \(n = 1 \), then trivially \(X = X_1 \). So suppose \(n \geq 2 \).

Set \(R' := \prod_{i=2}^n R_i \). Then \(R = R_1 \times R' \). Set \(e_1 := (1,0) \) and \(e' := (0,1) \). Then

295
$R/(e_1) = R'$ and $R/(e') = R_1$. So $\mathbf{V}(\langle e_1 \rangle) = \text{Spec}(R')$ and $\mathbf{V}(\langle e' \rangle) = X_1$ by (13.1.7). So $X = X_1 \sqcup \text{Spec}(R')$ by (13.18)(2)\Rightarrow(1). But $\text{Spec}(R') = \bigsqcup_{i=2}^n X_i$ by induction. Thus $X = \bigsqcup_{i=1}^n X_i$, as desired.

Assume (3). Let’s prove (1) by induction on n. Suppose $n = 1$. Then X has a unique closed point. So R is local by (13.16)(2). Thus (1) holds. So assume $n \geq 2$.

Set $X' = \bigsqcup_{i=2}^n X_i$. Then $X = X_1 \sqcup X'$. So (13.18)(1)\Rightarrow(2) yields complementary idempotents $e_1, e' \in R$ with $\mathbf{V}(\langle e_1 \rangle) = X'$ and $\mathbf{V}(\langle e' \rangle) = X_1$. Set $R_1 := R/\langle e' \rangle$ and $R' := R/\langle e_1 \rangle$. Then (13.1.7) yields $X' = \text{Spec}(R')$ and $X_1 = \text{Spec}(R_1)$.

By induction, R' is decomposable. But $R = R_1 \times R'$ by (1.12). Thus (1) holds.

Note $\text{Spec}(R/a) = \mathbf{V}(a) = \mathbf{V}(0) = X$ by (13.1). So (1)\Leftrightarrow(3) gives (2)\Leftrightarrow(3). \qed

Exercise (13.24). Let $\varphi: R \to R'$ be a map of rings, a an ideal of R, and b an ideal of R'. Set $\varphi^*: \mathbf{Spec}(\varphi)$. Prove these two statements:

1. Every prime of R is the contraction of a prime if and only if φ^* is surjective.
2. If every prime of R' is the extension of a prime, then φ^* is injective.

Is the converse of (2) true?

Solution: Note $\varphi^*(q) := \varphi^{-1}(q)$ by (13.1.4). Hence (1) holds.

Given two primes q_1 and q_2 that are extensions, if $q_1^e = q_2^e$, then $q_1 = q_2$ by (1.14). Thus (2) holds.

The converse of (2) is false. Take R to be a domain. Set $R' := R[X]/(X^2)$. Then $R'/\langle X \rangle = R$ by (1.9) and (1.6)(2). So $\langle X \rangle$ is prime by (2.8). But $\langle X \rangle$ is not an extension, as $X \notin aR'$ for any proper ideal a of R. Finally, every prime q of R' contains the residue x of X, as $x^e = 0$. Hence q is generated by $q \cap R$ and x. But $q \cap R = \varphi^*(q)$. Thus φ^* is injective. \qed

Exercise (13.25). Let R be a ring, and S a multiplicative subset of R. Set $X := \text{Spec}(R)$ and $Y := \text{Spec}(S^{-1}R)$. Set $\varphi_S^* := \text{Spec}(\varphi_S)$ and $S^{-1}X := \text{Im} \varphi_S^*$ in X. Show (1) that $S^{-1}X$ consists of the primes p of R with $p \cap S = \emptyset$ and (2) that φ_S^* is a homeomorphism of Y onto $S^{-1}X$.

Solution: Note $\varphi_S^*(q) := \varphi_S^{-1}(q)$ by (13.1.4). Hence (11.12)(2) yields (1) and also the bijectivity of φ_S^*. But φ_S^* is continuous by (13.1). So it remains to show that φ_S^* is closed. Given an ideal $b \subset S^{-1}R$, set $a := \varphi_S^{-1}(b)$. It suffices to show

$$\varphi_S^*(\mathbf{V}(b)) = S^{-1}X \cap \mathbf{V}(a). \quad (13.25.1)$$

Given $p \in \varphi_S^*(\mathbf{V}(b))$, say $p = \varphi_S^{-1}(q)$ and $q \in \mathbf{V}(b)$. Then $p = \varphi_S^{-1}(q)$ and $q \supset b$ by (13.1). So $p = \varphi_S^{-1}(q) \supset \varphi_S^{-1}(b) := a$. So $p \in \mathbf{V}(a)$. But $p \in \varphi_S^*(\mathbf{V}(b)) \subset S^{-1}X$. Thus $\varphi_S^*(\mathbf{V}(b)) \subset S^{-1}X \cap \mathbf{V}(a)$.

Conversely, given $p \in S^{-1}X \cap \mathbf{V}(a)$, say that $p \varphi_S^*(q)$. Then $p = \varphi_S^{-1}(q)$ and $p \supset a := \varphi_S^{-1}(b)$. So $\varphi_S^{-1}(q) \supset \varphi_S^{-1}(b)$. So $\varphi_S^{-1}(q) R \supset \varphi_S^{-1}(b) R$. So $q \supset b$ by (11.11)(1)(b). So $q \in \mathbf{V}(b)$. So $p \varphi_S^*(q) \in \varphi_S^*(\mathbf{V}(b))$. Thus (13.25.1) holds, as desired. Thus (2) holds. \qed

Exercise (13.26). Let $\theta: R \to R'$ be a ring map, $S \subset R$ a multiplicative subset. Set $X := \text{Spec}(R)$ and $Y := \text{Spec}(R')$ and $\theta^* := \text{Spec}(\theta)$. Via (13.25)(2) and (11.15), identify $\text{Spec}(S^{-1}R)$ and $\text{Spec}(S^{-1}R')$ with their images $S^{-1}X \subset X$ and $S^{-1}Y \subset Y$. Show (1) $S^{-1}Y = \theta^{-1}(S^{-1}X)$ and (2) $\text{Spec}(S^{-1}\theta) = \theta^*S^{-1}Y$.

296
Solutions \((13.27) / (13.30)\)

Solution: Given \(q \in Y\), elementary set-theory shows that \(q \cap \theta(S) = \emptyset\) if and only if \(\theta^{-1}(q) \cap S = \emptyset\). So \(q \in S^{-1}Y\) if and only if \(\theta^{-1}(q) \in S^{-1}X\) by \((13.25)(1)\) and \((11.15)\). But \(\varphi_S^{-1}(q) = \varphi_S(q) \in (13.1.4)\). Thus \((1)\) holds.

Finally, \((S^{-1}\theta)^{-1}\varphi_S = \varphi_S\theta\) by \((12.7)\). So \(\varphi_S^{-1}(S^{-1}\theta)^{-1}(q) = (S^{-1}\theta)^{-1}\varphi_S^{-1}(q)\). Thus \((13.1.4)\) yields \((2)\). \(\square\)

Exercise \((13.27)\). — Let \(\theta: R \rightarrow R'\) be a ring map, \(a \subset R\) an ideal. Set \(b := aR'\). Let \(\overline{\theta}: R/a \rightarrow R'/b\) be the induced map. Set \(X := \text{Spec}(R)\) and \(Y := \text{Spec}(R')\). Set \(\theta^* := \text{Spec}(\theta)\) and \(\overline{\theta}^* := \text{Spec}(\overline{\theta})\). Via \((13.1)\), identify \(\text{Spec}(R/a)\) and \(\text{Spec}(R'/b)\) with \(V(a) \subset X\) and \(V(b) \subset Y\). Show \((1)\) \(V(b) = \theta^*\overline{\theta}^-(V(a))\) and \((2)\) \(\overline{\theta}^* = \theta^*| V(b)\).

Solution: Given \(q \in Y\), observe that \(q \supset b\) if and only if \(\theta^{-1}(q) \supset a\), as follows. By \((1.14)(1)\) in its notation, \(q \supset b\) yields \(q^c \supset a^c \supset a\), and \(q^c \supset a\) yields \(q \supset q^c \supset a^c\). Thus \((1)\) holds.

Plainly, \(\overline{\theta}(q/b) = (\theta^{-1}q)/a\). Thus \((13.1.4)\) yields \((2)\). \(\square\)

Exercise \((13.28)\). — Let \(\theta: R \rightarrow R'\) be a ring map, \(p \subset R\) a prime, \(k\) the residue field of \(R_p\). Set \(\theta^* := \text{Spec}(\theta)\). Show \((1)\) \(\theta^{-1}(p)\) is canonically homeomorphic to \(\text{Spec}(R'_p/pR'_p)\) and to \(\text{Spec}(k \otimes_R R')\) and \((2)\) \(p \in \text{Im}\theta^*\) if and only if \(k \otimes_R R' \neq 0\).

Solution: First, take \(S := S_p := R - p\) and apply \((13.26)\) to obtain

\[
\text{Spec}(R'_p) = \theta^{-1}(\text{Spec}(R_p)) \quad \text{and} \quad \text{Spec}(\theta_p) = \theta^*| \text{Spec}(R'_p).
\]

Next, take \(a := pR_p\) and apply \((13.27)\) to \(\theta_p: R_p \rightarrow R'_p\) to obtain

\[
\text{Spec}(R'_p/pR'_p) = \text{Spec}(\theta_p)^{-1}(pR_p).
\]

But \(\varphi_p^{-1}(pR_p) = p\) by \((11.12)(2)\); so \(V(pR_p) = p\). Thus,

\[
\text{Spec}(R'_p/pR'_p) = \left(\theta^*| \text{Spec}(R'_p)\right)^{-1}(p) = \theta^{-1}(p).
\]

It remains to see \(R'_p/pR'_p = k \otimes_R R'\). Note \(k := R_p/pR_p\). So \(R'_p/pR'_p = k \otimes_{R_p} R'_p\) by \((8.27)\) with \(a := pR_p\) and \(M := R'_p\) as \(pR_p = (pR_p)R'_p\). But \(k \otimes_{R_p} R'_p = k \otimes_R R'\) by \((12.27)\) as \(k = k_p\) by \((12.4)\). Thus \(R'_p/pR'_p = k \otimes_R R'\). Thus \((1)\) holds.

Finally, \((1)\) implies \(p \in \text{Im}\theta^*\) if and only if \(\text{Spec}(R' \otimes_R k) \neq \emptyset\). Thus \((2)\) holds. \(\square\)

Exercise \((13.29)\). — Let \(R\) be a ring, \(p\) a prime ideal. Show that the image of \(\text{Spec}(R_p)\) in \(\text{Spec}(R)\) is the intersection of all open neighborhoods of \(p\) in \(\text{Spec}(R)\).

Solution: By \((13.25)\), the image \(X_p\) consists of the primes contained in \(p\). Given \(f \in R - p\), note that \(D(f)\) contains every prime contained in \(p\), or \(X_p \subset D(f)\). But the principal open sets form a basis of the topology of \(X\) by \((13.1)\). Hence \(X_p\) is contained in the intersection, \(Z\) say, of all open neighborhoods of \(p\). Conversely, given a prime \(q \not\subset p\), there is \(g \in q - p\). So \(D(g)\) is an open neighborhood of \(p\), and \(q \not\subset D(g)\). Thus \(X_p = Z\), as desired. \(\square\)

Exercise \((13.30)\). — Let \(\varphi: R \rightarrow R'\) and \(\psi: R \rightarrow R''\) be ring maps, and define \(\theta: R \rightarrow R' \otimes_R R''\) by \(\theta(x) := \varphi(x) \otimes \psi(x)\). Show

\[
\text{Im } \text{Spec}(\theta) = \text{Im } \text{Spec}(\varphi) \cap \text{Im } \text{Spec}(\psi).
\]
Solutions (13.31) / (13.33) Support

Solution: Given \(p \in X \), set \(k := R_p/pR_p \). Then (8.8) and (8.9) yield
\[
(R' \otimes_R R') \otimes_R k = R' \otimes_R (R' \otimes_R k)(R' \otimes_R k) \otimes_k (R'' \otimes_R k).
\]
So \((R' \otimes_R R') \otimes_R k \neq 0\) if and only if \(R' \otimes_R k \neq 0\) and \(R'' \otimes_R k \neq 0\) by (8.24). Hence (13.28)(2) implies that \(p \in \text{Im Spec}(\theta) \) if and only if \(p \in \text{Im Spec}(\varphi) \) and \(p \in \text{Im Spec}(\psi) \), as desired.

Exercise (13.31). Let \(R \) be a filtered direct limit of rings \(R_\lambda \) with transition maps \(\alpha_\lambda \) and insertions \(\alpha_\lambda \). For each \(\lambda \), let \(\varphi_\lambda : R' \to R_\lambda \) be a ring map with \(\varphi_\mu = \alpha_\mu \varphi_\lambda \) for all \(\alpha_\mu \), so that \(\varphi := \alpha_\lambda \varphi_\lambda \) is independent of \(\lambda \). Show
\[
\text{Im Spec}(\varphi) = \bigcap_\lambda \text{Im Spec}(\varphi_\lambda).
\]

Solution: Given \(q \in \text{Spec}(R') \), set \(k := R'_q/qR'_q \). Then (8.10) yields
\[
R \otimes_R k = \lim_{\longrightarrow} (R_\lambda \otimes_R k).
\]
So \(R \otimes_R k \neq 0 \) if and only if \(R_\lambda \otimes_R k \neq 0 \) for some \(\lambda \) by (7.16)(1). So (13.28)(2) implies \(p \in \text{Im Spec}(\varphi) \) if and only if \(p \in \text{Im Spec}(\varphi_\lambda) \) for some \(\lambda \), as desired.

Exercise (13.32). Let \(R \) be a ring, \(\varphi_\sigma : R \to R_\sigma \) for \(\sigma \in \Sigma \) ring maps. Let \(\gamma_\Sigma : R \to \prod R_\sigma \) and \(\pi_\Sigma : R \to \prod R_\sigma \) be the induced maps. Set \(X := \text{Spec}(R) \). Show:
1. Then \(\text{Im Spec}(\gamma_\Sigma) = \bigcap \text{Im Spec}(\varphi_\sigma) \).
2. Assume \(\Sigma \) is finite. Then \(\text{Im Spec}(\pi_\Sigma) = \bigcup \text{Im Spec}(\varphi_\sigma) \).
3. The subsets of \(X \) of the form \(\text{Im Spec}(\varphi) \), where \(\varphi : R \to R' \) is a ring map, are the closed sets of a topology, known as the **constructible topology**. It contains the Zariski topology.
4. In the constructible topology, \(X \) is quasi-compact.

Solution: For (1), recall from (8.33) that \(\prod R_\sigma = \lim_{\longrightarrow} \bigotimes_{\sigma \in J} R_\sigma \) where \(J \) runs over the finite subsets of \(\Sigma \). Then \(\text{Im Spec}(\gamma_\Sigma) = \bigcap J \text{Im Spec}(\gamma_J) \) by (13.31). But \(\text{Im Spec}(\gamma_J) = \bigcap_{\sigma \in J} \text{Im Spec}(\gamma_{J_\sigma}) \) by (13.30). Thus (1) holds.

For (2), let \(e_\sigma \) be the standard basis vector of \(\prod R_\sigma \) corresponding to \(\sigma \). As \(\Sigma \) is finite, every prime of \(\prod R_\sigma \) has the form \(p_\sigma e_\sigma \) for some \(\sigma \), where \(p_\sigma \subseteq R'_\sigma \) is prime, owing to (2.29). So \(\pi^{-1}_\Sigma(p_\sigma e_\sigma) = \varphi_\sigma^{-1} p_\sigma \). Thus (2) holds.

For (3), note that, by (1) and (2), finite intersections and arbitrary unions of closed sets are closed. Moreover, \(\text{Im Spec}(1_R) = \text{Spec}(R) \) and \(\text{Im Spec}(0_R) = \emptyset \) where \(0_R : R \to 0 \) is the zero map. Thus the closed sets form a topology.

Given an ideal \(a \), let \(\varphi : R \to R/a \) be the quotient map. Then \(V(a) = \text{Im Spec}(\varphi) \) by (13.1.7). Thus every set closed in the Zariski topology is also closed in the constructible topology. Thus (3) holds.

For (4), set \(F_\sigma := \text{Im Spec}(\varphi_\sigma) \) for \(\sigma \in \Sigma \). Assume \(\bigcap F_\sigma = \emptyset \). Then (1) implies \(\text{Im Spec}(\bigcap R_\sigma) = \emptyset \). So \(\bigcap R_\sigma = 0 \). Since \(\bigcap J R_j = \lim_{\longrightarrow} J R_j \) where \(J \) runs over the finite subsets of \(\Sigma \), there is a \(J \) with \(R_J = 0 \) by (7.1) and (7.16). Hence \(\bigcap_{\sigma \in J} F_\sigma = 0 \) by (13.30). Thus (4) holds.

Exercise (13.33). Let \(R \) be a ring, \(X := \text{Spec}(R) \). Show:
1. Given \(g \in R \), the set \(D(g) \) is open and closed in the constructible topology.
2. On \(X \), any topology with all \(D(g) \) open and closed is Hausdorff and totally disconnected.
3. On any set, nested topologies \(\mathcal{T} \supseteq S \) coincide if \(\mathcal{T} \) is quasi-compact and \(S \) is Hausdorff.
On X, the constructible and the Zariski topologies coincide if and only if the Zariski topology is Hausdorff, if and only if $R/\text{nil}(R)$ is absolutely flat.

(5) On X, the constructible topology is smallest with all $D(g)$ open and closed.

(6) On X, the constructible open sets are the arbitrary unions U of the finite intersections of the $D(g)$ and the $X - D(g)$.

Solution: For (1), note $D(g)$ is open in the Zariski topology by (13.1.2), so open in the constructible topology by (13.32)(3). But $D(g) = \text{Im} \, \text{Spec}(\varphi_g)$, where $\varphi_g: R \to R_y$ is the localization map, owing to (13.1.8); so $D(g)$ is closed in the constructible topology by definition. Thus (1) holds.

In (2), given distinct primes p, q of R, either $p \not\subseteq q$ or $q \not\subseteq p$; say $p \not\subseteq q$. Then there’s $g \in p - q$. So $q \in D(g)$ and $p \in X - D(g)$. The sets $D(g)$ and $X - D(g)$ are disjoint. Both are open and closed by hypothesis. Thus (2) holds.

For (3), we must show any set U open in \mathcal{T} is also open in S. As S is Hausdorff, given x in U and y in its complement C, there are disjoint open sets U_y, V_y in S with $x \in U_y$ and $y \in V_y$. But $\mathcal{T} \supset S$. So U_y and V_y are also open in \mathcal{T}.

Note $\bigcup_{y \in C} V_y \supset C$. But C is closed in \mathcal{T}, and \mathcal{T} is quasi-compact. So there’s a finite subset F of C with $\bigcup_{y \in F} V_y \supset C$. Then $\bigcap_{y \in F} U_y$ is open in S, lies in U, and contains x. But $x \in U$ is arbitrary. Thus U is open in S. Thus (3) holds.

For (4), note by (13.1) the $D(g)$ form a basis of the Zariski topology. So it lies in the constructible topology by (1). But the latter is quasi-compact by (13.31)(4). So by (3) the two topologies coincide if the Zariski topology is Hausdorff. The converse holds by (1) and (2). Finally, the Zariski topology is Hausdorff if and only if $R/\text{nil}(R)$ is absolutely flat by (13.22). Thus (4) holds.

For (5), note that the constructible topology contains the smallest topology S with all $D(g)$ open and closed by (1). Moreover, the constructible topology is quasi-compact by (13.31)(4), and S is Hausdorff by (2). Thus (5) implies (5).

In (6), every such U is a constructible open set owing to (1). Conversely, the family \mathcal{F} of all U trivially contains X and \emptyset and is stable under arbitrary union. Moreover, \mathcal{F} is stable under finite intersection since $(\bigcup \mathcal{Y}_\lambda) \cap (\bigcup \mathcal{Z}_\mu) = \bigcup \mathcal{Y}_\lambda \cap \mathcal{Z}_\mu$ for any families $\{\mathcal{Y}_\lambda\}$ and $\{\mathcal{Z}_\mu\}$ of subsets of X. Hence, these U are the open sets of a topology, in which all $D(g)$ are open and closed. Hence \mathcal{F} contains the constructible open sets owing to (5). Thus (6) holds.

Exercise (13.34). — Let $\varphi: R \to R'$ be a ring map. Show, in the constructible topology, $\text{Spec}(R) \to \text{Spec}(R')$ is continuous and closed.

Solution: By (13.33)(6), the constructible open sets of $\text{Spec}(R)$ are the arbitrary unions of finite intersections of all $D(g)$ and all $X - D(g)$. But $\text{Spec}(\varphi)^{-1}$ preserves arbitrary unions, arbitrary intersections, and complements. Moreover, $\text{Spec}(\varphi)^{-1} D(g) = D(\varphi(g))$ by (13.1.5). Thus $\text{Spec}(\varphi)$ is continuous.

Given another ring map $\varphi': R' \to R''$, recall $\text{Spec}(\varphi) \text{Spec}(\varphi') = \text{Spec}(\varphi' \varphi)$ from (13.1.6). So $\text{Spec}(\varphi)(\text{Im} \, \text{Spec}(\varphi')) = \text{Im} \, \text{Spec}(\varphi' \varphi)$. Thus $\text{Spec}(\varphi)$ is closed.

Exercise (13.35). — Let A be a domain with just one nonzero prime p. Set $K := \text{Frac}(A)$ and $R := (A/p) \times K$. Define $\varphi: A \to R$ by $\varphi(x) := (x', x)$ with x' the residue of x. Set $\varphi^*: := \text{Spec}(\varphi)$. Show φ^* is bijective, but not a homeomorphism.

Solution: Note p is maximal; so A/p is a field. The primes of R are $(0, K)$ and $(A/p, 0)$ by (1.23). Plainly, $\varphi^{-1}(0, K) = p$ and $\varphi^{-1}(A/p, 0) = 0$. So φ^* is bijective. Finally, $\text{Spec}(R)$ is discrete, but $\text{Spec}(A)$ has $p \in \mathcal{V}(0)$; so φ^* is not a
Exercise (13.36). — Let \(\varphi : R \to R' \) be a ring map, and \(b \) an ideal of \(R' \). Set \(\varphi^* := \text{Spec}(\varphi) \). Show (1) that the closure \(\overline{\varphi^*(V(b))} \) in \(\text{Spec}(R) \) is equal to \(V(\varphi^{-1}b) \) and (2) that \(\varphi^*(\text{Spec}(R')) \) is dense in \(\text{Spec}(R) \) if and only if \(\text{Ker}(\varphi) \subset \text{nil}(R) \).

Solution: For (1), given \(p \in \varphi^*(V(b)) \), say \(p = \varphi^{-1}(\mathfrak{p}) \) where \(\mathfrak{p} \) is a prime of \(R' \) with \(\mathfrak{p} \supset b \). Then \(\varphi^{-1}\mathfrak{p} \supset \varphi^{-1}b \). So \(p \supset \varphi^{-1}b \), or \(p \in V(\varphi^{-1}b) \). Thus \(\varphi^*(V(b)) \subset V(\varphi^{-1}b) \). But \(V(\varphi^{-1}b) \) is closed. So \(\varphi^*(V(b)) \subset V(\varphi^{-1}b) \).

Conversely, given \(p \in V(\varphi^{-1}b) \), note \(p \supset \sqrt{\varphi^{-1}b} \). Take a neighborhood \(D(f) \) of \(p \); then \(f \notin p \). Hence \(f \notin \sqrt{\varphi^{-1}b} \). But \(\sqrt{\varphi^{-1}b} = \varphi^{-1}(\sqrt{b}) \) by (3.39). Hence \(\varphi(f) \notin \sqrt{b} \). So there’s a prime \(\mathfrak{p} \supset b \) with \(\varphi(f) \notin \mathfrak{p} \) by the Scheinnullstellensatz (3.14). So \(\varphi^{-1}\mathfrak{p} \supset \varphi^*(V(b)) \). Further, \(f \notin \varphi^{-1}\mathfrak{p} \), or \(\varphi^{-1}\mathfrak{p} \in D(f) \). Therefore, \(\varphi^{-1}\mathfrak{p} \in \varphi^*(V(b)) \cap D(f) \). So \(\varphi^*(V(b)) \cap D(f) \neq \emptyset \). So \(p \in \varphi^*(V(b)) \). Thus (1) holds.

For (2), take \(b := \emptyset \). Then (1) yields \(\overline{\varphi^*(V(b))} = V(\text{Ker}(\varphi)) \). But by (13.1), \(V(b) = \text{Spec}(R') \) and \(\text{Spec}(R) = V(\emptyset) \). So \(\varphi^*(\text{Spec}(R')) = \text{Spec}(R) \) if and only if \(V(\emptyset) = V(\text{Ker}(\varphi)) \). The latter holds if and only if \(\text{nil}(R) = \sqrt{\text{Ker}(\varphi)} \) by (13.1), so plainly if and only if \(\text{nil}(R) \supset \text{Ker}(\varphi) \). Thus (2) holds.

Exercise (13.37). — Let \(\varphi : R \to R' \) be a ring map. Consider these statements:

1. The map \(\varphi \) has the Going-up Property: given primes \(q' \subset R' \) and \(p \subset R \) with \(p \supset \varphi^{-1}(q') \), there is a prime \(p' \subset R' \) with \(\varphi^{-1}(p') = p \) and \(p' \supset q' \).
2. Given a prime \(q' \) of \(R' \), set \(q := \varphi^{-1}(q') \). Then \(\text{Spec}(R'/q') \to \text{Spec}(R/q) \) is surjective.
3. The map \(\text{Spec}(\varphi) \) is closed: it maps closed sets to closed sets.

Prove that (1) and (2) are equivalent, and are implied by (3).

Solution: Plainly, (1) holds if and only if the following equality does:

\[
\text{Spec}(\varphi)(V(q')) = V(\varphi^{-1}(q')).
\]

But (13.37.1) holds if and only if (2) does owing to (13.1.7). Thus (1) and (2) are equivalent.

Finally, \(\text{Spec}(\varphi)(\overline{V(q')}) = V(\varphi^{-1}(q')) \) by (13.36)(1). So (13.37.1) holds if (3) does. Thus (1) and (2) are implied by (3).

Exercise (13.38). — Let \(\varphi : R \to R' \) be a ring map. Consider these statements:

1. The map \(\varphi \) has the Going-down Property: given primes \(q' \subset R' \) and \(p \subset R \) with \(p \subset \varphi^{-1}(q') \), there is a prime \(p' \subset R' \) with \(\varphi^{-1}(p') = p \) and \(p' \subset q' \).
2. Given a prime \(q' \) of \(R' \), set \(q := \varphi^{-1}(q') \). Then \(\text{Spec}(R'/q') \to \text{Spec}(R/q) \) is surjective.
3. The map \(\text{Spec}(\varphi) \) is open: it maps open sets to open sets.

Prove (1) and (2) are equivalent; using (13.31), prove they’re implied by (3).

Solution: Set \(\varphi^* := \text{Spec}(\varphi) \). Identify \(\text{Spec}(R_q) \) with the subspace of \(\text{Spec}(R) \) of \(p \subset q \) by (13.25) with \(S := S_q \); similarly, identify \(\text{Spec}(R'_q) \) in \(\text{Spec}(R') \). Then (13.1.4) implies the following statement:

\[
\varphi^* \text{Spec}(R'_q) \subset \text{Spec}(R_q),
\]

with equality if and only if (1) holds.

(13.38.1)

Those identifications are made via \(\text{Spec}((\varphi^*_p)^*) \) and \(\text{Spec}((\varphi^*_q)^*) \). So \(\varphi^* \) induces
Solutions (13.39) / (13.41) Support

Spec(ρ) where ρ: R_q → R_q′ is the map induced by ϕ. So ϕ∗ Spec(R_q′) = Spec(R_q) if and only if (2) holds. Thus (1) and (2) are equivalent by (13.38.1).

Lastly, R_q′ = lim ←_t∈S_q′ R_q′ t by (12.6). Hence ϕ∗ Spec(R_q′) = ∩ϕ∗ Spec(R_q′) by (13.31). Assume (3). Then ϕ∗ Spec(R_q′) is open, as Spec(R_q′) is by (13.1). But q′ ∈ Spec(R_q′), so q ∈ ϕ∗ Spec(R_q′). So Spec(R_q) ⊂ ϕ∗ Spec(R_q′) by (13.29). Thus Spec(R_q) ⊂ ϕ∗ Spec(R_q′). Thus (13.38.1) yields equality here, and with it (1). □

Exercise (13.39) . — Let R be a ring; f, g ∈ R. Prove (1)–(8) are equivalent:

1. | D(g) | ⊂ | D(f) |
2. | V((g)) | ⊂ | V((f)) |
3. \(\sqrt{g} \subseteq \sqrt{f} \)
4. \(\overline{S_f} \subseteq \overline{S_g} \)
5. \(g \in \sqrt{f} \)
6. \(f \in \overline{S_g} \)
7. There is a unique R-algebra map \(\varphi_g^f: \overline{S_f}^{-1}R \rightarrow \overline{S_g}^{-1}R \)
8. There is an R-algebra map \(R_f \rightarrow R_g \).

If these conditions hold, prove the map in (8) is equal to \(\varphi_g^f \).

Solution: First, (1) and (2) are equivalent by (13.1), and (2) and (3) are too. Plainly, (3) and (5) are equivalent. Further, (3) and (4) are equivalent by (3.25) (4). Always \(f \in \overline{S_f} \); so (4) implies (6). Conversely, (6) implies \(S_f \subseteq \overline{S_g} \); whence, (3.25)(1)(c) yields (4). Finally, (8) implies (4) by (11.24)(2). And (4) implies (7) by (11.24)(1). But \(\overline{S_f}^{-1}R = S_f^{-1}R \) and \(\overline{S_g}^{-1}R = S_g^{-1}R \) by (11.23); whence, (7) implies both (8) and the last statement. □

Exercise (13.40) . — Let R be a ring. Prove these statements:

1. \(D(f) \rightarrow R_f \) is a well-defined contravariant functor from the category of principal open sets and inclusions to \((R\text{-alg})\).
2. Given \(p \in \text{Spec}(R) \), then \(\lim \bigoplus_{D(f) \ni p} R_f = R_p \).

Solution: Consider (1). By (13.39), if \(D(g) \subseteq D(f) \), then there is a unique R-algebra map \(\varphi_g^f: \overline{S_f}^{-1}R \rightarrow \overline{S_g}^{-1}R \). By uniqueness, if \(D(h) \subset D(g) \subset D(f) \), then \(\varphi_g^f \circ \varphi_h^g = \varphi_h^f \); also \(\varphi_f^f = 1 \). Further, if \(D(g) = D(f) \), then \(S_f \subseteq S_g \) and \(S_g \subseteq S_f \), so \(\overline{S_f} = \overline{S_g} \) and \(\varphi_g^f = 1 \). Finally, \(R_f = \overline{S_f}^{-1}R \) by (11.23). Thus (1) holds.

For (2), notice (13.39) yields an inclusion-reversing bijective correspondence between the principal open sets \(D(f) \) and the saturated multiplicitive subsets \(S_f \). Further, \(D(f) \ni p \) if and only if \(f \notin p \) by (13.1).

Recall \(S_p := R - p \). By (3.24), \(S_p \) is saturated. So \(S_p \supset S_f \) if and only if \(f \notin p \) by (3.25)(1)(c). Also, \(S_p = \bigcup_{f \notin p} S_f \). But \(R_f = \overline{S_f}^{-1}R_f \) by (11.23). Thus

\[\lim_{\bigoplus_{D(f) \ni p}} R_f = \lim_{\bigoplus_{S_f \subset S}} \overline{S_f}^{-1}R. \]

By the definition of saturation in (3.25), \(S_{fg} \ni f, g \). By (3.25)(1)(b), \(S_{fg} \) is saturated multiplicitive. So \(\overline{S_{fg}} \supset \overline{S_f} \supset \overline{S_g} \) by (3.25)(1)(c). So \(\overline{S_f}^{-1}R = S_p^{-1}R \) by (11.24)(2). But \(S_p^{-1}R = R_p \) by definition. Thus (2) holds. □

Exercise (13.41) . — Let R be a ring, \(X := \text{Spec}(R) \), and U an open subset. Show \(U \) is quasi-compact if and only if \(X - U = \text{V}(a) \) where a is finitely generated.

Solution: Assume \(U \) is quasi-compact. By (13.1), \(U = \bigcup_{i} D(f_i) \) for some \(f_i \). So \(U = \bigcup_{i} D(f_{\lambda_i}) \) for some \(f_{\lambda_i} \). Thus \(X - U = \bigcap \text{V}(f_{\lambda_i}) = \text{V}(f_{\lambda_1}, \ldots, f_{\lambda_n}) \).

Conversely, assume \(X - U = \text{V}(f_1, \ldots, f_n) \). Then \(U = \bigcup_{i=1}^{n} D(f_i) \). But

301
D(f_i) = Spec(R_{f_i}) by (13.1). So by (13.2) with R_{f_i} for R, each D(f_i) is quasi-compact. Thus U is quasi-compact. □

Exercise (13.42). — Let R be a ring, M a module. Set X := Spec(R). Assume X = \bigcup_{\lambda \in \Lambda} D(f_\lambda) for some set \Lambda and some f_\lambda \in R.

1. Given m \in M, assume m/1 = 0 in M_{f_\lambda} for all \lambda. Show m = 0.
2. Given m_\lambda \in M_{f_\lambda} for each \lambda, assume the images of m_\lambda and m_{\mu} in M_{f_\lambda f_\mu} are equal. Show there is a unique m \in M whose image in M_{f_\lambda} is m_\lambda for all \lambda.

First assume \Lambda is finite.

Solution: In (1), as m/1 = 0 in M_{f_\lambda}, there’s n_\lambda > 0 with f_\lambda^{n_\lambda}m = 0. But X = \bigcup D(f_\lambda). Hence each prime excludes an f_\lambda, so f_\lambda^{n_\lambda} too. So there are \lambda_1, \ldots, \lambda_n and x_1, \ldots, x_n with 1 = \sum x_i f_\lambda^{n_\lambda}. So m = \sum x_i f_\lambda^{n_\lambda}m = 0. Thus (1) holds.

For (2), first assume \Lambda is finite. Given \lambda \in \Lambda, there are h_\lambda \in M and n_\lambda \geq 0 with m_\lambda/1 = t_h/f_\lambda^{n_\lambda}. Set n := \max\{n_\lambda\} and k_\lambda := f_\lambda^{n_\lambda}k_\lambda. Thus m_\lambda/1 = k_\lambda/f_\lambda^{n_\lambda}t_\lambda.

Given \mu \in \Lambda, by hypothesis f_\mu^{n_\mu}k_\mu/(f_\lambda f_\mu)^n = f_\mu^{n_\mu}k_\mu/(f_\lambda f_\mu)^n in M_{f_\lambda f_\mu}. So there’s n_{\lambda,\mu} \geq 0 with (f_\lambda f_\mu)^{n_\lambda}f_\mu^{n_\mu}k_\lambda = (f_\lambda f_\mu)^{n_\mu}f_\mu^{n_\mu}k_\lambda = 0. So (f_\lambda f_\mu)^{n_\lambda}f_\mu^{n_\mu}k_\lambda = (f_\lambda f_\mu)^{n_\mu}f_\mu^{n_\mu} k_\lambda for p := \max\{n_{\lambda,\mu}\}. Set h_\lambda := f_\mu^{n_\mu}k_\lambda. Thus f_\mu^{n_\mu}h_\lambda = f_\mu^{n_\mu}h_\lambda.

By hypothesis, X = \bigcup D(f_\lambda). So, as in the solution to (1), there are x_\lambda \in R with 1 = \sum x_\lambda f_\lambda^{n_\lambda}p. Set m := \sum x_\lambda h_\lambda. Then as f_\mu^{n_\mu}h_\lambda = f_\mu^{n_\mu}h_\lambda,

\[f_\mu^{n_\mu}m = \sum \lambda f_\mu^{n_\mu}x_\lambda h_\lambda = \sum \lambda f_\mu^{n_\mu}x_\lambda h_\mu = h_\mu = f_\mu^{n_\mu}k_\mu. \]

Thus the image of m in M_{f_{\mu}} is k_\mu/f_\mu^{n_\mu} = m_{\mu}, as desired.

If m' \in M also has image m_\lambda in M_{f_{\lambda}} for all \lambda, then (m - m')/1 = 0 in M_{f_{\lambda}} for all \lambda. So m - m' = 0 by (1). Thus m is unique.

In general, there’s a finite subset \Lambda' of \Lambda with X = \bigcup_{\lambda \in \Lambda'} D(f_\lambda) by (13.2). Apply the first case to \Lambda' to obtain m \in M with image m_\lambda in M_{f_{\lambda}} for all \lambda \in \Lambda'.

Let’s see m works. Given \mu \in \Lambda, apply the first case to \Lambda' \cup \{\mu\} to obtain m' \in M with image m_\lambda in M_{f_{\lambda}} for all \lambda \in \Lambda' and image m_{\mu} in M_{f_{\mu}}. By uniqueness m' = m. So m has image m_{\mu} in M_{f_{\mu}}. Thus (2) holds. □

Exercise (13.43). — Let B be a Boolean ring, and set X := Spec(B). Show a subset U \subset X is both open and closed if and only if U = D(f) for some f \in B. Further, show X is a compact Hausdorff space. (Following Bourbaki, we shorten “quasi-compact” to “compact” when the space is Hausdorff.)

Solution: Let f \in B. Then D(f) \bigcup D(1 - f) = X whether B is Boolean or not; indeed, if p \in X - D(f), then f \in p, so 1 - f \notin p, so p \notin D(1 - f). However, D(f) \bigcap D(1 - f) = \emptyset; indeed, if p \notin D(f), then f \notin p, but f(1 - f) = 0 as B is Boolean, so 1 - f \in p, so p \notin D(1 - f). Thus X - D(f) = D(1 - f). Thus D(f) is closed as well as open.

Conversely, let U \subset X be open and closed. Then U is quasi-compact, as U is closed and X is quasi-compact by (13.2). So X - U = V(\alpha) where \alpha is finitely generated by (13.41). Since B is Boolean, \alpha = (f) for some f \in B by (1.24)(5). Thus U = D(f).

Finally, let p, q be prime ideals with p \neq q. Then there is f \in p - q. So p \notin D(f), but q \in D(f). By the above, D(f) is both open and closed. Thus X is Hausdorff. By (13.2), X is quasi-compact, so compact as it is Hausdorff. □
Exercise (13.44) (Stone’s Theorem). — Show every Boolean ring \(B \) is isomorphic to the ring of continuous functions from a compact Hausdorff space \(X \) to \(\mathbb{F}_2 \) with the discrete topology. Equivalently, show \(B \) is isomorphic to the ring \(R \) of open and closed subsets of \(X \); in fact, \(X := \text{Spec}(B) \), and \(B \rightarrow R \) is given by \(f \mapsto \text{D}(f) \).

Solution: The two statements are equivalent by (1.2). Further, \(X := \text{Spec}(B) \) is compact Hausdorff, and its open and closed subsets are precisely the \(\text{D}(f) \) by (13.43). Thus \(f \mapsto \text{D}(f) \) is a well defined function, and is surjective.

This function preserves multiplication owing to (13.1.3). To show it preserves addition, we must show that, for any \(f, g \in B \),

\[
\text{D}(f + g) = (\text{D}(f) - \text{D}(g)) \cup (\text{D}(g) - \text{D}(f)). \tag{13.44.1}
\]

Fix a prime \(p \). There are four cases. First, if \(f \notin p \) and \(g \in p \), then \(f + g \notin p \). Second, if \(g \notin p \) but \(f \in p \), then again \(f + g \notin p \). In both cases, \(p \) lies in the (open) sets on both sides of (13.44.1).

Third, if \(f \in p \) and \(g \in p \), then \(f + g \in p \). The first three cases do not use the hypothesis that \(B \) is Boolean. The fourth does. Suppose \(f \notin p \) and \(g \notin p \). Now, \(B/p = \mathbb{F}_2 \) by (2.36). So the residues of \(f \) and \(g \) are both equal to 1. But \(1 + 1 = 0 \in \mathbb{F}_2 \). So again \(f + g \in p \). Thus in both the third and fourth cases, \(p \) lies in neither side of (13.44.1). Thus (13.44.1) holds.

Finally, to show that \(f \mapsto \text{D}(f) \) is injective, suppose that \(\text{D}(f) \) is empty. Then \(f \in \text{nil}(B) \). But \(\text{nil}(B) = \{0\} \) by (3.33). Thus \(f = 0 \).

Alternatively, if \(\text{D}(f) = \text{D}(g) \), then \(\text{V}(\langle f \rangle) = \text{V}(\langle g \rangle) \), so \(\sqrt{\langle f \rangle} = \sqrt{\langle g \rangle} \) by (13.1). But \(f, g \in \text{Idem}(B) \) as \(B \) is Boolean. Thus \(f = g \) by (3.34).

Exercise (13.45). — Let \(L \) be a Boolean lattice. Show that \(L \) is isomorphic to the lattice of open and closed subsets of a compact Hausdorff space.

Solution: By (1.26), \(L \) carries a canonical structure of Boolean ring. Set \(X := \text{Spec}(L) \). By (13.43), \(X \) is a compact Hausdorff space, and by (13.44), its ring \(M \) of open and closed subsets is isomorphic to \(L \). By (1.28), \(M \) is a Boolean lattice, and its ring structure is produced by the construction of (1.26). So the ring structure on \(L \) is produced by this construction both from its given lattice structure and that induced by \(M \). Thus by (1.27) these two lattice structures coincide.

Exercise (13.46). — Let \(R \) be a ring, \(q \) an ideal, \(M \) a module. Show:

1. \(\text{Supp}(M/qM) \subset \text{Supp}(M) \cap \text{V}(q) \), with equality if \(M \) is finitely generated.
2. Assume \(M \) is finitely generated. Then \(\text{V}(q + \text{Ann}(M)) = \text{Supp}(M/qM) = \text{V}(\text{Ann}(M/qM)) \).

Solution: For (1), note \(M/qM = M \otimes R/q \) by (8.27)(1). But \(\text{Ann}(R/q) = q \); hence, (13.4)(3) yields \(\text{Supp}(R/a) = \text{V}(q) \). Thus (13.7) yields (1).

For (2), set \(a := \text{Ann}(M) \) and \(q' := \text{Ann}(M/qM) \). As \(M \) is finitely generated, (13.1) and (13.4)(3) and (1) and again (13.4)(3) yield, respectively,

\[
\text{V}(a + q) = \text{V}(a) \cap \text{V}(q) = \text{Supp}(M) \cap \text{V}(q) = \text{Supp}(M/qM) = \text{V}(q').
\]

Thus (2) holds.

Exercise (13.47). — Let \(\varphi : R \rightarrow R' \) be a ring map, \(M' \) a finitely generated \(R' \)-module. Set \(\varphi^* := \text{Spec}(\varphi) \). Assume \(M' \) is flat over \(R \). Then \(M' \) is faithfully flat if and only if \(\varphi^* \text{Supp}(M') = \text{Spec}(R) \).

303
Solutions

(13.48) / (13.50) Support

Solution: Assume M' is faithfully flat over R. Given $p \in \text{Spec}(R)$, note that $M' \otimes_R R_p$ is faithfully flat over R_p by (9.22). So replace R by R_p and M' by $M' \otimes_R R_p$. Then R is local with maximal ideal p.

So $M' \otimes_R (R/p) \neq 0$ by (9.19). But $M' \otimes_R (R/p) = M'/\mathfrak{p}M'$ by (8.27)(1). So there’s $q \in \text{Supp}(M'/\mathfrak{p}M')$ by (13.8). Thus $\text{Supp}(M'/\mathfrak{p}M') = \text{Supp}(M') \cap V(pR')$ by (13.48). So $q \in \text{Supp}(M')$ and $q \supset pR'$. So $\varphi^{-1}q \supset \varphi^{-1}pR' \supset p$. But p is maximal. So $\varphi^{-1}q = p$. Thus $\varphi^* \text{Supp}(M') = \text{Spec}(R)$.

For the converse, reverse the above argument. Assume $\varphi^* \text{Supp}(M') \subseteq \text{Spec}(R)$. Then given any maximal ideal m of R, there is $m' \in \text{Supp}(M')$ with $\varphi^{-1}m' = m$. So $m' \in \text{Supp}(M') \cap V(mR') = \text{Supp}(M' \otimes_R (R/m))$. So $M' \otimes_R (R/m) \neq 0$. Thus (9.19) implies M' is faithfully flat.

Exercise (13.48). — Let $\varphi: R \to R'$ be a ring map, M' a finitely generated R'-module, and $q \in \text{Supp}(M')$. Assume that M' is flat over R. Set $p := \varphi^{-1}(q)$. Show that φ induces a surjection $\text{Supp}(M'_q) \to \text{Spec}(R_p)$.

Solution: Recall $S_p := R - p$. So $R'_p = R'_p \otimes_S S_p$ by (11.15). But $p = \varphi^{-1}(q)$, so $S_p \otimes_S S_q$. So R'_p and M'_p are localizations of R'_p and M'_p by (12.29)(1). Further, owing to (11.12)(2), the composition $R_p \otimes_{R'_p} R'_p \to R'_q$ is a local ring map.

Moreover, $M'_p = R_p \otimes_R M'$ by (12.10), and $R_q \otimes_R M'$ is flat over R_p by (9.22); so M'_p is flat over R_p. Also, $M'_p = R'_q \otimes_{R'_p} M'_p$ by (12.10), and R'_q is flat over R'_p by (12.14); so M'_q is flat over R_q by (9.26). So M'_q is faithfully flat over R_q by (10.30) as $q \in \text{Supp}(M')$. Thus (13.47) yields the desired surjectivity.

Exercise (13.49). — Let $\varphi: R \to R'$ be a map of rings, M an R-module. Prove

$$\text{Supp}(M \otimes_R R') \subseteq \text{Supp}(\varphi^{-1}(\text{Supp}(M))),$$

(13.49.1)

with equality if M is finitely generated.

Solution: Fix a prime $q \subseteq R'$. Set $p := \varphi^{-1}q$, so $\text{Spec}(\varphi)(p) = q$. Apply, in order, (12.10), twice Cancellation (8.9), and again (12.10) to obtain

$$\begin{align*}
(M \otimes_R R')_q &= (M \otimes_R R')_q \otimes_{R'} R'_q = M \otimes_R R'_q \\
&= (M \otimes_R R_p) \otimes_{R_p} R'_q = M_p \otimes_{R_p} R'_q.
\end{align*}$$

(13.49.2)

First, assume $q \in \text{Supp}(M \otimes_R R')$; that is, $(M \otimes_R R')_q \neq 0$. Then (13.49.2) implies $M_p \neq 0$; that is, $p \in \text{Supp}(M)$. Thus (13.49.1) holds.

Conversely, assume $q \in \text{Spec}(\varphi^{-1}(\text{Supp}(M)))$. Then $p \in \text{Supp}(M)$, or $M_p \neq 0$. Set $k := R_p/pR_p$. Then $M_p/pM_p = M_p \otimes_{R_p} k$ and $R'_p/pR'_p = R'_p \otimes_A k$ by (8.27)(1). Hence Cancellation (8.9), the Associative Law (8.8), and (13.49.2) yield

$$\begin{align*}
(M_p/pM_p) \otimes_k (R'_q/pR'_q) &= (M_p \otimes_{R_p} k) \otimes_k (R'_q \otimes_{R_p} k) \\
&= (M_p \otimes_{R_p} R'_q \otimes_{R_p} k) = (M_p \otimes_{R_p} R'_q) \otimes_{R_p} k \\
&= (M \otimes_R R')_q \otimes_{R_p} k.
\end{align*}$$

(13.49.3)

Assume M is finitely generated. Then $M_p/pM_p \neq 0$ by Nakayama’s Lemma (10.6) over R_p. And $R'_q/pR'_q \neq 0$ by Nakayama’s Lemma (10.6) over R'_q, because $pR' \subseteq q$. So $(M_p/pM_p) \otimes_k (R'_q/pR'_q) \neq 0$ by (8.24). So (13.49.3) implies that $(M \otimes_R R')_q \neq 0$, or $q \in \text{Supp}(M \otimes_R R')$. Thus equality holds in (13.49.1).

Exercise (13.50). — Let R be a ring, M a module, $p \in \text{Supp}(M)$. Prove

$$V(p) \subseteq \text{Supp}(M).$$

304
Solutions \((13.51) / (13.56)\)

Solution: Let \(q \in V(p)\). Then \(q \supset p\). So \(M_p = (M_q)_p\) by \((12.29)\)(1). Now, \(p \in \text{Supp}(M)\). So \(M_p \neq 0\). Hence \(M_q \neq 0\). Thus \(q \in \text{Supp}(M)\). \(\square\)

Exercise (13.51). — Set \(M := \mathbb{Q}/\mathbb{Z}\). Find \(\text{Supp}(M)\), and show it’s not Zariski closed in \(\text{Spec}(\mathbb{Z})\). Is \(\text{Supp}(M) = V(\text{Ann}(M))\)? What about \((13.4)(3)\)?

Solution: Let \(p \in \text{Spec}(\mathbb{Z})\). Then \(M_p = \mathbb{Q}_p/\mathbb{Z}_p\) since localization is exact by \((12.13)\). Now, \(\mathbb{Q}_p = \mathbb{Q}\) by \((12.4)\) and \((12.1)\) since \(\mathbb{Q}\) is a field. If \(p \neq (0)\), then \(\mathbb{Z}_p \neq \mathbb{Q}_p\) since \(\mathbb{Z}_p \cap \mathbb{Z} = p\) by \((11.11)\). If \(p = (0)\), then \(\mathbb{Z}_p = \mathbb{Q}_p\). Thus \(\text{Supp}(M)\) consists of all the nonzero primes of \(\mathbb{Z}\).

Finally, suppose \(\text{Supp}(M) = V(a)\). Then \(a\) lies in every nonzero prime; so \(a = (0)\). But \((0)\) is prime. Hence \((0) \in V(a) = \text{Supp}(M)\), contradicting the above. Thus \(\text{Supp}(M)\) is not closed. In particular, \(\text{Supp}(M) \neq V(\text{Ann}(M))\). However, \(M\) is not finitely generated; so \((13.4)(3)\) doesn’t apply. \(\square\)

Exercise (13.52). — Let \(R\) be a domain, \(M\) a module. Set \(T(M) := T^{S_n}(M)\). Call \(T(M)\) the torsion submodule of \(M\), and \(M\) torsionfree if \(T(M) = 0\).

Prove \(M\) is torsionfree if and only if \(M_m\) is torsionfree for all maximal ideals \(m\).

Solution: Given an \(m\), note \(R - m \subset R - (0)\), or \(S_m \subset S_0\). So \((12.35)(5)\) yields
\[T(M_m) = T(M)_m. \tag{13.52.1}\]
Assume \(M\) is torsionfree. Then \(M_m\) is torsionfree for all \(m\) by \((13.52.1)\). Conversely, if \(M_m\) is torsionfree for all \(m\), then \(T(M)_m = 0\) for all \(m\) by \((13.52.1)\). Hence \(T(M) = 0\) by \((13.8)\). Thus \(M\) is torsionfree. \(\square\)

Exercise (13.53). — Let \(R\) be a ring, \(P\) a module, \(M, N\) submodules. Assume \(M_m = N_m\) for every maximal ideal \(m\). Show \(M = N\). First assume \(M \subset N\).

Solution: If \(M \subset N\), then \((12.13)\) yields \((N/M)_m = N_m/M_m = 0\) for each \(m\); so \(N/M = 0\) by \((13.8)\). The general case follows by replacing \(N\) by \(M + N\) owing to \((12.12)(7)(b)\). \(\square\)

Exercise (13.54). — Let \(R\) be a ring, \(M\) a module, and \(a\) an ideal. Suppose \(M_m = 0\) for all maximal ideals \(m\) containing \(a\). Show that \(M = aM\).

Solution: Given any maximal ideal \(m\), note that \((aM)_m = a_m M_m\) by \((12.2)\). But \(M_m = 0\) if \(m \supset a\) by hypothesis. And \(a_m = R_m\) if \(m \not\supset a\) by \((11.8)(2)\). Hence \(M_m = (aM)_m\) in any case. Thus \((13.53)\) yields \(M = aM\).

Alternatively, form the ring \(R/a\) and its module \(M/aM\). Given any maximal ideal \(m'\) of \(R/a\), say \(m' = m/a\). By hypothesis, \(M_m = 0\). But \(M_m/(aM)_m = (M/aM)_m\) by \((12.15)\). Thus \((M/aM)_m = 0\). So \(M/aM = 0\) by \((13.8)\). Thus \(M = aM\). \(\square\)

Exercise (13.55). — Let \(R\) be a ring, \(P\) a module, \(M\) a submodule, and \(p \in P\) an element. Assume \(p/1 \in M_m\) for every maximal ideal \(m\). Show \(p \in M\).

Solution: Set \(N := M + Rp\). Then \(N_m = M_m + R_m \cdot p/1\) for every \(m\). But \(p/1 \in M_m\). Hence \(N_m = M_m\). So \(N = M\) by \((13.53)\). Thus \(p \in M\). \(\square\)

Exercise (13.56). — Let \(R\) be a domain, \(a\) an ideal. Show \(a = \bigcap_m aR_m\) where \(m\) runs through the maximal ideals and the intersection takes place in \(\text{Frac}(R)\).

Solution: Plainly, \(a \subset \bigcap_m aR_m\). Conversely, take \(x \in \bigcap_m aR_m\). Then \(x \in aR_m\) for every \(m\). But \(aR_m = a_m\) by \((12.2)\). So \((13.55)\) yields \(x \in a\) as desired. \(\square\)
Exercise (13.57) . — Prove these three conditions on a ring R are equivalent:

1. R is reduced.
2. $S^{-1}R$ is reduced for all multiplicative subsets S.
3. R_m is reduced for all maximal ideals m.

Solution: Assume (1) holds. Then $\text{nil}(R) = 0$. But $\text{nil}(R)(S^{-1}R) = \text{nil}(S^{-1}R)$ by (11.28). Thus (2) holds. Trivially (2) implies (3).

Assume (3) holds. Then $\text{nil}(R_m) = 0$. Hence $\text{nil}(R)_m = 0$ by (11.28) and (12.2). So $\text{nil}(R) = 0$ by (13.8). Thus (1) holds. Thus (1)–(3) are equivalent. □

Exercise (13.58) . — Let R be a ring, Σ the set of minimal primes. Prove this:

1. If R_p is a domain for any prime p, then the $p \in \Sigma$ are pairwise comaximal.
2. R_p is a domain for any prime p and Σ is finite if and only if $R = \prod_{i=1}^{n} R_i$ where R_i is a domain. If so, then $R_i = R/p_i$ with $\{p_1, \ldots, p_n\} = \Sigma$.

If R_m is a domain for all maximal ideals m, is R necessarily a domain?

Solution: Consider (1). Suppose $p,q \in \Sigma$ are not comaximal. Then $p + q$ lies in some maximal ideal m. Hence R_m contains two minimal primes, pR_m and qR_m, by (11.12). However, R_m is a domain by hypothesis, and so $\langle 0 \rangle$ is its only minimal prime. Hence $pR_m = qR_m$. So $p = q$. Thus (1) holds.

Consider (2). Assume R_p is a domain for any p. Then R is reduced by (13.57). Assume, also, Σ is finite. Form the canonical map $\varphi: R \to \prod_{p \in \Sigma} R/p$: it is injective by (3.41), and surjective by (1) and the Chinese Remainder Theorem (1.21). Thus R is a finite product of domains.

Conversely, assume $R = \prod_{i=1}^{n} R_i$ where R_i is a domain. Let p be a prime of R. Then $R_p = \prod (R_i)_p$ by (12.9). Each $(R_i)_p$ is a domain by (11.2). But R_p is local. So $R_p(R_i)_p$ for some i by (3.6). Thus R_p is a domain. Further, owing to (2.29), each $p_i \in \Sigma$ has the form $p_i = \prod a_j$ where, after renumbering, $a_i(0)$ and $a_j = R_j$ for $j \neq i$. Thus the ith projection gives $R/p_i \hookrightarrow R_i$. Thus (2) holds.

Finally, the answer is no. For example, take $R := k_1 \times k_2$ with $k_i := \mathbb{Z}/(2)$. The primes of R are $p := \langle (1,0) \rangle$ and $q := \langle (0,1) \rangle$ by (2.29). Further, $R_q = k_1$ by (11.5), as $R - q = \{ (1,1), (1,0) \}$. Similarly $R_p = k_2$. But R is not a domain, as $(1,0) \cdot (0,1) = (0,0)$, although R_m is a domain for all maximal ideals m.

In fact, take $R := R_1 \times R_2$ for any domains R_i. Then again R is not a domain, but R_p is a domain for all primes p by (13.58)(2) below. □

Exercise (13.59) . — Let R be a ring, M a module. Assume that there are only finitely many maximal ideals m_i, with $M_{m_i} \neq 0$. Show that the canonical map $\alpha: M \to \prod M_{m_i}$ is bijective if and only if $(M_{m_i})_{m_j} = 0$ whenever $i \neq j$.

Solution: By (13.9), the map α is bijective if and only if each localization $\alpha_{m_i}: M_{m_i} \to (\prod M_{m_i})_{m_i}$ is bijective. As the product is finite, it commutes with localization by (12.9). But $(M_{m_i})_{m_j} = M_{m_j}$ by (12.4). Thus α_{m_i} is bijective if and only if $(M_{m_i})_{m_j} = 0$ whenever $i \neq j$. □

Exercise (13.60) . — Let R be a ring, R' a flat algebra, p' a prime in R', and p its contraction in R. Prove that R'_p is a faithfully flat R_p-algebra.

Solution: First, R'_p is flat over R_p by (13.12). Next, $R'_{p'}$ is flat over R'_p by (12.14) and (12.29) as $R - p \subset R' - p'$. Hence R'_p is flat over R_p by (9.23). But a flat local homomorphism is faithfully flat by (10.30). □
Exercise (13.61). — Let R be an absolutely flat ring, p a prime. Show p is maximal, R_p is a field, and R is reduced.

Solution: Note $R/\text{nil}(R)$ is absolutely flat by (10.26)(2). Thus p is maximal by (13.22). Thus R_p is a field by (13.21)(2). So R_p is reduced. Thus (13.57) implies R is reduced. □

Exercise (13.62). — Given n, prove an R-module P is locally free of rank n if and only if P is finitely generated and $P_m \cong R^n_m$ holds at each maximal ideal m.

Solution: If P is locally free of rank n, then P is finitely generated by (13.15). Also, for any $p \in \text{Spec}(R)$, there’s $f \in R-p$ with $P_f \cong R^n_f$; so $P_p \cong R^n_p$ by (12.5).

As to the converse, given any prime p, take a maximal ideal m containing it. Assume $P_m \cong R^n_m$. Take a free basis $p_1/j_{f_1}, \ldots, p_n/j_{f_n}$ of P_m over R_m. The p_i define a map $\alpha: R^n \to P$, and $\alpha_m: R^n_m \to P_m$ is bijective, so surjective.

Assume P is finitely generated. Then (12.18)(1) provides $f \in R-m$ such that $\alpha_f: R^n_f \to P_f$ is surjective. Hence $\alpha_q: R^n_q \to P_q$ is surjective for every $q \in \text{D}(f)$ by (12.5) and (12.13). Assume $P_q \cong R^n_q$ if also q is maximal. So α_q is bijective by (10.4). Clearly, $\alpha_q = (\alpha_f)_{qR_f}$. Hence $\alpha_f: R^n_f \to P_f$ is bijective owing to (13.9) with R_f for R, as desired. □

Exercise (13.63). — Let A be a semilocal ring, P a locally free module of rank n. Show that P is free of rank n.

Solution: As P is locally free, P is finitely presented by (13.15), and $P_m \cong A^n_m$ at each maximal m by (13.62). But A is semilocal. So $P \cong A^n$ by (13.11). □

Exercise (13.64). — Let R be a ring, M a finitely presented module, $n \geq 0$. Show that M is locally free of rank n if and only if $F_{n-1}(M) = (0)$ and $F_n(M) = R$.

Solution: Assume M is locally free of rank n. Then so is M_m for any maximal ideal m by (13.62). So $F_{n-1}(M_m)(0)$ and $F_n(M_m) = R_m$ by (5.39)(2). But $F_r(M_m) = F_r(M)_m$ for all r by (12.33). So $F_{n-1}(M_m) = (0)$ and $F_n(M_m) = R_m$ by (13.53). The converse follows via reversing the above steps. □

Exercise (14.10). — Let R'/R be an integral extension of rings, $x \in R$. Show (1) if $x \in R^\times$, then $x \in R'^\times$ and (2) $\text{rad}(R) = \text{rad}(R') \cap R$.

Solution: For (1), say $xy = 1$ with $y \in R'$. Say $y^n + a_n-1y^{n-1} + \cdots + a_0 = 0$ with $a_i \in R$. Then $y = -a_{n-1} - a_{n-2}x - \cdots - a_0x^{n-1}$. So $y \in R$. Thus (1) holds.

For (2), use double inclusion. Given a maximal ideal $m' \subset R'$, note $m' \cap R$ is maximal by (14.3)(1). So if $x \in \text{rad}(R)$, then $x \in m'$. Thus $\text{rad}(R) \subset \text{rad}(R') \cap R$.

Conversely, given a maximal ideal $m \subset R$, there is a maximal ideal $m' \subset R'$ with $m' \cap R = m$ by (14.3)(1.3). So given $y \in \text{rad}(R') \cap R$, then $y \in m$. Hence $\text{rad}(R) \supset \text{rad}(R') \cap R$. Thus (2) holds. □

Exercise (14.11). — Let $\varphi: R \to R'$ be a map of rings. Assume R' is integral over R. Show the map $\text{Spec}(\varphi): \text{Spec}(R') \to \text{Spec}(R)$ is closed.
Solutions \(14.12\) / \(14.13\) \hfill Cohen–Seidenberg Theory

Solution: Given a closed set \(V(b) \subset \text{Spec}(R') \), set \(a := \varphi^{-1}(b) \). Plainly, \(R'/b \) is an integral extension of \(R/a \). So every prime of \(R/a \) is the contraction of a prime of \(R'/b \) by \((14.3)(3)\). So \(\text{Spec}(R'/b) \) maps onto \(\text{Spec}(R/a) \) by \((13.24)(1)\). Hence \((13.1.7)\) yields \(\text{Spec}(\varphi(V(b))) = V(a) \). Thus \(\text{Spec}(\varphi) \) is closed. \(\square \)

Exercise \((14.12)\). — Let \(R'/R \) be an integral extension of rings, \(\rho: R \to \Omega \) a map to an algebraically closed field. Show \(\rho \) extends to a map \(\rho': R' \to \Omega \). First, assume \(R'/R \) is an algebraic extension of fields \(K/k \), and use Zorn’s lemma on the set \(S \) of all extensions \(\lambda: L \to \Omega \) of \(\rho \) where \(L \subset K \) is a subfield containing \(k \).

Solution: First, given a totally ordered set of extensions \(\lambda_i: L_i \to \Omega \) in \(S \), set \(L := \bigcup L_i \), and for \(x \in L \), set \(\lambda(x) := \lambda_i(x) \) if \(x \in L_i \). Then \(\lambda \) is an upper bound. So Zorn’s Lemma yields a maximal extension \(\lambda: L \to \Omega \).

Given \(x \in K \), take a variable \(X \), and define \(\varphi: L[X] \to L[x] \) by \(\varphi(X) := x \). Then \(\varphi \) is surjective. But \(L \) is a field. So \(\ker(\varphi) = \{F \in L[X] \mid \text{as } x \text{ is algebraic, } F \neq 0 \} \). As \(\Omega \) is algebraically closed, \(\lambda(F) \in \Omega[X] \) has a root \(y \in \Omega \).

Define \(\omega: L[X]/F \to \Omega \) by \(\omega(X) := y \). Then \(\omega(F) = 0 \). So \(\omega \) factors through a map \(L[X]/F \to \Omega \) extending \(\lambda \). But \(L[X]/F = L[x] \), and \(\lambda \) is maximal. Hence \(x \in L \). Thus \(L = K \), and \(\lambda \) is the desired extension of \(\rho \).

For the general case, set \(\mathfrak{p} := \ker(\rho) \). Then \(\mathfrak{p} \) is prime. Further, given \(s \in R - \mathfrak{p} \), note \(\rho(s) \) is nonzero, so invertible as \(\Omega \) is a field. Hence \(\rho \) factors through a map \(\pi: R_\mathfrak{p} \to \Omega \) by \((11.3)\). But \(\rho(\mathfrak{p}) = 0 \), so \(\pi(\mathfrak{p}R_\mathfrak{p}) = 0 \). Set \(k := R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p} \). Then \(k \) is a field, and \(\pi \) factors through a map \(\kappa: k \to \Omega \).

Moreover, \(R'_\mathfrak{p} \) is integral over \(R_\mathfrak{p} \) by \((11.29)\). Also, \(R_\mathfrak{p} \to R'_\mathfrak{p} \) is injective by \((12.13)\). So there’re a maximal ideal \(\mathfrak{m} \) of \(R'_\mathfrak{p} \) lying over \(\mathfrak{p}R_\mathfrak{p} \) by \((14.3)(1),(3)\). Set \(K := R'_\mathfrak{p}/\mathfrak{m} \). Then \(K \) is a field, and an algebraic extension of \(k \). Hence \(\kappa \) extends to a map \(\kappa': K \to \Omega \) by the first case. Plainly, the composition \(R' \to R'_\mathfrak{p} \to K \to \Omega \) is the desired map \(\rho' \). \(\square \)

Exercise \((14.13)\) (E. Artin). — Form the algebraic closure of a field \(k \) as follows:

1. Let \(X \) be a variable, \(S \) the set of all monic \(F \in k[X] \), and \(X_F \) a variable for each \(F \in S \). Set \(P := k\{X_F\} \) and \(a := \{F(X_{F'})\} \). Show \(1 \not\in a \). Conclude \(k \) has an algebraic extension \(k_1 \) in which each \(F \in S \) has a root.
2. Apply (1) repeatedly to obtain a chain \(k_0 := k \subset k_1 \subset k_2 \subset \cdots \) such that every monic polynomial with coefficients in \(k_n \) has a root in \(k_{n+1} \) for all \(n \). Set \(K := \lim_k k_n \). Show \(K \) is an algebraic closure of \(k \).
3. Using \((14.12)\), show any two algebraic closures \(K_1, K_2 \) are \(k \)-isomorphic.

Solution: For (1), suppose \(1 \in a \). Say \(1 = \sum G_iF_i(X_{F_i}) \) with \(G_i \in P \) and \(F_i \in S \). By \((14.4)(1)\), there’s an extension \(R \supset k \) with \(x_i \in R \) such that \(F_i(x_i) = 0 \). Define \(\varphi: P \to R \) by \(\varphi(X_{F_i}) = x_i \) and \(\varphi(X_F) := 0 \) for \(F \neq F_i \) for all \(i \). Then \(1 = \varphi(\sum G_iF_i(X_{F_i})) = \sum \varphi(G_i)F_i(x_i) = 0 \), a contradiction. Thus \(1 \not\in a \).

So \(a \) lies in a maximal ideal \(m \) of \(P \). Set \(k_1 := P/m \); let \(x_F \) be the residue of \(X_F \). Then \(k_1 \) is an extension field of \(k \). In \(k_1 \), every \(F \in S \) has a root, as \(F(x_F) = 0 \). But \(F \) is monic; so \(x_F \) is integral over \(k \). Also, the \(x_F \) generate \(k_1 \) by construction. So \(k_1 \) is the integral closure of \(k \) in \(k_1 \) by \((10.20)\). Thus (1) holds.

For (2), note \((7.16)(3)\) implies that \(K \) is a field, that each insertion \(k_n \to K \) is injective, and that \(K = \bigcup k_n \) after \(k_n \) is identified with its image. Hence every monic polynomial with coefficients in \(K \) has all its coefficients in some \(k_n \), so it has a root in \(k_{n+1} \subset K \). So \(K \) is algebraically closed. Thus (2) holds.

308
For (3), use (14.12) to extend \(1_k : k \to k \) to a ring map \(\lambda : K_1 \to K_2 \). Then \(\lambda \) is injective as \(K_1 \) is a field. But \(K_2 \) is algebraic over \(k \). So each \(x \in K_2 \) is a root of a monic polynomial \(F \in k[X] \). But \(\lambda K_1 \) is algebraically closed. So \(\lambda K_1 \) contains a root \(y \) of \(F \). Then \(F = (X - y)G \) by (1.19). So if \(x \neq y \), then \(G(x) = 0 \) and \(x \in \lambda K_1 \) by induction on \(\deg(G) \). Thus \(\lambda \) is surjective. Thus (3) holds.

Exercise (14.14). — Let \(R \) be a domain, \(\overline{R} \) its integral closure, \(K := \text{Frac}(R) \). Let \(L/K \) be a field extension, \(y \in L \) algebraic with monic minimal polynomial \(G(X) \in K[X] \). Show that \(y \) is integral over \(R \) if and only if \(G \in \overline{R}[X] \).

Solution: If \(G \in \overline{R}[X] \), then \(y \) is integral over \(\overline{R} \), so over \(R \) by (10.17).

Conversely, assume \(y \) is integral over \(R \). Then there is a monic polynomial \(F \in R[X] \) with \(F(y) = 0 \). Say \(F = GH \) with \(H \in K[X] \). Then by (14.4), the coefficients of \(G \) are integral over \(R \), so in \(\overline{R} \), as desired.

Exercise (14.15). — Let \(R'/R \) be an integral extension of rings, and \(p \) a prime of \(R \). Assume \(R' \) has just one prime \(p' \) over \(p \). Show (1) that \(p'R'_p \) is the only maximal ideal of \(R'_p \), (2) that \(R'_p \) is integral over \(R_p \), and (3) that \(R'_p \) is integral over \(R_p \).

Solution: Since \(R' \) is integral over \(R \), the localization \(R'_p \) is integral over \(R_p \) by (11.29). Moreover, \(R_p \) is a local ring with unique maximal ideal \(pR_p \) by (11.14). Hence, every maximal ideal of \(R'_p \) lies over \(pR_p \) by (14.3)(1). But every maximal ideal of \(R'_p \) is the extension of some prime \(q' \subset R' \) by (11.12)(2), and therefore \(q' \) lies over \(p \) in \(R \). So, by hypothesis, \(q' = p' \). Thus \(p'R'_p \) is the only maximal ideal of \(R'_p \); that is, (1) holds. So \(R'_p - p'R'_p \) consists of units. Hence (12.29) and (11.4) yield (2). But \(R'_p \) is integral over \(R_p \); so (3) holds too.

Exercise (14.16). — Let \(R'/R \) be an integral extension of rings, \(p \subset R \) a prime, \(p', q' \subset R' \) two distinct primes lying over \(p \). Assume \(R' \) is a domain, or simply, \(R'_p \subset R'_p \). Show that \(R'_p \) is not integral over \(R_p \). Show that, in fact, given \(y \in q' - p' \), then \(1/y \in R'_p \) is not integral over \(R_p \).

Solution: Some \(y \in q' - p' \) exists; else, \(q' \subset p' \), so (14.3)(2) implies \(q' = p' \).

By way of contradiction, suppose \(1/y \) is integral over \(R_p \). Say that, in \(R'_p \),

\[
(1/y)^n + a_1(1/y)^{n-1} + \cdots + a_n = 0
\]

with \(n \geq 1 \) and \(a_i \in R_p \). Set \(y' := -a_1 - \cdots - a_n y^{n-1} \in R'_p \). Then \(yy' - 1 \in R'_p \) maps to \(0 \) in \(R'_p \). But \(R'_p \subset R'_p \). So \(yy' = 1 \) in \(R'_p \). But \(y \in q' \); so \(1 \in q'R'_p \). So \(q' \cap (R - p) \neq \emptyset \) by (11.11)(3). But \(q' \cap R = p \), a contradiction, as desired.

Exercise (14.17). — Let \(k \) be a field, and \(X \) an indeterminate. Set \(R' := k[X] \), and \(Y := X^2 \), and \(R := k[Y] \). Set \(p := (Y - 1)R \) and \(p' := (X - 1)R' \). Is \(R'_p \) integral over \(R_p \)? Treat the case \(\text{char}(k) = 2 \) separately. Explain.

Solution: Note that \(R' \) is a domain, and that the extension \(R'/R \) is integral by (10.18) as \(R' \) is generated by \(1 \) and \(X \) as an \(R \)-module.

Suppose the characteristic is not 2. Set \(q' := (X + 1)R' \). Then both \(p' \) and \(q' \) contain \(Y - 1 \), so lie over the maximal ideal \(p \) of \(R \). Further \(X + 1 \) lies in \(q' \), but not in \(p' \). Thus \(R'_p \) is not integral over \(R_p \) by (14.16).

Suppose the characteristic is 2. Then \((X - 1)^2 = Y - 1 \). Let \(q' \subset R' \) be a prime over \(p \). Then \((X - 1)^2 \in q' \). So \(p' \subset q' \). But \(p' \) is maximal. So \(q' = p' \). Thus \(R' \) has just one prime \(p' \) over \(p \). Thus \(R'_p \) is integral over \(R_p \) by (14.15).
Solutions (14.18) / (14.20)
Cohen–Seidenberg Theory

Exercise (14.18). — Let \(R \) be a ring, \(G \) be a finite group acting on \(R \), and \(p \) a prime of \(R^G \). Let \(\mathcal{P} \) denote the set of primes \(\mathfrak{P} \) of \(R \) whose contraction in \(R^G \) is \(p \).
Prove: (1) \(G \) acts transitively on \(\mathcal{P} \); and (2) \(\mathcal{P} \) is nonempty and finite.

Solution: For (1), given \(\mathfrak{P} \in \mathcal{P} \), and \(g \in G \), note that \(g(\mathfrak{P}) \) is prime as \(g \) is an automorphism. Moreover, \(g(\mathfrak{P}) \cap R^G = \mathfrak{P} \cap R^G \) as \(g \) leaves \(R^G \) fixed. So \(g(\mathfrak{P}) \in \mathcal{P} \). Thus \(G \) acts on \(\mathcal{P} \).

Given \(\mathfrak{P} \) and \(\mathfrak{P}' \) in \(\mathcal{P} \), let’s find \(g \in G \) with \(g(\mathfrak{P}) = \mathfrak{P}' \). Given \(x \in \mathfrak{P}' \), set \(y := \prod_{g \in G} g(x) \). Then \(y \in R^G \cap \mathfrak{P}' \). Hence \(y \in p \subset \mathfrak{P} \). So there is \(g \in G \) with \(g(x) \in \mathfrak{P} \). So \(x \in g^{-1}(\mathfrak{P}) \). Thus \(\mathfrak{P}' \subset \bigcup_{g \in G} g(\mathfrak{P}) \).

Thus there are only finitely many \(\mathfrak{P} \)’s of \(R^G \) lie over \(p \) by (14.18). But \(R' \) is integral over \(R^G \) by (10.35).

Finally, \(G \) acts transitively on \(\mathcal{P} \) by (1). But \(G \) is finite. Thus (2) holds. \(\square \)

Exercise (14.19). — Let \(R \) be a normal domain, \(K \) its fraction field, \(L/K \) a finite field extension, \(\overline{R} \) the integral closure of \(R \) in \(L \). Prove that only finitely many primes \(\mathfrak{P} \) of \(\overline{R} \) lie over a given prime \(p \) of \(R \) as follows.

First, assume \(L/K \) is separable, and use (14.18). Next, assume \(L/K \) is purely inseparable, and show that \(\mathfrak{P} \) is unique; in fact, \(\mathfrak{P} = \{ x \in \overline{R} \mid x^p^n \in p \text{ for some } n \} \) where \(p \) denotes the characteristic of \(K \). Finally, do the general case.

Solution: First, assume \(L/K \) is separable. Then there exists a finite Galois extension \(L'/K \), say with group \(G \), such that \(L \subset L' \) by [14, p.242]. Form the integral closure \(R' \) of \(R \) in \(L' \). Then \(R'^G = R \) by (10.37). So only finitely many primes \(\mathfrak{P}' \) of \(R' \) lie over \(p \) by (14.18). But \(R' \) is integral over \(\overline{R} \). So some such \(\mathfrak{P}' \) lies over each \(\mathfrak{P} \) by (14.3)(3). Thus there are only finitely many \(\mathfrak{P} \).

Next, assume \(L/K \) is purely inseparable. Given any \(x \in \mathfrak{P} \), note \(x^q \in K \) where \(q := p^n \) for some \(n > 0 \), as \(L/K \) is purely inseparable. But \(x^q \in R \) by (10.20). So \(x^q \) is integral over \(R \). But \(R \) is normal. So \(x^q \in \mathfrak{P} \). Thus \(\mathfrak{P} = \{ x \in \overline{R} \mid x^p^n \in p \text{ for some } n \} \), as desired.

Finally, in the general case, there’s an intermediate field \(K' \) with \(K'/K \) separable and \(L/K' \) purely inseparable by [14, Prp.6.6, p.250]. Form the integral closure \(R' \) of \(R \) in \(K' \). By the first case, only finitely many primes \(\mathfrak{P}' \) of \(R' \) lie over \(p \).

Moreover, \(R' \) is normal by (10.20). Let’s see that \(\overline{R} \) is its integral closure in \(L \). First, \(\overline{R} \) is integral over \(R \) so over \(R' \). Second, given \(x \in L \), integral over \(R' \), it is also integral over \(R \) by (10.17); so \(x \in \overline{R} \), as desired. So by the second case, only one prime \(\mathfrak{P} \) of \(\overline{R} \) lies over each \(\mathfrak{P}' \). Thus only finitely many \(\mathfrak{P} \) of \(\overline{R} \) lie over \(p \). \(\square \)

Exercise (14.20). — Let \(R \) be a ring. For \(i = 1, 2 \), let \(R_i \) be an algebra, \(P_i \subset R_i \) a subalgebra. Assume \(P_1, P_2, R_1, R_2 \) are \(R \)-flat domains. Denote their fraction fields by \(L_1, L_2, K_1, K_2 \). Form the following diagram, induced by the inclusions:

\[
\begin{array}{ccc}
L_1 \otimes_R L_2 & \rightarrow & K_1 \otimes_R K_2 \\
\uparrow \beta & & \uparrow \\
P_1 \otimes_R P_2 & \rightarrow & R_1 \otimes_R R_2 \\
\end{array}
\]

(1) Show \(K_1 \otimes K_2 \) is flat over \(P_1 \otimes P_2 \).
(2) Show \(\beta \) is injective.
(3) Given a minimal prime \(p \) of \(R_1 \otimes R_2 \), show \(\alpha^{-1}p = 0 \) if \(P_1 \otimes P_2 \) is a domain.
Solutions (14.21) / (14.23) Cohen–Seidenberg Theory

Solution: For (1), note that L_1 is a localization of P_1, so P_1-flat by (12.14). Further, L_1 is a field, so K_1 is L_1-flat. Hence K_1 is P_1-flat by (9.23). Thus $K_1 \otimes K_2$ is $(P_1 \otimes P_2)$-flat by (9.24), as desired.

For (2), note K_1 is a localization of R_1, so R_1-flat by (12.14). But R_1 is R-flat. Hence K_1 is R-flat by (9.23). But β factors: $\beta: R_1 \otimes R_2 \to R_1 \otimes K_2 \to K_1 \otimes K_2$. The factors are injective as R_1 and K_2 are R-flat. Thus β is injective, as desired.

For (3), given $x \in \alpha^{-1} p$, note (14.7) yields a nonzero $y \in R_1 \otimes R_2$ with $\alpha(x)y = 0$. Set $\gamma := \beta \alpha$. Then $\gamma(x)\beta(y) = 0$. But $\beta(y) \neq 0$ by (2). So $\mu_{\gamma(x)}$ is not injective. So μ_x isn’t either by (1). But $P_1 \otimes P_2$ is a domain. Thus $x = 0$, as desired. □

Exercise (14.21) . — Let R be a reduced ring, Σ the set of minimal primes. Prove that $z.\text{div}(R) = \bigcup_{p \in \Sigma} p$ and that $R_p = \text{Frac}(R/p)$ for any $p \in \Sigma$.

Solution: If $p \in \Sigma$, then $p \subset z.\text{div}(R)$ by (14.7). Thus $z.\text{div}(R) \supset \bigcup_{p \in \Sigma} p$.

Conversely, say $xy = 0$. If $x \notin p$ for some $p \in \Sigma$, then $y \in p$. So $x \notin \bigcup_{p \in \Sigma} p$, then $y \in \bigcap_{p \in \Sigma} p$. But $\bigcap_{p \in \Sigma} p = \{0\}$ by the Schem[mullst]ellensatz (3.14) and (3.16).

So $y = 0$. Thus, if $x \notin \bigcup_{p \in \Sigma} p$, then $x \notin z.\text{div}(R)$. Thus $z.\text{div}(R) \subset \bigcup_{p \in \Sigma} p$. Thus $z.\text{div}(R) = \bigcup_{p \in \Sigma} p$.

Fix $p \in \Sigma$. Then R_p is reduced by (13.57). Further, R_p has only one prime, namely pR_p, by (11.12)(2). Hence R_p is a field, and $pR_p(0)$. But by (12.16), $R_p/pR_p = \text{Frac}(R/p)$. Thus $R_p = \text{Frac}(R/p)$.

Exercise (14.22) . — Let R be a ring, Σ the set of minimal primes, and K the total quotient ring. Assume Σ is finite. Prove these three conditions are equivalent:

1. R is reduced.
2. $z.\text{div}(R) = \bigcup_{p \in \Sigma} p$, and $R_p = \text{Frac}(R/p)$ for each $p \in \Sigma$.
3. $K/PK = \text{Frac}(R/p)$ for each $p \in \Sigma$, and $K = \prod_{p \in \Sigma} K/pK$.

Solution: Assume (1) holds. Then (14.21) yields (2).

Assume (2) holds. Set $S := R - z.\text{div}(R)$. Let q be a prime of R with $q \cap S = \emptyset$. Then $q \subset z.\text{div}(R)$. So (2) yields $q \subset \bigcup_{p \in \Sigma} p$. But Σ is finite. So $q \subset p$ for some $p \in \Sigma$ by Prime Avoidance (3.12). Hence $q = p$ since p is minimal. But $K = S^{-1}R$. Therefore, by (11.12)(2), for $p \in \Sigma$, the extensions pK are the only primes of K, and they all are both maximal and minimal.

Fix $p \in \Sigma$. Then $K/PK = S^{-1}(R/p)$ by (12.15). So $S^{-1}(R/p)$ is a field. But clearly $S^{-1}(R/p) \subset \text{Frac}(R/p)$. Therefore, $K/PK \text{Frac}(R/p)$ by (2.3). Further, $S \subset R - p$. Hence (11.12)(2) yields $p = \varphi S^{-1}(pK)$. Therefore, $\varphi S^{-1}(K - pK) = R - p$. So $K_{pK} = R_p$ by (11.16). But $R_p = \text{Frac}(R/p)$ by hypothesis. Thus K has only finitely many primes, the pK; each pK is minimal, and each K_{pK} is a domain.

Therefore, (13.58)(2) yields $K = \prod_{p \in \Sigma} K/pK$. Thus (3) holds.

Assume (3) holds. Then K is a finite product of fields, and fields are reduced. But clearly, a product of reduced ring is reduced. Further, $R \subset K$, and trivially, a subring of a reduced ring is reduced. Thus (1) holds. □

Exercise (14.23) . — Let A be a reduced local ring with residue field k and a finite set Σ of minimal primes. For each $p \in \Sigma$, set $K(p) := \text{Frac}(A/p)$. Let P be a finitely generated module. Show that P is free of rank r if and only if $\dim_k(P \otimes_A K(p)) = r$ and $\dim_{K(p)}(P \otimes_A K(p)) = r$ for each $p \in \Sigma$. 311
Solutions (14.24) / (14.25)

Cohen–Seidenberg Theory

Solution: If P is free of rank r, then $\dim(P \otimes k) = r$ and $\dim(P \otimes K(p)) = r$ owing to (8.10).

Conversely, suppose $\dim(P \otimes k) = r$. As P is finitely generated, (10.9) implies P is generated by r elements. So (5.13) yields an exact sequence

$$0 \to M \xrightarrow{\alpha} A^r \to P \to 0.$$

Momentarily, fix a $p \in \Sigma$. Since A is reduced, $K(p) = R_p$ by (14.21). So $K(p)$ is flat by (12.14). So the induced sequence is exact:

$$0 \to M \otimes K(p) \to K(p)^r \to P \otimes K(p) \to 0.$$

Suppose $\dim(P \otimes K(p)) = r$ too. It then follows that $M \otimes_A K(p) = 0$.

Let K be the total quotient ring of A, and form this commutative square:

$$\begin{array}{ccc} M & \xrightarrow{\alpha} & A^r \\ \downarrow{\varphi_M} & & \downarrow{\varphi_{A^r}} \\ M \otimes K & \to & K^r \end{array}$$

Here α is injective. And φ_{A^r} is injective as $\varphi_A : A \to K$ is. Hence, φ_M is injective.

By hypothesis, A is reduced and Σ is finite; so $K = \prod_{p \in \Sigma} K(p)$ by (14.22). So $M \otimes K = \prod(M \otimes K(p))$. But $M \otimes_A K(p) = 0$ for each $p \in \Sigma$. So $M \otimes K = 0$. But $\varphi_M : M \to M \otimes K$ is injective. So $M = 0$. Thus $A^r \to P$, as desired. \[\square\]

Exercise (14.24). — Let A be a reduced semilocal ring with a finite set of minimal primes. Let P be a finitely generated A-module, and B an A-algebra such that $\text{Spec}(B) \to \text{Spec}(A)$ is surjective. For each prime $q \subset B$, set $L(q) := \text{Frac}(B/q)$. Given r, assume $\dim((P \otimes_A B) \otimes_B L(q)) = r$ whenever q is either maximal or minimal. Show that P is a free A-module of rank r.

Solution: Let $p \subset A$ be a prime; set $K := \text{Frac}(A/p)$. As $\text{Spec}(B) \to \text{Spec}(A)$ is surjective, there’s a prime $q \subset B$ whose contraction is p. Then (8.9) yields

$$\left((P \otimes_A K) \otimes_K L(q)\right) = (P \otimes_A B) \otimes_B L(q). \quad (14.24.1)$$

If p is minimal, take a minimal prime $q' \subset q$. Then the contraction of q' contains p, so equal to p. Replace q by q'. If p is maximal, take a maximal ideal $q' \supset q$. Then the contraction of q' contains p, so is equal to p. Again, replace q by q'. Either way, $\dim((P \otimes_A B) \otimes_B L(q)) = r$ by hypothesis. So (14.24.1) yields $\dim((P \otimes_A K) \otimes_K L(q)) = r$. Hence $\dim(P \otimes_A K) = r$.

If A is local, then P is a free A-module of rank r by (14.23). In general, let $m \subset A$ be a maximal ideal. Then $\text{Spec}(B_m) \to \text{Spec}(A_m)$ is surjective by an argument like one in the proof of (14.3)(2), using (11.12)(2). Hence P_m is a free A_m-module of rank r by the preceding case. Thus P is free of rank r by (13.63). \[\square\]

Exercise (14.25). — Let R be a ring, p_1, \ldots, p_r all its minimal primes, and K the total quotient ring. Prove that these three conditions are equivalent:

1. R is normal.
2. R is reduced and integrally closed in K.
3. R is a finite product of normal domains R_i.

Assume the conditions hold. Prove the R_i are equal to the R/p_j in some order.
Solutions

Solution: Assume (1). Let \(m \) any maximal ideal. Then \(R_m \) is a normal domain. So \(R \) is reduced by (13.57).

Recall \(S_0 \) is the set of nonzero divisors of \(R \), so \(K := S_0^{-1}R \). Recall \(S_m := R - m \), so \(R_m := S_m^{-1}R \). But \(S_m^{-1}S_0^{-1}R = S_0^{-1}S_m^{-1}R \) by (12.29)(2). So \(S_m^{-1}K = S_0^{-1}R_m \).

Let \(t \in S_0 \). Then \(t/1 \neq 0 \) in \(R_m \); else, there’s \(s \in S_m \) with \(st = 0 \), a contradiction as \(s \neq 0 \) and \(t \in S_0 \).

Thus (11.15) and (11.2) yield \(S_0^{-1}R_m \subset \text{Frac}(R_m) \).

Let \(x \in K \) be integral over \(R \). Then \(x/1 \in S_m^{-1}K \) is integral over \(S_m^{-1}R \) by (11.29). But \(S_m^{-1}R = R_m \), and \(R_m \) is a normal domain. So \(x/1 \in R_m \). Hence \(x \in R \) by (13.55). Thus (2) holds.

Assume (2). Set \(R_i := R/p_i \) and \(K_i := \text{Frac}(R_i) \). Then \(K = \prod K_i \) by (14.22). Let \(R_i' \) be the normalization of \(R_i \). Then \(R \hookrightarrow \prod R_i \hookrightarrow \prod R_i' \). Further, the first extension is integral by (10.41), and the second, by (10.42); whence, \(R \hookrightarrow \prod R_i' \) is integral by the tower property (10.17). However, \(R \) is integrally closed in \(K \) by hypothesis. Hence \(R = \prod R_i = \prod R_i' \). Thus (3) holds.

Assume (3). Let \(p \) be any prime of \(R \). Then \(R_p = \prod (R_i)_p \) by (12.9), and each \((R_i)_p \) is normal by (11.32). But \(R_p \) is local. So \(R_p = (R_i)_p \) for some \(i \) by (3.6). Hence \(R_p \) is a normal domain. Thus (1) holds.

Finally, the last assertion results from (13.58)(2).

Exercise (14.26). — Let \(X \) be a nonempty compact Hausdorff space, \(R \) the ring of \(\mathbb{R} \)-valued continuous functions on \(X \), and \(\overline{X} \subset \text{Spec}(R) \) the set of maximal ideals. Give \(\overline{X} \) the induced topology. For all \(x \in X \), set \(m_x := \{ f \in R \mid f(x) = 0 \} \). Show:

1. Given a maximal ideal \(m \), set \(V := \{ x \in X \mid f(x) = 0 \text{ for all } f \in m \} \). Then \(V \neq \emptyset \); otherwise, there’s a contradiction. Moreover, \(m = m_x \) for any \(x \in V \).
2. Urysohn’s Lemma [15, Thm. 3.1, p. 207] implies \(m_x \neq m_y \) if \(x \neq y \).
3. For any \(f \in R \), set \(U_f = \{ x \in X \mid f(x) \neq 0 \} \) and \(\overline{U}_f = \{ m \in \overline{X} \mid f \notin m \} \).

Then \(m_x \in \overline{X} \) for any \(x \in X \), and \(x \in U_f \) if and only if \(m_x \in \overline{U}_f \); moreover, the \(\overline{U}_f \) and, by Urysohn’s Lemma, the \(U_f \) form bases of the topologies.
4. Define \(\varphi : X \to \overline{X} \) by \(\varphi(x) := m_x \). Then \(\varphi \) is a well-defined homeomorphism.

Solution: For (1), suppose \(V = \emptyset \). Then for each \(x \in X \), there’s \(f_x \in m \) with \(f_x(x) \neq 0 \). As \(f_x \) is continuous, there’s a neighborhood \(U_x \) of \(x \) on which \(f_x \) has no zero. By compactness, finitely many \(U_i \) cover \(X \), say \(U_i \) for \(1 \leq i \leq n \). Set \(f := \sum f_i x_i \). Then \(f(y) \neq 0 \) for all \(y \in X \). So \(f \in R^X \). But \(f \in m \), a contradiction.

Moreover, given \(x \in V \), note \(m \subset m_x \). But \(m \) is maximal, and \(1 \notin m_x \). Thus \(m = m_x \). Thus (1) holds.

For (2), note \(\{x\} \) and \(\{y\} \) are closed as \(X \) is Hausdorff. As \(X \) is compact too, it’s normal by [15, Thm. 2.4, p. 198]. So Urysohn’s Lemma gives \(f \in R \) with \(f(x) = 0 \) and \(f(y) = 1 \). So \(f \in m_x - m_y \). Thus (2) holds.

For (3), note \(m_x = \ker(\theta_x) \) where \(\theta_x : R \to \mathbb{R} \) by \(\theta_x(f) := f(x) \). Thus \(m_x \in \overline{X} \).

Note \(x \in U_f \) if and only if \(f(x) \neq 0 \), if and only if \(f \notin m_x \), if and only if \(x \in \overline{U}_f \).

Moreover, the \(D(f) \) form a basis of the topology of \(\text{Spec}(R) \) by (13.1). But \(\overline{U}_f = D(f) \cap \overline{X} \). Thus the \(\overline{U}_f \) form a basis of the topology of \(\overline{X} \).

Given \(x \in W \subset X \) with \(W \) open, Urysohn’s Lemma provides \(f \in R \) with \(f(x) = 1 \) and \(f(X - W) = 0 \). So \(x \in U_f \subset W \). Thus the \(U_f \) form a basis. Thus (3) holds.

For (4), note \(\varphi \) is a well defined as \(m_x \in \overline{X} \) for any \(x \in X \) by (3). Moreover, \(\varphi \) is injective by (2), and surjective by (1). Finally, \(\varphi \) is a homeomorphism as it preserves bases of the topologies by (3). Thus (4) holds.

\(\square \)
15. Noether Normalization

Exercise (15.15). — Let $k := \mathbb{F}_q$ be the finite field with q elements, and $k[X,Y]$ the polynomial ring. Set $F := X^qY - XY^q$ and $R := k[X,Y]/\langle F \rangle$. Let $x, y \in R$ be the residues of X, Y. For every $a \in k$, show that R is not module finite over $P := k[y-ax]$. (Thus, in (15.1), no k-linear combination works.) First, take $a = 0$.

Solution: Take $a = 0$. Then $P = k[y]$. Any algebraic relation over P satisfied by x is given by a polynomial in $k[X,Y]$, which is a multiple of F. However, no multiple of F is monic in X. So x is not integral over P. By (10.14), R is not module finite over P.

Consider an arbitrary a. Since $a^g = a$, after the change of variable $Y' := Y - aX$, our F still has the same form. Thus, we have reduced to the previous case. □

Exercise (15.16). — Let k be a field, and X, Y, Z variables. Set

$$R := k[X, Y, Z] / \langle X^2 - Y^3 - 1, XZ - 1 \rangle,$$

and let $x, y, z \in R$ be the residues of X, Y, Z. Fix $a, b \in k$, and set $t := x + ay + bz$ and $P := k[t]$. Show that x and y are integral over P for any a, b and that z is integral over P if and only if $b \neq 0$.

Solution: To see x is integral, notice $xz = 1$, so $x^2 - tx + b = -axy$. Raising both sides of the latter equation to the third power, and using the equation $y^3 = x^2 - 1$, we obtain an equation of integral dependence of degree 6 for x over P. Now, $y^3 - x^2 + 1 = 0$, so y is integral over $P[x]$. Hence, the Tower Property, (10.17), implies that y too is integral over P.

If $b \neq 0$, then $z = b^{-1}(t - x - ay) \in P[x, y]$, and so z is integral over P by (10.18).

Assume $b = 0$ and z is integral over P. Now, $P \subset k[x, y]$. So z is integral over $k[x, y]$ as well. But $y^3 - x^2 + 1 = 0$. So y is integral over $k[x]$. Hence z too. However, $k[x]$ is a polynomial ring, so integrally closed in its fraction field $k(x)$ by (10.22)(1). Moreover, $z = 1/x \in k(x)$. Hence, $1/x \in k[x]$, which is absurd. Thus z is not integral over P if $b = 0$. □

Exercise (15.17). — Let R'/R be an extension of rings, \overline{R} the integral closure of R, and X a variable. Prove $\overline{R}[X]$ is the integral closure of $R[X]$ in $R'[X]$.

Solution: Note $\overline{R}[X] = \overline{R} \otimes_R R[X]$ by (8.18). So $\overline{R}[X]$ is integral over $R[X]$ by (10.39). So let’s show $\overline{R}[X]$ contains every $f \in R'[X]$ that’s integral over $R[X]$.

Say $f^n + g_1 f^{n-1} + \cdots + g_n = 0$ with $g_i \in R[X]$. Set $f_1 := f - X^r$ with $r \gg 0$. Then $(f_1 + X^r)^n + \cdots + g_n = 0$. So $f_1^n + h_1 f_1^{n-1} + \cdots + h_n = 0$ with $h_i \in R[X]$.

Then $h_n = (X^r)^n + (X^r)^{n-1} g_1 + \cdots + g_n$. So h_n is monic as $r > \deg(g_i)$ for all i. Set $f_2 := f_1^n + h_1 f_1^{n-2} + \cdots + h_{n-1}$. Then $h_n = -f_1 f_2$. But f_1 is monic as $r > \deg(f)$. Hence the coefficients of f_1 are integral over R by (14.4)(2). But the coefficients of f_1 include those of f. Thus $f \in \overline{R}[X]$, as desired. □

Exercise (15.18). — Let R be a domain, $\varphi: R \to R'$ an algebra-finite extension. Set $\varphi^* := \text{Spec}(\varphi)$. Find a nonzero $f \in R$ such that $\varphi^* \text{Spec}(R') \supset \text{D}(f)$.
Solutions (15.19) / (15.21) Noether Normalization

Solution: By (15.3), there are a nonzero \(f \in R \) and algebraically independent \(x_1, \ldots, x_n \in R' \) such that \(R'_f \) is an integral extension of \(R[x_1, \ldots, x_n]_f \). Given \(p \in D(f) \), its extension \(pR[x_1, \ldots, x_n]_f \) is a prime lying over \(p \) by (2.32). So \(pR[x_1, \ldots, x_n]_f \) is a prime lying over \(pR[x_1, \ldots, x_n] \) by (11.12). So there’s a prime \(\mathfrak{P}' \) of \(R'_f \) lying over \(pR[x_1, \ldots, x_n]_f \) by (14.3)(3). Note that \(\mathfrak{P}' \) lies over \(p \). Let \(\mathfrak{P} \) be the contraction of \(\mathfrak{P}' \) in \(R' \). Then \(\mathfrak{P} \) lies over \(p \). Thus \(p \in \varphi^* \text{Spec}(R') \). \(\square \)

Exercise (15.19). Let \(R \) be a domain, \(R' \) an algebraically finite extension. Find a nonzero \(f \in R \) such that, given an algebraically closed field \(\Omega \) and a ring map \(\varphi: R \to \Omega \) with \(\varphi(f) \neq 0 \), there’s an extension of \(\varphi \) to \(R' \).

Solution: By (15.3), there are a nonzero \(f \in R \) and algebraically independent \(x_1, \ldots, x_n \) in \(R' \) such that \(R'_f \) is integral over \(R[x_1, \ldots, x_n]_f \). Given a map \(\varphi: R \to \Omega \) with \(\Omega \) algebraically closed and \(\varphi(f) \neq 0 \), we can extend \(\varphi \) to \(R[x_1, \ldots, x_n] \) by (1.3). Then we can extend \(\varphi \) further to \(R[x_1, \ldots, x_n]_f \) by (11.3). Finally, we can extend \(\varphi \) to \(\varphi': R'_f \to \Omega \) by (14.12). Thus \(\varphi'|R' \) is the desired extension of \(\varphi \) to \(R' \). \(\square \)

Exercise (15.20). Let \(R \) be a domain, \(R' \) an algebraically finite extension. Assume \(\text{rad}(R) = \langle 0 \rangle \). Prove \(\text{rad}(R') = \text{nil}(R') \). First do the case where \(R \) is a domain by applying (15.19) with \(R' := R'_g \) for any given nonzero \(g \in R' \).

Solution: First assume \(R' \) is a domain. Then \(\text{nil}(R') = \langle 0 \rangle \). So we have to prove \(\text{rad}(R') = \langle 0 \rangle \). So given a nonzero \(g \in R' \), we must find a maximal ideal \(m' \) of \(R' \) with \(g \notin m' \). Note that, as \(R'/R \) is algebra finite, so is \(R'_g/R \).

Applying (15.19) with \(R' := R'_g \) yields an \(f \in R \). As \(\text{rad}(R) = \langle 0 \rangle \), there’s a maximal ideal \(m \) of \(R \) with \(f \notin m \). Set \(k := R/m \). Let \(\varphi: R \to k \) be the quotient map. Then \(\varphi(f) \neq 0 \).

There is an algebraic closure \(\Omega \) of \(k \) by (14.13). So (15.19) yields an extension \(\varphi': R'_g \to \Omega \) of \(\varphi \). Let \(m' \) be the contraction of \(\text{Ker}(\varphi') \) to \(R' \). Note that \(g \) is a unit in \(R'_g \), so \(\varphi'(g) \neq 0 \). Thus \(g \notin m' \).

Say \(R' = R[y_1, \ldots, y_n] \). The \(\varphi'(y_i) \) are algebraic over \(k \) as \(\Omega/k \) is algebraic. But \(k \) is a field. So the \(\varphi'(y_i) \) are integral over \(k \). So \(\varphi'(R') \) is integral over \(k \) by (10.18). So \(\varphi'(R') \) is a field by (14.1). But \(R'/m' \to \varphi'(R') \). So \(R'/m' \) is a field. So \(m' \) is maximal. But \(g \notin m' \), as desired. Thus we’ve done the case where \(R \) is a domain. For the general case, recall from (3.16) that \(\text{nil}(R') = \bigcap p' \) where \(p' \) runs through the minimal primes of \(R' \). So it suffices to prove that each \(p' \) is the intersection of all the maximal ideals of \(R' \) containing \(p' \). But \(p'/p' = \text{rad}(R'/p') \). Since \(R'/p' \) is a domain, \(\text{rad}(R'/p') = \langle 0 \rangle \) by the preceding case. Thus the general case holds. \(\square \)

Exercise (15.21). Let \(k \) be a field, \(K \) an algebraically closed extension field. Let \(P := k[x_1, \ldots, x_n] \) be the polynomial ring, and \(F, F_1, \ldots, F_r \in P \). Assume \(F \) vanishes at every zero in \(K^n \) of \(F_1, \ldots, F_r \); that is, if \((a) := (a_1, \ldots, a_n) \in K^n \) and \(F_1(a) = 0, \ldots, F_r(a) = 0 \), then \(F(a) = 0 \) too. Prove that there are polynomials \(G_1, \ldots, G_r \in P \) and an integer \(N \) such that \(F^N = G_1 F_1 + \cdots + G_r F_r \).

Solution: Set \(a := (F_1, \ldots, F_r) \). We have to show \(F \in \sqrt{a} \). But, by the Hilbert Nullstellensatz (15.7), \(\sqrt{a} \) is equal to the intersection of all the maximal ideals \(m \) containing \(a \). So given an \(m \), we have to show that \(F \in m \).

Set \(L := P/m \). By the Zariski Nullstellensatz (15.4), \(L \) is a finite extension field of \(k \). So we may embed \(L/k \) as a subextension of \(K/k \). Let \(a_i \in K \) be the image of the variable \(X_i \in P \), and set \((a) := (a_1, \ldots, a_n) \in K^n \). Then plainly

315
Solutions

(15.22) / (15.26) Noether Normalization

\(F_1(a) = 0, \ldots, F_r(a) = 0 \). So \(F(a) = 0 \) by hypothesis. Thus \(F \in m \), as desired. \(\square \)

Exercise (15.22). — (1) Find an example where (15.21) fails if \(K \) isn’t required to be algebraically closed, say with \(K := k := \mathbb{R} \) and \(n := 1 \) and \(r := 1 \).

(2) Find an example where (15.21) fails if the \(G_i \) are all required to be in \(k \), say with \(K := k := \mathbb{C} \) and \(n := 1 \) and \(r := 2 \).

Solution: For (1), take \(F := 1 \) and \(F_1 := X_1^2 + 1 \). Then \(F \) has no zero, and \(F_1 \) has no zero, but no power of \(F \) is equal to any multiple of \(F_1 \).

For (2), take \(F := 1 \) and \(F_1 := X_1 \) and \(F_2 := X_1^2 + 1 \). Then \(F \) has no zero, and \(F_1 \) and \(F_2 \) have no common zero, but no power of \(F \) is equal to \(G_1F_1 + G_2F_2 \) for any \(G_i \in k \).

\(\square \)

Exercise (15.23). — Let \(k \) be an algebraically closed field, \(P := k[X_1, \ldots, X_n] \) the polynomial ring in \(n \) variables \(X_i \), and \(V \subset k^n \) the set of common zeroes of a set of polynomials \(F_i \). Assume \(V \neq \emptyset \). Show there exist a linear subspace \(L \subset k^n \) and a linear map \(\lambda: k^n \to L \) such that \(\lambda(V) = L \).

Solution: Let \(P(V) \) be the algebra of all \(\gamma: V \to R \) given by evaluating some \(G \in P \). Note \(P(V) \) is a quotient of \(P \) by (1.29)(1), so generated by the residues \(\xi_i \) of the \(X_i \). Note \(P(V) \neq 0 \) as \(V \neq \emptyset \). Note \(k \) is infinite. So (15.2) yields algebraically independent \(k \)-linear combinations \(\rho_j := \sum_{i=1}^{n} a_{ij} \xi_i \) for \(1 \leq j \leq m \) where \(m \leq n \) such that \(P(V) \) is module finite over \(R := k[\rho_1, \ldots, \rho_m] \).

Let \(L \) be the subspace of \((v_1, \ldots, v_n) \in k^n \) with \(v_i = 0 \) for \(i > m \). Define \(\lambda: k^n \to L \) by \(\lambda(v_1, \ldots, v_n) := (w_1, \ldots, w_n) \) where \(w_j := \sum_{i=1}^{n} a_{ij} v_i \) for \(j \leq m \) and \(w_j = 0 \) for \(j > m \). It remains to show \(\lambda(V) = L \).

Given \((w_1, \ldots, w_n) \in L \), define an algebra map \(\varphi: R \to k \) by \(\varphi(\rho_j) := w_j \). But \(k \) is algebraically closed. So \(\varphi \) extends to an algebra map \(\pi: P(V) \to k \) by (14.12). Then \(\varphi(\rho_j) = \pi(\rho_j) \), and \(\pi(\rho_j) = \sum_{i=1}^{n} a_{ij} \pi(\xi_i) \). Set \(v_i := \pi(\xi_i) \). Then \(w_j = \sum_{i=1}^{n} a_{ij} v_i \) for \(j \leq m \). Thus \(\lambda(v_1, \ldots, v_n) = (w_1, \ldots, w_n) \).

Finally, let’s adapt the reasoning used to prove (1.29)(3). First, for each \(\mu \), we get \(F_\mu(\xi_1, \ldots, \xi_n) = 0 \) in \(P(V) \). So \(\pi(F_\mu(\xi_1, \ldots, \xi_n)) = 0 \) in \(k \). Second, we get \(\pi(F_\mu(\xi_1, \ldots, \xi_n)) = \pi(\sum_{i=1}^{n} a_{ij} \xi_i) \). But \(v_i := \pi(\xi_i) \). So \(\pi(\sum_{i=1}^{n} a_{ij} \xi_i) = \pi(F_\mu(v_1, \ldots, v_n)) = 0 \). Thus \((v_1, \ldots, v_n) \in V \). Thus \(\lambda(V) = L \).

\(\square \)

Exercise (15.24). — Let \(R \) be a domain of (finite) dimension \(r \), and \(p \) a nonzero prime. Prove that \(\dim(R/p) < r \).

Solution: Every chain of primes of \(R/p \) is of the form \(p_0/p \supseteq \cdots \supseteq p_s/p \) where \(0 \not\supseteq p_0 \supseteq \cdots \supseteq p_s \) is a chain of primes of \(R \). So \(s < r \). Thus \(\dim(R/p) < r \).

\(\square \)

Exercise (15.25). — Given an integral extension of rings \(R'/R \), show

\[
\dim(R') = \dim(R) + \dim(R'/R).
\]

Solution: Let \(p_0 \subset p_1 \subset \cdots \subset p_r \) be a chain of primes of \(R \). Set \(p'_i := 0 \). Given \(p'_i \) for \(0 \leq i \leq r \). Going-up, (14.3) yields a prime \(p'_i \) of \(R' \) with \(p'_i \subset p'_i \) and \(p'_i \cap R = p_i \). Then \(p'_0 \subset \cdots \subset p'_r \subset p \). Thus \(\dim(R) \leq \dim(R') \).

Conversely, let \(p_0 \subset \cdots \subset p_r \) be a chain of primes of \(R' \). Set \(p_i := p'_i \cap R \). Then \(p_0 \subset \cdots \subset p_r \) by incomparability, (14.3)(2). Thus \(\dim(R) \geq \dim(R') \).

\(\square \)

Exercise (15.26). — Let \(R'/R \) be an integral extension of domains with \(R \) normal, \(m \) a maximal ideal of \(R' \). Show \(n := m \cap R \) is maximal and \(\dim(R'_m) = \dim(R_n) \).
Solutions: First, n is maximal by (14.3)(1).

Next, let $p_0 \subseteq \cdots \subseteq p_r$ be a chain of primes of R with $p_r = n$. Set $p'_r := m$, and proceed by descending induction. Given p'_i with $p'_i \cap R = p_i$ where $1 \leq i \leq r$, there’s a prime p'_{i-1} of R' with $p'_{i-1} \cap R = p_{i-1}$ by (14.6) as R is normal. Then $p'_0 \subseteq \cdots \subseteq p'_r$ is a chain of primes of R' with $p'_r = m$. Thus $\dim(R_n) \leq \dim(R'_m)$.

Lastly, let $p'_0 \subseteq \cdots \subseteq p'_r$ be a chain of primes of R' with $p'_r \subseteq m$. Set $p_i := p'_i \cap R$. Then $p_0 \subseteq \cdots \subseteq p_r$ by (14.3)(2), and $p_r \subseteq n$. Thus $\dim(R_n) \geq \dim(R'_m)$. □

Exercise (15.27). — (1) Given a product of rings $R := R' \times R''$, show
\[\dim(R) = \max\{\dim(R'), \dim(R'')\}. \tag{15.27.1} \]

(2) Find a ring R with a maximal chain of primes $p_0 \subseteq \cdots \subseteq p_r$, yet $r < \dim(R)$.

Solution: For (1), by (2.29), recall that a prime in R either has the form $p' \times R''$ where p' is a prime of R' or $R' \times p''$ where p'' is a prime of R''. So any chain of primes of R arises from either a chain of primes of R' or a chain of primes of R''. Thus (15.27.1) holds.

For (2), let k be a field and set $R := k[X] \times k$. Then $\dim(R) = 1$ by (1). Set $p_0 := k[X] \times \{0\}$. Then p_0 forms a maximal chain by the proof of (1), as desired. □

Exercise (15.28). — Let k be a field, R_1 and R_2 algebra-finite domains, and p a minimal prime of $R_1 \otimes_k R_2$. Use Noether Normalization and (14.20) to prove this:
\[\dim((R_1 \otimes R_2)/p) = \dim(R_1) + \dim(R_2). \tag{15.28.1} \]

Solution: Noether Normalization (15.1) yields a polynomial subalgebra P_i of R_i such that R_i is module finite over P_i. Then P_i and R_i are domains, and they are k-flat as k is a field. Moreover, $P_1 \otimes P_2$ is a domain by (8.18) and (2.4).

Say $\{x_i\}$ and $\{y_j\}$ are sets of module generators of R_1 over P_1 and of R_2 over P_2. Then, plainly, the $x_i \otimes y_j \in R_1 \otimes R_2$ form a set of module generators over $P_1 \otimes P_2$; so their residues in $(R_1 \otimes R_2)/p$ form one too. Thus (10.18) implies $(R_1 \otimes R_2)/p$ is integral over $P_1 \otimes P_2$.

Further, $P_1 \otimes P_2 \rightarrow (R_1 \otimes R_2)/p$ is injective by (14.20)(3). So (15.25) yields
\[\dim((R_1 \otimes R_2)/p) = \dim(P_1 \otimes P_2). \]

Similarly, $\dim(R_1) = \dim(P_1)$ and $\dim(R_2) = \dim(P_2)$. Finally, (15.11) yields
\[\dim(P_1 \otimes P_2) = \dim(P_1) + \dim(P_2). \]

Thus (15.28.1) holds, as desired. □

Exercise (15.29). — Let k be a field, R a finitely generated k-algebra, $f \in R$ nonzero. Assume R is a domain. Prove that $\dim(R) = \dim(R_f)$.

Solution: Note that R_f is a finitely generated R-algebra by (11.7), as R_f is, by (11.7), obtained by adjoining $1/f$. So since R is a finitely generated k-algebra, R_f is one too. Moreover, R and R_f have the same fraction field K. Hence both $\dim(R)$ and $\dim(R_f)$ are equal to $\text{tr.deg}_k(K)$ by (15.10). □

Exercise (15.30). — Let k be a field, $P := k[f]$ the polynomial ring in one variable f. Set $p := \langle f \rangle$ and $R := P_p$. Find $\dim(R)$ and $\dim(R_f)$. 317
Solutions (15.31) / (15.39)

App: Jacobson Rings

Solution: In P, the chain of primes $0 \subset p$ is of maximal length by (2.5) and (2.17) or (15.10). So (0) and pR are the only primes in R by (11.12). Thus $\dim(R) = 1$.

Set $K := \text{Frac}(P)$. Then $R_f = K$ since, if $a/(bf^n) \in K$ with $a, b \in P$ and $f \nmid b$, then $a/b \in R$ and so $(a/b)/f^n \in R_f$. Thus $\dim(R_f) = 0$. □

Exercise (15.31). Let R be a ring, $R[X]$ the polynomial ring. Prove

$$1 + \dim(R) \leq \dim(R[X]) \leq 1 + 2 \dim(R).$$

(In particular, $\dim(R[X]) = \infty$ if and only if $\dim(R) = \infty$.)

Solution: Let $p_0 \subseteq \cdots \subseteq p_n$ be a chain of primes in R. Then

$$p_0 R[X] \subseteq \cdots \subseteq p_n R[X] \subseteq p_n R[X] + \langle X \rangle$$

is a chain of primes in $R[X]$ by (2.32). Thus $1 + \dim(R) \leq \dim(R[X])$.

Let p be a prime of R, and $q_0 \subseteq \cdots \subseteq q_r$ be a chain of primes of $R[X]$ with $q_i \cap R = p$ for each i. Then (1.9) yields a chain of primes of length r in $R[X]/pR[X]$. Further, as $q_i \cap R = p$ for each i, the latter chain gives rise to a chain of primes of length r in $k(p)[X]$ where $k(p) = (R/p)_p$ by (11.35) and (11.12). But $k(p)[X]$ is a PID. Hence $r \leq 1$.

Take any chain $p_0 \subseteq \cdots \subseteq p_m$ of primes in $R[X]$. It contracts to a chain $p_0 \subseteq \cdots \subseteq p_n$ in R. At most two p_j contract to a given p_i by the above discussion.

So $m + 1 \leq 2(n + 1)$, or $m \leq 2n + 1$. Thus $\dim(R[X]) \leq 1 + 2 \dim(R)$. □

15. Appendix: Jacobson Rings

Exercise (15.38). Let X be a topological space. We say a subset Y is **locally closed** if Y is the intersection of an open set and a closed set; equivalently, Y is open in its closure \overline{Y}; equivalently, Y is closed in an open set containing it.

We say a subset X_0 of X is **very dense** if X_0 meets every nonempty locally closed subset Y. We say X is **Jacobson** if its set of closed points is very dense.

Show that the following conditions on a subset X_0 of X are equivalent:

1. X_0 is very dense.
2. Every closed set F of X satisfies $\overline{F \cap X_0} = F$.
3. The map $U \mapsto U \cap X_0$ from the open sets of X to those of X_0 is bijective.

Solution: Assume (1). Given a closed set F, take any $x \in F$, and let U be an open neighborhood of x in X. Then $F \cap U$ is locally closed, so meets X_0. Hence $x \in \overline{F \cap X_0}$. Thus $F \subseteq \overline{F \cap X_0}$. The opposite inclusion is trivial. Thus (2) holds.

Assume (2). In (3), the map is trivially surjective. To check it’s injective, suppose $U \cap X_0 = V \cap X_0$. Then $(X - U) \cap X_0 = (X - V) \cap X_0$. So (2) yields $X - U = X - V$. So $U = V$. Thus (3) holds.

Assume (3). Then the map $F \mapsto F \cap X_0$ of closed sets is bijective too; whence, so is the map $Y \mapsto Y \cap X_0$ of locally closed sets. In particular, if a locally closed set Y is nonempty, then so is $Y \cap X_0$. Thus (1) holds. □

Exercise (15.39). Let R be a ring, $X := \text{Spec}(R)$, and X_0 the set of closed points of X. Show that the following conditions are equivalent:

1. R is a Jacobson ring.
2. X is a Jacobson space.
3. If $y \in X$ is a point such that $\{y\}$ is locally closed, then $y \in X_0$.

318
Solutions (15.40) / (15.43)
App: Jacobson Rings

Solution: Assume (1). Let \(F \subset X \) be closed. Trivially, \(F \supseteq F \cap X_0 \). To prove \(F \subset F \cap X_0 \), say \(F = V(a) \) and \(F \cap X_0 = V(b) \). Then \(F \cap X_0 \) is the set of maximal ideals \(\mathfrak{m} \) containing \(a \) by (13.16)(2), and every such \(\mathfrak{m} \) contains \(b \). So (1) implies \(b \subseteq \sqrt{a} \). But \(V(\sqrt{a}) = F \). Thus \(F \subset F \cap X_0 \). Thus (15.38) yields (2).

Assume (2). Let \(y \in X \) be a point such that \(\{ y \} \) is locally closed. Then \(\{ y \} \cap X_0 \) is nonempty by (2). So \(\{ y \} \cap X_0 \supseteq y \). Thus (3) holds.

Assume (3). Let \(\mathfrak{p} \) be a prime ideal of \(R \) such that \(\mathfrak{p} R_f \) is maximal for some \(f \notin \mathfrak{p} \). Then \(\{ \mathfrak{p} \} \) is closed in \(D(f) \) by (13.1). So \(\{ \mathfrak{p} \} \) is locally closed in \(X \). Hence \(\{ \mathfrak{p} \} \) is closed in \(X \) by (3). Thus \(\mathfrak{p} \) is maximal. Thus (15.34) yields (1).

Exercise (15.40). Why is a field \(K \) finite if it’s an algebra-finite \(\mathbb{Z} \)-algebra?

Solution: First off, \(\mathbb{Z} \) is Jacobson by (15.32). So (15.36)(1) applies with \(\mathbb{Z} \) for \(R \), with \(K \) for \(R' \), and with \(0 \) for \(m' \). Thus \(0^c = \langle p \rangle \) for some prime \(p \in \mathbb{Z} \), and \(K \) is finite over \(\mathbb{Z} / \langle p \rangle \). Thus \(K \) is finite.

Exercise (15.41). Let \(P := \mathbb{Z}[X_1, \ldots, X_n] \) be the polynomial ring. Assume \(F \in P \) vanishes at every zero in \(K^n \) of \(F_1, \ldots, F_r \in P \) for every finite field \(K \); that is, if \(a := (a_1, \ldots, a_n) \in K^n \) and \(F_1(a) = 0, \ldots, F_r(a) = 0 \) in \(K \), then \(F(a) = 0 \) too. Prove there are \(G_1, \ldots, G_r \in P \) and \(N \geq 1 \) with \(F^N = G_1 F_1 + \cdots + G_r F_r \).

Solution: Set \(a := (F_1, \ldots, F_r) \). Suppose \(F \notin \sqrt{a} \). Then \(F \) lies outside some maximal ideal \(m \) containing \(a \) by (15.36)(2) and (15.32). Set \(K := P / m \). Then \(K \) is a finite extension of \(\mathbb{F}_p \) for some prime \(p \) by (15.36)(1). So \(K \) is finite. Let \(a_i \) be the residue of \(X_i \), set \(a := (a_1, \ldots, a_n) \in K^n \). Then \(F_1(a) = 0, \ldots, F_r(a) = 0 \). So \(F(a) = 0 \) by hypothesis. Thus \(F \in m \), a contradiction. Thus \(F \in \sqrt{a} \).

Exercise (15.42). Prove that a ring \(R \) is Jacobson if and only if each algebra-finite algebra \(R' \) that is a field is module finite over it.

Solution: Assume that \(R \) is Jacobson. Given an algebra-finite algebra \(R' \), set \(m' := \langle 0 \rangle \subset R' \) and \(m := m'^c \). Assume \(R' \) is a field. Then \(m' \) is maximal. So \(m \) is maximal and \(R' \) is finite over \(R / m \) by (15.36). Thus \(R' \) is module finite over \(R \).

Conversely, assume that \(R \) is not Jacobson. Then (15.34) yields a nonmaximal prime \(\mathfrak{p} \) of \(R \) and an \(f \notin \mathfrak{p} \) such that \(\mathfrak{p} R_f \) is maximal. Set \(R' := R / \mathfrak{p} \). Then \(R'_f \) is algebra finite over \(R \). But \(R'_f = R_f / \mathfrak{p} R_f \). So \(R'_f \) is a field.

Suppose \(R'_f \) is module finite over \(R \), so over \(R' \). Then \(R'_f \) is integral over \(R' \) by (10.18). So \(R' \) is a field by (14.1). So \(\mathfrak{p} \) is maximal, a contradiction.

Exercise (15.43). Prove that a ring \(R \) is Jacobson if and only if each nonmaximal prime \(\mathfrak{p} \) is the intersection of the primes that properly contain \(\mathfrak{p} \).

Solution: Assume \(R \) is Jacobson. By (15.32), every prime \(\mathfrak{p} \) is the intersection of maximal ideals. Thus if \(\mathfrak{p} \) is not maximal, then it is the intersection of the primes that properly contain it.

Conversely, assume \(R \) is not Jacobson. By (15.32), there is a prime \(\mathfrak{q} \) that is not the intersection of maximal ideals. If \(R / \mathfrak{q} \) has a prime \(\mathfrak{p} \) that is not maximal and is not the intersection of primes properly containing it, then its preimage in \(R \) is similar. Replace \(R \) by \(R / \mathfrak{q} \). Thus we may assume \(R \) is a domain with \(\text{rad}(R) \neq \langle 0 \rangle \).

Say \(f \in \text{rad}(R) \) and \(f \neq 0 \). Then \(0 \notin S_f \). So (3.9) yields a prime \(\mathfrak{p} \) that is maximal among ideals not meeting \(S_f \). Hence any prime properly containing \(\mathfrak{p} \) also contains \(f \). Thus \(\mathfrak{p} \) is not the intersection of primes properly containing it. But \(f \in \text{rad}(R) \) and \(f \notin \mathfrak{p} \). Thus \(\mathfrak{p} \) is not maximal. Thus \(\mathfrak{p} \) is as desired. \(\square \)
Exercise (15.44). Let R be a Jacobson ring, p a prime, $f \in R - p$. Prove that p is the intersection of all the maximal ideals containing p but not f.

Solution: Set $a := \bigcap m$ where m runs through the maximal ideals that contain p but not f. Let’s use double inclusion to prove $p = a$. Plainly $p \subset a$.

For the opposite inclusion, given $g \in R - p$, let’s prove $g \in R - a$. If p is maximal, then $p = a$, so $g \in R - a$. Assume p is not maximal. Since R is Jacobson, pR_{fg} is not maximal in R_{fg} by (15.34). So there is a maximal ideal M of R_{fg} containing pR_{fg}. Let m be the contraction of M in R. Plainly $f, g \notin m$ and $m \supset p$. But m is maximal by (15.36)(1) applied with $R' := R_{fg}$. Thus $p \supset a$, as desired.

Exercise (15.45). Let R be a ring, R' an algebra. Prove that if R' is integral over R and R is Jacobson, then R' is Jacobson.

Solution: Given an ideal $a' \subset R'$ and an f outside $\sqrt{a'}$, set $R'' := R[f]$. Then R'' is Jacobson by (15.36)(2). So R'' has a maximal ideal m'' that avoids f and contains $a' \cap R''$. But R' is integral over R''. So R'' contains a prime m' that contains a' and that contracts to m'' by Going-up (14.3)(4). Then m' avoids f as m'' does, and m' is maximal by Maximality, (14.3)(1). Thus R' is Jacobson.

Exercise (15.46). Let R be a Jacobson ring, S a multiplicative subset, $f \in R$. True or false: prove or give a counterexample to each of the following statements.

1. The localized ring R_f is Jacobson.
2. The localized ring $S^{-1}R$ is Jacobson.
3. The filtered direct limit $\lim_{\rightarrow} R_\lambda$ of Jacobson rings is Jacobson.
4. In a filtered direct limit of rings $\lim_{\rightarrow} R_\lambda$, necessarily $\lim_{\rightarrow} \text{rad}(R_\lambda) = \text{rad}(\lim_{\rightarrow} R_\lambda)$.

Solution: (1) True: $R_f = R[1/f]$ by (11.7); so R_f is Jacobson by (15.36)(1).

(2) False: by (15.33), Z is Jacobson, but $\mathbb{Z}_{(p)}$ isn’t for any prime number p.

(3) False: $Z_{(p)}$ isn’t Jacobson by (15.33), but $\mathbb{Z}_{(p)} = \lim_{\rightarrow} \mathbb{Z}$ by (12.6).

(4) False: $\text{rad}(\mathbb{Z}_{(p)}) = p\mathbb{Z}_{(p)}$; but $\text{rad}(\mathbb{Z}) = \langle 0 \rangle$, so $\lim_{\rightarrow} \text{rad}(\mathbb{Z}) = \langle 0 \rangle$.

Exercise (15.47). Let R be a reduced Jacobson ring with a finite set Σ of minimal primes, and P a finitely generated module. Show that P is locally free of rank r if and only if $\dim_{R/m}(P/mP) = r$ for any maximal ideal m.

Solution: Suppose P is locally free of rank r. Then given any maximal ideal m, there is an $f \in R - m$ such that P_f is a free R_f-module of rank r by (13.13). But P_m is a localization of P_f by (12.5). So P_m is a free R_m-module of rank r by (12.9). But $P_m/mP_m = (P/mP)_m$ by (12.15). Also $R_m/mR_m = R/m$ by (12.16). Thus $\dim_{R/m}(P/mP) = r$.

Consider the converse. Given a $p \in \Sigma$, set $K := \text{Frac}(R/p)$. Then $P \otimes_R K$ is a K-vector space, say of dimension n. Since R is reduced, $K = R_p$ by (14.21). So by (12.18), there is an $h \in R - p$ with P_h free of rank n. As R is Jacobson, there is a maximal ideal m avoiding h, by (15.32). Hence, as above, $\dim_{R/m}(P/mP) = n$. But, by hypothesis, $\dim_{R/m}(P/mP) = r$. Thus $n = r$.

Given a maximal ideal m, set $A := R_m$. Then A is reduced by (13.57). Each minimal prime of A is of the form pA where $p \in \Sigma$ by (11.12)(2). Further, it’s not hard to see, essentially as above, that $P_m \otimes \text{Frac}(A/pA) = P \otimes \text{Frac}(R/p)$. Hence (14.23) implies P_m is a free A-module of rank r. Finally, (13.62) implies P is locally free of rank r. □
16. Chain Conditions

Exercise (16.2). — Let M be a finitely generated module over an arbitrary ring. Show every set that generates M contains a finite subset that generates.

Solution: Say M is generated by x_1, \ldots, x_n and also by the y_λ for $\lambda \in \Lambda$. Say $x_i = \sum_j z_{ij}y_\lambda$. Then the y_λ generate M. \square

Exercise (16.23). — Let M be a module. Assume that every nonempty set of finitely generated submodules has a maximal element. Show M is Noetherian.

Solution: Given a submodule N, form the set S of all its finitely generated submodules. By hypothesis, S has a maximal element N_0. Suppose $N_0 \neq N$, and take any $x \in N - N_0$. Then the submodule of N generated by N_0 and x is finitely generated, and it properly contains N_0, a contradiction. Thus $N = N_0$. So N is finitely generated. Thus M is Noetherian. \square

Exercise (16.24). — Let R be a Noetherian ring, $\{F_\lambda\}_{\lambda \in \Lambda}$ a set of polynomials in variables X_1, \ldots, X_n. Show there’s a finite subset $\Lambda_0 \subset \Lambda$ such that the set V_0 of zeros in R^n of the F_λ for $\lambda \in \Lambda_0$ is precisely that V of the F_λ for $\lambda \in \Lambda$.

Solution: Set $P := R[X_1, \ldots, X_n]$ and $a := \langle \{F_\lambda\}_{\lambda \in \Lambda} \rangle$. Then P is Noetherian by (16.10). So a is finitely generated. So by (16.2) there’s a finite subset $\Lambda_0 \subset \Lambda$ such that the F_λ for $\lambda \in \Lambda_0$ generate a.

Trivially, $V_0 \supset V$. Conversely, $V_0 \subset V$ because, $F_\lambda \in a$ for each $\lambda \in \Lambda$, and so there are $G_\lambda \in P$ with $F_\lambda = \sum G_\lambda F_\mu$. Thus $V_0 = V$. \square

Exercise (16.25). — Let R be a Noetherian ring, $F := \sum a_n X^n \in R[[X]]$ a power series in one variable. Show that F is nilpotent if and only if each a_n is too.

Solution: By (3.19)(1), if F is nilpotent, then each a_n is too for any ring R.

Conversely, assume each a_n is nilpotent. Set $\mathfrak{n} := \text{nil}(R)$. Since R is Noetherian, \mathfrak{n} is finitely generated. So there is $m \geq 1$ with $\mathfrak{n}^m = 0$ by (3.38) with $a := 0$. Since each a_n lies in \mathfrak{n}, each coefficient of F^r lies in \mathfrak{n}^r for all $r \geq 1$. Thus each coefficient of F^m is 0; that is, F is nilpotent. \square

Exercise (16.26). — Let R be a ring, X a variable, $R[X]$ the polynomial ring. Prove this statement or find a counterexample: if $R[X]$ is Noetherian, then so is R.

Solution: It’s true. Since $R[X]$ is Noetherian, so is $R[X]/\langle X \rangle$ by (16.7). But the latter ring is isomorphic to R by (1.6)(2); so R is Noetherian. \square

Exercise (16.27). — Let R'/R be a ring extension with an R-linear retraction $\rho: R' \to R$. If R' is Noetherian, show R is too. What if R' is Artinian?

Solution: Assume R' is Noetherian. Let $a \subset R$ be an ideal. Then aR' is finitely generated. But a generates aR'. So (16.2) yields $a_1, \ldots, a_n \in a$ that generate aR'. Hence, given any $a \in a$, there are $x'_i \in R'$ such that $a = a_1 x'_1 + \cdots + a_n x'_n$. Applying ρ yields $a = a_1 x_1 + \cdots + a_n x_n$ with $x_i := \rho(x'_i) \in R$. Thus a is finitely generated. Thus R is Noetherian.

Alternatively, let $a_1 \subset a_2 \subset \cdots$ be an ascending chain of ideals of R. Then $a_1 R' \subset a_2 R' \subset \cdots$ stabilizes as R' is Noetherian. So $\rho(a_1 R') \subset \rho(a_2 R') \subset \cdots$ stabilizes too. But $\rho(a R') = a_1 \rho(R') = a_1$. Thus by (16.5), R is Noetherian.

Finally, if R' is, instead, Artinian, then R is too, owing to an argument like the alternative argument above, but applied to a descending chain. \square
Exercise (16.28). — Let R be a ring, M a module, R' a faithfully flat algebra. If $M \otimes_R R'$ is Noetherian over R', show M is Noetherian over R. What if $M \otimes_R R'$ is Artinian over R'?

Solution: Assume $M \otimes_R R'$ is Noetherian over R'. Since R' is flat, given a submodule N of M, the R'-module $N \otimes_R R'$ may be regarded as a submodule of $M \otimes R'$. So $N \otimes_R R'$ is finitely generated. But it’s also generated over R' by the elements $n \otimes 1$ for $n \in N$. Hence (16.2) yields $n_1, \ldots, n_r \in N$ such that the $n_i \otimes 1$ generate $N \otimes_R R'$ over R'. The n_i define an R'-map $\alpha: R' \to N$. It induces an R'-map $\alpha \otimes R': R'' \to N \otimes R'$, which is surjective. But R' is faithfully flat. So α is surjective by (9.19). So N is finitely generated. Thus M is Noetherian.

Alternatively, let $N_1 \subset N_2 \subset \cdots$ be a chain of submodules in M. Since $M \otimes R'$ is Noetherian, the induced chain $N_1 \otimes R' \subset N_2 \otimes R' \subset \cdots$ stabilizes. Thus R' is faithfully flat, an inclusion $N_i \to N_{i+1}$ is surjective if $N_i \otimes R' \to N_{i+1} \otimes R'$ is by (9.19). Hence the original chain stabilizes. Thus M is Noetherian.

Finally, if $M \otimes R$ is, instead, Artinian, then M is too, owing to an argument like the alternative argument above, but applied to a descending chain.

□

Exercise (16.29). — Let R be a ring. Assume that, for each maximal ideal m, the local ring R_m is Noetherian and that each nonzero $x \in R$ lies in only finitely many maximal ideals. Show R is Noetherian: use (13.10) to show any ideal is finitely generated; alternatively, use (13.9) to show any ascending chain stabilizes.

Solution: Given a nonzero ideal a, take a nonzero $x \in a$. Then x lies in only finitely many maximal ideals, say m_1, \ldots, m_n. As each R_m is Noetherian, aR_m is finitely generated, say by $x_{i,j}/s_{i,j}$ with $x_{i,j} \in a$ and $s_{i,j} \in R_m$ for $j = 1, \ldots, n_i$. Let see that together x and all the $x_{i,j}$ generate a.

Given a maximal ideal m, let’s see that the fractions $x/1$ and $x_{i,j}/1$ generate aR_m. If $x \notin m$, then $x/1$ is a unit, hence generates aR_m. If $x \in m$, then $m = m_i$ for some i, and so the $x_{i,j}/1$ generate aR_m, as desired.

Hence x and the $x_{i,j}$ generate a by (13.10). Thus R is Noetherian.

Alternatively, let $a_1 \subset a_2 \subset \cdots$ be an ascending chain of ideals of R. It is trivially stable if $a_i = 0$ for all i. So assume some a_n contains a nonzero x. Then x lies in only finitely many maximal ideals, say m_1, \ldots, m_m. Since each R_m is Noetherian, there’s n_j such that $n_jR_m = a_{n_j+1} \subset R_m = \cdots$. Set $n := \max\{n_0, \ldots, n_m\}$.

Let m be a maximal ideal. Suppose $x \notin m$. Then $x/1 \in R_m$ is a unit. So $a_nR_m = R_m$. So $a_nR_m = a_{n+1}R_m = \cdots$. Suppose $x \in m$. Then $m = m_j$ for some j. So again $a_nR_m = a_{n+1}R_m = \cdots$.

Given $k \geq n$, set $N_k := a_{k+1}/a_k$. Then $(N_k)_m = a_{k+1}R_m/a_kR_m = 0$. So $N_k = 0$ by (13.8). So the inclusion $a_k \hookrightarrow a_{k+1}$ is surjective by (13.9). So $a_k = a_{k+1}$. Thus $a_n = a_{n+1} = \cdots$. Thus again R is Noetherian.

□

Exercise (16.30) (Nagata). — Let k be a field, $P := k[X_1, X_2, \ldots]$ a polynomial ring, $m_1 < m_2 < \cdots$ positive integers with $m_{i+1} - m_i > m_i - m_{i-1}$ for $i > 1$. Set $p_i := \langle X_{m_i+1}, \ldots, X_{m_{i+1}} \rangle$ and $S := \bigcup_{i \geq 1} p_i$. Show S is multiplicative, $S^{-1}P$ is Noetherian of infinite dimension, and the $S^{-1}p_i$ are the maximal ideals of $S^{-1}P$.

Solution: Each p_i is prime owing to (1.17)(3). So $P - p_i$ is multiplicative by (2.1). But $S = \bigcap_{i \geq 1}(P - p_i)$. Thus S is multiplicative.

Similarly, for all $i \geq 1$, all ideals are prime in the following chain:

$$\langle 0 \rangle \subset \langle X_{m_i+1} \rangle \subset \cdots \subset \langle X_{m_i+1}, \ldots, X_{m_{i+1}} \rangle = p_i.$$
But $p_i \cap S = \emptyset$. So by (11.12), this chain induces a chain of the same length $m_{i+1} - m_i$ in $S^{-1}P$. But $m_{i+1} - m_i > m_i - m_{i-1}$. Thus $S^{-1}P$ is of infinite dimension.

Given any prime ideal \mathfrak{p} of $S^{-1}P$, let p be its contraction in P. Then $p \cap S = \emptyset$ by (11.12)(2). But $S = P - \bigcup p_i$. So $p \subset \bigcup p_i$. So (3.27)(3) yields $p \subset p_i$ for some i. Thus (11.11)(1)(b) yields $\mathfrak{p} \subset S^{-1}p_i$ for some i.

If \mathfrak{p} is maximal, then $\mathfrak{p} = S^{-1}p_i$. Thus every maximal ideal of $S^{-1}P$ has the form $S^{-1}p_i$. Conversely, given j, note $S^{-1}p_j$ lies in some maximal ideal of $S^{-1}P$; say it’s \mathfrak{p}. Then $p_j \subset p$ by (11.12)(2). But $p \subset p_i$. So $i = j$, and $\mathfrak{p} = S^{-1}p_i$. So $S^{-1}p_i$ is maximal. Thus the $S^{-1}p_i$ are all the maximal ideals of $S^{-1}P$.

Given i, note $S \cap p_i = \emptyset$. So P_{p_i} is the localization of $S^{-1}P$ at the prime $S^{-1}p_i$ by (11.34). Let P' be the polynomial subring over k in the variables X_j for $j \leq m_i$ and $j > m_{i+1}$, and set $T := P' - 0$ and $K := \text{Frac}(P') = T^{-1}P'$. Then (11.35) yields $T^{-1}P = K[X_{m_{i-1}}, \ldots, X_{m_{m+1}}]$. But $T \cap p_i = \emptyset$. Thus (11.34) yields

$$P_{p_i} = K[X_{m_{i-1}}, \ldots, X_{m_{m+1}}]T^{-1}p_i$$.

Note $K[X_{m_{i-1}}, \ldots, X_{m_{m+1}}]$ is Noetherian by the Hilbert Basis Theorem (16.10). So P_{p_i} is Noetherian by (16.7). But $(S^{-1}P)_{S^{-1}p_i} = P_{p_i}$. Thus it’s Noetherian.

Finally, for $f/s \in S^{-1}P$, the polynomial f involves only finitely many variables X_j. Hence f/s lies in only finitely many ideals of the form $S^{-1}p_i$. But these are all the maximal ideals of $S^{-1}P$. Thus $S^{-1}P$ is Noetherian by (16.29).

Exercise (16.31) — Let z be a complex variable. Determine which of these rings R are Noetherian:

1. the ring R of rational functions of z having no pole on the circle $|z| = 1$.
2. the ring R of power series in z having a positive radius of convergence.
3. the ring R of power series in z with an infinite radius of convergence.
4. the ring R of polynomials in z whose first k derivatives, $k \geq 1$, vanish at 0.
5. the ring R of polynomials in two complex variables z, w all of whose partial derivatives with respect to w vanish for $z = 0$.

Solution: For (1), let $S \subset \mathbb{C}[z]$ be the subset of polynomials with no zero on $|z| = 1$. Then S is a multiplicative subset. Moreover, $R = S^{-1}\mathbb{C}[z]$. But $\mathbb{C}[z]$ is Noetherian by (16.9). Thus (16.7) implies R is Noetherian.

For (2), given a nonzero $F \in R$, say $F = \sum_{i=0}^{\infty} a_i z^i$ with $a_n \neq 0$. Then $F = z^nG$ with $G := \sum_{i=0}^{\infty} a_{i+n} z^i$. Plainly G has the same radius of convergence as F; so $G \in R$. Also, $G^{-1} \in R$; see [12, Thm. 3.3, p. 65]. So an argument like that in (3.8) shows that every nonzero ideal has the form (z^n) for some $n \geq 0$. Thus R is Noetherian (in fact, a PID).

For (3), note that a convergent power series is holomorphic inside its disc of convergence; see [12, Thm. 5.1, p. 72]. So a function is entire — that is, holomorphic on all of \mathbb{C} — if and only if it is in R; see [12, Ch. III, (S7), pp. 129, 130).

For any $n \geq 0$, there is an entire function F_n with zeros at $n, n+1, \ldots$ and nowhere else; see [12, Thm. 2.3, p. 362]. Let a_n be the ideal of all $F \in R$ with zeros at $n, n+1, \ldots$. Then $F_n \in a_n - a_{n-1}$. So $a_1 \subset a_2 \subset \cdots$. Thus R is not Noetherian.

For (4), note R is just the ring of polynomials of the form $c + z^{k+1}F$ where $c \in \mathbb{C}$ and $F \in \mathbb{C}[z]$. So $\mathbb{C} \subset R \subset C[z]$. Moreover, $C[z]$ is generated as a module over R by $1, z, z^2, \ldots, z^k$. So R is algebra finite over \mathbb{C} owing to (16.17). Thus (16.10) implies R is Noetherian.
For (5), set $R' := \{ c + zG(z, w) \mid c \in \mathbb{C} \text{ and } G \in \mathbb{C}[z, w] \}$, and let R'' be the ring of polynomials in z, w whose first partial derivative with respect to w vanishes for $z = 0$. Let’s show $R' = R = R''$.

Plainly $R' \subset R \subset R''$. Conversely, given $F \in R''$, say $F = \sum F_i w^i$, where the $F_i \in \mathbb{C}[z]$. By hypothesis, $(\partial F/\partial w)(0, w) = 0$. Hence $\sum iF_i(0)w^{i-1} = 0$. Hence $F_i(0) = 0$ for all $i \geq 1$. So $z \mid F_i$. So $F \in R'$. Thus $R' = R = R''$. Thus R is just the case $k := \mathbb{C}$ of the second example in (16.1) of a non-Noetherian ring. □

Exercise (16.32). — Let R be a ring, M a Noetherian module. Adapt the proof of the Hilbert Basis Theorem (16.9) to prove $M[X]$ is a Noetherian $R[X]$-module.

Solution: By way of contradiction, assume there is a submodule N of $M[X]$ that is not finitely generated. Set $N_0 := 0$. For $i \geq 1$, choose inductively F_i in $N - N_{i-1}$ of least degree d_i, and let N_i be the submodule generated by F_1, \ldots, F_i. Let m_i be the leading coefficient of F_i, and L the submodule of M generated by all the m_i. As M is Noetherian, L is finitely generated. So there’s $n \geq 1$ such that m_1, \ldots, m_n generate L by (16.2). Thus $m_{n+1} = x_1 m_1 + \cdots + x_n m_n$ with $x_i \in R$.

By construction, $d_i \leq d_{i+1}$ for all i. Set

$$F := F_{n+1} - (x_1F_1 X^{d_{n+1} - d_1} + \cdots + x_n F_n X^{d_{n+1} - d_n}).$$

Then $\deg(F) < d_{n+1}$, so $F \in N_n$. Therefore, $F_{n+1} \in N_n$, a contradiction. □

Exercise (16.33). — Let R be a ring, S a multiplicative subset, M a Noetherian module. Show that $S^{-1}M$ is a Noetherian $S^{-1}R$-module.

Solution: Let K be a submodule of $S^{-1}M$. As M is Noetherian, $\varphi_S^{-1}K \subset M$ is finitely generated. Say m_1, \ldots, m_k generate it. Plainly $m_1/1, \ldots, m_k/1$ generate $S^{-1}\varphi_S^{-1}K$ over $S^{-1}R$. But $S^{-1}\varphi_S^{-1}K = K$ by (12.12)(2)(b). Thus $S^{-1}M$ is a Noetherian $S^{-1}R$-module.

Alternatively, let $K_1 \subset K_2 \subset \cdots$ be an ascending chain of $S^{-1}R$-submodules of $S^{-1}M$. Then $\varphi_S^{-1}K_1 \subset \varphi_S^{-1}K_2 \subset \cdots$ is an ascending chain of R-submodules of M. Since M is Noetherian, there is $n \geq 1$ with $\varphi_S^{-1}K_n = \varphi_S^{-1}K_{n+1} = \cdots$. But $S^{-1}\varphi_S^{-1}K_i = K_i$ for all i by (12.12)(2)(b). Hence $K_n = K_{n+1} = \cdots$. Thus $S^{-1}M$ is a Noetherian $S^{-1}R$-module. □

Exercise (16.34). — For $i = 1, 2$, let R_i be a ring, M_i a Noetherian R_i-module. Set $R := R_1 \times R_2$ and $M := M_1 \times M_2$. Show that M is a Noetherian R-module.

Solution: Any submodule N of M is of the form $N = N_1 \times N_2$ where N_i is an R_i-submodule of M_i by a simple generalization of (1.23). But M_i is Noetherian; so N_i is finitely generated, say by $n_{i,1}, \ldots, n_{i,k_i}$. Then plainly the $(n_{i,j}, 0)$ and $(0, M_{2,k})$ generate N. Thus M is a Noetherian R-module.

Alternatively, let $N_1 \subset N_2 \subset \cdots$ be an ascending chain of R-submodules of M. Then $N_i = N_{i,j} \times N_{2,j}$ where $N_{i,j}$ is an R_i-submodule of M_i by a simple generalization of (1.23). In fact, the proof shows that, for each i, the $N_{i,j}$ form an ascending chain. But M_i is Noetherian; so this chain stabilizes. Hence the original chain stabilizes too. Thus M is a Noetherian R-module. □

Exercise (16.35). — Let $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ be a short exact sequence of R-modules, and M_1, M_2 two submodules of M. Prove or give a counterexample to this statement: if $\beta(M_1) = \beta(M_2)$ and $\alpha^{-1}(M_1) = \alpha^{-1}(M_2)$, then $M_1 = M_2$.

324
Solution: The statement is false: form the exact sequence
\[0 \to \mathbb{R} \xrightarrow{\alpha} \mathbb{R} \oplus \mathbb{R} \xrightarrow{\beta} \mathbb{R} \to 0 \]
with \(\alpha(r) := (r, 0) \) and \(\beta(r, s) := s \), and take
\[M_1 := \{(t, 2t) \mid t \in \mathbb{R}\} \quad \text{and} \quad M_2 := \{(2t, t) \mid t \in \mathbb{R}\}. \]
(Geometrically, we can view \(M_1 \) as the line determined by the origin and the point \((1,2)\), and \(M_2 \) as the line determined by the origin and the point \((2,1)\). Then \(\beta(M_1) = \beta(M_2) = \mathbb{R} \), and \(\alpha^{-1}(M_1) = \alpha^{-1}(M_2) = 0 \), but \(M_1 \neq M_2 \) in \(\mathbb{R} \oplus \mathbb{R} \).

Exercise (16.36). — Let \(R \) be a ring, \(a_1, \ldots, a_r \) ideals such that each \(R/a_i \) is a Noetherian ring. Prove (1) that \(\bigoplus R/a_i \) is a Noetherian \(R \)-module, and (2) that, if \(\bigcap a_i = 0 \), then \(R \) too is a Noetherian ring.

Solution: Any \(R \)-submodule of \(R/a_i \) is an ideal of \(R/a_i \). Since \(R/a_i \) is a Noetherian ring, such an ideal is finitely generated as an \((R/a_i)\)-module, so as an \(R \)-module as well. Thus \(R/a_i \) is a Noetherian \(R \)-module. So \(\bigoplus R/a_i \) is a Noetherian \(R \)-module by (16.14). Thus (1) holds.

To prove (2), note that the kernel of the natural map \(R \to \bigoplus R/a_i \) is \(\bigcap a_i \), which is 0 by hypothesis. So \(R \) can be identified with a submodule of the Noetherian \(R \)-module \(\bigoplus R/a_i \). Hence \(R \) itself is a Noetherian \(R \)-module by (16.13)(2). So \(R \) is a Noetherian ring by (16.11).

Exercise (16.37). — Let \(R \) be a ring, and \(M \) and \(N \) modules. Assume that \(N \) is Noetherian and that \(M \) is finitely generated. Show that \(\text{Hom}(M, N) \) is Noetherian.

Solution: Say \(M \) is generated \(m \) elements. Then (4.10) yields a surjection \(R^{\oplus m} \to M \). It yields an inclusion \(\text{Hom}(M, N) \to \text{Hom}(R^m, N) \) by (5.11). But \(\text{Hom}(R^m, N) = \text{Hom}(R, N)^{\oplus m} = N^{\oplus m} \) by (4.13.2) and (4.3). Further, \(N^{\oplus m} \) is Noetherian by (16.14). Thus (16.13)(2) implies \(\text{Hom}(M, N) \) is Noetherian.

Exercise (16.38). — Let \(R \) be a ring, \(M \) a module. If \(R \) is Noetherian, and \(M \) finitely generated, show \(S^{-1}D(M) = D(S^{-1}M) \).

Solution: Use the map \(\sigma \) in (12.19) twice to form this diagram:
\[
\begin{array}{ccc}
M & \xrightarrow{D(M)} & \text{Hom}(\text{Hom}(M, R), R) & \xrightarrow{\mu_S} & S^{-1}\text{Hom}(\text{Hom}(M, R), R) \\
\downarrow{\mu_S} & & \downarrow{\sigma} & & \\
S^{-1}M & \xrightarrow{D(S^{-1}M)} & \text{Hom}(\text{Hom}(S^{-1}M, S^{-1}R), S^{-1}R) & \xrightarrow{\sigma^*} & \text{Hom}(S^{-1}\text{Hom}(M, R), S^{-1}R)
\end{array}
\]
It commutes, as \((\sigma \mu_S D(M))(m)(\alpha/s) = \alpha(m)/s = ((\sigma D(S^{-1}M)\mu_S)(m))(\alpha/s)\) where \(m \in M \) and \(\alpha \in \text{Hom}(M, R) \) and \(s \in S \).

Assume \(R \) is Noetherian, and \(M \) finitely generated. Then \(\text{Hom}(M, R) \) is finitely presented by (16.37) and (16.15). So (12.19) implies that, in the diagram, \(\sigma \) and \(\sigma^* \) are isomorphisms. Hence \(S^{-1}D(M) = \sigma^{-1}\sigma D(S^{-1}M) \), as desired.

Exercise (16.39). — Let \(R \) be a domain, \(R' \) an algebra, and set \(K := \text{Frac}(R) \). Assume \(R \) is Noetherian. Prove the following statements.

1. [2, Thm. 3] Assume \(R' \) is a field containing \(R \). Then \(R'/R \) is algebra finite if and only if \(K/R \) is algebra finite and \(R'/K \) is (module) finite.

2. [2, bot. p. 77] Let \(K' \supset R \) be a field that embeds in \(R' \). Assume \(R'/R \) is algebra finite. Then \(K/R \) is algebra finite and \(K'/K \) is finite.
Solutions

\[\text{(16.40) / (16.43)} \]

\textbf{Chain Conditions}

Solution: For (1), first assume \(R' / R \) is algebra finite. Now, \(R \subset K \subset R' \). So \(R' / K \) is algebra finite. Thus \(R' / K \) is (module) finite by (16.4) or (16.18), and so \(K / R \) is algebra finite by (16.17).

Conversely, say \(x_1, \ldots, x_m \) are algebra generators for \(K / R \), and say \(y_1, \ldots, y_n \) are module generators for \(R' / K \). Then clearly \(x_1, \ldots, x_m, y_1, \ldots, y_n \) are algebra generators for \(R' / R \). Thus (1) holds.

For (2), let \(m \) be any maximal ideal of \(R' \), and set \(L := R' / m \). Then \(L \) is a field, \(R \subset K \subset K' \subset L \), and \(L / R \) is algebra finite. So \(K' / R \) is algebra finite and \(K' / K \) is finite by (1); whence, \(K' / K \) is finite too. Thus (2) holds. \(\square \)

Exercise (16.40). — Let \(R \) be a domain, \(K := \text{Frac}(R) \), and \(x \in K \). If \(x \) is integral over \(R \), show there is a nonzero \(d \in R \) such that \(dx^n \in R \) for all \(n \geq 0 \). Conversely, if such a \(d \) exists and if \(R \) is Noetherian, show \(x \) is integral over \(R \).

Solution: Set \(R' := R[x] \). Assume \(x \) is integral. Then (10.14) implies \(R' \) is module finite, say generated by \(y_i = x_i / d_i \) for \(i = 1, \ldots, n \) with \(x_i, d_i \in R - (0) \). Set \(d := \prod_{i=1}^n d_i \). Then \(dy_i \in R \) for all \(i \), so \(dR' \subset R \). Thus \(dx^n \in R \) for all \(n \geq 0 \).

Conversely, assume \(R \) is Noetherian. Given \(d \) with \(dR' \subset R \), note \(R' \subset (1/d)R \). But \((1/d)R \) is a finitely generated module, so Noetherian by (16.11). Hence \(R' \) is module finite. Thus \(x \) is integral by (10.14). \(\square \)

Exercise (16.41). — Let \(k \) be a field, \(R \) an algebra. Assume that \(R \) is finite dimensional as a \(k \)-vector space. Prove that \(R \) is Noetherian and Artinian.

Solution: View \(R \) as a vector space, and ideals as subspaces. Now, by a simple dimension argument, any ascending or descending chain of subspaces of \(R \) stabilizes. Thus \(R \) is Noetherian by (16.5) and is Artinian by definition. \(\square \)

Exercise (16.42). — Let \(R \) be a ring, and \(m_1, \ldots, m_n \) maximal ideals. Assume \(m_1 \cdots m_n = 0 \). Set \(a_0 := R \), and for \(1 \leq i \leq n \), set \(a_i := m_1 \cdots m_i \) and \(V_i := a_{i-1} / a_i \). Using the \(a_i \) and \(V_i \), show that \(R \) is Artinian if and only if \(R \) is Noetherian.

Solution: Note that each \(V_i \) is also a vector space over \(R / m_i \).

Assume \(R \) is Noetherian. Fix \(i \geq 1 \). Then \(a_i \) is finitely generated by (16.11). So \(V_i \) is finitely generated by (16.13). So \(\dim(V_i) < \infty \). Hence \(V_i \) is Artinian over \(R \). But \(V_i := a_{i-1} / a_i \). Hence, if \(a_i \) is Artinian, so is \(a_{i-1} \) by (16.22)(2). But \(a_n = 0 \).

Thus \(a_i \) is Artinian for all \(i \). But \(a_0 = R \). Thus \(R \) is Artinian.

Conversely, assume \(R \) is Artinian. Fix \(i \geq 1 \). Then \(a_i \) and \(V_i \) are Artinian by (16.22)(2). Given linearly independent elements \(x_1, x_2, \ldots, V_i \), let \(W_j \subset V_i \) be the subspace spanned by \(x_j, x_{j+1}, \ldots \). The \(W_j \) form a strictly descending chain, a contradiction as \(V_i \) is Artinian. Thus \(\dim(V_i) < \infty \). Hence \(V_i \) is Noetherian. But \(V_i := a_{i-1} / a_i \). Hence, if \(a_i \) is Noetherian, so is \(a_{i-1} \) by (16.13)(2). But \(a_n = 0 \).

Thus \(a_i \) is Noetherian for all \(i \). But \(a_0 = R \). Thus \(R \) is Noetherian. \(\square \)

Exercise (16.43). — Fix a prime number \(p \). Set \(M_n := \{ q \in Q / Z \mid p^n q = 0 \} \) for \(n \geq 0 \). Set \(M := \bigcup M_n \). Find a canonical isomorphism \(Z / \langle \langle p^n \rangle \rangle \cong M_n \). Given a proper \(Z \)-submodule \(N \) of \(M \), show \(N = M_n \) for some \(n \). Deduce \(M \) is Artinian, but not Noetherian. Find \(\text{Ann}(M) \), and deduce \(Z / \text{Ann}(M) \) is not Artinian.

Solution: Let \(\kappa : Q \rightarrow Q / Z \) be the quotient map. Given \(x \in Q \), note that \(x \in \kappa^{-1} M_n \) if and only if \(p^n x \in Z \). Define \(\alpha : Z \rightarrow Q \) by \(\alpha(m) := m / p^n \). Then \(\alpha(Z) \kappa^{-1} M_n \). So \(\kappa \alpha : Z \rightarrow M_n \) is surjective. But \((\kappa \alpha)^{-1} 0 = \kappa^{-1} Z = \langle \langle p^n \rangle \rangle \). Thus \(\kappa \alpha \) induces the desired isomorphism \(Z / \langle \langle p^n \rangle \rangle \cong M_n \).

326
Given \(q \in N \), write \(q = \kappa(n/p^r) \) where \(n \) is relatively prime to \(p \). Then there’s \(m \in Z \) with \(nm = 1 \pmod{p^r} \). So \(N \ni mk(n/p^r) = \kappa(1/p^n) \). Hence \(N \supset M_e \).

Since \(N \neq M \), there’s a largest such \(e \); denote it by \(n \). Thus \(N = M_n \).

Let \(M \supseteq N_1 \supseteq N_2 \supseteq \cdots \) be a descending chain of submodules. Then \(N_i = M_{M_i} \) for some \(n_i \). Moreover, the sequence \(n_1 \geq n_2 \geq \cdots \) stabilizes; say \(n_i = n_{i+1} = \cdots \). So \(N_i = N_{i+1} = \cdots \). Thus \(M \) is Artinian.

The ascending chain \(M_0 \subset M_1 \subset \cdots \) doesn’t stabilize, Thus \(M \) isn’t Noetherian.

Given \(m \in \text{Ann}(M) \), note \(m/p^n \in Z \) for all \(n \). So \(m = 0 \). Thus \(\text{Ann}(M) = 0 \).

So \(Z/\text{Ann}(M) = Z \). But the descending chain \(Z \supset \langle p \rangle \supset \langle p^2 \rangle \supset \cdots \) doesn’t stabilize. Thus \(Z \) isn’t Artinian.

\(\square \)

Exercise (16.44). — Let \(R \) be an Artinian ring. Prove that \(R \) is a field if it is a domain. Deduce that in general every prime ideal \(p \) of \(R \) is maximal.

Solution: Take any nonzero element \(x \in R \), and consider the chain of ideals \(\langle x \rangle \supset \langle x^2 \rangle \supset \cdots \). Since \(R \) is Artinian, the chain stabilizes; so \(\langle x^r \rangle = \langle x^{r+1} \rangle \) for some \(e \). Hence \(x^e ax^{e+1} \) for some \(a \in R \). If \(R \) is a domain, then we can cancel to get \(1 = ax \); thus \(R \) is then a field.

In general, \(R/p \) is Artinian by (16.22)(2). Now, \(R/p \) is also a domain by (2.8). Hence, by what we just proved, \(R/p \) is a field. Thus \(p \) is maximal by (2.13).

\(\square \)

Exercise (16.45). — Let \(R \) be a ring, \(M \) an Artinian module, \(\alpha: M \to M \) an endomorphism. Assume \(\alpha \) is injective. Show that \(\alpha \) is an isomorphism.

Solution: Consider the chain \(M \supset \alpha(M) \supset \cdots \supset \alpha^n(M) \supset \cdots \). It stabilizes: say \(\alpha^n(M) = \alpha^{n+1}(M) \). So given \(m \in M \), there is \(m' \in M \) with \(\alpha^{n+1}(m') = \alpha^n(m) \).

But \(\alpha \) is injective. So \(\alpha(m') = m \). Thus \(\alpha \) is surjective, so an isomorphism.

\(\square \)

Exercise (16.46). — Let \(R \) be a ring; \(M \) a module; \(N_1 \), \(N_2 \) submodules. If the \(M/N_i \) are Noetherian, show \(M/(N_1 \cap N_2) \) is too. What if the \(M/N_i \) are Artinian?

Solution: The canonical map \(M/(N_1 \cap N_2) \to M/N_1 \oplus M/N_2 \) is injective. If the \(M/N_i \) are Noetherian, so is its target by (16.14); whence, by (16.13)(2), its source is Noetherian too.

Similarly, if the \(M/N_i \) are Artinian, so is \(M/(N_1 \cap N_2) \) by (16.22)(3), (2).

\(\square \)

16. Appendix: Noetherian Spaces

Exercise (16.50). — Let \(R \) be a ring. Prove the following statements:

1. \(V: \mathfrak{a} \mapsto V(\mathfrak{a}) = \text{Spec}(R/\mathfrak{a}) \) is an inclusion-reversing bijection from the radical ideals \(\mathfrak{a} \) of \(R \) onto the closed subspaces of \(\text{Spec}(R) \).
2. \(V \) gives a bijection from the primes onto the irreducible closed subspaces.
3. \(V \) gives a bijection from the minimal primes onto the irreducible components.

Solution: Assertion (1) follows immediately from the first part of (13.1). For (2), note that \(\text{Spec}(R/\mathfrak{a}) \) is irreducible if and only if \(\text{nil}(R/\mathfrak{a}) \) is prime by (16.48). Plainly, \(\text{nil}(R/\mathfrak{a}) \) is prime if and only if \(\sqrt{\mathfrak{a}} \) is. Thus (2) holds.

Finally, (2) implies (3), as the irreducible components are closed by (16.49)(5), so are just the maximal irreducible closed subspaces, but \(V \) is lattice-inverting.

\(\square \)

Exercise (16.55). — Let \(R \) be a ring. Prove the following statements:

1. \(\text{Spec}(R) \) is Noetherian if and only if the radical ideals satisfy the acc.
(2) If Spec(R) is Noetherian, then the primes satisfy the acc.

(3) If R is Noetherian, then Spec(R) is too.

Solution: For (1), note that, owing to (16.50)(1), the radical ideals satisfy the acc if and only if the closed sets satisfy the dcc, that is, Spec(R) is Noetherian. Thus (1) holds. Plainly, (1) immediately implies (2) and (3).

Exercise (16.60). — Let X be a topological space, Y and Z constructible subsets, $\varphi : X' \to X$ a continuous map, $A \subset Z$ an arbitrary subset. Prove the following:

1. Open and closed sets are constructible.
2. $Y \cup Z$ and $Y \cap Z$ are constructible.
3. $\varphi^{-1}Y$ is constructible in X'.
4. A is constructible in Z if and only if A is constructible in X.

Solution: For (1), given an open set U and a closed set C, note $U = U \cap X$ and $C = X \cap C$. But X is both closed and open. Thus (1) holds.

For (2), say $Y = \bigcup (U_i \cap C_i)$ and $Z = \bigcup (V_j \cap D_j)$ with U_i open and C_i closed. Plainly $Y \cup Z$ is constructible. And $Y \cap Z = \bigcup_{i,j} (U_i \cap C_i) \cap (V_j \cap D_j)$. But $U_i \cap V_j$ is open and $C_i \cap D_j$ is closed. Thus $Y \cap Z$ is constructible. Thus (2) holds.

For (3), say $Y = \bigcup (U_i \cap C_i)$ with U_i open in X and C_i closed. Then $\varphi^{-1}Y = \bigcup (\varphi^{-1}U_i \cap \varphi^{-1}C_i)$. But $\varphi^{-1}U_i$ is open in X', and $\varphi^{-1}V_i$ is closed in X'. Thus (3) holds.

For (4), first assume A is constructible in Z. Say $A = \bigcup (W_i \cap E_i)$ with W_i open in Z and E_i closed in Z. Say $W_i = U_i \cap Z$ and $E_i = C_i \cap Z$ with U_i open in X and C_i closed in X. Set $B := \bigcup (U_i \cap C_i)$. Then B is constructible in X, and $A = B \cap Z$. So A is constructible in X by (2).

Conversely, assume A is constructible in X. Let $\varphi : Z \to X$ be the inclusion. Then $\varphi^{-1}A = A$. So A is constructible in Z by (3). Thus (4) holds.

Exercise (16.66). — Find a non-Noetherian ring R with R_p Noetherian for every prime p.

Solution: Take R to be any non-Noetherian, absolutely flat ring, such as $\mathbb{Z}_2 \oplus$, see (16.56). By (13.61), every R_p is a field, so Noetherian.

Exercise (16.67). — Describe Spec$(\mathbb{Z}[X])$.

Solution: The points of Spec$(\mathbb{Z}[X])$ represent the prime ideals p of $\mathbb{Z}[X]$. By (2.20) and (2.39), the p are of three distinct types: either $p = \langle 0 \rangle$; or $p = \langle F \rangle$ with $F \in \mathbb{Z}[X]$ prime; or p is maximal and not principal.

As to the topology, note $\mathbb{Z}[X]$ is Noetherian by (16.1) and (16.9). Now, for any Noetherian ring R, the space Spec(R) is Noetherian by (16.55)(2). So every subspace is also Noetherian by (16.52). Hence, by (16.53), the closed sets V are the finite unions of irreducible closed subsets W of V. But plainly, these W are the irreducible closed subsets of Spec(R) that lie in V. Thus by (16.50)(2), the closed sets V of Spec(R) are the finite unions of the sets Spec(p) with $p \subset R$ prime.

Fix a prime $p \subset \mathbb{Z}[X]$. If $p = \langle 0 \rangle$, then Spec$(p) = \langle 0 \rangle$ with F prime. Let $\varphi : \mathbb{Z} \to \mathbb{Z}[X]$ be the inclusion, and set $\varphi^* := \text{Spec}(\varphi)$. If F is a prime p of \mathbb{Z}, then Spec(p) is the fiber of φ^* over the point of Spec(\mathbb{Z}) representing pR, as $pR \cap pR = pR$ by (2.32)(1). Otherwise, given a prime $p \in \mathbb{Z}$, the corresponding fiber of φ^* is Spec(p), and it intersects $\text{Spec}(p)$ in $\text{Spec}(\langle p, F \rangle)$ by (13.11.1). Plainly, the points of this intersection, which represent the maximal ideals containing $\langle p, F \rangle$,
correspond bijectively to the prime factors of the image of F in $(\mathbb{Z}/p\mathbb{Z})[X]$.

Finally, suppose p is maximal and not principal. Then $p = (p, G)$ with $p \in R$ prime and $G \in P$ prime by (2.20)(2). Hence, by the preceding case, $V(p)$ is the intersection of $V(G)$ with the fiber of φ^* corresponding to pR. □

Exercise (16.68). — What are the irreducible components of a Hausdorff space?

Solution: In a Hausdorff space, any pair of distinct points have disjoint open neighborhoods. Thus every irreducible subspace consists of a single point. □

Exercise (16.69). — Are these conditions on a topological space X equivalent?

1. X is Noetherian.
2. Every subspace Y is quasi-compact.
3. Every open subspace V is quasi-compact.

Solution: Yes, they’re equivalent; here’s why. If (1) holds, (16.52) implies V is Noetherian, and so quasi-compact; thus (2) holds. Trivially (2) implies (3).

Assume (3). Let $U_0 \subset U_1 \subset \cdots$ be an ascending chain of open subsets of X. Set $V := \bigcup U_n$. Then V is open, so quasi-compact by (3). But the U_n form an open covering of V. So finitely many cover. Hence $U_m = V$ for some m. So $U_0 \subset U_1 \subset \cdots$ stabilizes. Thus (1) holds. □

Exercise (16.70). — Let $\varphi : R \to R'$ a map of rings. Assume R' is algebra finite over R. Show that the fibers of $\text{Spec}(\varphi)$ are Noetherian subspaces of $\text{Spec}(R')$.

Solution: Given $p \in \text{Spec}(R)$, set $k := \text{Frac}(R/p)$. Then the fiber over p is equal to $\text{Spec}(R' \otimes_R k)$ by (13.28). Since R'/R is algebra finite, $R' \otimes_R k$ is algebra finite over k by (10.39)(3). Hence $R' \otimes_R k$ is Noetherian by (16.10). So $\text{Spec}(R' \otimes_R k)$ is Noetherian by (16.55)(3). □

Exercise (16.71). — Let M be a Noetherian module over a ring R. Show that $\text{Supp}(M)$ is a closed Noetherian subspace of $\text{Spec}(R)$.

Solution: Since M is finitely generated, $\text{Supp}(M) = V(\text{Ann}(M))$ by (13.4)(3). Thus $\text{Supp}(M)$ is, by (13.1), a closed subspace of $\text{Spec}(R)$.

Set $R' := R/\text{Ann}(M)$. Then $V(\text{Ann}(M)) = \text{Spec}(R')$ by (13.1). But R' is Noetherian by (16.10). So $\text{Spec}(R' \otimes_R k)$ is Noetherian by (16.55)(3). Thus $\text{Supp}(M)$ is. □

Exercise (16.72). — Let X be a Noetherian topological space. Then a subset U is open if and only if this condition holds: given a closed irreducible subset Z of X, either $U \cap Z$ is empty or it contains a nonempty subset that’s open in Z.

Solution: Assume U is open. Given a closed irreducible subset Z of X, note $U \cap Z$ is open in Z, whether empty or not. Thus the condition holds.

Conversely, assume the condition holds. Use Noetherian induction: form the set S of closed subsets C of X with $U \cap C$ not open in C. Assume $S \neq \emptyset$. As X is Noetherian, an adaptation of (16.4) yields a minimal element $Z \in S$.

Note that $Z \neq \emptyset$ as $U \cap Z$ is not open.

Suppose $Z = Z_1 \cup Z_2$ with each Z_i closed and $Z_i \not\subseteq Z$. By minimality, $Z_i \not\in S$. So $U \cap Z_i$ is open in Z_i. So $Z_i - (U \cap Z_i)$ is closed in Z_i, so closed in X.

Set $A := Z - (U \cap Z)$. Then $A \cap Z_1 = Z_1 - (U \cap Z_1)$. So $A \cap Z_i$ is closed. But $A = (A \cap Z_1) \cup (A \cap Z_2)$. So A is closed. But $U \cap Z = Z - A$. So $U \cap Z$ is open in Z, a contradiction. Thus Z is irreducible.
Solutions \((16.73) / (17.21)\) Associated Primes

Assume \(U \cap Z\) isn’t empty. By the condition, \(U \cap Z\) contains a nonempty set \(V\) that’s open in \(Z\). Set \(B := Z - V\). Then \(B\) is closed in \(Z\), so closed in \(X\). Also \(B \subseteq Z\). So \(B \notin S\). So \(U \cap B\) is open in \(B\).

Set \(C := Z - (U \cap Z)\). Then \(C \cap B = B - (U \cap B)\) as \(B \subseteq Z\). But \(C \cap B = C\) as \(U \cap Z \supseteq V\). Hence \(C\) is closed in \(B\), so closed in \(X\). But \(U \cap Z = Z - C\). So \(U \cap Z\) is open in \(Z\), a contradiction. Thus \(S = \emptyset\). Thus \(U\) is open in \(X\), as desired. \(\square\)

Exercise (16.73). — Let \(\varphi : R \to R’\) a map of rings. Assume \(R\) is Noetherian and \(R’\) is algebra finite over \(R\). Set \(X := \text{Spec}(R)\), set \(X’ := \text{Spec}(R’)\), and set \(\varphi^* := \text{Spec}(\varphi)\). Prove that \(\varphi^*\) is open if and only if \(\varphi\) has the Going-down Property.

Solution: If \(\varphi^*\) is an open mapping, then \(\varphi\) has the Going-down Property by \((13.38)\), whether or not \(R\) is Noetherian and \(R’\) is algebra finite over \(R\).

Conversely, assume \(\varphi\) has the Going-down Property. Given an open subset \(U’\) of \(X’\), set \(U := \varphi^* U’ \subset X\). We have to see that \(U\) is open.

Since \(R\) is Noetherian, \(X\) is too by \((16.55)(3)\). So let’s use \((16.72)\): given a closed irreducible subset \(Z\) of \(X\) with \(U \cap Z\) nonempty, we have to see that \(U \cap Z\) contains a nonempty subset that’s open in \(Z\).

Since \(R\) is Noetherian and \(R’\) is algebra finite, \(U\) is constructible by \((16.65)\). But \(U \cap Z \neq \emptyset\). So owing to \((16.63)\), we just have to see that \(U \cap Z\) is dense in \(Z\).

Say \(p \in U \cap Z\) and \(p = \varphi^{-1} p’\) with \(p’ \in U’\). By \((16.50)(2)\), \(Z = \text{V}(q)\) for some prime \(q\) of \(R\). Then \(q \subset p\). But \(\varphi\) has the Going-down Property. So there’s a prime \(q’ \subset p’\) with \(\varphi^{-1} q’ = q\). But \(U’\) is open. So \(q’ \in U’\) by \((13.16)(1)\). Thus \(q \in U\).

Finally, given any open set \(V\) of \(X\) with \(V \cap Z \neq \emptyset\), say \(v\in V \cap Z\). Then \(q \subset v\). So \(q \in V\) by \((13.16)(1)\). So \(V \cap U \neq \emptyset\). Thus \(U \cap Z\) is dense in \(Z\), as desired. \(\square\)

Exercise (16.74). — Let \(\varphi : R \to R’\) a map of rings, \(M’\) a finitely generated \(R’\)-module. Assume \(R\) is Noetherian, \(R’\) is algebra finite, and \(M’\) is flat over \(R\). Show \(\text{Spec}(\varphi)\) is open.

Solution: Set \(a’ := \text{Ann}(M’)\). Then \(\text{Supp}(M’) = \text{V}(a’)\) by \((13.4)(3)\) as \(M’\) is finitely generated. Also \(\text{V}(a’) = \text{Spec}(R’/a’)\) by \((13.1.4)\). Let \(\kappa : R’ \to R’/a’\) be the quotient map, and set \(\psi := \kappa \varphi\). Then \(\psi\) has the Going-down Property by \((14.8)\). Thus by \((16.73)\), \(\text{Spec}(\psi)\) is open.

Given an open set \(U \subset \text{Spec}(R’)\), set \(U’ := U \cap \text{V}(a’)\). Then \(\text{Spec}(\psi)(U’)\) is open in \(\text{Spec}(R)\). But \(\text{Spec}(\psi)(U’') = \text{Spec}(\varphi)(U)\). Thus \(\text{Spec}(\varphi)\) is open. \(\square\)

17. Associated Primes

Exercise (17.4). — Let \(R\) be a ring, \(M\) a module, \(a \subset \text{Ann}(M)\) an ideal. Set \(R’ := R/a\). Let \(\kappa : R \to R’\) be the quotient map. Show that \(p \mapsto p/a\) is a bijection from \(\text{Ass}_R(M)\) to \(\text{Ass}_{R’}(M)\) with inverse \(p’ \mapsto \kappa^{-1}(p’)\).

Solution: Given \(p \in \text{Ass}_R(M)\), say \(p = \text{Ann}_R(m)\). Then \(p \supset a\). Set \(p’ := p/a\). Then \(p’ \subset R’\) is prime, and \(p’ = \text{Ann}_{R’}(m)\). Thus \(p’ \in \text{Ass}_{R’}(M)\); also \(\kappa^{-1}(p’) = p\).

Conversely, given \(p’ \in \text{Ass}_{R’}(M)\), say \(p’ = \text{Ann}_{R’}(m)\). Set \(p := \kappa^{-1}(p’)\). Then \(p \subset R\) is prime, and \(p = \text{Ann}_R(m)\). Thus \(p \in \text{Ass}_R(M)\); also \(p/a = p’\). \(\square\)

Exercise (17.21). — Given modules \(M_1, \ldots, M_r\), set \(M := M_1 \oplus \cdots \oplus M_r\). Prove \(\text{Ass}(M) = \text{Ass}(M_1) \cup \cdots \cup \text{Ass}(M_r)\).
Solution: Set \(N := M_2 \oplus \cdots \oplus M_r \). Then \(N, M_1 \subset M \). Also, \(M/N = M_1 \). So \((17.6)\) yields
\[
\text{Ass}(N), \text{Ass}(M_1) \subset \text{Ass}(M) \subset \text{Ass}(N) \cup \text{Ass}(M_1).
\]
So \(\text{Ass}(M) = \text{Ass}(N) \cup \text{Ass}(M_1) \). The assertion follows by induction on \(r \). \(\square \)

Exercise (17.22). Let \(R \) be a ring, \(M \) a module, \(M_\lambda \) for \(\lambda \in \Lambda \) submodules. Assume \(M = \bigcup M_\lambda \). Show \(\text{Ass}(M) = \bigcup \text{Ass}(M_\lambda) \).

Solution: Note \(\text{Ass}(M_\lambda) \subset \text{Ass}(M) \) by \((17.6)\). Thus \(\text{Ass}(M) \supset \bigcup \text{Ass}(M_\lambda) \).

Conversely, given \(p \in \text{Ass}(M) \), say \(p = \text{Ann}(m) \) for \(m \in M \). Say \(m \in M_\lambda \). Note \(\text{Ann}_{M_\lambda}(m) = \text{Ann}_M(m) \). So \(p \in \text{Ass}(M_\lambda) \). Thus \(\text{Ass}(M) \subset \bigcup \text{Ass}(M_\lambda) \). \(\square \)

Exercise (17.23). Take \(R := \mathbb{Z} \) and \(M := \mathbb{Z}/(2) \oplus \mathbb{Z} \). Find \(\text{Ass}(M) \) and find two submodules \(L, N \subset M \) with \(L + N = M \) but \(\text{Ass}(L) \cup \text{Ass}(N) \subsetneq \text{Ass}(M) \).

Solution: First, we have \(\text{Ass}(M) = \{(0), (2)\} \) by \((17.21)\) and \((17.5)\)(2). Next, take \(L := R \cdot (1, 1) \) and \(N := R \cdot (0, 1) \). Then the canonical maps \(R \to L \) and \(R \to N \) are isomorphisms. Hence both \(\text{Ass}(L) \) and \(\text{Ass}(N) \) are \(\{(0)\} \) by \((17.5)\)(2). Finally, \(L + N = M \) because \((a, b) \cdot (1, 1) + (b - a) \cdot (0, 1) \). \(\square \)

Exercise (17.24). If a prime \(p \) is sandwiched between two primes in \(\text{Ass}(M) \), is \(p \) necessarily in \(\text{Ass}(M) \) too?

Solution: No, for example, let \(R := k[X, Y] \) be the polynomial ring over a field. Set \(M := R \oplus (R/\langle X, Y \rangle) \) and \(p := \langle X \rangle \). Then \(\text{Ass}(M) = \text{Ass}(R) \cup \text{Ass}(R/\langle X, Y \rangle) \) by \((17.21)\). Further, \(\text{Ass}(R) = \langle 0 \rangle \) and \(\text{Ass}(R/\langle X, Y \rangle) = \langle X, Y \rangle \) by \((17.5)\). \(\square \)

Exercise (17.25). Let \(R \) be a ring, \(S \) a multiplicative subset, \(M \) a module, \(N \) a submodule. Prove \(\text{Ass}(M/N^S) \supset \{ p \in \text{Ass}(M/N) \mid p \cap S = \emptyset \} \), with equality if either \(R \) is Noetherian or \(M/N \) is Noetherian.

Solution: First, given \(p \in \text{Ass}(M/N) \) with \(p \cap S = \emptyset \), say \(p = \text{Ann}(m) \) with \(m \in M/N \). Let \(m' \in M/N^S \) be its residue. Then \(m' \neq 0 \); else, there’s \(s \in S \) with \(sm = 0 \), so \(s \notin p \), a contradiction. Finally, \(pm = 0 \), so \(pm' = 0 \); thus \(p \subset \text{Ann}(m') \).

Conversely, given \(x \in \text{Ann}(m') \), note \(xm \in N^S/N \). So there’s \(s \in S \) with \(sxm = 0 \). So \(sx \notin p \). But \(s \notin p \). So \(x \notin p \). Thus \(p \supset \text{Ann}(m') \). Thus \(p = \text{Ann}(m') \).

First, given \(p \in \text{Ass}(M/N^S) \), say \(p = \text{Ann}(m') \) with \(m' \in M/N^S \). Lift \(m' \) to \(m \in M/N \). Let’s show there’s no \(s \in p \cap S \). Else, \(sm \in N^S/N \). So there’s \(t \in S \) with \(tsm = 0 \). So \(m \in N^S/N \). So \(m' = 0 \), a contradiction. Thus \(p \cap S = \emptyset \).

It remains to show \(p \in \text{Ass}(M/N) \) if \(R \) is Noetherian or \(M/N \) is. Either way, \(R/\text{Ann}(M/N) \) is Noetherian by \((16.7)\) or by \((16.16)\). So there are finitely many \(x_i \in p \) that generate modulo \(\text{Ann}(M/N) \). Then \(x_i m \in N^S/N \). So there’s \(s_i \in S \) with \(s_i x_i m = 0 \). Set \(s := \prod s_i \in S \). Then \(x_i(sm) = 0 \). Given \(x \in p \), say \(x = a + \sum a_i x_i \) with \(a \in \text{Ann}(M/N) \) and \(a_i \in R \). Then \(a, x_i \in \text{Ann}(sm) \). So \(x \in \text{Ann}(sm) \).

Conversely, given \(x \in \text{Ann}(sm) \), note \(xsm' = 0 \). So \(xs \in p \). But \(s \notin p \). So \(x \notin p \). Thus \(p \supset \text{Ann}(sm) \). Thus \(p = \text{Ann}(sm) \). Thus \(p \in \text{Ass}(M/N) \), as desired. \(\square \)

Exercise (17.26). Let \(R \) be a ring, and suppose \(R_p \) is a domain for every prime \(p \). Prove every associated prime of \(R \) is minimal.

331
Solutions \((17.27) / (17.32)\) \hspace{1cm} \textbf{Associated Primes}

\textbf{Solution:} Let \(p \in \text{Ass}(R)\). Then \(p R_p \in \text{Ass}(R_p)\) by \((17.8)\). But \(R_p\) is a domain. So \(p R_p = (0)\) by \((17.5)\). Thus \(p\) is a minimal prime of \(R\) by \((11.12)\)(2).

Alternatively, say \(p = \text{Ann}(x)\) with \(x \in R\). Then \(x/1 \neq 0\) in \(R_p\); otherwise, there would be some \(s \in S_p := R - p\) with \(sx = 0\), contradicting \(p = \text{Ann}(x)\). However, for any \(y \in p\), we have \(xy/1 = 0\) in \(R_p\). Since \(R_p\) is a domain and since \(x/1 \neq 0\), we must have \(y/1 = 0\) in \(R_p\). So there exists some \(t \in S_p\) such that \(ty = 0\). But, \(p \supset q\) for some minimal prime \(q\) by \((3.16)\). Suppose \(p \neq q\). Then there is some \(y \in p - q\). So there exists some \(t \in R - p\) with \(ty = 0 \in q\), contradicting the primeness of \(q\). Thus \(p = q\); that is, \(p\) is minimal. \(\square\)

\textbf{Exercise (17.27).} — Let \(R\) be a ring, \(M\) a module, \(N\) a submodule, \(x \in R\). Assume that \(R\) is Noetherian or \(M/N\) is and that \(x \notin p\) for all \(p \in \text{Ass}(M/N)\). Show \(?xM \cap N = xN\).

\textbf{Solution:} Trivially, \(x N \subset x M \cap N\). Conversely, take \(m \in M\) with \(xm \in N\). Let \(m'\) be the residue of \(m\) in \(M/N\). Then \(xm' = 0\). By \((17.12)\), \(x \notin z \cdot \text{div}(M/N)\). So \(m' = 0\). So \(m \in N\). So \(xm \in x N\). Thus \(?x M \cap N \subset x N\), as desired. \(\square\)

\textbf{Exercise (17.28).} — Let \(R\) be a ring, \(M\) a module, \(p\) a prime. Show \((1)\)–\((3)\) are equivalent if \(R\) is Noetherian, and \((1)\)–\((4)\) are equivalent if \(M\) is Noetherian:

1. \(p\) is a minimal prime of \(M\).
2. \(p\) is minimal in \(\text{Supp}(M)\).
3. \(p\) is minimal in \(\text{Ass}(M)\).
4. \(p\) is a minimal prime of \(\text{Ann}(M)\).

\textbf{Solution:} First off, \((1)\) and \((2)\) are equivalent by definition, \((13.5)\).

Assume \((2)\). Then \(p \in \text{Ass}(M)\) by \((17.14)\). Say \(p \supset q\) with \(q \in \text{Ass}(M)\). Then \(q \in \text{Supp}(M)\) by \((17.13)\). So \(p = q\) by \((2)\). Thus \((3)\) holds.

Assume \((3)\). Then \(p \in \text{Supp}(M)\) by \((17.13)\). Say \(p \supset p'\) with \(p' \in \text{Supp}(M)\). Then \(p' \supset q\) with \(q \in \text{Ass}(M)\) by \((17.14)\). So \(p = p' = q\) by \((3)\). Thus \((2)\) holds.

Finally, if \(M\) is finitely generated, then \((1)\) and \((4)\) are equivalent by \((13.5)\). \(\square\)

\textbf{Exercise (17.29).} — Let \(R\) be a ring, \(a\) an ideal. Assume \(R/a\) is Noetherian. Show the minimal primes of \(a\) are associated to \(a\), and they are finite in number.

\textbf{Solution:} Set \(M := R/a\). Then \(a = \text{Ann}(M)\). Thus the minimal primes of \(a\) are associated to \(a\) by \((17.28)\), and they are finite in number by \((17.17)\). \(\square\)

\textbf{Exercise (17.30).} — Let \(M\) a Noetherian module. Show that \(\text{Supp}(M)\) has only finitely many irreducible components \(Y\).

\textbf{Solution:} By \((16.50)(3)\), these \(Y\) are the \(V(p)\) where \(p\) is a minimal prime of \(\text{Ann}(M)\). So they’re finite in number by \((17.29)\). \(\square\)

\textbf{Exercise (17.31).} — Take \(R := \mathbb{Z}\) and \(M := \mathbb{Z}\) in \((17.16)\). Determine when a chain \(0 \subset M_1 \subset M\) is acceptable, that is a chain like the one in \((17.16)\), and show that \(\text{then } p_2 \notin \text{Ass}(M)\).

\textbf{Solution:} If the chain is acceptable, then \(M_1 \neq 0\) as \(M_1/0 \simeq R/p_1\), and \(M_1\) is a prime ideal as \(M_1 = \text{Ann}(M/M_1) = p_2\). Conversely, the chain is acceptable if \(M_1\) is a nonzero prime ideal \(p\), as then \(M_1/0 \simeq R/0\) and \(M/M_1 \simeq R/p\).

Finally, \(\text{Ass}(M) = 0\) by \((17.5)\). Further, as just observed, given any acceptable chain, \(p_2 = M_1 \neq 0\). Thus \(p_2 \notin \text{Ass}(M)\). \(\square\)

\textbf{Exercise (17.32).} — Take \(R := \mathbb{Z}\) and \(M := \mathbb{Z}/(12)\) in \((17.16)\). Find all three acceptable chains, and show that, in each case, \(\{p_i\} = \text{Ass}(M)\).
Solution: An acceptable chain in M corresponds to a chain

$$\langle 12 \rangle \subset \langle a_1 \rangle \subset \langle a_2 \rangle \subset \cdots \subset \langle a_n \rangle = Z.$$

Here $\langle a_1 \rangle / (12) \simeq \mathbb{Z} / (p_1)$ with p_1 prime. So $a_1 p_1 = 12$. Hence the possibilities are $p_1 = 2$, $a_1 = 6$ and $p_1 = 3$, $a_1 = 4$. Further, $\langle a_2 \rangle / (a_1) \simeq \mathbb{Z} / (p_2)$ with p_2 prime. So $a_2 p_2 = a_1$. Hence, if $a_1 = 6$, then the possibilities are $p_2 = 2$, $a_2 = 3$ and $p_2 = 3$, $a_2 = 2$; if $a_1 = 4$, then the only possibility is $p_2 = 2$ and $a_2 = 2$. In each case, a_2 is prime; hence, $n = 3$, and these three chains are the only possibilities. Conversely, each of these three possibilities, clearly, does arise.

In each case, $\{p_1\} = \langle 2 \rangle, \langle 3 \rangle$. Hence (17.16.1) yields $\text{Ass}(M) \subset \langle \langle 2 \rangle, \langle 3 \rangle \rangle$. For any M, if $0 \subset M_1 \subset \cdots \subset M$ is an acceptable chain, then (17.6) and (17.5)(2) yield $\text{Ass}(M) \supset \text{Ass}(M_1) = \{p_1\}$. Here, there’s one chain with $p_1 = \langle 2 \rangle$ and another with $p_1 = \langle 3 \rangle$; hence, $\text{Ass}(M) \supset \langle \langle 2 \rangle, \langle 3 \rangle \rangle$. Thus $\text{Ass}(M) = \langle \langle 2 \rangle, \langle 3 \rangle \rangle$. \hfill \qed

Exercise (17.33) — Let R be a ring, M a nonzero Noetherian module, $x, y \in R$ and $a \in \text{rad}(M)$. Assume $a^* + x \in z.d.(M)$ for all $r \geq 1$. Show $a + xy \in z.d.(M)$.

Solution: Recall $z.d.(M) = \bigcup_{p \in \text{Ass}(M)} p$ by (17.12), and $\text{Ass}(M)$ is finite by (17.17). So the Pigeonhole Principle yields $r > s > 0$ and $p \in \text{Ass}(M)$ with $a^* + x, a^* + x \in p$. Say $p = \text{Ann}(m)$. Then $(a^* - s) a^* m = 0$. So $a^* m = 0$ by (4.15). So $a^* \in p$. Hence $a, x \in p$. Thus $a + xy \in p \subset z.d.(M)$. \hfill \qed

Exercise (17.34) (Grothendieck Group $K_0(R)$) — Let R be a ring, \mathcal{C} a subcategory of (R-mod) such that the isomorphism classes of its objects form a set Λ. Let C be the free Abelian group $\mathbb{Z}^{\oplus \Lambda}$. Given M in \mathcal{C}, let $(M) \in \Lambda$ be its class. To each short exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ in \mathcal{C}, associate the element $(M_2) - (M_1) - (M_3)$ of C. Let $D \subset C$ be the subgroup generated by all these elements. Set $K(\mathcal{C}) := C / D$, and let $\gamma_\mathcal{C} : C \to K(\mathcal{C})$ be the quotient map.

In particular, let N be the subcategory of all Noetherian modules and all linear maps between them; set $K_0(R) := K(N)$ and $\gamma_0 := \gamma_N$. Show:

1. Then $K(\mathcal{C})$ has this UMP: for each Abelian group G and function $\lambda : \Lambda \to G$ with $\lambda(M_2) = \lambda(M_1) + \lambda(M_3)$ for all exact sequences as above, there’s an induced \mathbb{Z}-map $\lambda : K(\mathcal{C}) \to G$ with $\lambda(M) = \lambda_0(\gamma_\mathcal{C}(M))$ for all $M \in \mathcal{C}$.
2. Then $K_0(R)$ is generated by the various elements $\gamma_0(R/p)$ with p prime.
3. Assume R is a Noetherian domain. Find a surjective \mathbb{Z}-map $\kappa : K_0(R) \to Z$.
4. Assume R is a field or a PID. Then $K_0(R) = Z$.
5. Assume R is Noetherian. Let $\varphi : R \to R'$ and $\psi : R' \to R''$ be module-finite maps of rings. Then (a) restriction of scalars gives rise to a \mathbb{Z}-map $\varphi_0 : K_0(R') \to K_0(R)$, and (b) we have $(\psi \varphi)_0 = \varphi_0 \psi_0$.

Solution: In (1), λ induces a \mathbb{Z}-map $\lambda' : C \to G$ by (4.10). But by hypothesis, $\lambda(M_2) = \lambda(M_1) + \lambda(M_3)$; so $D \subset \text{Ker}(\lambda')$. Thus (4.6) yields (1).

For (2), note (17.16) provides a chain $0 = M_0 \subset M_1 \subset \cdots \subset M_{n-1} \subset M_n = M$ where $M_i / M_{i-1} \simeq R/p_i$ with p_i prime. Then $\gamma_0(M_i) - \gamma_0(M_{i-1}) = \gamma_0(R/p_i)$. So $\gamma_0(M) = \sum \gamma_0(R/p_i)$. Thus (2) holds.

For (3), set $K := \text{Frac}(R)$, and define $\lambda : \Lambda \to Z$ by $\lambda(M) := \dim_k(K \otimes M)$. Given a short exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$, note that the sequence $0 \to K \otimes M_1 \to K \otimes M_2 \to K \otimes M_3 \to 0$ is also exact by (11.2), (12.10), and (12.13); so $\lambda(M_2) = \lambda(M_1) + \lambda(M_3)$. So λ induces a \mathbb{Z}-map $\lambda_0 : K_0(R) \to Z$ by (1). But $\lambda_0(R^n) = n$ and $R^n \in N$ by (16.14); so λ_0 is surjective. Thus (3) holds.
In (4), given a prime \(p \), say \(p = \langle p \rangle \). If \(p \neq 0 \), then \(\mu_p : R \to p \) is injective, so an isomorphism. But \(0 \to p \to R \to R/p \to 0 \) is exact. Hence \(\gamma_0(R/p) = 0 \) if \(p \neq 0 \), and \(\gamma_0(R/p) = (R) \) if \(p = 0 \). So \(\gamma_0(R) \) generates \(K_0(R) \) by (2). Thus (3) yields (4).

In (5), as \(R \) is Noetherian, \(R' \) and \(R'' \) are too by (16.10). But, over a Noetherian ring, a module is Noetherian if and only if it is finitely generated by (16.15). Thus we need consider only the finitely generated modules over \(R, R', \) and \(R'' \).

Via restriction of scalars, each finitely generated \(R' \)-module is a finitely generated \(R \)-module too by (10.16). So restriction of scalars induces a function from the isomorphism classes of finitely generated \(R' \)-modules to \(K_0(R) \). Plainly, restriction of scalars preserves exactness. Thus (1) yields (a).

For (b), recall that \(R'' \) is module finite over \(R \) by (10.17) (3). So \((\psi \phi) \) is defined. Plainly, restriction of scalars respects composition. Thus (b) holds. \(\square \)

Exercise (17.35) (Grothendieck Group \(K_0(R) \)). Keep the setup of (17.34). Assume \(R \) is Noetherian. Let \(\mathcal{F} \) be the subcategory of \((R\text{-mod})\) of all finitely generated flat \(R \)-modules \(M \) and all linear maps between them; set \(K^0(R) := K(\mathcal{F}) \) and \(\gamma^0 := \gamma_{\mathcal{F}} \).

For \(\phi : R \to R' \) and \(\psi : R' \to R'' \) be maps of Noetherian rings. Show:

1. Setting \(\gamma^0(M) \gamma^0(N) := \gamma^0(M \otimes N) \) makes \(K^0(R) \) a \(\mathbb{Z} \)-algebra with \(\gamma^0(R) = 1 \).
2. Setting \(\gamma^0(M) \gamma^0(L) := \gamma^0(M \otimes L) \) makes \(K_0(R) \) a \(K^0(R) \)-module.
3. Assume \(R \) is local. Then \(K^0(R) = \mathbb{Z} \).
4. Setting \(\phi^* \gamma^0(M) := \gamma^0(M \otimes_R R') \) defines a ring map \(\phi^* : K^0(R) \to K^0(R') \).

Moreover, \((\phi \psi)^* = \phi^* \psi' \).

5. If \(\phi : R \to R' \) is module finite, then \(\phi^* : K_0(R') \to K_0(R) \) is linear over \(K^0(R) \).

Solution: In (1), by construction \(K^0(R) \) is a \(\mathbb{Z} \)-module. Given two finitely generated, flat \(R \)-modules \(M \) and \(N \), note that \(M \otimes N \) is finitely generated owing to (8.16), and is flat owing to (9.24) and (8.5)(2). As \(M \) is flat, \(M \otimes \bullet \) is exact. So by (17.34)(1) with \(G : K^0(R) \), the function \(N \mapsto M \otimes N \) induces a \(\mathbb{Z} \)-map \(K^0(R) \to K^0(R) \); in particular, \(\gamma^0(M \otimes N) \) depends only on \(\gamma^0(N) \).

Similarly, as \(N \) is flat, \(M \mapsto M \otimes N \) induces a \(\mathbb{Z} \)-map \(K^0(R) \to K^0(R) \); in particular, \(\gamma^0(M \otimes N) \) depends only on \(\gamma^0(M) \). Setting \(\gamma^0(M) \gamma^0(N) := \gamma^0(M \otimes N) \) thus gives \(K^0(R) \) a well-defined two-sided distributive product. It’s associative by (8.8). It’s commutative by (8.5)(1). And \(\gamma^0(R) = 1 \) by (8.5)(2). Thus (1) holds.

To prove (2), argue as in (1) with one major difference: since \(L \) needn’t be flat, given a short exact sequence \(0 \to M_1 \to M_2 \to M_3 \to 0 \) where \(M_3 \) is flat, note that \(0 \to M_1 \otimes L \to M_2 \otimes L \to M_3 \otimes L \to 0 \) is also exact by (9.8)(1).

For (3), recall that, as \(R \) is Noetherian, any finitely generated module is finitely presented by (16.15). Hence any finitely generated, flat \(M \) is free by (10.12), so \(M \cong R^n \) for some \(n \geq 0 \). Thus \(\gamma^0(R) \) generates \(K^0(R) \) as a \(\mathbb{Z} \)-algebra.

Consider the function \(R^n \to n \); it passes to the isomorphism classes of the \(R^n \) by (10.5)(2) or (5.32)(2). Given a short exact sequence \(0 \to R^{n_1} \to R^{n_2} \to R^{n_3} \to 0 \), note \(R^{n_2} \cong R^{n_1} \oplus R^{n_3} \) by (5.16)(2) and (5.15); so \(n_2 = n_1 + n_3 \). Hence arguing as in (17.34)(1) shows that this function induces a \(\mathbb{Z} \)-map \(\lambda^0 : K^0(R) \to \mathbb{Z} \). But \(\lambda^0(\gamma^0(R)) = 1 \), and \(\gamma^0(R) \) generates \(K^0(R) \). Thus (3) holds.

For (4), given a finitely generated, flat \(R \)-module \(M \), note that \(M \otimes_R R' \) is finitely generated and flat over \(R' \) by (8.14) and (9.22). Arguing as in (2), but with \(R' \) for \(N \) shows that \(M \mapsto M \otimes_R R' \) induces a \(\mathbb{Z} \)-map \(\phi^* : K^0(R) \to K^0(R') \). It’s a ring map as \((M \otimes_R N) \otimes_R R' = M \otimes_R (N \otimes_R R') = (M \otimes_R R') \otimes_R (N \otimes_R R') \) by (8.8) and (8.9). Finally, \((\phi \psi)^* = \phi^* \psi' \) as \((M \otimes_R R') \otimes_R R'' = M \otimes_R R'' \) again.
by (8.9). Thus (4) holds.

For (5), note \((M \otimes_R R') \otimes_{R'} L = M \otimes_R L\) by (8.9). Hence \(\varphi_i(\gamma^0(M)\gamma_0(L))\)

is equal to \(\gamma^0(M)\varphi_i(\gamma_0(L))\). Thus, by \(Z\)-linearity, (5) holds.

18. Primary Decomposition

Exercise (18.6). — Let \(R\) be a ring, and \(p = \langle p \rangle\) a principal prime generated by

a nonzerodivisor \(p\). Show every positive power \(p^n\) is old-primary and \(p\)-primary. Show conversely, an ideal \(q\) is equal to some \(p^n\) if either (1) \(q\) is old-primary and

\(\sqrt{q} = p\) or (2) \(R\) is Noetherian and \(q\) is \(p\)-primary.

Solution: First, note that \(\text{Ann}(R/p^n) = p^n\). Thus \(\text{nil}(R/p^n) = p\) by (3.32)(4).

Now, given \(x, y \in R\) with \(xy \in p^n\) but \(y \notin p\), note \(p \mid xy\), but \(p \nmid y\). But \(p\) is prime. So \(p \mid x\). So \(x^n \in p^n\). Thus \(p^n\) is old-primary.

Let’s now proceed by induction to show \(p^n\) is \(p\)-primary. Form the exact sequence

\[0 \to p^n/p^{n+1} \to R/p^{n+1} \to R/p^n \to 0.\]

Consider the map \(R \to p^n/p^{n+1}\) given by \(x \mapsto xp^n\). It is surjective, and its kernel is \(p\) as \(p\) is a nonzerodivisor. Hence \(R/p \to p^n/p^{n+1}\). But \(\text{Ass}(R/p) = \{p\}\) by (17.5)(2). Thus (18.6) yields \(\text{Ass}(R/p^n) = \{p\}\) for every \(n \geq 1\), as desired.

Conversely, assume (1). Then \(p = \sqrt{q}\). So \(p^n \in q\) for some \(n\); take \(n\) minimal. Then \(p^n \subseteq q\). Suppose there’s \(x \in q - p^n\). Say \(x = yp^m\) for some \(y\) and \(m\geq 0\). Then \(m < n\) as \(x \notin p^n\). Take \(m\) maximal. Now, \(p^n \notin q\) as \(n\) is minimal. But \(q\) is old-primary. So \(y \in q \subseteq p\). So \(y = zp\) for some \(z\). Then \(x = zp^{m+1}\), contradicting the maximality of \(m\). Thus \(q = p^n\), as desired.

Finally, assume (2). Then \(\text{Ass}(R/q) = \{p\}\); also \(q\) is old primary by (18.2)(4). So \(\sqrt{q} = p\) by (18.3)(3). So (1) holds. Thus by the above, \(q\) is equal to some \(p^n\). \(\square\)

Exercise (18.7). — Let \(\varphi: R \to R'\) be a ring map, \(M\) an \(R\)-module, \(Q' \subseteq \varphi(M)\) \(R'\)-modules, \(\alpha: M \to M'\) an \(R\)-map. Set \(Q := \alpha^{-1}Q'\), and assume \(Q \subsetneq M\). Set \(p := \text{nil}(M/Q)\) and \(p' := \text{nil}(M'/Q')\). If \(Q'\) is old-primary, show \(Q\) is and \(\varphi^{-1}p' = p\).

Conversely, when \(\varphi\) and \(\alpha\) are surjective, show \(Q'\) is old-primary if \(Q\) is.

Solution: Assume \(Q'\) old-primary. Given \(x \in z\text{.div}(M/Q)\), there’s \(m \in M - Q\) with \(xm \in Q\). Then \(\alpha(m) \in M' - Q'\) with \(\alpha(xm) \in Q'\). But \(\alpha(xm) = \varphi(x)\alpha(m)\). As \(Q'\) is old-primary, \(\varphi(x) \in p'\). So \(x \in \varphi^{-1}p'\). Thus \(z\text{.div}(M/Q) \subseteq \varphi^{-1}p'\).

Given \(x \in \varphi^{-1}p'\), there’s \(n\) with \(\varphi(x)^n \in \text{Ann}(M'/Q')\). So \(\varphi(x)^n\alpha(m) \in Q'\) for all \(m \in M\). But \(\varphi(x)^n\alpha(m) = \alpha(x^n m)\). So \(x^n m \in Q\). So \(x \in p\). Thus \(\varphi^{-1}p' \subseteq p\).

Note \(p \subset z\text{.div}(M/Q)\) by (17.11.1). Thus \(p \subset z\text{.div}(M/Q) \subset \varphi^{-1}p' \subseteq p\). Thus \(z\text{.div}(M/Q) = \varphi^{-1}p' = p\), and so (18.3)(1) implies \(Q\) is old-primary.

Conversely, assume \(\varphi\) and \(\alpha\) are surjective and \(Q\) is old-primary. Given \(x' \in R'\) and \(m' \in M'\) with \(x'm' \in Q'\), but \(m' \notin Q'\), take \(x \in R\) with \(\varphi(x) = x'\) and \(m = M\) with \(\alpha(m) = m'\). Then \(\alpha(xm) = x'm'\). So \(xm \in Q\), but \(m \notin Q\). As \(Q\) is old-primary, \(x \in p\). So there’s \(n\) with \(x^n \in \text{Ann}(M/Q)\), or \(x^n M \subset Q\). Hence \(x^n M' \subset Q'\), or \(x^n \in \text{Ann}(M'/Q')\). Thus \(x' \in p'\). Thus \(Q'\) is old-primary. \(\square\)

Exercise (18.25). — Fix a prime \(p \in \mathbb{Z}\). Set \(M := \bigoplus_{n=1}^{\infty} \mathbb{Z}/(p^n)\) and \(Q := 0\) in \(M\). Show \(Q\) is \(p\)-primary, but not old-primary (even though \(\mathbb{Z}\) is Noetherian).
Solutions: Set $M_k := \bigoplus_{n=1}^k \mathbb{Z}/(p^n)$. Then $M = \bigcup_{k=1}^\infty M_k$. So (17.22) yields $\text{Ass}(M) = \bigcup_{k=1}^\infty \text{Ass}(M_k)$. But $\text{Ass}(M_k) = \bigcup_{k=1}^k \text{Ass}(M_k)$ by (17.21). Moreover, $\text{Ass}(M_0) = \langle p \rangle$ by (18.6). Thus $\text{Ass}(M/\langle Q \rangle) = \langle p \rangle$. Thus Q is (p)-primary.

Set $m := (1, p, p^2, \ldots)$. Then $pm = 0 \in Q$, but $m \notin Q$. And $\text{Ann}(M) = \langle 0 \rangle$. So $p \notin \text{nil}(M/\langle Q \rangle)$. Thus Q is not old-primary. □

Exercise (18.26). — Let k be a field, and $k[X, Y]$ the polynomial ring. Let a be the ideal $\langle X^2, XY \rangle$. Show a is not primary, but \sqrt{a} is prime. Recall $S := S_p$. Show a satisfies this condition: $FG \in a$ implies $F^2 \in a$ or $G^2 \in a$.

Solution: First, $\langle X \rangle$ is prime by (2.9). But $\langle X^2 \rangle \subseteq a \subseteq \langle X \rangle$. So $\sqrt{a} = \langle X \rangle$ by (3.40). On the other hand, $XY \notin a$, but $X \notin a$ and $Y \notin \sqrt{a}$; thus a is not primary by (18.3)(5). If $FG \in a$, then $X | F$ or $X | G$, so $F^2 \in a$ or $G^2 \in a$. □

Exercise (18.27). — Let R be PIR, q a primary ideal, and p, r prime ideals.

1. Assume $q \subseteq p$ and $r \subseteq p$. Show $r \subseteq q$. (2) Assume $r = \sqrt{q} \subseteq p$. Show $r = q$. (3) Assume $r \subseteq p$. Show r is the intersection of all primary ideals contained in p. (4) Assume p and r are not comaximal. Show one contains the other.

Solution: As R is a PIR, there are $p, r \in R$ with $p = \langle p \rangle$ and $r(\langle p \rangle)$. For (1), note $r \subseteq p$ implies $r = xp$ for some $x \in R$, but $p \notin r$. So as r is prime, $x \in r$. So $x = yr$ for some $y \in R$. Thus $1 - yp = 0 \in q$.

Note $1 - yp \notin p$. But $q \subseteq p$ and p is prime, so $\sqrt{q} \subseteq p$. Hence $1 - yp \notin \sqrt{q}$. So $r \in q$ by (18.3)(5). Thus $r \subseteq q$, as desired.

For (2), note $r = \sqrt{q} \cup q$. But (1) yields $r \subseteq q$. Thus $r = q$, as desired.

For (3), note r is itself a primary ideal by (18.2). Thus (1) yields what’s desired.

For (4), note some prime m contains both p and r. But (3) implies m can properly contain at most one prime. So if p and r are distinct, then one is equal to m, and so contains the other, as desired. □

Exercise (18.28). — Let $Z[X]$ be the polynomial ring, and set $m := \langle 2, X \rangle$ and $q := \langle 4, X \rangle$. Show m is maximal, q is m-primary, and q is not a power of m.

Solution: For any $z \in Z$, form the map $\varphi_z: Z[X] \rightarrow Z/\langle z \rangle$ restricting to the quotient map $Z \rightarrow Z/\langle z \rangle$ and sending X to 0. Then $\ker(\varphi_z) = \langle z, X \rangle$. Therefore, $Z[X]/\langle z, X \rangle \rightarrow Z/\langle z \rangle$.

Take $z := 2$. Then $Z[X]/m \rightarrow Z/\langle 2 \rangle$. But $Z/\langle 2 \rangle$ is a field. Thus m is maximal.

Take $z := 4$. Then $Z[X]/q \rightarrow Z/\langle 4 \rangle$. But 2 is the only nilpotent of $Z/\langle 4 \rangle$. So $m = \text{nil}(Z[X]/q)$. Thus q is m-primary by (18.8).

Finally, $X \notin m^k$ for $k > 1$. But $X \in q$. Thus q is not a power of m. □

Exercise (18.29). — Let k be a field, $R := k[X, Y, Z]$ the polynomial ring in three variables. Set $p_1 := \langle X, Y \rangle$, set $p_2 := \langle X, Z \rangle$, set $m := \langle X, Y, Z \rangle$, and set $a := p_1 p_2$. Show that $a = p_1 \cap p_2 \cap m^2$ is an irredundant primary decomposition. Which associated primes are minimal, and which are embedded?

Solution: Clearly $a \subseteq p_1 \cap p_2 \cap m^2$. Conversely, given $F \in m^2$, write $F = G_1X^2 + G_2Y^2 + G_3Z^2 + G_4XY + G_5XZ + G_6YZ$.

If $F \in p_1$, then $G_1Z^2 \in p_1$, so $G_3 \in p_1$, so $G_2Z^2 \in a$. Similarly, if $F \in p_2$, then $G_2Y^2 \in a$. Thus $a = p_1 \cap p_2 \cap m^2$.

The p_i are prime, so primary by (18.2), and m^2 is primary by (18.11). Thus
a = p₁ ∩ p₂ ∩ m² is a primary decomposition.

The three primes p₁, p₂, m are clearly distinct. Moreover, X ∈ (p₁ ∩ p₂) - m² and Y² ∈ (m² ∩ p₁) - p₂ and Z² ∈ (m² ∩ p₂) - p₁. Thus a = p₁ ∩ p₂ ∩ m² is irredundant.

Plainly, the pᵢ are minimal, and m is embedded. □

Exercise (18.30). — Let k be a field, R := k[X,Y,Z] be the polynomial ring. Set a := ⟨XY, X - YZ⟩, set q₁ := ⟨X, Z⟩ and set q₂ := ⟨Y², X - YZ⟩. Show that a = q₁ ∩ q₂ holds and that this expression is an irredundant primary decomposition.

Solution: First, XY = Y(X - YZ) + Y²Z ∈ q₂. Hence a ⊆ q₁ ∩ q₂. Conversely, take F ∈ q₁ ∩ q₂. Then F ∈ q₂, so F = GY² + H(X - YZ) with G, H ∈ R. But F ∈ q₁, so G ∈ q₁: say G = AX + BZ with A, B ∈ R. Then

F = (AY + B)XY + (H - BY)(X - YZ) ∈ a.

Thus a ⊇ q₁ ∩ q₂. Thus a = q₁ ∩ q₂ holds.

Finally, q₁ is prime by (2.9). Now, using (18.7), let’s show q₂ is ⟨X, Y⟩-primary. Form φ: k[X,Y,Z] → k[Y,Z] with φ(X) := YZ. Clearly, q₂ = φ⁻¹(⟨Y²⟩) and ⟨X, Y⟩ = φ⁻¹(⟨Y⟩); also, ⟨Y²⟩ is ⟨Y⟩-primary by (18.2). Thus a = q₁ ∩ q₂ is a primary decomposition. It is irredundant as q₁ and ⟨X, Y⟩ are distinct. □

Exercise (18.31). — For i = 1, 2, let Rᵢ be a ring, Mᵢ a Rᵢ-module with 0 ⊆ Mᵢ primary. Find an irredundant primary decomposition for 0 ⊆ M₁ ∩ M₂ over R₁ × R₂.

Solution: Set Q₁ := 0 × M₂ and Q₂ := M₁ × 0. Then 0 = Q₁ ∩ Q₂.

Say Assᵣ₁(M₁) = {p₁}. Set Q₁ := p₁ × R₂. Let’s show Q₁ is p₁-primary.

Set R := R₁ × R₂ and M := M₁ × M₂. Note M/Q₁ = M₁ where M₁ is viewed as an R-module by (x, y)m = xmn. Say p₁ = Annᵣ₁(m₁) with m₁ ∈ M₁. Then p₁ = Annᵣ(Mᵢ). But Q₁ is prime by (2.29). Thus Q₁ ∈ Assᵣ(M/Q₁).

Given any q ∈ Assᵣ(M/Q₁), note q = p × R₂ with p ⊆ R₁ prime by (2.29). But q = Annᵣ(m) with m ∈ M₁. So p = Annᵣ(m₁). So p ∈ Assᵣ(M₁). But 0 ⊆ M₁ is p₁ primary. So p = p₁. So Assᵣ(M/Q₁) = {p₁}. Thus Q₁ is primary.

Similarly, Q₂ is primary. Thus 0 = Q₁ ∩ Q₂ is a primary decomposition; plainly it’s irredundant. □

Exercise (18.32). — Let R be a ring, a an ideal. Assume a = √a. Prove (1) every prime p associated to a is minimal over a and (2) if R is Noetherian, then the converse holds, and √a = ∩ₚ∈Ass(R/a) p is an irredundant primary decomposition. Find a simple example showing (1) doesn’t generalize to modules.

Solution: By (3.17), √a = ∩ₚ pₐ where the pₐ are the minimal primes over a.

For (1), say p = Ann(x) with x ∈ R/a and x ≠ 0. So x ∉ pₐ/a for some λ. Lift x to x' ∈ R. Then x' ∉ pₐ. Given y ∈ p, note x'y ∈ pₐ. So y ∈ pₐ. Thus p ⊆ pₐ. But pₐ is minimal. So p = pₐ. Thus (1) holds.

For (2), assume R is Noetherian. Then the pₐ are associated to a and are finite in number by (17.29). But primes are primary by (18.2). So √a = ∩ₚ∈Ass(a) p is a primary decomposition. It is irredundant, as pₐ ⊇ ∩ₚ≠λ pₐ would imply pₐ ⊇ pₐ for some μ by (2.23). Thus (2) holds.

Finally, for an example, take R to be any domain not a field, and m a maximal ideal. Set k := R/m and M := R ⊕ k. Then Ass(M) = Ass(R) ∪ Ass(k) by (17.21). Further, Ass(R) = (0) and Ass(k) = m by (17.5). Thus m is embedded, but plainly Ann(M) = 0. Also, R is a domain. Thus Ann(M) = nil(M). □
Exercise (18.33). — Let \(R \) be a ring, \(M \) a module. We call a proper submodule \(Q \) irreducible if \(Q = N_1 \cap N_2 \) implies \(Q = N_1 \) or \(Q = N_2 \). Prove: (1) an irreducible submodule \(Q \) is primary if \(M/Q \) is Noetherian; and (2) a proper submodule \(N \) is the intersection of finitely many irreducible submodules if \(M/N \) is Noetherian.

Solution: For (1), note that \(Q \) has an irredundant primary decomposition by \((18.19)\), say \(Q = Q_1 \cap \cdots \cap Q_n \). As \(Q \) is irreducible, \(Q = Q_1 \) or \(Q = Q_2 \cap \cdots \cap Q_n \).

If the latter, then \(Q = Q_i \) for some \(i \geq 2 \) by recursion. Thus (1) holds.

Alternatively, here’s a proof not using the existence of primary decompositions. As \(Q \) is irreducible in \(M \), plainly 0 is irreducible in \(M/Q \). And, if 0 is primary in \(M/Q \), then \(Q \) is primary in \(M \) by definition \((18.1)\). Thus we may assume \(Q = 0 \).

Given \(x \in R \) and a nonzero \(m \in M \) such that \(xm = 0 \), let’s show \(x \in \text{nil}(M) \).

Set \(M_n := \{ m' \in M \mid x^n m' = 0 \} \). Then \(M_1 \subseteq M_2 \subseteq \cdots \) is a chain of submodules of \(M \). But \(M \) is Noetherian as \(Q = 0 \). So \(M_n = M_{n+1} = \cdots \) for some \(n \geq 1 \).

Given \(m' \in x^n M \cap Rm \), say \(m' = x^n m'' \) with \(m'' \in M \). But \(m' \in Rm \) and \(xm = 0 \), so \(xm' = 0 \). Hence \(x^{n+1} m'' = 0 \), so \(m'' \in M_{n+1} \). But \(M_{n+1} = M_n \). So \(x^n m'' = 0 \). Thus \(m' = 0 \).

Hence \(x^n M \cap Rm = 0 \). But \(Rm \neq 0 \) and 0 is irreducible. So \(x^n M = 0 \). Thus \(x \in \text{nil}(M) \). So 0 is old-primary, so primary by \((18.3)\)(4). Thus again (1) holds.

For (2), form the set \(S \) of all submodules of \(M \) that contain \(N \) and are not an intersection of finitely many irreducible submodules. As \(M/N \) is Noetherian, \(S \) has a maximal element \(K \). As \(K \in S \), it’s not irreducible. So \(K = K_1 \cap K_2 \) with \(K \not\subseteq K_i \). So \(K_i \notin S \). So \(K_i \) is an intersection of finitely many irreducible submodules; hence, \(K \) is too. Thus (2) holds. \(\square \)

Exercise (18.34). — Let \(R \) be a ring, \(M \) a module, \(N \) a submodule. Consider:

1. The submodule \(N \) is old-primary.
2. Given a multiplicative subset \(S \), there is \(s \in S \) with \(N^S = (N : (s)) \).
3. Given \(x \in R \), the sequence \((N : (x)) \subset (N : (x^2)) \subset \cdots \) stabilizes.

Prove (1) implies (2), and (2) implies (3). Prove (3) implies (1) if \(N \) is irreducible.

Solution: Assume (1). To prove (2), note \(N^S \supset (N : (s)) \) for all \(s \in S \).

First, suppose there’s \(s \in \text{nil}(M/N) \cap S \). Then there is \(k \geq 0 \) with \(s^k M \subset N \). So \((N : (s^k)) = M \). But \(s^k \in S \). Hence \(N^S \supset (N : (s^k)) = M \). Thus \(N^S = (N : (s^k)) \).

Next, suppose \(\text{nil}(M/N) \cap S = \emptyset \). Given \(m \in N^S \), there is \(s \in S \) with \(sm \in N \).

So \(m \in N \) by (1). Thus \(N^S = N \). So \(N^S = (N : (s)) \). But 1 \(\in S \). Thus (2) holds.

Assume (2). To prove (3), note \(N^S_e \supset (N : (x^\ell)) \) for all \(\ell \). But (2) yields \(k \) with \(N^S \supset (N : (x^k)) \). Hence \((N : (x^k)) = (N : (x^{k+1})) = \cdots = N^S \).

Thus (3) holds.

Assume (3). To prove (1), note \((N : (x^k)) = (N : (x^{k+1})) \) for some \(k \). Let’s show

\[N = N' \cap N'' \text{ with } N' := N + Rm \text{ and } N'' := N + x^k M. \] \((18.34.1)\)

Plainly, \(N \subset N' \cap N'' \). Conversely, given \(m' \in N' \cap N'' \), note \(xm' \in N + Rm \).

But \(xm \in N \). So \(xm' = n + x^k m'' \) with \(n \in N \) and \(m'' \in M \). So \(xm' = xn + x^{k+1}m'' \). So \(x^{k+1}m'' \in N \). Hence \(m'' \in (N : (x^{k+1})) = (N : (x^k)) \).

Thus \(m' \in N \). Thus \((18.34.1)\) holds.

Also assume \(N \) is irreducible. Recall \(m \notin N \). Hence \(N + x^k M = N \) owing to \((18.34.1)\). So \(x^k M \subset N \). So \(x \in \text{nil}(M/N) \). Thus (1) holds. \(\square \)

Exercise (18.35). — Let \(R \) be a ring, \(M \) a Noetherian module, \(N \) a submodule, \(m \subset \text{rad}(M) \) an ideal. Show \(N = \bigcap_{n \geq 0} (m^n M + N) \).
Set $M := M/N$ and $N' := \bigcap m^n M'$. Then by (18.23), there’s $x \in m$ with $(1 + x)N' = 0$. But $m \subseteq \text{rad}(M) \subseteq \text{rad}(M')$. So $N' = 0$ by (4.15). But $m^n M' = (m^n M + N)/N$. Thus $\cap (m^n M + N)/N = 0$, as desired. \hfill \Box

18. Appendix: Old-primary Submodules

Exercise (18.49) . — Let $q \subseteq p$ be primes, M a module, and Q an old-primary submodule with $\text{nil}(M/Q) = q$. Then $0^{q^p} \subseteq Q$.

Solution: Given $m \in 0^{q^p}$, there’s $s \in S_p$ with $sm = 0$. Then $sm \in Q$, but $s \notin q$. So $m \in Q$. Thus $0^{q^p} \subseteq Q$. \hfill \Box

Exercise (18.50) . — Let R be an absolutely flat ring, q an old-primary ideal. Show that q is maximal.

Solution: Set $p := \sqrt{q}$. Then p is prime by (18.3)(2). So (13.61) yields that p is maximal and that R_p is a field. So $pR_p = 0$. Thus $qR_p = pR_p$.

Set $S := S_p := R - p$. Then $q^S = p^S$ by (11.11)(2). But $p = p^S$ by (11.11)(3). Thus $q^S = p$. So given $x \in p$, there’s $s \in S$ with $sx \in q$. But $s \notin p$. So $x \in q$ by hypothesis. Thus $p \subseteq q$. But p is maximal. So $p = q$. Thus q is maximal. \hfill \Box

Exercise (18.51) . — Let X be an infinite compact Hausdorff space, R the ring of continuous \mathbb{R}-valued functions on X. Using (14.26), show that (0) is not a finite intersection of old-primary ideals.

Solution: Every maximal ideal has the form $m_x := \{ f \in R \mid f(x) = 0 \}$ for some $x \in X$ by (14.26)(1). Given an ideal q with $q \subseteq m_x \cap m_y$ but $x \neq y$, let’s now see that q isn’t old-primary.

Given $f \in R$, set $U_f = \{ x \in X \mid f(x) \neq 0 \}$. By (14.26)(3), the U_f form a basis of the topology. But X is Hausdorff, and $x \neq y$. So there are f, g with $x \in U_f$ and $y \in U_g$, but $U_f \cap U_g = 0$. Then $f \notin m_x$ and $g^n \notin m_y$ for all n. So $f, g^n \notin q$. But $fg = 0 \in q$. Thus q isn’t old-primary.

Given finitely many old-primary ideals q_i, say $q_i \subseteq m_{x_i}$. As X is infinite, there’s $x \in X$ with $x \neq x_i$ for all i. By the above, there’s $f_i \in q_i - m_{x_i}$. Set $f = \prod f_i$. Then $f \in \bigcap q_i$, but $f(x) \neq 0$. Thus $(0) \neq \bigcap q_i$. \hfill \Box

Exercise (18.52) . — Let R be a ring, X a variable, $N, Q \subseteq M$ modules, and $N = \bigcap_{i=1}^r Q_i$ a decomposition. Assume Q is old-primary. Assume $N = \bigcap_{i=1}^r Q_i$ is irredundant; that is, (18.13)(1)–(2) hold. Show:

1. Assume M is finitely generated. Let p be a minimal prime of M. Then $p[X]$ is a minimal prime of $M[X]$.
2. Then $\text{nil}(M[X]/N[X]) = \text{nil}(M/N)[X]$.
3. Then $Q[X]$ is old-primary in $M[X]$.
4. Then $N[X] = \bigcap_{i=1}^r Q_i[X]$ is irredundant in $M[X]$.

Solution: For (1), note p is, by (13.5), a minimal prime of $\text{Ann}(M)$ as M is finitely generated. Thus $p[X] \supseteq \text{Ann}(M[X])$. Now, given $p[X] \supseteq \mathfrak{p} \supseteq \text{Ann}(M[X])$ with \mathfrak{p} prime, set $p' := \mathfrak{p} \cap R$. Intersecting with R plainly gives $p \supseteq p' \supseteq \text{Ann}(M)$. But p' is prime. So $p' = p$.

So $p[X] \supseteq \mathfrak{p} \supseteq p'[X] = p[X]$. So $\mathfrak{p} = p[X]$. Thus $p[X]$ is a minimal prime of $\text{Ann}(M[X])$. But $M[X]$ is finitely generated over $R[X]$. Thus (13.5) yields (1).

For (2), note $M[X]/N[X] = (M/N)[X]$ by (4.18)(3) or (8.31). So (4.19)(1)
yields $\text{Ann}(M[X]/N[X]) = \text{Ann}(M/N)[X]$. Thus taking radicals yields (2).

For (3), set $p := \text{nil}(M/Q)$. Then $\text{nil}(M[X]/N[X]) = p[X]$ by (2). Thus given $f \in R[X]$ and $m \in M[X]$ with $fm \in Q[X]$ but $m \notin Q[X]$, we must see $f \in p[X]$.

Say $f = a_0 + \cdots + a_nX^n$ and $m = m_0 + \cdots + m_dX^d$ with d minimal among all m with $fm \in Q[X]$ but $m \notin Q[X]$. Suppose $fm_d \notin Q[X]$. Let’s find a contradiction.

Say $ar_im_d \notin Q$, but $ar_{i+1}m_d \in Q$ for $i > 0$. Fix $i > 0$. Set $m' := ar_{i+1}(m - m_dX^d)$. Then $fm' \in Q[X]$, as $fm \in Q[X]$ and $ar_{i+1}m_d \in Q$. Also $\deg(m') < d$. Hence the minimality of d yields $m' \in Q[X]$. So $ar_{i+1}m_{d-1} \in Q$. But i is arbitrary with $i > 0$. Also $fm \in Q[X]$, so $ar_im_d + ar_{i+1}m_{d-1} + \cdots \in Q$. So $ar_im_d \in Q$, a contradiction. Thus $fm_d \in Q[X]$.

Thus $ar_im_d \in Q$ for all $i \geq 0$. But $m_d \notin Q$. So all $a_i \in p$ as Q is old-primary. Thus $f \in p[X]$, as desired. Thus (3) holds.

For (4), suppose $N[X] = \bigcap_{i \neq j} Q_i[X]$. Intersecting with M yields $N = \bigcap_i Q_i$ is irredundant. Thus $N[X] \neq \bigcap_{i \neq j} Q_i[X]$.

Lastly, set $p_i := \text{nil}(M/Q_i)$. The p_i are distinct as $N = \bigcap Q_i$ is irredundant. So the $p_i[X]$ are distinct. But $\text{nil}(M[X]/Q_i[X]) = p_i[X]$ by (2). Thus (4) holds.

Exercise (18.53). — Let k be a field, $P := k[X_1, \ldots, X_n]$ the polynomial ring. Given i, set $p_i := (X_1, \ldots, X_i)$. Show p_i is prime, and all its powers are p_i-primary.

Solution: First, p_i is prime by (2.9). Now, set $P_i := k[X_1, \ldots, X_i]$. Let m_i be its ideal generated by X_1, \ldots, X_i. Then m_i is maximal in P_i by (2.14). So each m_i^n is old-primary by (18.9). Hence m_i^nR is old-primary by repeated use of (18.52)(3). Plainly, $m_i^nR = p_i^n$ and $\sqrt{m_i^n} = p_i$. But P is Noetherian by (16.10). Thus (18.3)(4) implies p_i^n is p_i-primary.

Exercise (18.54). — Let R be a ring, p a prime, M a module. Set $N := 0^{q_p} \subset M$. Assume M is finitely generated. Show the following conditions are equivalent:

(1) $\text{nil}(M/N) = p$. (2) p is minimal over $\text{Ann}(M)$. (3) N is old-primary.

Solution: Assume (1). Then $p \supset \text{Ann}(M/N) \supset \text{Ann}(M)$. Let q be a prime with $p \supset q \supset \text{Ann}(M)$. Given $x \in p$, there’s $n \geq 0$ with $x^nM \subset N$. Say m_1, \ldots, m_r generate M. Then there’s $s_i \in S_p$ with $s_i x^m m_i = 0$. Set $s := \prod s_i$. Then $sx^nM = 0$. So $sx^n \in \text{Ann}(M) \subset q$. But $s \notin q$. So $x \in q$. Thus $p = q$. Thus (2) holds.

Assume (2). Then (18.40) yields both (1) and (3).

Finally, assume (3). Then (18.3)(2) yields (1).

Exercise (18.55). — Let R be a ring, M a module, Σ the set of minimal primes of $\text{Ann}(M)$. Assume M is finitely generated. Set $N := \bigcap_{p \in \Sigma} 0^{q_p}$. Show:

(1) Given $p \in \Sigma$, the saturation 0^{q_p} is the smallest old-primary submodule Q with $\text{nil}(M/Q) = p$.

(2) Say $0 = \bigcap_{i=1}^r Q_i$ with the Q_i old-primary. For all j, assume $Q_j \not\supset \bigcap_{i \neq j} Q_i$.

Set $p_i := \text{nil}(M/Q_i)$. Then $N = 0$ if and only if $\{p_1, \ldots, p_r\} = \Sigma$.

(3) If $M = R$, then $N \subset \text{nil}(R)$.

Solution: For (1), note $\text{nil}(M/0^{q_p}) = p$ and 0^{q_p} is old-primary by (18.54). But $0^{q_p} \subset Q$ for any old-primary Q with $\text{nil}(M/Q) = p$ by (18.49). So (1) holds.

In (2), if $\{p_1, \ldots, p_r\} = \Sigma$, then $Q_i \supset 0^{q_p}$, for all i by (1), and thus $N = 0$.

Conversely, assume $\bigcap_{p \in \Sigma} 0^{q_p} =: N = 0$. But (18.48)(1) with $N = 0$ implies $\Sigma \subset \{p_1, \ldots, p_r\}$; so Σ is finite. Also 0^{q_p} is old-primary for all $p \in \Sigma$ by (1).
Given \(p \in \Sigma \), let’s show \(0^{S_p} \supseteq \bigcap_{q \neq p} 0^{S_q} \). If not, then (1) and (18.37)(2) yield
\[
p = \text{nil}(M/0^{S_p}) \supset \text{nil}(M/\bigcap_{p \neq q} 0^{S_q}) = \bigcap_{q \neq p} q;
\]
so (2.25)(1) yields \(p \supset q \) for some \(q \); but \(p \) is minimal, so \(p = q \), a contradiction. Thus \(0^{S_p} \supseteq \bigcap_{q \neq p} 0^{S_q} \) for all \(p \in \Sigma \). Hence both \(\Sigma \) and \(\{p_1, \ldots, p_r\} \) are equal to the set \(\mathcal{D}(M) \) of (18.39) by (18.39)(4), so to each other. Thus (2) holds.

For (3), given \(p \in \Sigma \), note \(p \) is old-primary by (18.2). So \(0^{S_p} \subset p \) by (1). Hence \(N \subset \bigcap_{p \in \Sigma} p \). Thus (3.17) yields (3).

Exercise (18.56). — Let \(R \) be a ring, \(N \subseteq M \) modules. Assume there exists a decomposition \(N = \bigcap_{i=1}^n Q_i \), with the \(Q_i \) old-primary. Show that there are at most finitely many submodules of \(M \) of the form \(N^S \) where \(S \) is a multiplicative subset.

Solution: Set \(p_i := \text{nil}(M/Q_i) \). Then \(N^S = \bigcap_{i \in I} Q_i \) where \(I := \{i \mid S \cap p_i = \emptyset\} \) by (18.46). But there are at most \(2^n \) subsets \(I \subset \{1, \ldots, n\} \).

Exercise (18.57). — Let \(R \) be a ring, \(M \) a module, \(p \in \text{Supp}(M) \). Fix \(m, n \geq 1 \). Set \((pM)^{(n)} := (p^nM)^{S_p} \), and \((p^n)^{(n)} := (p^n)^{S_p} \). (We call \((p^n) \) the \(n \)th symbolic power of \(p \).) Assume \(M \) is finitely generated. Set \(N := (p^n)(pM)^{(n)}. \) Show:

1. Then \(p \) is the smallest prime containing \(\text{Ann}(M/p^nM) \).
2. Then \((pM)^{(n)}\) is old-primary, and \(\text{nil}(M/\langle pM \rangle^{(n)}) = p \).
3. Say \(p^nM = \bigcap_{i=1}^t Q_i \), with \(Q_i \) old-primary. Set \(p_i := \text{nil}(M/Q_i) \). Assume \(p_i = p \) if and only if \(i \leq t \). Then \((pM)^{(n)} = \bigcap_{i=1}^t Q_i \).
4. Then \((pM)^{(n)} = p^nM \) if and only if \(p^nM \) is old-primary.
5. Let \(Q \) be an old-primary submodule with \(\text{nil}(M/Q) = p \). Assume \(p \) is finitely generated modulo \(\text{Ann}(M/Q) \). Then \(Q \supset (pM)^{(n)} \) if \(n \gg 0 \).
6. Then \(N^{S_p} = (pM)^{(m+n)} \) and \(p \) is the smallest prime containing \(\text{Ann}(M/N) \).
7. Say \(N = \bigcap_{i=1}^n Q_i \), with all \(Q_i \) old-primary. Set \(p_i := \text{nil}(M/Q_i) \). Assume \(p_i = p \) if and only if \(i \leq t \). Then \(Q_i = (pM)^{(m+n)} \) for some \(i \).

Solution: For (1), note \(V(\text{Ann}(M/p^nM)) = \text{Supp}(M/p^nM) \) by (13.4) and \(\text{Supp}(M/p^nM) = \text{Supp}(M) \cap V(p^n) \) by (13.46)(1). By hypothesis, \(p \in \text{Supp}(M) \). But \(p \in V(p^n) \). Thus \(p \supset \text{Ann}(M/p^nM) \). However, any prime \(q \) that contains \(\text{Ann}(M/p^nM) \) contains \(p^n \), so contains \(p \) by (2.25)(1). Thus (1) holds.

Note (2) follows immediately from (1) and (18.40).

For (3), note \((pM)^{(n)} = \bigcap_{i=1}^t Q_i^{S_p} \) by (12.12)(6)(a). But \(p \) is the smallest prime containing \(\text{Ann}(M/p^nM) \) by (1). And \(Q_i \supset p^nM \), so \(\text{Ann}(M/Q_i) \supset \text{Ann}(M/p^nM) \).

So \(p_i \supset p \). So \(S_p \cap p_i \neq \emptyset \) for \(i > t \). Hence \(Q_i^{S_p} = M \) for \(i > t \) by (12.23). Also \(Q_i^{S_p} = Q_i \) for all \(i \leq t \) by (18.43). Thus (3) holds.

In (4), if \(p^nM = (pM)^{(n)} \), then \(p^nM \) is old-primary by (2).

Conversely, assume \(p^nM \) is old-primary. Note \(\text{nil}(M/p^nM) = p \) owing to (1) and (3.14). So \(p^nM = (pM)^{(n)} \) by (18.43). Thus (4) holds.

For (5), note \(p^nM \subset Q \) for \(n \gg 0 \) owing to (3.38). So \((pM)^{(n)} \subset Q^{S_p} \) for \(n \gg 0 \) by (12.12)(5)(a). But \(Q^{S_p} = Q \) by (18.43). Thus (5) holds.

For (6), note \(N^{S_p} = (pM)^{(m+n)} \) as \(\left((p^n)^{S_p} (pM)^{S_p}\right)^{S_p} = (p^{m+n}M)^{S_p} \) by (12.25). But \(N \subset N^{S_p} \). So \(\text{Ann}(M/N) \subset M/\text{Ann}(N^{S_p}) \).

Given \(x \in \text{Ann}(M/N) \), therefore \(xM \subset N^{S_p} = (pM)^{(m+n)} \). But \(M \) is finitely generated. So there’s \(s \in S_p \) with \(sxM \subset p^{m+n}M \); that is, \(sx \in \text{Ann}(M/p^{m+n}M) \).

So \(sx \in p \) by (1). But \(s \notin p \). So \(x \in p \). Thus \(p \supset \text{Ann}(M/N) \).
Solutions (18.58) / (18.60) App: Old-primary Submodules

Note $N \supset p^{n+n}M$. So $\text{Ann}(M/N) \supset \text{Ann}(M/p^{n+n}M)$. Hence any prime q containing $\text{Ann}(M/N)$ contains p^{m+n}, so contains p by (2.25)(1). Thus p is the smallest prime containing $\text{Ann}(M/N)$. Thus (6) holds.

Finally (7) follows from (6) in the same way that (3) follows from (1). \qed

Exercise (18.58) . — Let R be a ring, $f \in R$, and $N, Q_1, \ldots, Q_n \subsetneq M$ modules with $N = \bigcap_{i=1}^n Q_i$ and the Q_i old-primary. Set $p_i := \text{nil}(M/Q_i)$ for all i. Assume $f \in p_i$ for $i > h$. Show $\bigcap_{i=1}^h Q_i = N^{S_f} = (N : \langle f^n \rangle)$ for $n \gg 0$.

Solution: First, note $f \in p_i$ if and only if $S_f \cap p_i \neq \emptyset$. So $S_f \cap p_i = \emptyset$ just for $i \leq h$. Thus (18.46)(1) yields $Q_1 \cap \cdots \cap Q_h = N^{S_f}$.

Second, note $N^{S_f} = \bigcup_{n \geq 0} (N : \langle f^n \rangle)$ and $(N : \langle f^n \rangle) \supset (N : \langle f^p \rangle)$ for $p \geq n$. For $i > h$, as $f \in p_i$, there’s n_i with $f^{n_i} \in \text{Ann}(M/Q_i)$. Then given $n \geq \max \{n_i\}$ and $m \in N^{S_f}$, note $f^{n_m}m \in Q_i$ for $i > h$, but $m \in N^{S_f} = \bigcap_{i=1}^h Q_i$. So $f^{n_m}m \in Q_i$ for all i. Hence $f^{n_m}m \in \bigcap_{i=1}^h Q_i = N$. So $m \in (N : \langle f^n \rangle)$. Thus $N^{S_f} \subset (N : \langle f^n \rangle)$. Thus $N^{S_f} = (N : \langle f^n \rangle)$, as desired. \qed

Exercise (18.59) . — Let R be a ring, p a prime ideal, M a Noetherian module. Denote the intersection of all p-primary submodules by N. Show $N = 0^{S_p}$.

Solution: Set $\mathfrak{P} := pR_p$. By (18.45), $K \mapsto \varphi_{S_p}^{-1}(K)$ is a bijection from the \mathfrak{P}-primary submodules K of M_p onto the p-primary submodules of M. Hence $N = \varphi_{S_p}^{-1}(\bigcap K)$. But $0^p = \varphi_{S_p}^{-1}0$ by (12.12)(3). So it suffices to prove $\bigcap K = 0$.

For $n > 0$, set $K_n := \mathfrak{P}^n M_p$ and $\Omega_n := \text{nil}_{R_p}(M_p/K_n)$. Then $\Omega_n \supset \mathfrak{P}$. But \mathfrak{P} is maximal. Hence $\Omega_n = \mathfrak{P}$, unless $\Omega_n = R_p$.

Assume $\Omega_n = R_p$. Then $M_p = \mathfrak{P}^n M_p$. But R_p is local, and \mathfrak{P} is maximal. So $M_p = 0$ by Nakayama’s Lemma (10.6). Thus $\bigcap K = 0$, as desired.

Assume $\Omega_n = \mathfrak{P}$ instead. Then $\mathfrak{P}^n(M_p/K_n) = 0$. But \mathfrak{P} is maximal. So K_n is \mathfrak{P}-primary by (18.8). But $\bigcap K_n \supset \bigcap K$. Moreover, by (18.23) there’s $x \in \mathfrak{P}$ with $(1 + x)(\bigcap K_n) = 0$. But $1 + x \in R_p$ is a unit by (3.2), so $\bigcap K_n = 0$. Thus again $\bigcap K = 0$, as desired. \qed

Exercise (18.60) . — Let R be a ring, M a module, and $p_1, \ldots, p_n \in \text{Supp}(M)$ distinct primes, none minimal in $\text{Supp}(M)$. Assume M is finitely generated, and assume the following condition holds (it does, by (18.59), if M is Noetherian):

(*) For every prime p, the saturation 0^{p^n} is equal to the intersection of all the old-primary submodules Q with $\text{nil}(M/Q) = p$.

1. For $1 \leq i < n$, assume $p_i \not\supset p_n$ and let Q_i be an old-primary submodule with $\text{nil}(M/Q_i) = p_i$ and $\bigcap_{j \neq i} Q_j \subsetneq Q_i$. Set $P := \bigcap_{j \leq n} Q_j$. Show $P \not\subset 0^{p^{n+1}}$.

2. In the setup of (1), show there is an old-primary submodule Q_n such that $\text{nil}(M/Q_n) = p_n$ and $P \subsetneq Q_n$. Then show $\bigcap_{j \neq i} Q_j \subsetneq Q_i$ for all i.

3. Use (2) and induction on n to find old-primary submodules Q_1, \ldots, Q_n, with $\text{nil}(M/Q_i) = p_i$ and $\bigcap_{j \neq i} Q_j \subsetneq Q_i$ for all i.

Solution: For (1), suppose rather $P \subset 0^{p^{n+1}}$. Note $p_n \in \text{Supp}(M)$; so (13.4)(3) yields $p_n \supset \text{Ann}(M)$. So by (3.16), p_n contains a prime p minimal containing $\text{Ann}(M)$. Plainly $0^{p^{n+1}} \subset 0^p$. So $P \subset 0^p$. Thus $\text{nil}(M/P) \subset \text{nil}(M/0^{p^n})$.

Note $\bigcap_{i \leq n} p_i = \text{nil}(M/P)$ by (18.37)(2). As M is finitely generated, 0^{p^n} is old-primary and $\text{nil}(M/0^{p^n}) = p$ by (18.40). Hence $\bigcap_{i \leq n} p_i \subset p$. So $p_i \subset p$ for some i by (2.25)(1). But p is minimal and p_i is not, a contradiction, as desired.

342
For (2), note θ^{S_n} is the intersection of all the old-primary submodules Q_n, with $\text{nil}(M/Q_n) = p_n$ by (*) . So by (1), there's Q_n with $P \nsubseteq Q_n$; that is, $\cap_{i \leq n} Q_i \nsubseteq Q_n$.

Suppose $\cap_{i \neq i, n} Q_i \subset Q_i$, for some $i < n$. Let $L := \cap_{i \neq i, n} Q_i$. Then $L \subset Q_i$ by a hypothesis in (1). So there's $l \in L - Q_i$. Given $x \in p_n$, there's p with $x^pM \subset Q_n$. Then $x^{pl} \in L \cap Q_n = \cap_{i \neq i, n} Q_i \subset Q_i$. But $l \notin Q_i$. So $x^{pl} \in p_i$. So $x \in p_i$. Thus $p_n \subset p_i$, contradicting a hypothesis in (1), as desired.

For (3), if $n = 1$, take Q_1 to be any of the submodules Q whose existence is assured by (*). Assume $n \geq 2$. Reorder the p_i so that $p_n \not\subset p_i$ for $i < n$. By induction, there are old-primary submodules Q_1, \ldots, Q_{n-1} with $\text{nil}(M/Q_i) = p_i$ and $\cap_{i \neq i, Q_j \nsubseteq Q_i$ for all i. Finally, (2) now yields (3).

Exercise (18.61) Let R be a ring, M a module, Q an old-primary submodule. Set $q := \text{Ann}(M/Q)$. Show that q is old-primary.

Solution: Given $x, y \in R$ with $xy \in q$ but $y \notin q$, there's $m \in M$ with $ym \notin q$, but $xym \in Q$. But Q is old-primary. So $x \in \text{nil}(M/Q)$. But $\text{nil}(M/Q) := \sqrt{q}$, and $q = \text{Ann}(R/q)$; so $\text{nil}(M/Q) = \text{nil}(R/q)$. Thus q is old-primary.

Exercise (18.62) Let $\varphi : R \rightarrow R'$ be a ring map, and M an R-module. Set $M' := M \otimes_R R'$ and $\alpha := 1_M \otimes \varphi$. Let $N' = \bigcap_{i=1}^r Q_i'$ be a decomposition in M' with each Q_i' old-primary. Set $N := \alpha^{-1}N'$ and $Q_i := \alpha^{-1}Q_i'$. Set $p_i := \text{nil}(M/Q_i)$ and $p_i' := \text{nil}(M'/Q_i')$. Show:

1. Then $N = \bigcap_{i=1}^r Q_i$ with Q_i old-primary, and $p_i = \varphi^{-1}p_i'$ for all i.
2. Assume R' is flat and $N' = R'\alpha(N)$. Assume $N' \not= \bigcap_{i \neq j} Q_i'$ for all j, but $N = \bigcap_{i=1}^r Q_i$ with $t < r$. Fix $t < i \leq r$. Then $p_i \subset p_j$ for some $j \leq t$.

Solution: In (1), trivially $N = \bigcap_{i} Q_i$. Thus (18.7) yields (1).

For (2), first assume $N' = R'\alpha(N)$. Then the inclusion $N \hookrightarrow M$ induces a map $N \otimes_R R' \rightarrow M'$ with image N'. Thus (8.10) yields $(M/N) \otimes R' = M'/N'$. Assume R' is flat too. Then every nonzerodivisor on M/N is also a nonzero divisor on M'/N'. But $p_i' \subset z\text{div}(M'/N')$ by (18.37)(6). Hence every $x \in p_i$ is a zerodivisor on M/N. Thus $p_i \subset z\text{div}(M/N)$. But $z\text{div}(M/N) \subset \bigcup_{i=1}^r p_i$ by (18.37)(5). Thus (3.12) yields the desired j.

Exercise (18.63) Let R be a ring, a an ideal, M a module, $0 = \bigcap_{i} Q_i$ a finite decomposition with Q_i old-primary. Set $p_i := \text{nil}(M/Q_i)$. Show $\Gamma_a(M) = \bigcap_{a \nsubseteq p_i} Q_i$. (If $a \subseteq p_i$ for all i, then $\bigcap_{a \nsubseteq p_i} Q_i = M$ by convention.)

Solution: Given $m \in \Gamma_a(M)$, recall $a \subset \sqrt{\text{Ann}(m)}$. Given i with $a \not\subset p_i$, take $a \in a - p_i$. Then there's $n \geq 0$ with $a^nm = 0$. So $a^nM \subset Q_i$. But Q_i is old-primary. So $m \in Q_i$. Thus $m \in \bigcap_{a \nsubseteq p_i} Q_i$.

Conversely, given $m \in \bigcap_{a \nsubseteq p_i} Q_i$, let $a \in a$. Given j with $a \subset p_j$, there's n_j with $a^n_jm \in Q_j$ as $p_j = \text{nil}(M/Q_j)$. Set $n := \max\{n_j\}$. Then $a^nm \in Q_i$ for all i, if $a \subset p_i$ or not. So $a^nm \in \bigcap_{i} Q_i = 0$. Thus $a \subset \sqrt{\text{Ann}(m)}$, or $m \in \Gamma_a(M)$.

Exercise (18.64) Let R be a ring, $N \subset M$ modules. Assume $N = \bigcap_{i=1}^r Q_i$ with Q_i old-primary. Show $J = \bigcap_{i=1}^r \varphi^{-1}(N_j)$.

Solution: Note $\varphi^{-1}(N_j) = N_j^{S_n}$ by (12.12)(3)(a). So $\varphi^{-1}(N) = \bigcap_{i \subset p_i} Q_j$ by (18.46)(1). Thus $\bigcap_{i=1}^r \varphi^{-1}(N) = \bigcap_{j \subset p_j} Q_j = \bigcap_{i=1}^r Q_i = N$. □
Exercise (18.65) . — Let $\varphi : R \to R'$ be a ring map, M an R'-module, $M \subset M'$ an R-submodule, and $p \in \mathcal{D}_R(M)$. Assume $0 = \bigcap_{i=1}^n Q'_i$ with the Q'_i old-primary decompositions of 0. Show there’s $p' \in \mathcal{D}_R(M')$ with $\varphi^{-1} p' = p$.

Solution: Set $p'_i := \text{nil}(M'/Q'_i)$ and $p_i := \varphi^{-1} p'_i$ and $Q_i := Q'_i \cap M$ for all i. Then Q_i is old-primary and $p_i = \text{nil}(M/Q_i)$ by (18.7). Also $0 = \bigcap_{i=1}^n Q_i$. But $\mathcal{D}_R(M') = \{p'_1, \ldots, p'_r\}$ by (18.39)(3), and $\mathcal{D}_R(M) \subset \{p_1, \ldots, p_r\}$ by (18.37)(4). Thus $p = p_i$ for some i, and $p'_i \in \mathcal{D}_R(M')$. □

Exercise (18.66) . — Let R be a ring, M a module, $0 = \bigcap_{i=1}^n Q_i$ an old-primary decomposition in M. Set $p_i := \text{nil}(M/Q_i)$. Assume $\bigcap_{j \neq i} Q_j \neq 0$ for all i, the p_i are distinct, M is finitely generated, and p_1 is finitely generated mod Ann(M). Show:

1. Suppose that p_1 is minimal over Ann(M). Then $Q_1 = (p_1 M)^{(r)}(r)$ for $r > 0$.
2. Suppose that p_1 is not minimal over Ann(M). Show that replacing Q_1 by $(p_1 M)^{(r)}(r)$ for $r > 0$ gives infinitely many distinct old-primary decompositions of 0, still with $\bigcap_{j \neq i} Q_j \neq 0$ for all i and the p_i distinct. (Thus, when R is Noetherian, then 0 has infinitely many irredundant primary decompositions, which differ only in the first component.)

Solution: For (1), note that $Q_1 = 0^{p_{s_1}}$ by (18.47) with $N := 0$ and $t := 1$. But $0^{p_{s_1}} \supset (p_1 M)^{(r)}(r)$ for $r > 0$ by (18.57)(5), and $(p_1 M)^{(r)}$ is old-primary for all r by (18.57)(2). Now, $0^{p_{s_1}}$ is the smallest old-primary submodule Q with $\text{nil}(M/Q) = p_1$ by (18.55)(1). Thus (1) holds.

For (2), set $p := p_1$. For a moment, assume $(pM)^{(r)} = (pM)^{(r+1)}$ for some r, or what’s the same, $(p^r M)^{(r)} = (p^{r+1} M)^{(r)}$. Then $p^r M_p = p^{r+1} M_p$ by (12.12)(3)(b). Set $A := R_p$. Then $p^{r+1} M_p = (pA)(p^r M_p)$. But $p^r M_p$ is finitely generated as $p/\text{Ann}(M)$ and M are. So $p^r M_p = 0$ by Nakayama’s Lemma. So $pA \subset \text{Ann}(A)$ for p. Hence pA is minimal over $\text{Ann}(A)$ for p. So p is, by (11.12), minimal over Ann(M), contrary to hypothesis. Thus the $(pM)^{(r)}$ are distinct.

However, $Q_1 \supset (pM)^{(r)}$ for $r > 0$ by (18.57)(5). So $0 = (pM)^{(r)} \cap Q_2 \cap \cdots \cap Q_n$. But $(pM)^{(r)}$ is old-primary by (18.57)(2). Thus replacing Q_1 by $(pM)^{(r)}$ for $r > 0$ gives infinitely many distinct old-primary decompositions of 0.

Fix r. Note that $\text{nil}(M/(pM)^{(r)}) = p$ by (18.57)(2). Thus replacing Q_1 by $(pM)^{(r)}$ leaves the p_i the same, so still distinct. Moreover, after replacement, if $\bigcap_{j \neq i} Q_j = 0$ for some i, then by (18.39)(4), the set of p_j for $j \neq i$ would be the same as the set of all p_j, a contradiction. Thus (2) holds. □

19. Length

Exercise (19.2) . — Let R be a ring, M a module. Prove these statements:

1. If M is simple, then any nonzero element $m \in M$ generates M.
2. M is simple if and only if $M \cong R/m$ for some maximal ideal m, and if so, then $m = \text{Ann}(M)$.
3. If M has finite length, then M is finitely generated.

Solution: Obviously, Rm is a nonzero submodule. So it is equal to M, because M is simple. Thus (1) holds.

Assume M is simple. Then M is cyclic by (1). So $M \cong R/m$ for $m := \text{Ann}(M)$ by (4.7). Since M is simple, m is maximal owing to the bijective correspondence
of \((1.9)\). By the same token, if, conversely, \(M \simeq R/m\) with \(m\) maximal, then \(M\) is simple. Thus (2) holds.

Assume \(\ell(M) < \infty\). Let \(M = M_0 \supset M_1 \supset \cdots \supset M_m = 0\) be a composition series. If \(m = 0\), then \(M = 0\). Assume \(m \geq 1\). Then \(M_1\) has a composition series of length \(m - 1\). So, by induction on \(m\), we may assume \(M_1\) is finitely generated. Further, \(M/M_1\) is simple, so finitely generated by (1). Hence \(M\) is finitely generated by \((16.13)\)(1). Thus (3) holds. □

Exercise (19.4). — Let \(R\) be a ring, \(M\) a Noetherian module. Show that the following three conditions are equivalent:

1. \(M\) has finite length;
2. \(\text{Supp}(M)\) consists entirely of maximal ideals;
3. \(\text{Ass}(M)\) consists entirely of maximal ideals.

Show that, if the conditions hold, then \(\text{Ass}(M)\) and \(\text{Supp}(M)\) are equal and finite.

Solution: Assume (1). Then \((19.3)\) yields (2).

Assume (2). Then \((17.16)\) and \((19.2)\) yield (1) and (3).

Finally, assume (3). Then \((17.13)\) implies that \(\text{Ass}(M)\) and \(\text{Supp}(M)\) are equal and consist entirely of maximal ideals. In particular, (2) holds. However, \(\text{Ass}(M)\) is finite by \((17.17)\). Thus the last assertion holds. □

Exercise (19.16). — Let \(R\) be a ring, \(M\) a module, \(Q\) a \(p\)-primary submodule, and \(Q_1 \supseteq \cdots \supseteq Q_m := Q\) a chain of \(p\)-primary submodules. Set \(M' := M/Q\). Assume that \(M'\) is Noetherian. Show that \(m \leq \ell(M'_p) < \infty\), and that \(m = \ell(M'_p)\) if and only if \(m\) is maximal.

Solution: Given a submodule \(P\) of \(M\) containing \(Q\), set \(P' := P/Q\). Note \(M'/P' = M/P\). So \(P'\) is \(p\)-primary in \(M'\) if and only if \(P\) is \(p\)-primary in \(M\). Thus \(P \mapsto P'\) is a bijection from the \(p\)-primary submodules of \(M\) containing \(Q\) onto the \(p\)-primary submodules of \(M'\).

Set \(m := pR_p\). By \((18.20)\), \(P' \mapsto P_p'\) is a bijection from the \(p\)-primary submodules of \(M'\) onto the \(m\)-primary submodules of \(M'_p\). Thus \((Q'_1)_p \supseteq \cdots \supseteq (Q'_m)_p = 0\) is a chain of \(m\)-primary submodules of \(M'_p\).

In particular, 0 is \(m\)-primary in \(M'_p\). So \(\text{Ass}_{R_p}(M'_p) = \{m\}\) by definition. But \(M'\) is Noetherian by \((16.33)\). Thus \(\ell(M'_p) < \infty\) by \((19.4)\). and \(m \leq \ell(M'_p)\) by \((19.3)\).

Further, \(m^nM'_p = 0\) for some \(n \geq 1\) by \((18.5)\). So any proper submodule of \(M'_p\) is \(m\)-primary by \((18.8)\)(2). But by \((19.3)\), any chain of submodules of \(M'_p\) can be refined to a composition series, and every composition series is of length \(\ell(M'_p)\). But \((Q'_1)_p \supseteq \cdots \supseteq (Q'_m)_p = 0\) is a chain. Thus \(m \leq \ell(M'_p)\). And that chain is a composition series if and only if \(m\) is maximal; if so, then \(m = \ell(M'_p)\). □

Exercise (19.17). — Let \(k\) be a field, \(R\) an algebra-finite extension. Prove that \(R\) is Artinian if and only if \(R\) is a finite-dimensional \(k\)-vector space.

Solution: As \(k\) is Noetherian by \((16.1)\) and as \(R/k\) is algebra-finite, \(R\) is Noetherian by \((16.10)\). Assume \(R\) is Artinian. Then \(\ell(R) < \infty\) by \((19.5)\). So \(R\) has a composition series. The successive quotients are isomorphic to residue class fields by \((19.2)\)(2). These fields are finitely generated \(k\)-algebras, as \(R\) is. Hence these fields are finite extension fields of \(k\) by the Zariski Nullstellensatz \((15.4)\). Thus \(R\) is a finite-dimensional \(k\)-vector space. The converse holds by \((16.41)\). □
Exercise (19.18). — Given a prime $p \in \mathbb{Z}$, find all four different Artinian rings R with p^2 elements. Which R are \mathbb{F}_p-algebras?

Solution: By (19.11), $R = \prod_{m \in \text{Spec}(R)} R_m$. Say R_m consists of M_m elements. Then $p^2 = \prod M_m$. So either there are two m and $M_m = p$, or there’s only one m. If two, then each R_m is equal to its residue field, which must be \mathbb{F}_p; thus $R = \mathbb{F}_p \times \mathbb{F}_p$.

So assume R is local with maximal ideal m. If $m = 0$, then $R = \mathbb{F}_p$. So assume $m \neq 0$. Form the map $\varphi : \mathbb{Z} \to R$ with $\varphi(1) = 1$. Say $\ker(\varphi) = \langle k \rangle$ with $k \geq 0$. Note $0 \neq \mathbb{Z}/\langle k \rangle \to R$, as additive groups. Thus $k = p$ or $k = p^2$.

First, assume $k = p$. Then $\mathbb{F}_p \subseteq R$. Note $\mathbb{F}_p \cap m = \emptyset$. Fix a nonzero $x \in m$, and a variable X. Form the \mathbb{F}_p-algebra map $\psi : \mathbb{F}_p[X] \to R$ with $\psi(X) = x$. Then $\im(\psi)$ is an additive subgroup of R with at least $p+1$ elements. So ψ is surjective. Say $\ker(\psi) = \langle X^m \rangle$. Then $\mathbb{F}_p[X]/\langle X^m \rangle \to R$. But R has p^2 elements. So $m = 2$. Thus $R = \mathbb{F}_p[X]/\langle X^2 \rangle$.

Instead, assume $k = p^2$. Then $\mathbb{Z}/(p^2) \subseteq R$. But both rings have p^2 elements. Thus $R = \mathbb{Z}/(p^2)$. In this case, and only this case, R is not an \mathbb{F}_p-algebra. □

Exercise (19.19). — Let k be a field, A a local k-algebra. Assume the map from k to the residue field is bijective. Given an A-module M, prove $\ell(M) = \dim_k(M)$.

Solution: If $M = 0$, then $\ell(M) = 0$ and $\dim_k(M) = 0$. If $M \cong k$, then $\ell(M) = 1$ and $\dim_k(M) = 1$. Assume $1 \leq \ell(M) < \infty$. Then M has a submodule M' with $M/M' \cong k$. So Additivity of Length, (19.7), yields $\ell(M') = \ell(M) - 1$ and $\dim_k(M') = \dim_k(M) - 1$. Hence $\ell(M') = \dim_k(M')$ by induction on $\ell(M)$. Thus $\ell(M) = \dim_k(M)$.

If $\ell(M) = \infty$, then for every $m \geq 1$, there exists a chain of submodules,

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m = 0.$$

Thus $\dim_k(M) = \infty$. □

Exercise (19.20). — Prove these conditions on a Noetherian ring R equivalent:

1. R is Artinian. 2. Spec(R) is discrete and finite. 3. Spec(R) is discrete.

Solution: Condition (1) holds, by (19.8), if and only if Spec(R) consists of finitely points and each is a maximal ideal. But a prime p is a maximal ideal if and only if $\{p\}$ is closed in Spec(R) by (13.16)(2). It follows that (1) and (2) are equivalent.

Trivially, (2) implies (3). Conversely, (3) implies (2), since Spec(R) is quasi-compact by (13.2). Thus all three conditions are equivalent. □

Exercise (19.21). — Let $\varphi : R \to R'$ be a map of rings. Assume R' is algebra finite over R. Given $p \in \text{Spec}(R)$, set $k := \text{Frac}(R/p)$. Consider these statements:

1. The fibers of Spec(φ) are finite.
2. The fibers of Spec(φ) are discrete.
3. All $R' \otimes_R k$ are finite-dimensional k-vector spaces.
4. R' is module finite over R.

Show (1), (2), and (3) are equivalent and follow from (4). Show (4) holds if R' is integral over R. If R' is integral, but not algebra finite, and if (1) holds, does (4)?
Solutions

(19.22) / (19.25)

Length

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The fiber over $p \in \text{Spec}(R)$ is $\text{Spec}(R' \otimes_R k)$ by $(13.28)(1)$. But R' is algebra finite over R by hypothesis. So $R' \otimes k$ is algebra finite over k by $(10.39)(3)$. So $R' \otimes k$ is Noetherian by (16.10), and it is Jacobson by (15.7) or by $(15.36)(2)$. Suppose (1) holds. Since $R' \otimes k$ is Jacobson, each $q \in \text{Spec}(R' \otimes_R k)$ is the intersection of all the maximal ideals m that contain q. But there are only finitely many such m, as (1) holds. So some m is contained in q owing to (2.23). So $m = q$ as m is maximal. So q is closed in Spec$(R' \otimes_R k)$ by $(13.16)(2)$. Thus (2) holds. Conversely, since each $R' \otimes k$ is Noetherian, (2) implies (1) by (19.20). By the same token, (2) holds if and only if each $R' \otimes k$ is Artinian. But each is algebra finite over k. So each is Artinian if and only if each is a finite dimensional k-vector space by (19.17). Thus (1), (2), and (3) are equivalent. If (4) holds, then (3) follows owing to $(10.39)(2)$. Since R' is algebra finite over R, if it’s integral too, then (10.18) yields (4). Finally, if R' is integral over R, but not algebra finite, then (4) can fail even if (1) holds. For example, take R to be \mathbb{Q} and R' to be the field of algebraic numbers. □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let A be a local ring, m its maximal ideal, B a module-finite algebra, and ${n_i}$ its set of maximal ideals. Then the n_i are precisely the primes lying over m, and mB is a parameter ideal of B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let A' be the image of A in B. Then B is module finite over A', so integral by $(10.18)(3)\Rightarrow(1)$. So by $(14.3)(1)$, each n_i lies over a maximal ideal of A', which must be the image m' of m; also, every prime of B lying over m' is maximal, so one of the n_i. Thus the n_i are precisely the primes of B lying over m. Hence $mB \subset \text{rad}(B)$. Moreover, B/mB is module finite over A/m, which is a field; so B/mB has finite length. Thus mB is a parameter ideal. □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Let R be an Artinian ring. Show that rad(R) is nilpotent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Let R be an Artinian ring. Find another solution to $(18.66)(1)$. Begin by setting $p := p_1$ and $A := (R/\text{Ann}(M))_p$ and showing A is Artinian.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Let R be a ring, p a prime ideal, and R' a module-finite R-algebra. Show that R' has only finitely many primes p' over p, as follows: reduce to the case that R is a field by localizing at p and passing to the residue rings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| First note that, if $p' \subset R'$ is a prime lying over p, then $p' R'_p \subset R'_p$ is a prime lying over the maximal ideal $p R'_p$. Hence, by $(11.12)(2)$, it suffices to show that R'_p has only finitely many such primes. Note also that R'_p is module finite over R_p. Hence we may replace R and R' by R_p and R'_p, and thus assume that p is | 347
the unique maximal ideal of \(R \). Similarly, we may replace \(R \) and \(R' \) by \(R/p \) and \(R'/pR' \), and thus assume that \(R \) is a field.

There are a couple of ways to finish. First, \(R' \) is now Artinian by (19.10) or by (16.41); thus, \(R' \) has only finitely many primes by (19.8). Alternatively, every prime is now minimal by incomparability (14.3)(2). Further, \(R' \) is Noetherian by (16.10). Thus \(R' \) has only finitely many minimal primes by (17.29). \(\square \)

Exercise (19.26). — Let \(R \) be a ring, and \(M \) a Noetherian module. Show the following four conditions are equivalent:

1. \(M \) has finite length;
2. \(M \) is annihilated by some finite product of maximal ideals \(\prod m_i \);
3. every prime \(p \) containing \(\text{Ann}(M) \) is maximal;
4. \(R/\text{Ann}(M) \) is Artinian.

Solution: Assume (1). Let \(M = M_0 \supseteq \cdots \supseteq M_m = 0 \) be a composition series; set \(m_i := \text{Ann}(M_{i-1}/M_i) \). Then \(m_i \) is maximal by (19.2)(2). Also, \(m_i M_{i-1} \subseteq M_i \). Hence \(m_0 \cdots m_i M_0 \subseteq M_i \). Thus (2) holds.

Assume (2). Let \(p \) be a prime containing \(\text{Ann}(M) \). Then \(p \supseteq \prod m_i \). So \(p \supseteq m_i \) for some \(i \) by (2.23). So \(p = m_i \) as \(m_i \) is maximal. Thus (3) holds.

Assume (3). Then \(\dim(R/\text{Ann}(M)) = 0 \). But as \(M \) is Noetherian, (16.16) implies \(R/\text{Ann}(M) \) is Noetherian. Thus (19.8) yields (4).

If (4) holds, then (19.9) yields (1), because \(M \) is a finitely generated module over \(R/\text{Ann}(M) \). \(\square \)

Exercise (19.27). — (1) Prove that a finite product rings \(R := \prod_{i=1}^n R_i \) is a PIR if and only if each \(R_i \) is a PIR.

(2) Using a primary decomposition of \(\langle 0 \rangle \) and (18.27), prove that a PIR \(R \) is uniquely a finite product of PIDs and Artinian local PIRs.

Solution: For (1), note that, given ideals \(a_i \) of \(R_i \), their product \(a := \prod a_i \) is an ideal of \(R \). Conversely, every ideal \(a \) of \(R \) is of that form by (1.23) and induction on \(r \). Plainly, \(x := (x_1, \ldots, x_n) \) generates \(a \) if and only if \(x_i \) generates \(a_i \) for all \(i \).

Thus \(R \) is a PIR if and only if each \(R_i \) is, as desired.

For (2), note \(R \) is Noetherian. So by (18.19), there’s an irredundant primary decomposition \(\langle 0 \rangle = \bigcap_{i=1}^r q_i \); Set \(p_i = q_i^{\langle 0 \rangle} \).

Suppose \(p_i \supseteq p_j \). Then \(p_i = q_i \) by (18.27)(2). But \(p_i \subset q_j \) by (18.27)(1). So \(q_i \subset q_j \), contradicting irredundancy. Thus \(p_i \not\subset p_j \) for all \(i \neq j \).

Hence the \(p_i \) are pairwise comaximal by (18.27)(4). So for any \(n_i \geq 1 \), the \(p_i^{n_i} \) are pairwise comaximal by (1.21)(3). But \(q_i \supset p_i^{n_i} \) for some \(n_i \geq 1 \) by (3.40). So the \(q_i \) are pairwise comaximal. So \(\langle 0 \rangle = \prod_{i=1}^r q_i \) by (1.21)(4b). Thus (1.21)(4c) yields \(R \twoheadrightarrow \prod_{i=1}^r (R/q_i) \).

As \(R \) is a PIR, so is each \(R/q_i \). If \(p_i \) is not maximal, then \(q_i = q_j \) by (18.27)(2), and thus \(R/q_i \) is a domain. Else, \(p_i/q_i \) is maximal in \(R/q_i \). But \(q_i \supset p_i^{n_i} \). Hence \(p_i/q_i \) lies in any prime of \(R/q_i \), and so is the only prime. Thus \(R/q_i \) is local, and by (19.8), Artinian. Thus \(R \) is a finite product of PIDs and Artinian local PIRs.

As to uniqueness, suppose \(R \cong \prod_{i=1}^s R_i \) where \(R_i \) is a PID or an Artinian local PIR. Let \(\pi_i : R \to R_i \) be the projection, and set \(q_i := \pi_i^{-1}(0) \). Then an adaptation of the solution to (18.31) shows that \(\langle 0 \rangle = \bigcap_{i=1}^r q_i'^{-1} \) is an irredundant primary decomposition and that \(q_i' \) is \(p_i'^{-1} \)-primary where \(p_i' := \pi_i^{-1}(\text{nil}(R_i)) \). So the \(p_i' \) are minimal. So the \(p_i' \) and the \(q_i' \) are uniquely determined by (18.18) and (18.22).
But $R/q_i' \cong R_i$ for all i. Thus R is a finite product of PIDs and Artinian local PIRs in one and only one way.

Exercise (19.28). — Let A be a local Artinian ring, m its maximal ideal, B an A-algebra, N an A-flat B-module of finite length. Show $\ell_B(N) = \ell_A(A) \cdot \ell_B(N/mN)$.

Solution: By (19.10) there is a composition series $A = a_0 \supset \cdots \supset a_r = 0$. It yields $N = a_0N \supset \cdots \supset a_rN = 0$. But N is A-flat, so $a_iN = a_i \otimes N$ by (19.15). Hence $a_{i-1}/a_i \simeq A/m$, and $(A/m) \otimes N = N/mN$ by (8.10). Hence $\ell_B(N) = r \cdot \ell_B(N/mN)$ by repeated use of (19.7). But $r = \ell_A(A)$ by (19.3). Thus the asserted formula holds.

Exercise (19.29). — Let R be a ring, and a an ideal. Assume $a \subset \text{nil}(R)$. Set $R' := R/a$. Use (19.15) to give a second proof (compare (13.23)) that R is decomposable if and only if R' is.

Solution: If R is decomposable, then plainly R' is too.

Conversely, assume R' is decomposable. Let $m \subset R$ be the maximal ideal. Then $\text{Idem}(R') \to \text{Idem}(R'/mR')$ is bijective by (19.15). But (4.8.1) yields $R'/mR' = R/mR$. Furthermore, $\text{Idem}(R) \to \text{Idem}(R')$ is bijective by (3.36). So $\text{Idem}(R) \to \text{Idem}(R/mR)$ is bijective. Thus R is decomposable by (19.15).

20. Hilbert Functions

Exercise (20.14). — Let k be a field, $k[X, Y]$ the polynomial ring. Show $\langle X, Y^2 \rangle$ and $\langle X^2, Y^2 \rangle$ have different Hilbert Series, but the same Hilbert Polynomial.

Solution: Set $m := \langle X, Y \rangle$ and $a := \langle X, Y^2 \rangle$ and $b := \langle X^2, Y^2 \rangle$. They are graded by degree. So $\ell(a_1) = 1$, and $\ell(a_n) = \ell(m_n)$ for all $n \geq 2$. Further, $\ell(b_1) = 0$, $\ell(b_2) = 2$, and $\ell(b_n) = \ell(m_n)$ for $n \geq 3$. Thus the three ideals have the same Hilbert Polynomial, namely $h(n) = n + 1$, but different Hilbert Series.

Exercise (20.15). — Let k be a field, $P := k[X, Y, Z]$ the polynomial ring in three variables, $F \in P$ a homogeneous polynomial of degree $d \geq 1$. Set $R := P/F$. Find the coefficients of the Hilbert Polynomial $h(R, n)$ explicitly in terms of d.

Solution: Clearly, the following sequence is exact:

$$0 \to P(-d) \xrightarrow{PF} P \to R \to 0.$$

Hence, Additivity of Length, (19.7), yields $h(R, n) = h(P, n) - h(P(-d), n)$. But $P(-d)_n = P(n-d, n) = h(P, n-d)$. Therefore, (20.4) yields

$$h(R, n) = \left(\frac{2^n}{2} - \frac{2^{d+n}}{2}\right) = dn - (d-3)d/2.$$

Exercise (20.16). — Let K be a field, X_1, \ldots, X_r variables, k_1, \ldots, k_r positive integers. Set $R := K[X_1, \ldots, X_r]$, and define a grading on R by $\deg(X_i) := k_i$. Set $q_r(t) := \prod_{i=1}^{r} (1 - t^{k_i}) \in \mathbb{Z}[t]$. Show $H(R, t) = 1/q_r(t)$.

Solution: Induct on r. If $r = 0$, then $q_r(t) = 1$, and $H(R, t) = 1$ as $R = K$.

Assume $r \geq 1$. Set $R' := K[X_2, \ldots, X_r]$. Note $R' = R/(X_1)$. By (1.17) (3). Furthermore, R is a domain by (2.4). Hence the following sequence is exact:

$$0 \to R(-k_r) \xrightarrow{\mu_{X_r}} R \to R' \to 0$$

So $H(R, t) - H(R(-k_r), t) = H(R', t)$. By induction, $H(R', t) = 1/q_{r-1}(t)$. So
Let $H(R, t) = 1/\mu_{r-1}(t)$ by (20.3.1). Thus $H(R, t) = 1/\mu_r(t)$. \hfill \Box

Exercise (20.17). — Under the conditions of (20.6), assume there is a homogeneous nonzerodivisor $f \in R$ with $M_f = 0$. Prove $\deg h(R, n) > \deg h(M, n)$; start with the case $M := R/(f^k)$.

Solution: Suppose $M := R/(f^k)$. Set $c := k\deg f$. Form the exact sequence $0 \to R(-c) \to R \to M \to 0$ where μ is multiplication by f^k. Then Additivity of Length (19.7) yields $h(M, n) = h(R, n) - h(R, n - c)$. But

$$h(R, n) = \frac{e(1)}{\alpha - 1}n^{d-1} + \cdots \quad \text{and} \quad h(R, n - c) = \frac{e(1)}{\alpha - 1}(n - c)^{d-1} + \cdots$$

by (20.6). Thus $\deg h(R, n) > \deg h(M, n)$.

In the general case, there is k with $f^k M = 0$ by (12.17)(2). Set $M' := R/(f^k)$. Then generators $m_i \in M_{c_i}$ for $1 \leq i \leq r$ yield a surjection $\bigoplus_i M'(-c_i) \to M$. Hence $\sum_i \mu(M'_{n-c_i}) \geq \mu(M_n)$ for all n. But $\deg h(M'_{n-c_i}, n) = \deg h(M', n)$. Hence $\deg h(M', n) \geq \deg h(M, n)$. But $\deg h(R, n) > \deg h(M', n)$ by the first case. Thus $\deg h(R, n) > \deg h(M, n)$.

Exercise (20.18). — Let R be a ring, q an ideal, and M a Noetherian module. Assume $\ell(M/qM) < \infty$. Let $m := \sqrt{q}$. Show

$$\deg p_m(M, n) = \deg p_q(M, n).$$

Solution: Set $a := \text{Ann}(M)$ and set $R' := R/a$. Set $q' := (q + a)/a$ and set $m' := (m + a)/a$. Then $m' = \sqrt{q'}$ by (3.39)(1). Moreover, M is a Noetherian R'-module and $\ell(M/q^n M) = \ell(M/q'^n M)$ for all n. So $p_q(M, n) = p_{q'}(M, n)$ and similarly $p_m(M, n) = p_{m'}(M, n)$. Thus we may replace R by R' and owing to (16.16) assume R is Noetherian.

There is an m such that $m \supset q \supset m^m$ by (3.38). Hence

$$m^n M \supset q^n M \supset m^{mn} M$$

for all $n \geq 0$. Dividing into M and extracting lengths yields

$$\ell(M/m^n M) \leq \ell(M/q^n M) \leq \ell(M/m^{mn} M).$$

Therefore, for large n, we get

$$p_m(M, n) \leq p_q(M, n) \leq p_m(M, nm).$$

The two extremes are polynomials in n of the same degree, say d, (but not the same leading coefficient). Dividing by n^d and letting $n \to \infty$, we conclude that the polynomial $p_q(M, n)$ also has degree d, as desired. \hfill \Box

Exercise (20.19). — Let R be a ring, $q \subset q'$ nested ideals, and M a Noetherian module. Assume $\ell(M/qM) < \infty$. Prove these two statements:

1. Then $e(q', M) \leq e(q, M)$, with equality if the q'-adic filtration is q-stable.
2. Assume $\ell(M) < \infty$ and $q \subset \text{rad}(M)$. Then $e(q, M) = \ell(M)$.

Solution: For (1), consider the surjection $M/q^n M \to M/q'^n M$ for each $n \geq 0$. It yields $p_q(M, n) \geq p_{q'}(M, n)$ for $n \gg 0$. Thus $e(q, M) \geq e(q', M)$. If the q'-adic filtration is q-stable, then $e(q, M) = e(q', M)$ by (20.11). Thus (1) holds.

In (2), M is Artinian by (19.5). So $M \supset qM \supset q^2 M \supset \cdots$ stabilizes. Say $q^m M = q^{m+1} M$. But $q^m M$ is Noetherian as M is. Also, $\text{Ann}(q^m M) \subset \text{Ann}(M)$; so $\text{rad}(q^m M) \supset \text{rad}(M) \supset q$. So $q^m M = 0$ by Nakayama’s Lemma (10.6). So $\ell(M) = \ell(M/q^m M)$ for $n \gg 0$. So $p_q(M, n) = \ell(M)$. Thus (2) holds. \hfill \Box

Solutions (20.17) / (20.19) Hilbert Functions
Exercise (20.20). — Let R be a ring, \mathfrak{a} an ideal, and M a Noetherian module with $\ell(M/\mathfrak{a}M) < \infty$. Set $S := \text{Supp}(M) \cap V(\mathfrak{a})$. Set $d := \max_{m \in S} \dim(M_m)$ and $\Lambda := \{m \in S \mid \dim(M_m) = d\}$. Show

$$e(\mathfrak{a}, M) = \sum_{m \in \Lambda} e(qR_m, M_m). \quad (20.20.1)$$

Solution: Given $n \geq 0$, recall $V(\mathfrak{a}) = V(\mathfrak{a}^n)$ from (13.1). So (13.46)(1) yields $S = \text{Supp}(M/\mathfrak{a}^nM)$. So (19.3) yields

$$M/\mathfrak{a}^nM \hookrightarrow \prod_{m \in S} M_m/\mathfrak{a}^nM_m.$$

Hence $\ell(M/\mathfrak{a}^nM) = \sum \ell(M_m/\mathfrak{a}^nM_m)$ owing to (19.7). Hence

$$p_q(M, n) = \sum_{m \in S} p_{qR_m}(M_m, n).$$

The terms of degree d are positive, so can’t cancel. Thus (20.20.1) holds. \qed

Solution: In the notation of (18.23), we must prove that $N = \mathfrak{a}N$. So apply the Artin–Rees Lemma to N and the \mathfrak{a}-adic filtration of M; we get an m such that $\mathfrak{a}(N \cap \mathfrak{a}^mM) = N \cap \mathfrak{a}^{m+1}M$. But $N \cap \mathfrak{a}^nM = N$ for all $n \geq 0$. Thus $N = \mathfrak{a}N$. \qed

20. Appendix: Homogeneity

Exercise (20.24). — Let R be a graded ring, \mathfrak{a} a homogeneous ideal, and M a graded module. Show that $\sqrt{\mathfrak{a}}$ and $\text{Ann}(M)$ and $\text{nil}(M)$ are homogeneous.

Solution: Take $x = \sum_{i \geq r} x_i \in R$ with the x_i the homogeneous components.

First, suppose $x \in \sqrt{\mathfrak{a}}$. Say $x^k \in \mathfrak{a}$. Either x^k vanishes or it is the initial component of x^k. But \mathfrak{a} is homogeneous. So $x^k \in \sqrt{\mathfrak{a}}$. So $x - x_r \in \sqrt{\mathfrak{a}}$ by (3.15). So all the x_i are in $\sqrt{\mathfrak{a}}$ by induction on n. Thus $\sqrt{\mathfrak{a}}$ is homogeneous.

Second, suppose $x \in \text{Ann}(M)$. Let $m \in M$. Then $0 = xm = \sum x_i m_i$. If m is homogeneous, then $x_i m_i = 0$ for all i, since M is graded. But M has a set of homogeneous generators. Thus $x_i \in \text{Ann}(M)$ for all i, as desired.

Finally, $\text{nil}(M)$ is homogeneous, as $\text{nil}(M) = \sqrt{\text{Ann}(M)}$ by (12.22). \qed

Exercise (20.25). — Let R be a graded ring, M a graded module, and Q an old-primary submodule. Let $Q^* \subset Q$ be the submodule generated by the homogeneous elements of Q. Show that Q^* is old-primary.

Solution: Let $x \in R$ and $m \in M$ be homogeneous with $xm \in Q^*$. Assume $x \notin \text{nil}(M/Q^*)$. Then, given $\ell \geq 1$, there is $m' \in M$ with $x^\ell m' \notin Q^*$. So m' has a homogeneous component m'' with $x^\ell m'' \notin Q^*$. Then $x^\ell m'' \notin Q$ by definition of Q^*. Thus $x \notin \text{nil}(M/Q)$. Since Q is old-primary, $m \in Q$. Since m is homogeneous, $m \in Q^*$. Thus Q^* is old-primary by (20.23). \qed

Exercise (20.29) (Nakayama’s Lemma for a graded module). — Let R be a graded ring, \mathfrak{a} a homogeneous ideal, M a graded module. Assume $\mathfrak{a} = \sum_{i \geq i_0} a_i$ with $i_0 > 0$ and $M \sum_{n \geq n_0} M_n$ for some n_0. Assume $\mathfrak{a}M = M$. Show $M = 0$.

Solution: Assume $M \neq 0$. Then there is a minimal n_0 with $n_{n_0} \neq 0$. But $\mathfrak{a}M \subset \sum_{n \geq i_0 + n_0} n_n$ and $i_0 > 0$. So $M_{n_0} \not\subset \mathfrak{a}M$, a contradiction. Thus $M = 0$. \qed
Exercise (20.30) (Homogeneous prime avoidance) . — Let R be a graded ring, \mathfrak{a} a homogeneous ideal, \mathfrak{a}^i its subset of homogeneous elements, p_1, \ldots, p_n primes. Adapt the method of (3.12) to prove the following assertions:

1. If $\mathfrak{a}^i \nsubseteq p_j$ for all j, then there is $x \in \mathfrak{a}^i$ such that $x \notin p_j$ for all j.
2. If $\mathfrak{a}^i \subset \bigcup_{i=1}^n p_i$, then $\mathfrak{a} \subset p_i$ for some i.

Solution: For (1), proceed by induction on n. If $n = 1$, the assertion is trivial. Assume that $n \geq 2$ and by induction that, for every i, there is an $x_i \in \mathfrak{a}^i$ such that $x_i \notin p_j$ for all $j \neq i$. Set $d_i := \deg(x_i)$, set $y_n := x_1^{d_1} \cdots x_{n-1}^{d_{n-1}}$, and set $y_i := x_i^{d_i}$ for $i < n$. Then $y_i \notin p_j$ for all $i \neq j$. We may assume $y_i \in p_i$ for each i if we’re done. Set $x := (y_1 \cdots y_{n-1}) + y_n$. Then $x \in \mathfrak{a}$ and is homogeneous of degree $(d_1 + \cdots + d_{n-1})d_n$. So $x \notin \mathfrak{a}^i$. But $x \notin p_j$ as, if $j = n$, then $y_n \notin p_n$ and p_n is prime, and if $j < n$, then $y_n \notin p_j$ and $x_j \notin p_j$. Thus (1) holds.

Assertion (2) is equivalent to (1), since \mathfrak{a} is homogeneous, so generated by \mathfrak{a}^i. □

Exercise (20.31) . — Let $R = \bigoplus R_n$ be a graded ring, $M = \bigoplus M_n$ a graded module, $N = \bigoplus N_n$ a homogeneous submodule. Assume M/N is Noetherian. Set

$$N' := \{ m \in M \mid R_n m \in N \text{ for all } n \gg 0 \}.$$

1. Show that N' is the largest homogeneous submodule of M containing N and having, for all $n \gg 0$, its degree-n homogeneous component N'_n equal to N_n.

2. Let $N = \bigcap Q_i$ be a primary decomposition. Say Q_i is p_i-primary. Set $R_+ := \bigoplus_{n \geq 0} R_n$. Show that $N' = \bigcap_{p_i \nmid R_+} Q_i$.

Solution: In (1), plainly N' is a submodule containing N. Given $m \in N'$, let m_i be a homogeneous component. As $R_n m \in N$ for all $n \gg 0$ and as N is homogeneous, $R_n m_i \in N$ for all $n \gg 0$. So $m_i \in N'$. Thus N' is homogeneous.

Plainly, to check the rest of (1), we may replace M by M/N. Thus we may assume M is Noetherian and $N = 0$.

As M is Noetherian, N' is finitely generated, say by g_1, \ldots, g_r. Replacing the g_i by all their homogeneous components, we may assume each g_i is homogeneous, say of degree d_i. Set $d := \max d_i$. Also, say $R_n g_i = 0$ for $n \geq \nu$ and for all i.

Set $k := \nu + d$. Given $m \in N''$ with $n \geq k$, say $m = \sum x_i g_i$ with $x_i \in R_{n-d_i}$. Then $n - d - d_i \geq k - d =: \nu$. So $x_i g_i = 0$. So $m = 0$. Thus $N'' = 0$ for $n \geq k$.

Let $N'' \subset M$ be homogeneous with $N''_n = 0$ for $n \geq k'$. Given p and $m \in N''$, note $R_p m \in N''_{n+p}$; so $R_p m = 0$ for $n \geq k'$. Thus $N'' \subset N'$. Thus (1) holds.

For (2), note $0 = \bigcap (Q_i/N)$ in M/N. By (18.63),

$$\Gamma_{R_+}(M/N) = \bigcap_{p_i \nmid R_+} (Q_i/N).$$

But plainly $\Gamma_{R_+}(M/N) = N'/N$. Thus $N' = \bigcap_{p_i \nmid R_+} Q_i$. □

Exercise (20.32) . — Under the conditions of (20.6), assume R is a domain whose integral closure \overline{R} in $\text{Frac}(R)$ is module finite (see (24.17)). Prove the following:

1. There is a homogeneous $f \in R$ with $R_f = \overline{R}_f$.
2. The Hilbert Polynomials of R and \overline{R} have the same degree and same leading coefficient.
Solutions (20.33) / (20.9) Dimension

Solution: By (20.28), \(\overline{R} \) is a graded \(R \)-algebra. But \(\overline{R} \) is module finite. So there are finitely many homogeneous generators \(x_1, \ldots, x_r \) of \(\overline{R} \) as an \(R \)-module. Say \(x_i = a_i/b_i \) with \(a_i, b_i \in R \) homogeneous. Set \(f := \prod b_i \). Then \(fx_i \in R \) for each \(i \). So \(\overline{R}/f \cong R_f \). Thus (1) holds.

Consider the short exact sequence \(0 \to R \to \overline{R} \to \overline{R}/R \to 0 \). Then \((\overline{R}/R)_f = 0 \) by (12.13). So \(\deg h(\overline{R}/R, n) < \deg h(\overline{R}, n) \) by (20.17) and (1). But
\[
h(\overline{R}, n) = h(R, n) + h(\overline{R}/R, n)
\]
by (19.7) and (20.6). Thus (2) holds. \(\square \)

Exercise (20.33). — Let \(R = \bigoplus R_n \) be a graded ring with \(R_0 \) Artinian. Assume \(R = R_0[x_1, \ldots, x_r] \) with \(x_i \in R_k \) and \(k_i \geq 1 \). Set \(q(t) := \prod_{i=1}^r (1-t^{k_i}) \). Let \(\mathcal{C} \) be the subcategory of \((\mathcal{R}-\text{mod})\) of all finitely generated graded \(R \)-modules \(M = \bigoplus M_n \) and all homogeneous maps of degree 0; let \(\mathcal{C}_0 \) be its subcategory of all \(M \) with \(M_n = 0 \) for all \(n < 0 \). Using the notation of (17.34), let \(\lambda_0 : K_0(R_0) \to \mathbb{Z} \) be a \(\mathbb{Z} \)-map. Show that assigning to each \(M \in \mathcal{C} \) the series \(\sum_{n \in \mathbb{Z}} \lambda_0(\gamma_0(M_n))t^n \) gives rise to \(\mathbb{Z} \)-maps \(K(\mathcal{C}) \to (1/q(t))\mathbb{Z}[t, 1/t] \) and \(K(\mathcal{C}_0) \to (1/q(t))\mathbb{Z}[t] \).

Solution: Replacing \(\ell \) by \(\lambda_0\gamma_0 \) in the proof of (20.5) shows \(\sum_{n \in \mathbb{Z}} \lambda_0(\gamma_0(M_n))t^n \) lies in \((1/q(t))\mathbb{Z}[t, 1/t] \) for each \(M \in \mathcal{C} \) and lies in \((1/q(t))\mathbb{Z}[t] \) if \(M_n = 0 \) for all \(n < 0 \). Now, a sequence \(0 \to M_1 \to M_2 \to M_3 \to 0 \) in \(\mathcal{C} \) with \(M_i = \bigoplus M_{ni} \) is exact (if and) only if each sequence \(0 \to M_{1n} \to M_{2n} \to M_{3n} \to 0 \) is exact. Thus (17.34)(1) yields the assertion. \(\square \)

21. Dimension

Exercise (21.9). — (1) Let \(A \) be a Noetherian local ring with a principal prime \(\mathfrak{p} \) of height at least 1. Prove \(A \) is a domain by showing any prime \(\mathfrak{q} \not\subseteq \mathfrak{p} \) is \(\langle \mathfrak{q} \rangle \).

(2) Let \(k \) be a field, \(P := k[[X]] \) the formal power series ring in one variable. Set \(R := P \times P \). Prove that \(R \) is Noetherian and semilocal, and that \(R \) contains a principal prime \(\mathfrak{p} \) of height 1, but that \(R \) is not a domain.

Solution: To prove (1), say \(\mathfrak{p} = \langle x \rangle \). Take \(y \in \mathfrak{q} \). Then \(y = ax \) for some \(a \). But \(x \not\in \mathfrak{q} \) since \(\mathfrak{q} \not\subseteq \mathfrak{p} \). Hence \(a \in \mathfrak{q} \). Thus \(\mathfrak{q} = \mathfrak{q}x \). But \(x \) lies in the maximal ideal of the local ring \(A \), and \(\mathfrak{q} \) is finitely generated since \(A \) is Noetherian. Hence Nakayama’s Lemma (10.6) yields \(\mathfrak{q} = \langle 0 \rangle \). Thus \(\langle 0 \rangle \) is prime, and so \(A \) is a domain.

Alternatively, as \(a \in \mathfrak{q} \), also \(a = a_1x \) with \(a_1 \in \mathfrak{q} \). Repeating yields an ascending chain of ideals \(\langle a \rangle \subseteq \langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \cdots \). It stabilizes as \(A \) is Noetherian: there’s a \(k \) such that \(a_k \in \langle a_{k-1} \rangle \). Then \(a_k = ba_k-1 = ba_kx \) for some \(b \). So \(a_k(1-bx) = 0 \). But \(1-bx \) is a unit by (3.5) as \(A \) is local. So \(a_k = 0 \). Thus \(y = 0 \), so \(\mathfrak{q} = \langle 0 \rangle \) is a domain.

As to (2), every nonzero ideal of \(P \) is of the form \(\langle X^n \rangle \) by (3.8). Hence \(P \) is Noetherian. Thus \(R \) is Noetherian by (16.14).

The primes of \(R \) are of the form \(\mathfrak{q} \times P \) or \(P \times \mathfrak{q} \) where \(\mathfrak{q} \) is a prime of \(P \) by (2.29). Further, \(\mathfrak{m} := \langle X \rangle \) is the unique maximal ideal by (3.7). Hence \(R \) has just two maximal ideals \(\mathfrak{m} \times P \) and \(P \times \mathfrak{m} \). Thus \(R \) is semilocal.

Set \(\mathfrak{p} := \langle (X, 1) \rangle \). Then \(\mathfrak{p} = \mathfrak{m} \times P \). So \(\mathfrak{p} \) is a principal prime. Further, \(\mathfrak{p} \) contains just one other prime \(0 \times P \). Thus \(\text{ht}(\mathfrak{p}) = 1 \).

Finally, \(R \) is not a domain as \((1, 0) \cdot (0, 1) = 0 \). \(\square \)
Exercise (21.13) — Let A be a Noetherian local ring of dimension r. Let m be the maximal ideal, and $k := A/m$ the residue class field. Prove that

$$r \leq \dim_k(m/m^2),$$

with equality if and only if m is generated by r elements.

Solution: By (21.4), $\dim(A)$ is the smallest number of elements that generate a parameter ideal. But m is a parameter ideal, and the smallest number of generators of m is $\dim_k(m/m^2)$ by (10.8)(2). The assertion follows. □

Exercise (21.16) — Let A be a Noetherian local ring of dimension r, and let $x_1, \ldots, x_s \in A$ with $s \leq r$. Set $a := (x_1, \ldots, x_s)$ and $B := A/a$. Prove equivalent:

1. A is regular, and there are $x_{s+1}, \ldots, x_r \in A$ with x_1, \ldots, x_r a regular sop.
2. B is regular of dimension $r-s$.

Solution: Assume (1). Then x_1, \ldots, x_r generate the maximal ideal m of A. So the residues of x_{s+1}, \ldots, x_r generate that n of B. Hence $\dim(B) \leq r-s$ by (21.13). But $\dim(B) \geq r-s$ by (21.5). So $\dim(B) = r-s$. Thus (2) holds.

Assume (2). Then n is generated by $r-s$ elements, say by the residues of $x_{s+1}, \ldots, x_r \in A$. Hence m is generated by x_1, \ldots, x_r. Thus (1) holds. □

Exercise (21.20) — Let R be a ring, R' an algebra, and N a nonzero R'-module that’s a Noetherian R-module. Prove the following statements:

1. $\dim_R(N) = \dim_{R'}(N)$.
2. Each prime in $\text{Supp}_{R'}(N)$ contracts to a prime in $\text{Supp}_R(N)$. Moreover, one is maximal if and only if the other is.
3. Each maximal ideal in $\text{Supp}_{R'}(N)$ is the contraction of at least one and at most finitely many maximal ideals in $\text{Supp}_R(N)$.
4. $\text{rad}_R(N)R' \subset \text{rad}_{R'}(N)$.
5. N is semilocal over R if and only if N is semilocal over R'.

Solution: Set $R_1 := R/\text{Ann}_R(N)$ and $R'_1 := R'/\text{Ann}_{R'}(N)$. Then

$$\text{Supp}_R(N) = \text{Spec}(R_1) \quad \text{and} \quad \text{Supp}_{R'}(N) = \text{Spec}(R'_1)$$

by (13.4)(3) as N is finitely generated over R. So by definition (21.1),

$$\dim_R(N) = \dim(R_1) \quad \text{and} \quad \dim_{R'}(N) = \dim(R'_1).$$

Say n_1, \ldots, n_r generate N. Define $\alpha: R' \to N^{\oplus r}$ by $\alpha(x) := (xn_1, \ldots, xn_r)$. Plainly $\text{Ker}(\alpha) = \text{Ann}_R(N)$. Hence α induces an injection $R'_1 \to N^{\oplus r}$. But $N^{\oplus r}$ is Noetherian over R. Thus R'_1 is module finite over R_1, so integral over R_1.

Note that $\text{Ann}_R(N)$ contracts to $\text{Ann}_R(N)$. Thus R'_1 is an extension of R_1.

For (1), apply (15.25). For (2), apply (14.3)(1).

For (3), fix a maximal ideal $m \in \text{Supp}_R(N)$. Then m is the contraction of at least one prime n in $\text{Supp}_R(N)$ by (14.3)(3), and n is maximal by (14.3)(1). There are at most finitely many such n by (19.25). Thus (3) holds.

For (4), note that each maximal ideal n in $\text{Supp}_{R'}(N)$ contracts to a maximal ideal in $\text{Supp}_R(N)$ by (2). So $\text{rad}_R(N)R' \subset n$. Thus (4) holds.

For (5), note that, each maximal ideal in $\text{Supp}_R(N)$ is the contraction of at least one maximal ideal in $\text{Supp}_{R'}(N)$ by (3). So $\text{Supp}_R(N)$ contains only finitely many maximal ideals if $\text{Supp}_{R'}(N)$ does. The converse holds, as each maximal ideal n in $\text{Supp}_R(N)$ contracts to a maximal ideal m in $\text{Supp}_R(N)$ by (2), and as this m is the contraction of at most finitely many such n by (3). Thus (5) holds. □
Solutions (21.21) / (21.23)

Exercise (21.21). — Let R be a ring, M a nonzero Noetherian semilocal module, q a parameter ideal, and $0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$ a chain of submodules with $M_i / M_{i-1} \simeq R/p_i$ for some $p_i \in \text{Supp}(M)$. Set $d := \dim(M)$ and set

$$I := \{ i \mid \dim(R/p_i) = d \} \quad \text{and} \quad \Phi := \{ p \in \text{Supp}(M) \mid \dim(R/p) = d \}.$$

Prove: (1) $e(q, M) = \sum_{i \in I} e(q, R/p_i)$ and (2) $e(q, M) = \sum_{p \in \Phi} \ell_{R_p}(M_p)e(q, R/p)$.

Solution: Given any $p \in \text{Supp}(M)$, recall $p \supset \text{Ann}(M)$ by (13.4)(3). But M is semilocal. So $\text{Ann}(M)$ lies in just finitely many maximal ideals; so p does too. Thus R/p is semilocal. In addition, as M is Noetherian, so is $R/\text{Ann}(M)$ by (16.16); thus, R/p is Noetherian.

For (1), form the exact sequences $0 \to M_{i-1} \to M_i \to R/p_i \to 0$. By (20.13)(2), the polynomials $p_q(M_i, n)$ and $p_q(M_{i-1}, n) + p_q(R/p_i, n)$ have the same degree and the same leading coefficients. Hence, so do the polynomials $p_q(M, n)$ and $\sum_{i \in I} p_q(R/p_i, n)$. But the degree of $p_q(R/p_i, n)$ is $\dim(R/p_i)$ by the Dimension Theorem (21.4). Also $d = \max \dim(R/p_i)$ by (21.1.1). Thus (1) holds.

For (2), note (17.16) provides a chain as in (1). Fix $p \in \Phi$. If $p_i \neq p$, then $p_i \not\subset p$ as p is minimal, and so $R_q/pRp_j = 0$ by (11.8)(2). On the other hand, if $p = p_i$, then R_p/pRp_j is a field. So $M_p := (M_i)_p \supset \cdots \supset (M_0)_p = 0$ becomes a composition series after eliminating duplicates; moreover, $\ell_{R_p}(M_p)$ is the number of i with $p_i = p$. Thus (1) yields (2). □

Exercise (21.22). — Let A be a Noetherian local ring, m its maximal ideal, q a parameter ideal, $P := (A/q)[X_1, \ldots, X_s]$ a polynomial ring for some $s \geq 0$. Show:

1. Set $\mathfrak{M} := (m/q)[X_1, \ldots, X_s]$. Then $z \text{div}(P) = \mathfrak{M}$.
2. Assume q is generated by a sop x_1, \ldots, x_r. Let $\phi : P \to G_q(A)$ be the (A/q)-algebra map with $\phi(X_i)$ equal to the residue of x_i. Then $\ker(\phi) \subset z \text{div}(P)$.

Solution: For (1), fix $F \in z \text{div}(P)$. Then (8.32) gives $0 \neq x \in A$ with $xF = 0$. Fix a coefficient a of F. Then $xa = 0$. So $a \notin A^{x}$. So $a \in m/q$. Thus $z \text{div}(P) \subset \mathfrak{M}$.

Conversely, fix $F \in \mathfrak{M}$. Note A/q is Artinian; see (19.12). So there’s $r > 0$ with $(m/q)^r = 0$ by (19.23). Hence $F^r = 0$. Thus $F \in z \text{div}(P)$. Thus (1) holds.

For (2), set $a := \ker(\phi)$. Note a is homogeneous, $a = \oplus a_n$. Suppose there’s $F \in a_m$, but $F \notin z \text{div}(P)$. Then for all $n \geq m$, the map $P_{n-m} \xrightarrow{xF} a_n$ is injective; so $\ell(P_{n-m}) \leq \ell(a_n)$. But there’s an exact sequence, $0 \to a_n \to P_n \to q^n/q^{n+1} \to 0$; so (19.7) yields $\ell(q^n/q^{n+1}) \leq \ell(P_n) - \ell(a_n)$. So $\ell(q^n/q^{n+1}) \leq \ell(P_n) - \ell(P_{n-m})$.

So (20.4) yields $\ell(q^n/q^{n+1}) \leq \ell(A/q)((i/n-1)^{(i/n-1)} - (i+n-1)^{(i+n-1)})$. The latter is a polynomial in n of degree $s - 2$. But (21.4) yields $s = \deg(p_q(A, n))$. So $\deg(h(G_q(A), n)) = s - 1$ by (20.11), a contradiction. Thus $a_m \subset z \text{div}(P)$ for all m. But $z \text{div}(P)$ is closed under sum by (1), hence contains a. Thus (2) holds. □

Exercise (21.23). — Let A be a Noetherian local ring, $k \subset A$ a coefficient field (or field of representatives) — that is, k maps isomorphically onto the residue field — x_1, \ldots, x_s a sop. Using (21.22), show the x_i are algebraically independent over k.

Solution: Set $q := (x_1, \ldots, x_s)$. Let $Q := k[X_1, \ldots, X_s]$ be the polynomial ring in variables X_i. Given $F \in Q$, say $F = \sum_{i=1}^{s} F_i$ where F_i is homogeneous of degree i. Note $F_i(x_1, \ldots, x_s) \in q^i$ for all i. Assume $F_i \neq 0$.

Assume $F(x_1, \ldots, x_s) = 0$. So $F_i(x_1, \ldots, x_s) \in q^{i+1}$. Set $P := (A/q)[X_1, \ldots, X_s]$. Let $\phi : P \to G_q(A)$ be the map of (21.22)(2). View $Q \subset P$. Then $\phi(F_i) = 0$. So by (21.22)(1)-(2), the coefficients of F_i are in the maximal ideal of A/q. But they’re
Let \(m \) a maximal ideal of \(R \). Using the dimension theory in this chapter and (15.1)(1), but not (2), show \(\dim(R) = \dim(R_m) = \tr.\deg_k(\Frac(R)) \). (Compare with (15.10) and (15.12).)

Solution: As \(\dim(R) = \sup_m \dim(R_m) \), the second equality implies the first.

To prove the second equality, note that \(R/m \) is a finite algebraic extension of \(k \) by (15.4). So \(k = R/m \), because \(k \) is algebraically closed. But \(R/m = R_m/mR_m \) by (12.16). Thus \(k \) is a coefficient field of \(R_m/mR_m \).

Let \(x_1, \ldots, x_d \in mR_m \) form a sop for \(R_m \). The \(x_i \) are algebraically independent over \(k \) by (21.23). Set \(K := \Frac(R) \) and \(n := \tr.\deg_k(K) \). Then \(n \geq d \).

By (15.1)(1), there are algebraically independent elements \(t_1, \ldots, t_r \in R \) such that \(R \) is module finite over \(P := k[t_1, \ldots, t_r] \). Then \(K \) is a finite extension field of \(k(t_1, \ldots, t_r) \). Thus \(\nu = n \).

Set \(n := m \cap P \). Then \(n \) is maximal and \(\dim(R_m) = \dim(P_n) \) by (15.26). By (15.5), there are \(a_1, \ldots, a_d \in k \) such that \(n = \langle u_1, \ldots, u_d \rangle \) where \(u_i := t_i - a_i \). Then \(\langle u_1, \ldots, u_d \rangle \supseteq \langle u_1 \rangle \supseteq \langle u_2 \rangle \supseteq \cdots \supseteq \langle u_d \rangle \supseteq \{0\} \) is a chain of primes of length \(\nu \). Thus \(\dim(P_n) \geq \nu \).

In sum, \(\dim(R_m) = \dim(P_n) \geq \nu = n \geq d \). But \(d = \dim(R_m) \) by (21.4). Thus \(\dim(R_m) = n \), as desired.

Exercise (21.24). — Let \(k \) be an algebraically closed field, \(R \) an algebra-finite domain, \(m \) a maximal ideal of \(R \). Let \(\dim(R) = \dim(R_m) = \tr.\deg_k(\Frac(R)) \). (Compare with (15.10) and (15.12).)

Exercise (21.25). — Let \(R \) be a ring, \(N \) a Noetherian semilocal module, and \(y_1, \ldots, y_r \) a sop for \(N \). Set \(N_i := N/(y_1, \ldots, y_i)N \). Show \(\dim(N_i) = r - i \).

Solution: First, \(\dim(N) = r \) by (21.4). But (4.21) with \(a := \langle y_1, \ldots, y_{i-1} \rangle \) and \(b := \langle y_i \rangle \) yields \(N_i \twoheadrightarrow N_{i-1}/y_iN_{i-1} \). Hence \(\dim(N_i) \geq \dim(N_{i-1}) - 1 \) for all \(i \) by (21.5), and \(\dim(N_r) = 0 \) by (19.26). Thus \(\dim(N_i) = r - i \) for all \(i \).

Exercise (21.26). — Let \(R \) be a ring, \(p \) a prime, \(M \) a finitely generated module. Set \(R' := R/\Ann M \). Prove these two statements: (1) \(\dim(M_p) = \dim(R'_p) \).

(2) If \(\Ann(M) = \langle 0 \rangle \), then \(\dim(M_p) = \ht(p) \).

Solution: For (1), note \(\Supp(M_p) = \Spec(R_p/\Ann M_p) \) owing to (13.4)(3). But \(\Ann M_p = (\Ann M)p \) by (12.17)(1). So \(R_p/\Ann M_p = R'_p \) by (12.15). So \(\Supp(M_p) = \Spec(R'_p) \). Thus the definitions (21.1) and (15.9) yield (1). For (2), recall \(\dim(R_p) = \ht(p) \) by (21.6.1). Thus (1) yields (2).

Exercise (21.27). — Let \(R \) be a Noetherian ring, and \(p \) be a prime minimal containing \(x_1, \ldots, x_r \). Given \(r' \) with \(1 \leq r' \leq r \), set \(R' := R/(x_1, \ldots, x_{r'}) \) and \(p' := p/(x_1, \ldots, x_{r'}) \). Assume \(\ht(p) = r \). Prove \(\ht(p') = r - r' \).

Solution: Let \(x'_i \in R' \) be the residue of \(x_i \). Then \(p' \) is minimal containing \(x'_{r' + 1}, \ldots, x'_r \) by (1.9) and (2.6). So \(\ht(p') \leq r - r' \) by (21.7).

On the other hand, \(R''_{p'} = R''_p \) by (11.15), and \(R'_p = R_p/(x_1, \ldots, x_{r'}/1) \) by (12.15) Hence \(\dim(R''_{p'}) \geq \dim(R''_p) - r' \) by repeated application of (15.1) with \(R_p \) for both \(R \) and \(M \) and \(\ht(p') \geq r - r' \) by (21.6.1), as required.

Exercise (21.28). — Let \(R \) be a Noetherian ring, \(p \) a prime of height at least 2. Prove that \(p \) is the union of height-1 primes, but not of finitely many.
Solution: If \(p \) were the union of finitely many height-1 primes \(p' \), then by Prime Avoidance (3.12), one \(p' \) would be equal to \(p \), a contradiction.

To prove \(p \) is the union of height-1 primes, we may replace \(R \) by \(R/\mathfrak{q} \) where \(\mathfrak{q} \subset p \) is a minimal prime, as preimage commutes with union. Thus we may assume \(R \) is a domain. Given a nonzero \(x \in p \), let \(\mathfrak{q}_x \subset p \) be a minimal prime of \(\langle x \rangle \). Then \(\text{ht}(\mathfrak{q}_x) = 1 \) by the Krull Principal Theorem (21.8). Plainly \(\bigcup \mathfrak{q}_x = p \). □

Exercise (21.29). — Let \(R \) be a Noetherian ring of dimension at least 1. Show that the following conditions are equivalent:

1. \(R \) has only finitely many primes.
2. \(R \) has only finitely many height-1 primes.
3. \(R \) is semilocal of dimension exactly 1.

Solution: Trivially, (1) implies (2).

Assume (2). Then, by (21.28), there’s no prime of height at least 2. Thus \(\dim(R) = 1 \). But, the height-0 primes are minimal, so finite in number by (17.29). Thus (1) and (3) hold.

Finally, assume (3). Since \(\dim(R) = 1 \), the height-1 primes are maximal. Since \(R \) is semilocal, \(R \) has only finitely many maximal ideals. Thus (2) holds. □

Exercise (21.30) (Artin–Tate [2, Thm. 4]). — Let \(R \) be a Noetherian domain, \(X \) a variable. Set \(K := \text{Frac}(R) \). Prove the following equivalent:

1. \(\langle fX - 1 \rangle \subset R[X] \) is a maximal ideal for some nonzero \(f \in R \).
2. \(K = R_f \) for some nonzero \(f \in R \).
3. \(K \) is algebra finite over \(R \).
4. Some nonzero \(f \in R \) lies in every nonzero prime.
5. \(R \) has only finitely many height-1 primes.
6. \(R \) is semilocal of dimension 1.

Solution: First, \(R_f = R[X]/\langle fX - 1 \rangle \) by (11.7). But \(R \subset R_f \subset K \), and \(K \) is the smallest field containing \(R \); see (11.2) and (2.3). So \(R_f \) is a field if and only if \(R_f = K \). Thus (1) and (2) are equivalent, and they imply (3).

Assume (3), and say \(K = R[x_1, \ldots, x_n] \). Let \(f \) be a common denominator of the \(x_i \). Then given any \(y \in K \), clearly \(f^m y \in R \) for some \(m \geq 1 \).

Let \(\mathfrak{p} \subset R \) be a nonzero prime. Take a nonzero \(z \in \mathfrak{p} \). By the above, \(f^m(1/z) \in R \) for some \(m \geq 1 \). So \(f^m(1/z) z \in \mathfrak{p} \). So \(f \in \mathfrak{p} \). Thus (3) implies (4).

Assume (4). Given \(0 \neq y \in R \), the Scheinnullstellensatz (3.14) yields \(f \in \sqrt{(y)} \).

So \(f^n = xy \) for some \(n \geq 1 \) and \(x \in R \). So \(1/y = x/f^n \). Thus (4) implies (2).

Again assume (4). Let \(\mathfrak{p} \) be a height-1 prime. Then \(f \in \mathfrak{p} \). So \(\mathfrak{p} \) is minimal containing \(\langle f \rangle \). So \(\mathfrak{p} \) is one of finitely many primes by (17.29). Thus (5) holds.

Conversely, assume (5). Take a nonzero element in each height-1 prime, and let \(f \) be their product. Then \(f \) lies in every height-1 prime. But every nonzero prime contains a height-1 prime owing to the Dimension Theorem (21.4). Thus (4) holds.

Finally, (5) and (6) are equivalent by (21.29). □

Exercise (21.31). — Let \(R \) be a Noetherian domain, and \(p \) a prime element. Show that \(\langle p \rangle \) is a height-1 prime ideal.

Solution: By (2.5), the ideal \(\langle p \rangle \) is prime. Thus by (21.8) it’s height-1. □

Exercise (21.32). — Let \(R \) be a UFD, and \(p \) a height-1 prime ideal. Show that \(p = \langle p \rangle \) for some prime element \(p \).

357
Solution: As \(\text{ht}(p) = 1 \), there’s a nonzero \(x \in p \). Factor \(x \). One prime factor \(p \) must lie in \(p \) as \(p \) is prime. Then \(\langle p \rangle \) is a prime ideal as \(p \) is a prime element by (2.5). But \(\langle 0 \rangle \neq \langle p \rangle \subset p \) and \(\text{ht}(p) = 1 \). Thus, \(\langle p \rangle = p \), as desired. \(\square \)

Exercise (21.33). Let \(R \) be a Noetherian domain such that every height-1 prime ideal \(p \) is principal. Show that \(R \) is a UFD.

Solution: It suffices to show that every irreducible element \(p \) is prime; see (2.5). Take a minimal prime \(p \) of \(\langle p \rangle \). Then \(\text{ht}(p) = 1 \) by (21.8). So by hypothesis \(p = \langle x \rangle \) for some \(x \). Then \(x \) is prime by (2.5). And \(p = xy \) for some \(y \) as \(p \subset p \) but \(p \) is irreducible. So \(y \) is a unit. Thus \(p \) is prime, as desired. \(\square \)

Exercise (21.34) (Gauss’ Lemma). Let \(R \) be a UFD, and \(X \) a variable, and \(F, G \in R[X] \). Call \(F \) primitive if its coefficients have no common prime divisor. Thus (1) holds.

1. Show that \(F \) is primitive if and only if \(c(F) \) lies in no height-1 prime ideal.
2. Assume that \(F \) and \(G \) are primitive. Show that \(FG \) is primitive.
3. Let \(f, g, h \) be the gcd’s of the coefficients of \(F, G, FG \). Show \(fg = h \).
4. Assume \(c(F) = \langle f \rangle \) with \(f \in R \). Show \(f \) is the gcd of the coefficients of \(F \).

Solution: For (1), note that \(F \) is not primitive if and only if \(c(F) \subset \langle p \rangle \) for some prime element \(p \). But such \(\langle p \rangle \) are precisely the height-1 prime ideals owing to (21.32) and (21.31). Thus (1) holds.

For (2), given a height-1 prime ideal \(p \), note \(c(F) \not\subset p \) and \(c(G) \not\subset p \) by (1). So (2.35) implies \(c(FG) \not\subset p \). So \(FG \) is primitive by (1). Thus (2) holds.

For (3), say \(F = fF' \) and \(G = gG' \). Then \(F' \) and \(G' \) are primitive. So \(F'G' \) is primitive by (2). But \(FG = fgF'G' \). Thus (3) holds.

For (4), given \(g \in R \), note that \(g \) divides all the coefficients of \(F \) if \(c(F) \subset \langle g \rangle \) But \(c(F) = \langle f \rangle \); also \(\langle f \rangle \subset \langle g \rangle \) if and only if \(g \mid f \). Hence, \(f \) divides all the coefficients of \(F \), and if \(g \) does too, then \(g \mid f \). Thus (4) holds. \(\square \)

Exercise (21.35). Let \(R \) be a finitely generated algebra over a field. Assume \(R \) is a domain of dimension \(r \). Let \(x \in R \) be neither 0 nor a unit. Set \(R' := R/(x) \). Prove that \(r - 1 \) is the length of any chain of primes in \(R' \) of maximal length.

Solution: A chain of primes in \(R' \) of maximal length lifts to a chain of \(p \) in \(R \) of maximal length with \(\langle x \rangle \subset p_1 \subset \cdots \subset p_d \). As \(x \) is not a unit, \(d \geq 1 \). As \(x \neq 0 \), also \(p_1 \neq 0 \). But \(R \) is a domain. So Krull’s Principal Ideal Theorem, (21.27), yields \(\text{ht}(p_1) = 1 \). So \(0 \subset p_1 \subset \cdots \subset p_r \) is of maximal length in \(R \). But \(R \) is a finitely generated algebra over a field. Thus \(d = \dim R \) by (15.8), as desired. \(\square \)

Exercise (21.36). Let \(k \) be a field, \(P := k[X_1, \ldots, X_n] \) the polynomial ring, \(R_1 \) and \(R_2 \) two \(P \)-algebra-finite domains, and \(p \) a minimal prime of \(R_1 \otimes_P R_2 \).

1. Set \(C := R_1 \otimes_k R_2 \), and let \(q \subset C \) denote the preimage of \(p \). Use (8.28) to prove that \(q \) is a minimal prime of an ideal generated by \(n \) elements.

2. Use (15.12) and (15.28) to prove this inequality:
\[
\dim(R_1) + \dim(R_2) \leq n + \dim((R_1 \otimes_P R_2)/p).
\]

Solution: For (1), note \(R_1 \otimes_P R_2 = C/\mathfrak{p}_C \) by (8.28). So \(q \) is a minimal prime of \(\mathfrak{p}_C \). But \(\mathfrak{p}_P \) is, by (8.19), generated by \(n \) elements, as desired.

For (2), say \(\{x_i\} \) is a set of \(P \)-algebra generators of \(R_1 \). Then together with the images of the \(X_j \) in \(R_1 \), the \(x_i \) plainly form a set of \(k \)-algebra generators of \(R_1 \). Thus \(R_1 \) is algebra finite over \(k \). Similarly, \(R_2 \) is too.

358
Solutions (21.37) / (21.40)

Set \(\{u_i\} \) and \(\{v_j\} \) are sets of \(k \)-algebra generators of \(R_1 \) and of \(R_2 \). Then, in \(C \), the \(u_i \otimes 1 \) and \(1 \otimes v_j \) plainly form a set of \(k \)-algebra generators. Thus \(C \) is \(k \)-algebra finite. So \(C \) is Noetherian by the Hilbert Basis Theorem (16.10). So owing to (1), Corollary (21.7) yields \(\text{ht}(q) \leq n \).

There is a minimal prime \(q_0 \subset q \) by (3.16). Set \(C_0 := C/q_0 \). Then (21.6.1) yields \(\dim((C_0)_{q_0}) = \text{ht}(q/q_0) \). So \(\dim((C_0)_{q_0}) \leq n \). But \(C_0 \) is a domain, and is \(k \)-algebra finite as \(C \) is. So (15.12) yields

\[
\dim(C_0) = \dim((C_0)_{q_0}) + \dim(C_0/qC_0).
\]

But \(C_0/qC_0 = C/q = (R_1 \otimes_P R_2)/p \). Moreover, \(\dim(C_0) = \dim(R_1) + \dim(R_2) \) by (15.28.1). Thus (21.36.1) holds. \(\square \)

Exercise (21.37). — Let \(k \) be a field, \(P := k[X_1, \ldots, X_n] \) the polynomial ring, \(R' \) a \(P \)-algebra-finite domain. Let \(p \) be a prime of \(P \), and \(p' \) a minimal prime of \(pR' \). Prove this inequality: \(\text{ht}(p') \leq \text{ht}(p) \).

Solution: Set \(R_1 := R' \) and \(R_2 := P/p \). Then \(R_1 \otimes_P R_2 = R'/pR' \) by (8.27)(1). Set \(\mathfrak{P} := p'/pR' \). Then \(\mathfrak{P} \) is minimal, and \((R_1 \otimes_P R_2)/\mathfrak{P} = R'/p' \). So by (21.36)

\[
\dim(R') + \dim(P/p) \leq n + \dim(R'/p'). \tag{21.37.1}
\]

But \(\dim(P/p) = n - \text{ht}(p) \) and \(\dim(R'/p') = \dim(R') - \text{ht}(p') \) by (21.6.1) and (15.12) and (15.11). Thus (21.37.1) yields \(\text{ht}(p') \leq \text{ht}(p) \), as desired. \(\square \)

Exercise (21.38). — Let \(k \) be a field, \(P := k[X_1, \ldots, X_n] \) the polynomial ring, \(p_1 \) and \(p_2 \) primes of \(P \), and \(p \) a minimal prime of \(p_1 + p_2 \). Prove this inequality:

\[
\text{ht}(p) \leq \text{ht}(p_1) + \text{ht}(p_2). \tag{21.38.1}
\]

Solution: Set \(R_i := P/p_i \). Then \(R_1 \otimes_P R_2 = P/(p_1 + p_2) \) by (8.27)(2). Set \(\mathfrak{P} := p/(p_1 + p_2) \). Then \(\mathfrak{P} \) is minimal, and \((R_1 \otimes_P R_2)/\mathfrak{P} = P/p \). So (21.36) yields

\[
\dim(P/p_1) + \dim(P/p_2) \leq n + \dim(P/p). \tag{21.38.2}
\]

But given any prime \(q \) of \(P \), note \(\dim(P/q) = n - \text{ht}(q) \) by (21.6.1) and (15.12) and (15.11). Thus (21.38.2) yields (21.38.1). \(\square \)

Exercise (21.39). — Let \(k \) be a field, \(k[X, Y, Z, W] \) the polynomial ring. Set

\[
q_1 := \langle X, Y \rangle \quad \text{and} \quad q_2 := \langle Z, W \rangle \quad \text{and} \quad q := \langle X, Y, Z, W \rangle \quad \text{and}
\]

\[
R := k[X, Y, Z, W]/\langle XZ - YW \rangle \quad \text{and} \quad p_i := q_i R \quad \text{and} \quad p := q R.
\]

Show that \(p_1, p_2, p \) are primes of heights 1, 1, 3. Does (21.38) hold with \(R \) for \(P \)?

Solution: Note \(XZ - YW \) is irreducible. So \(R \) is a domain. Also \(\dim R = 3 \) by (21.35) and (15.11). But \(R/p_1 k[X, Y, Z, W]/q_1 = k[Z, W] \). So \(p_1 \) is prime; also (15.11) yields \(\dim(R/p_1) = 2 \). Thus (21.6.1) and (15.12) yield \(\text{ht}(p_1) = 1 \). Similarly, \(p_2 \) is prime of height 1, and \(p \) is prime of height 3.

Lastly, no, (21.38) does not hold with \(R \) for \(P \), as \(p = p_1 + p_2 \) but \(3 > 1 + 1 \). \(\square \)

Exercise (21.40). — Let \(R \) be a Noetherian ring, \(X, X_1, \ldots, X_n \) variables. Show:

\[
\dim(R[X]) = 1 + \dim(R) \quad \text{and} \quad \dim(R[X_1, \ldots, X_n]) = n + \dim(R).
\]
Solution: The second equation follows from the first by induction on \(n \).

To prove the first equation, let \(\mathfrak{p} \subset R[X] \) be a prime, \(p \subset R \) its contraction. Then the local homomorphism \(R_p \to R[X]_\mathfrak{p} \) is flat by (13.60). So (21.10) gives

\[
\dim(R[X]_\mathfrak{p}) = \dim(R_p) + \dim(R[X]_\mathfrak{p}/pR[X]_\mathfrak{p}).
\]

(21.40.1)

Set \(k := \text{Frac}(R/p) \). Then \(R[X]_\mathfrak{p}/pR[X]_\mathfrak{p} = k[X]_\mathfrak{p} \) owing to (1.16) and (11.16) and (11.35). But \(\dim(k[X]_\mathfrak{p}) \leq 1 \) by (15.11) and (15.12). Plainly, \(\dim(R_p) \leq \dim(R) \). Thus (21.40.1) yields \(\dim(R[X]_\mathfrak{p}) \leq \dim(R) + 1 \).

Plainly, \(\dim(R[X]) = \sup_{\mathfrak{p}} \{ \dim(R[X]_\mathfrak{p}) \} \). Hence, \(\dim(R[X]) \leq \dim(R) + 1 \).

Finally, the opposite inequality holds by (15.31).

Exercise (21.41) (Jacobian Criterion). — Let \(k \) be a field, \(P := k[X_1, \ldots, X_n] \) the polynomial ring, \(\mathfrak{a} \subset P \) an ideal, \(\mathfrak{x} := (x_1, \ldots, x_n) \in k^n \). Set \(R := P/\mathfrak{a} \) and \(\mathfrak{m} := (X_1 - x_1, \ldots, X_n - x_n) \). Prove the following statements:

1. Say \(\mathfrak{a} = (F_1, \ldots, F_m) \). Assume \(F_i(\mathfrak{x}) = 0 \) for all \(i \). For all \(i, j \), define \(\partial F_i/\partial X_j \in P \) formally as in (1.18.1), and set \(a_{ij} := (\partial F_i/\partial X_j)(\mathfrak{x}) \). Let \(r \) be the rank of the \(m \) by \(n \) matrix \((a_{ij})\). Set \(d := \text{dim } R_{\mathfrak{m}} \). Then these conditions are equivalent: (a) \(R_{\mathfrak{m}} \) is regular; (b) \(r = n - d \); and (c) \(r \geq n - d \).

2. Assume \(\mathfrak{a} \) is prime, \(F \notin \mathfrak{a} \) and \(k \) is algebraically closed. Then there’s a choice of \(\mathfrak{x} \) with \(F(\mathfrak{x}) \neq 0 \) and \(\mathfrak{a} \subset \mathfrak{m} \) and \(R_{\mathfrak{m}} \) regular.

Start with the case \(\mathfrak{a} := (G) \). Then reduce to it by using a separating transcendence basis for \(K := \text{Frac}(R) \) over \(k \) and a primitive element.

Solution: For (1), set \(\mathfrak{b} := \{X_1 - x_1, \ldots, X_n - x_n\} \). Then \(\mathfrak{b} \) is a minimal generating set of \(\mathfrak{m} \). But \(\mathfrak{m} \) is maximal by (2.14). So \(\mathfrak{b} \) induces a basis of \(\mathfrak{m}/\mathfrak{m}^2 \) by (10.9). Set \(\mathfrak{m} := \mathfrak{m} P_{\mathfrak{m}} \). Then \(\mathfrak{m}/\mathfrak{m}^2 = m/m^2 \) by (12.31) with \(M := \mathfrak{m} \) and \(m := \mathfrak{m} \). Thus \(\mathfrak{b} \) also induces a basis of \(m/m^2 \), and so \(\dim_k(m/m^2) = n \).

Set \(\mathfrak{a} := \mathfrak{a} P_{\mathfrak{m}} \). By (1.18), the residues of the \(m \) polynomials \(\sum_j a_{ij}(X_j - x_j) \) span \((m^2 + a)/m^2 \). But \((a_{ij}) \) has rank \(r \). Thus \(\dim_k(m^2 + a)/m^2 = r \). Set \(n := m/\mathfrak{a} \) and \(d' := \dim_k(n/n^2) \). The exact sequence \(0 \to (m^2 + a)/m^2 \to m/m^2 \to n/n^2 \to 0 \) of (21.18) yields \(n - r = d' \). But \(d := \text{dim } R_{\mathfrak{m}} \); so \(d \leq d' \) by (21.13), and \(R_{\mathfrak{m}} \) is regular if and only if \(d = d' \) by (21.14), as \(\mathfrak{m} R_{\mathfrak{m}} = n \). Thus (1) holds.

For (2), first consider the case \(\mathfrak{a} = (G) \). Then \(G \) is irreducible as \(\mathfrak{a} \) is prime. Assume \(\partial G/\partial X_j \neq 0 \) for all \(j \), and let’s find a contradiction. Let \(p \) be the characteristic of \(k \). If \(p = 0 \), then \(G \) is constant, a contradiction. If \(p > 0 \), then the only monomials \(X_1^{i_1} \cdots X_n^{i_n} \) appearing in \(G \) have \(p|i_j \) for all \(j \). But the coefficients of \(G \) are \(p \)-th powers, as \(k \) is algebraically closed. Hence \(G = G_1^p \) for some \(G_1 \in P \), a contradiction. Thus \(\partial G/\partial X_j \neq 0 \) for some \(j \).

Then \(\partial G/\partial X_j \notin \mathfrak{a} := (G) \), as \(\deg G > \deg \partial G/\partial X_j \) and \(G \) is irreducible. By hypothesis, \(F \notin \mathfrak{a} \). Set \(H := F \cdot \partial G/\partial X_j \). Then \(H \notin \mathfrak{a} \).

By the Hilbert Nullstellensatz (15.36)(2), \(P \) is Jacobson, since \(k \) is Jacobson by (15.32). So there’s a choice of maximal ideal \(\mathfrak{m} \) of \(P \) such that \(\mathfrak{a} \subset \mathfrak{m} \), but \(H \notin \mathfrak{m} \) by (15.32) as \(\mathfrak{a} \) is prime. Since \(k \) is algebraically closed, \(\mathfrak{m} \) corresponds to an \(x \) by (15.5). Then \(G(x) = 0 \), but \(F(x) \neq 0 \) and \((\partial G/\partial X_j)(x) \neq 0 \). Also \(\dim P = n \) by (15.11), so \(\dim R_{\mathfrak{m}} = n \) by (15.12), so \(\dim R_{\mathfrak{m}} = n - 1 \) by (21.5). Thus (1) implies \(R_{\mathfrak{m}} \) is regular of dimension \(n - 1 \). Thus (2) holds when \(\mathfrak{a} = (G) \).

For \(\mathfrak{a} \) arbitrary, set \(d := \text{dim } R \). As \(R \) is a domain, \(d := \text{tr.deg}_k K \) by (15.10).

But \(k \) is algebraically closed. So [14, Prp. 4.11(c), p. 367] or [18, Thm. 31, p. 105] provides a transcendence basis \(\xi_1, \ldots, \xi_d \) of \(K/k \) such that \(K \) is separable over
Let $L := k(\xi_1, \ldots, \xi_d)$. So [14, Thm. 4.6, p. 243] or [18, Thm. 19, p. 84] provides a primitive element $\xi_{d+1} \in K$; that is, $K = L(\xi_{d+1})$.

Set $R' := k[\xi_1, \ldots, \xi_{d+1}]$. Then $K = \text{Frac}(R')$. So $\dim(R') = d$ by (15.10). Let $P := k[X_1, \ldots, X_{d+1}]$ be the polynomial ring. Define $P' \to R'$ by $X_i \mapsto \xi_i$ for all i, and let \mathfrak{N}' be the kernel. Then $P'/\mathfrak{N}' = R'$. But $\dim(R') = d$ and $\dim(P') = d + 1$ by (15.11). So $ht(\mathfrak{N}') = 1$ by (15.12) as $ht(\mathfrak{N}') = \dim(R_{\mathfrak{N}'})$. But P' is a UFD. Thus (21.32) provides an $G' \in P'$ such that $\mathfrak{N}' = (G')$.

Note $K = \text{Frac}(R') = \text{Frac}(R)$. Say $\xi_i = x_i/s_i$ with $x_i, s_i \in R$ and $s_i \neq 0$ for all i. Set $s := \prod s_i$. Then $\xi_i \in R_s$ for all i. Thus $R' \subset R_s$. Similarly, $R_s \subset R'_s$ for some nonzero $s' \in R'$. So $R' \subset R_s \subset R'_s$. So $R'_s \subset (R_s)_s \subset (R'_s)_s$. But s' is a unit in R'_s. So $(R'_s)_s = R'_s$. Thus $R'_s = (R_s)_s$.

Let $f \in R$ be the residue of F. Say $f = f'/s^n$ with $f' \in R'$. Then $f' \neq 0$ as $f \neq 0$ since $F \notin \mathfrak{N}$. Say f' is the residue of $F' \in P'$. By the first case, there’s a maximal ideal \mathfrak{N}' of P' such that $F' \notin \mathfrak{N}'$ and $R'_{\mathfrak{N}'}$ is regular of dimension d. Let $\mathfrak{N} \subset P$ be the preimage of $\mathfrak{N}'R'_s$. Then $\mathfrak{N}(R_s)_s = \mathfrak{N}R_s$ by (11.12). So $F \notin \mathfrak{N}R_s$ as $F' \notin \mathfrak{N}'$. Also, $R_{\mathfrak{N}} = R'_s$ by (11.16) as $(R_s)_s = R'_s$. As k is algebraically closed, \mathfrak{N} corresponds to an x by (15.5). Thus (2) holds. □

22. Completion

Exercise (22.3) . — Let R be a ring, M a module, $F^\bullet M$ a filtration. Prove that

$$\text{Ker}(\kappa_M) = \bigcap F^n M. \quad (22.3.1)$$

where κ_M is the map of (22.1.2). Conclude that these conditions are equivalent:

1. $\kappa_M : M \to \hat{M}$ is injective; 2. $\bigcap F^n M = \{0\}$; 3. M is separated.

Assume M is Noetherian and $F^\bullet M$ is the a-adic filtration for a proper ideal a with either (a) $a \subset \text{rad}(M)$ or (b) R a domain and M torsionfree. Prove $M \subset \hat{M}$.

Solution: A constant sequence (m) has 0 as a limit if and only if $m \in F^n M$ for all n. Thus (22.3.1) holds. So (1) and (2) are equivalent. Moreover, (2) and (3) are equivalent, as in (22.1) each was proved to hold if and only $\{0\}$ is closed.

Assume M is Noetherian. First, assume (a) too. Then (2) holds by (18.35) with $N := 0$, and so (1) follows. Thus $M \subset \hat{M}$.

Instead, assume (b). Set $N := \bigcap a^n M$. By (18.23) or (20.21), there’s $x \in a$ with $(1 + x)N = (0)$. But $1 + x \neq 0$ as a is proper. Also, M is torsionfree. So again (2) holds and (1) follows. Thus $M \subset \hat{M}$. □

Exercise (22.8) . — Let R be a ring, M a module, $F^\bullet M$ a filtration. Use (22.7) to compute $\widehat{F^k M} \subset \bigcap F^n M$. Then use (22.3) to show \hat{M} is separated.

Solution: By (22.7), we may identify \hat{M} with the set of $(q_n) \in \prod_{n \geq 0} M/F^n M$ such that q_n is the residue of q_{n+1}. Then $\widehat{F^k M}$ is the subset of (q_n) such that $q_n \in (F^k M \cap F^n M)/F^n M$. So $q_n = 0$ for $n \leq k$. So $\bigcap \widehat{F^k M} = \hat{M}$. Thus (22.3) implies \hat{M} is separated. □

Exercise (22.9) . — Let $Q_0 \supset Q_1 \supset Q_2 \supset \cdots$ be a descending chain of modules, $\alpha_n^{n+1} : Q_{n+1} \to Q_n$ the inclusions. Show $\bigcap Q_n = \lim Q_n$.

Solutions

(22.12) / (22.14)

Completion

Solution: Define $\delta: \bigcap Q_n \to \prod Q_n$ by $\delta(q) := (q_n)$ where $q_n := q$. Plainly δ is a canonical isomorphism from $\bigcap Q_n$ onto $\lim Q_n$, viewed inside $\prod Q_n$.

Alternatively, let $\alpha_n: \bigcap Q_n \to Q_n$ be the inclusion. Plainly a family of maps $\beta_n: P \to Q_n$ with $\alpha_n^{n+1} \beta_{k+1} = \beta_k$ amounts to a single map $\beta: P \to \bigcap Q_n$ via $\alpha_n \beta = \beta_n$ for all n. Thus $\bigcap Q_n$ has the requisite UMP. \(\square \)

Exercise (22.12). Let R be a ring, M a module, F^*M a filtration, and $N \subseteq M$ a submodule. Give $F^*N := N \cap F^mM$ and $F^n(M/N) := F^M M/F^n N$. Show the following: (1) $\hat{N} \subseteq \hat{M}$ and $\hat{M}/\hat{N} = \hat{M}/\hat{N}$.

(2) If $N \supseteq F^kM$ for some k, then $\kappa_{M/N}$ is bijective, $\kappa_{M/N}: M/N \to \hat{M}/\hat{N}$.

Solution: Set $P := M/N$. For (1), form the following commutative diagram:

\[
\begin{array}{cccccc}
0 & \to & N/F^{n+1}N & \to & M/F^{n+1}M & \to & P/F^{n+1}P & \to & 0 \\
0 & \to & N/F^nN & \to & M/F^nM & \to & P/F^nP & \to & 0 \\
\end{array}
\]

Its rows are exact, and α_n^{n+1} is surjective. So $(22.10)(1)-(2)$ and (22.7) yield the desired exact sequence of \hat{R}-modules $0 \to \hat{N} \to \hat{M} \to \hat{P} \to 0$. Thus (1) holds.

Note (2) holds, as $F^n P = 0$ for $n \geq k$, so every Cauchy sequence stabilizes. \(\square \)

Exercise (22.13). Let R be a ring, M a module, F^*M a filtration. Show:

(1) The canonical map $\kappa_M: M \to \hat{M}$ is surjective if and only if M is complete.

(2) Given $(m_n) \in C(M)$, its residue $m \in \hat{M}$ is the limit of the sequence $(\kappa_M m_n)$.

Solution: For (1), first assume κ_M surjective. Given $(m_n) \in C(M)$, let $m \in \hat{M}$ be its residue. Say $m = \kappa_M m'$. Then the constant sequence (m') has residue m too. Set $m'_n := m_n - m'$ for all n. Then $(m'_n) \in Z(M)$ as $\hat{M} := C(M)/Z(M)$. So (m'_n) converges to m'. Thus M is complete.

Conversely, assume M complete. Given $m \in \hat{M}$, say that m is the residue of $(m_n) \in C(M)$. As M is complete, (m_n) has a limit, say $m' \in M$. Set $m'_n := m_n - m'$ for all n. Plainly the residue of (m'_n) is equal to $m - \kappa_M m'$. But (m'_n) converges to 0, so its residue is 0. So $m - \kappa_M m' = 0$. Thus κ_M is surjective. Thus (1) holds.

In (2), given m_0, we must find n_1 with $m - \kappa_M m_n' \in \overline{F_n M}$ for all $n' \geq n_1$. But (m_n) is Cauchy. So $m_n - m_n' \in F^n M$ for all $n, n' \geq n_1$ for some n_1. Fix $n' \geq n_1$ and set $m'_n := m_n - m_n'$. Then $m'_n - m'_n = m_n - m_n'$ for all n'. But (m_n) is Cauchy, so (m'_n) is too. Let $m' \in \hat{M}$ be its residue. Plainly $m' = m - \kappa_M m_n'$. But (m'_n) is a sequence eventually in $F^n M$. So $m' \in \overline{F_n M}$. Thus (2) holds. \(\square \)

Exercise (22.14). Let R be a ring, M a module, and F^*M a filtration. Show that the following statements are equivalent: (1) κ_M is bijective;

(2) M is separated and complete; (3) κ_M is an isomorphism of filtered modules.

Assume M is Noetherian and F^*M is the a-adic filtration for a proper ideal a with either (a) $a \subseteq \text{rad}(M)$ or (b) R a domain and M torsionfree. Prove that M is complete if and only if $M = \hat{M}$.

Solution: Note (1) and (3) are equivalent by (22.3) and $(22.13)(1)$. Trivially, (3) implies (1), and the converse holds, since $\kappa_M^{-1} \overline{F^n M} = F^n M$ by (22.1). To do the second part, note M is separated by (22.3), and apply (2)\iff(1). \(\square \)
Exercise (22.15). — Let R be a ring, $\alpha : M \to N$ a map of filtered modules, $\alpha' : \widehat{M} \to \widehat{N}$ a continuous map such that $\alpha' \kappa_M = \kappa_N \alpha$. Show $\alpha' = \alpha$.

Solution: Given $m \in \widehat{M}$, say m is the residue of $(m_n) \in C(M)$. Then m is the limit of (κ_MM_n) by (22.13)(2). But α' is continuous. So $\alpha'm$ is the limit of $(\alpha'\kappa_MM_n)$. But $\alpha'\kappa_M = \kappa_N\alpha$. Thus $\alpha'm$ is the limit of $(\kappa_N\alpha m_n)$.

By construction, αm is the residue of (αm_n). So αm is the limit of $(\kappa_N\alpha m_n)$ by (22.13)(2). But \widehat{N} is separated by (22.8). So the limit of $(\kappa_N\alpha m_n)$ is unique. Thus $\alpha'm\alpha m$. Thus $\alpha' = \alpha$.

Exercise (22.16). — Let R be a ring, M a module, F^*M a filtration. Show:

1. $G(\kappa_M) : G(M) \to G(\widehat{M})$ is bijective.
2. $\kappa_M : \widehat{M} \to \widehat{M}$ is bijective.
3. $\kappa_M = \kappa_{\widehat{M}}$.
4. M is separated and complete.

Solution: In (1), the maps $G_n(\kappa_M) : F^nM/F^{n+1}M \to F^n\widehat{M}/F^{n+1}\widehat{M}$ are, by definition, induced by κ_M. But $F^k\widehat{M} := \widehat{F^kM}$ for all k. Also, κ_M induces a bijection $F^nM/F^{n+1}M \to F^n\widehat{M}/F^{n+1}\widehat{M}$ by (22.12)(1)–(2). Thus (1) holds.

For (2), let $\kappa_n : M/F^nM \to \widehat{M}/F^n\widehat{M}$ be the map induced by κ_M for $n \geq 0$. Then $\kappa_{\widehat{M}} = \lim \kappa_n$ by (22.7). But $F^n\widehat{M} := F^n\widehat{M}$. So κ_n is bijective by (22.12)(1)–(2). Thus (2) holds.

For (3), recall from (22.1) that κ_M and $\kappa_{\widehat{M}}$ are maps of filtered modules, so continuous. Apply (22.15) with $\alpha := \kappa_M$ and $\alpha' := \kappa_{\widehat{M}}$. Thus (3) holds.

(4) is immediate by (2) and (3). Thus (22.14) yields (4).

Exercise (22.28). — Let R be a ring, a an ideal, X a variable. Filter $R[[X]]$ with the ideals b_n consisting of the $H := \sum h_iX^i$ with $h_i \in a^n$ for all i. Show: (1) that $R[[X]] = \widehat{R[[X]]}$ and (2) that if R is separated and complete, then so is $R[[X]]$.

Solution: For (1), owing to (22.7), it suffices to find a canonical isomorphism $\varphi : R[[a^n]][X] \cong \lim R[[X]]/b_n$. Plainly $R[[X]]/b_n = (R/a^n)[X]$. So given $F = \sum f_iX^i \in (R/a^n)[X]$, let $f_{i,n} \in R/a^n$ be the image of f_i for all i,n. Note that the vector $(\sum_i f_{i,n}X^i)$ lies in $\lim R[[X]]/b_n$. Set $\varphi(F) = (\sum_i f_{i,n}X^i)$.

Initially, $G = : (\sum_i g_{i,n}X^i) \in \lim R[[X]]/b_n$, note $g_{i,n} \in (R/a^n)$ for all i. Note $\varphi(\sum g_{i,n}X^i) = G$. Thus φ is surjective, so an isomorphism.

(2) follows from (1) by (22.15)(4). Thus (1) implies (2).

Alternatively, here’s a direct proof of (2). First, as R is separated, $\bigcap a^n = 0$ by (22.3). So $\bigcap b_n = 0$. Thus (22.3) implies $R[[X]]$ is separated.

As to the completeness of $R[[X]]$, fix a Cauchy sequence (F_n). Given n_0, there’s n_1 with $F_n - F_{n'} \in b_{n_0}$ for $n,n' \geq n_1$. Say $F_n := \sum f_{n,i}X^i$. Then $f_{n,i} - f_{n',i} \in a_{n_0}$ for all i. Thus $(f_{n,i})$ is Cauchy in R. But R is separated and complete. So $(f_{n,i})$ has a unique limit g_i.

Set $G := \lim_{n \to \infty} g_iX^i$. Let’s show $G = \lim F_n$. Given i, there’s $n' \geq n_1$ with $f_{n',i} - g_i \in a_{n_0}$. But $f_{n,i} - g_i = f_{n,i} - f_{n',i} + f_{n',i} - g_i$. So $f_{n,i} - g_i \in a_{n_0}$ for $n \geq n_1$. So $F_n - G \in b_{n_0}$. Thus $G = \lim F_n$. Thus $R[[X]]$ is complete.

Exercise (22.29). — In \mathbb{Z}_2, evaluate the sum $s := 1 + 2 + 4 + 8 + \cdots$.

Solutions (22.15) / (22.29) Completion
Solution: Set $a_n := 2^n$ and $b_n := 1 - a_{n+1}$ and $c_n := 1 + a_1 + \cdots + a_n$. Then (b_n) converges to 1. Moreover, (c_n) is Cauchy, and it represents $s \in \mathbb{Z}_2$. But $b_0c_n = b_n$. Hence $b_0s = 1$. Thus $s = 1/b_0 = 1/(1-2) = -1$. □

Exercise (22.30). Let R be a ring, $\alpha_{n+1}^n : Q_{n+1} \to Q_n$ linear maps for $n \geq 0$. Set $\alpha_n^m := \alpha_n^m \cdots \alpha_{m-1}^n$ for $m > n$ and $\alpha_n^1 = 1$. Assume the Mittag-Leffler Condition: for all $n \geq 0$, there’s $m \geq n$ such that

$$Q_n \supseteq \alpha_n^{n+1}Q_{n+1} \supseteq \cdots \supseteq \alpha_n^m Q_m = \alpha_n^{m+1}Q_{m+1} = \cdots.$$

Set $P_n := \bigcap_{m \geq n} \alpha_n^m Q_m$, and prove $\alpha_n^{n+1}P_{n+1} = P_n$. Conclude that $\lim_{\leftarrow} Q_n = 0$.

Solution: Given n, there’s $m > n + 1$ with $P_n = \alpha_n^m Q_m$ and $P_{n+1} = \alpha_n^{n+1}Q_n$. Thus $\alpha_n^{n+1}P_{n+1} = P_n$.

To conclude $\lim_{\leftarrow} Q_n = 0$, form this commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \to & \prod P_n & \to & \prod Q_n & \to & \prod (Q_n/P_n) & \to & 0 \\
\theta & & \theta & & \theta & & & & \\
0 & \to & \prod P_n & \to & \prod Q_n & \to & \prod (Q_n/P_n) & \to & 0 \\
\end{array}
\]

where each θ is the map of (22.5). Apply the Snake Lemma (5.10). It yields the following exact sequence of cokernels:

$$\lim_{\leftarrow} P_n \to \lim_{\leftarrow} Q_n \to \lim_{\leftarrow} (Q_n/P_n).$$

Since $\alpha_n^{n+1}P_{n+1} = P_n$, the restriction $\alpha_n^{n+1}|_{P_{n+1}}$ is surjective. So $\lim_{\leftarrow} P_n = 0$ by (22.10)(1). Thus it suffices to show $\lim_{\leftarrow} Q_n = 0$.

Since $\alpha_n^m Q_m = P_n$, the induced map $(Q_m/P_m) \to (Q_n/P_n)$ is 0. Thus replacing each Q_n with Q_n/P_n, we need only show $\lim_{\leftarrow} Q_n = 0$ assuming $\alpha_n^m = 0$.

Given $(q_n) \in \prod Q_n$, set $p_n := \sum_{h=n}^{\infty} \alpha_n^h q_h$, noting $\alpha_n^h = \alpha_n^m \alpha_m^h = 0$ for all $h > m$. Then $\theta p_n := p_n - \alpha_n^{n+1}p_{n+1} = q_n$. So θ is surjective. Thus $\lim_{\leftarrow} Q_n = 0$. □

Exercise (22.31). Let R be a ring, and a an ideal. Set $S := 1 + a$ and set $T := \kappa^{-1}(\hat{R}^\times)$. Given $t \in R$, let $t_\hat{R} \in \hat{R}/a^n$ be its residue for all n. Show:

1. Given $t \in R$, then $t \in T$ if and only if $t_n \in (R/a^n)^\times$ for all n.
2. Then $T = \{ t \in R \mid t \text{ lies in no maximal ideal containing } a \}$.
3. Then $S \subset T$, and \hat{R} is the completion of $S^{-1}R$ and of $T^{-1}R$.
4. Assume $\kappa_R : R \to \hat{R}$ is injective. Then $\kappa_{S^{-1}R}$ and $\kappa_{T^{-1}R}$ are too.
5. Assume a is a maximal ideal. Then $\hat{R} = \hat{R}/a.$

Solution: For (1), by (22.7), regard \hat{R} as a submodule of $\prod R/a^n$. Then each t_n is equal to the projection of $\kappa_R(t)$. Thus t_n is a unit if $\kappa_R(t)$ is. Conversely, assume t_n is a unit for each n. Then there are $u_n \in R$ with $u_n t \equiv 1 \pmod{a^n}$. By the uniqueness of inverses, $u_{n+1} \equiv u_n \pmod{R/a^n}$ for each n. Set $u := (u_n) \in \prod R/a^n$. Then $u \in R$, and $u \kappa_R(t) = 1$. Thus $\kappa_R(t)$ is a unit. Thus (1) holds.

For (2), note $T = \{ t \in R \mid t_n \in (R/a^n)^\times \}$ for all n by (1). But $t_n \in (R/a^n)^\times$ if and only if t_n lies in no maximal ideal of R/a^n by (2.22). Thus (1.9) yields (2).

For (3), note $S \subset T$ owing to (2) as no maximal ideal can contain both x and $1 + x$. Moreover, the UMP of localization (11.3) yields this diagram:
Further, S and T map into $(R/a^n)\kappa$; hence, (11.4) and (12.15) yield:

$$R/a^n = S^{-1}R/a^nS^{-1}R \quad \text{and} \quad R/a^n = T^{-1}R/a^nT^{-1}R.$$

Therefore, \hat{R} is, by (22.7), equal to the completion of each of $S^{-1}R$ and $T^{-1}R$ in their a-adic topology. Thus (3) holds.

For (4), say $\kappa_{S^{-1}R}(x/s) = 0$. But $\kappa_{S^{-1}R}(x/s) = \kappa_R(x)\kappa_R(s)^{-1}$. So $\kappa_R(x) = 0$. But κ_R is injective. So $x = 0$. So $x/s = 0$ in $S^{-1}R$. Thus σ is injective. Similarly, τ is injective. Thus (4) holds.

For (5), note $T = R - m$ by (2). Thus (3) yields (5).

Exercise (22.32). Let R be a ring, a an ideal, M a finitely generated module. Show $R \cdot \kappa_M(M) = \hat{M}$.

Solution: As M is finitely generated, the canonical map $\hat{R} \otimes M \rightarrow \hat{M}$ is surjective by (22.19). But its image is $\hat{R} \cdot \kappa_M(M)$. Thus $\hat{R} \cdot \kappa_M(M) = \hat{M}$. \square

Exercise (22.33). Let R be a ring, M a module, $F \cdot M$ a filtration, and N a submodule. Give N the induced filtration: $F^nM := N \cap F^nM$ for all n. Show:

1. \hat{N} is the closure of $\kappa_M N$ in \hat{M}.
2. $\kappa_M^{-1}\hat{N}$ is the closure of N in M.

Solution: For (1), set $P := M/N$, and give P the induced filtration. Then the canonical sequence $0 \rightarrow \hat{N} \rightarrow \hat{M} \xrightarrow{\hat{P}} 0$ is exact by (22.12)(1). So $\hat{N} = \hat{a}^{-1}\{0\} \subset \hat{M}$. But \hat{P} is separated by (22.16)(4); so $\{0\}$ is closed by (22.1). But \hat{a} is continuous by (22.1). Thus \hat{N} is closed in \hat{M}.

Every $m \in \hat{N}$ is the residue of some sequence $(m_n) \in C(N)$ by (22.1). Then m is the limit in \hat{N} of $(\kappa_n M m_n)$ by (22.13)(2). But $\kappa_N = \kappa_M | N$ and the inclusion $\hat{N} \rightarrow \hat{M}$ is continuous; see (22.1). So m is the limit in \hat{M} of $(\kappa_n M m_n)$. Thus $\kappa_M N$ is dense in \hat{N}. But \hat{N} is closed in \hat{M} by the above. Thus (1) holds.

For (2), first let’s show that every open set U of M is equal to $\kappa_M^{-1}V$ for some open set V of \hat{M}. Write U as the union of the sets $m + F^n M$ for suitable m and n. Let V be the corresponding union of the sets $\kappa_M m + F^n \hat{M}$. Then V is open.

Moreover, $\kappa_M^{-1}V$ is the union of the sets $\kappa_M^{-1}(\kappa_M m + F^n \hat{M})$. And it is easy to check that $\kappa_M^{-1}(\kappa_M m + F^n \hat{M}) = m + \kappa_M^{-1}F^n \hat{M}$. But $\kappa_M^{-1}F^n \hat{M} = F^n M$ by (22.1).

Thus $U = \kappa_M^{-1}V$.

Finally, given a closed set X of M containing N, set $U := N - X$. By the above, $U = \kappa_M^{-1}V$ for some open set V of \hat{M}. Set $Y := \hat{M} - V$. Then $\kappa_M Y = X$. So $Y \supset \kappa_M N$. So (1) implies $Y \supset \hat{N}$. So $X \supset \kappa_M^{-1}\hat{N}$. Now, \hat{N} is closed in \hat{M} by (1), and κ_M is continuous by (22.1); so $\kappa_M^{-1}\hat{N}$ is closed in M. Thus $\kappa_M^{-1}\hat{N}$ is the smallest closed set containing N; in other words, (2) holds.

Alternatively, note that (22.7) yields

$$\hat{N} = \lim_{\leftarrow} N/(N \cap F^n M) = \lim_{\leftarrow} (N + F^n M)/F^n M \subset \lim_{\leftarrow} M/F^n M = \hat{M}.$$

Now, given $m \in M$, let q_n be the residue of m in $M/F^n M$. Then $\kappa_M (m)$ is the vector (q_n). Hence $\kappa_M (m) \in \hat{N}$ if and only if $m \in N + F^n M$ for all n, that is, if
and only if \(m \in \bigcap(N + F^nM) \). Thus \(\kappa^{-1}_M N = \bigcap(N + F^nM) \). But \(\bigcap(N + F^nM) \) is equal to the closure of \(N \) in \(M \) by (22.1). Thus (2) holds.

Exercise (22.34). — Let \(R \) be a ring, \(a \) an ideal. Show that every closed maximal ideal \(m \) contains \(a \).

Solution: As \(m \) is closed, \(m = \bigcap_n (m + a^n) \). But \(m \neq R \). So \(m + a^n \neq R \) for some \(n \). But \(m \) is maximal. So \(m = m + a^n \supseteq a^n \). But \(m \) is prime. Thus \(m \supseteq a \). □

Exercise (22.35). — Let \(R \) be a ring, \(a \) an ideal. Show equivalent:

1. \(a \subseteq \text{rad}(R) \).
2. Every element of \(1 + a \) is invertible.
3. Given any finitely generated \(R \)-module \(M \), if \(M = aM \), then \(M = 0 \).
4. Every maximal ideal \(m \) is closed.

Show, moreover, that (1)–(4) hold if \(R \) is separated and complete.

Solution: Assume (1). Then (3.2) yields (2).

Assume (2). By (10.3), there’s \(a \in a \) with \((1 + a)M = 0 \). Thus (2) implies (3).

Assume (3). Consider (4). Set \(M := R/m \). Then \(M \neq 0 \). So (3) yields \(M \neq aM \). But \(aM = (a + m)/m \). So \(a + m \neq R \). So \(a \subseteq m \). Thus (22.1) yields (4).

Assume (4). Then (22.34) yields (1).

Moreover, assume \(R \) is complete. Form the \(a \)-adic completions \(\hat{R} \) and \(\hat{a} \). Then \(R = \hat{R} \), and \(a = \hat{a} \) by (22.14)(2)⇒(3). But \(\hat{a} \subseteq \text{rad}(\hat{R}) \) by (22.4). Thus (1) holds, and so (2)–(4) hold too □

Exercise (22.36). — Let \(R \) be a Noetherian ring, \(a \) an ideal. Show equivalent:

1. \(R \) is a Zariski ring; that is, \(R \) is Noetherian, and \(a \subseteq \text{rad}(R) \).
2. Every finitely generated module \(M \) is separated.
3. Every submodule \(N \) of every finitely generated module \(M \) is closed.
4. Every ideal \(b \) is closed.
5. Every maximal ideal \(m \) is closed.
6. Every faithfully flat, finitely generated module \(M \) has a faithfully \(R \)-flat \(\hat{M} \).
7. The completion \(\hat{R} \) is faithfully \(R \)-flat.

Solution: Assume (1). In (2), \(M \) is finitely generated. But \(R \) is Noetherian. So \(M \) is Noetherian. Set \(N := \bigcap_{n \geq 0} a^nM \). Then there’s \(a \in a \) with \((1 + a)N = 0 \) by (18.23). But \(1 + a \in R^\times \) by (22.35). So \(N = 0 \). Thus, (22.3) yields (2).

Assume (2). Then in (3), \(M/N \) is separated. So \(\{0\} \) is closed by (22.1). Also, the quotient map \(M \to M/N \) is continuous by (22.1). Thus (3) holds.

Trivially, (3) implies (4), and (4) implies (5). And (5) implies (1) by (22.35).

Assume (1) again. To prove (6), note \(\hat{M} \) is flat over \(R \) by (22.22). So by (9.19)(3)⇒(1), it remains to show \(\hat{M} \otimes (R/m) \neq 0 \) for all maximal ideals \(m \) of \(R \).

Note \(\hat{M} \otimes (R/m) = \hat{M}/m\hat{M} \) by (8.27)(1). And \(m\hat{M} = (mM)\hat{M} \) by (22.20). Set \(N := M/mM \). Then \(\hat{M}/(mM) \) by (22.12)(1). Thus \(\hat{M} \otimes (R/m) = \hat{N} \).

Note \(a \subseteq \text{rad}(R) \) by (1). So \(a \subseteq m \). So \(a^rN = 0 \) for all \(r \). So every Cauchy sequence stabilizes. Hence \(N = \hat{N} \). So \(\hat{M} \otimes (R/m) = N \). But \(N = M \otimes (R/m) \), and \(M \) is faithfully flat; so \(N \neq 0 \) by (9.19)(1)⇒(3). Thus (1) implies (6).

Trivially (6) implies (7).

Finally, assume (7). Given a maximal ideal \(m \), set \(k := R/m \). Then \(\hat{R} \otimes k \neq 0 \) by (9.19)(1)⇒(3). But \(\hat{R} \otimes k = \hat{k} \) by (22.19). So \(\lim(k/a^nk) \neq 0 \) by (22.7). So \(k/a^nk \neq 0 \) for some \(n \geq 1 \). So \(a^nk = 0 \). So \(a^n \subseteq m \). So \(a \subseteq m \). Thus (1) holds. □
Solutions (22.37) / (22.39) Completion

Exercise (22.37). — Let \(R \) be a ring, \(a \) an ideal, \(M \) a Noetherian module. Prove:

1. \(\bigcap_{n=1}^{\infty} a^nM = \bigcap_{m \in \Psi} \ker(M \overset{\varphi_m}{\to} M_m) \) where \(\Psi := \{ m \supset a \mid m \text{ maximal} \} \).
2. \(M = 0 \) if and only if \(\text{Supp}(M) \cap V(a) = \emptyset \).

Solution: Set \(N := \bigcap_{n} a^nM \) and \(K := \bigcap_{m \in \Psi} \ker(\varphi_m) \).

For (1), use double inclusion. The Krull Intersection Theorem (18.23) yields \(x \in a \) with \((1 + x)N = 0 \). Given \(m \in \Psi \), note \((1 + x)\varphi_m(N) = 0 \). But \(x \in a \subset m \); so \((1 + x)/1 \in R_m^\times \) by (3.2). So \(\varphi_m(N) = 0 \). Thus \(N \subset K \).

To show \(N \supset K \), fix a maximal ideal \(m \). By (12.4), \(\varphi_m(M_m) \to (M_m)_m \). So \(\ker((\varphi_m)_m) = 0 \). Thus (12.13) and (9.3) yield \(\ker(\varphi_m)_m = \ker((\varphi_m)_m) = 0 \).

Suppose \(m \in \Psi \). Then \(K \subset \ker(\varphi_m) \). Hence \((aK)_m \subset K_m \subset (\ker(\varphi_m)_m) \) by (12.12)(1)(b). Thus \((aK)_m = K_m = 0 \).

Suppose \(m \notin \Psi \). Then \(aR_m \) contains a unit. Thus \((aK)_m = K_m = R_m \).

So \((aK)_m = K_m \) in any case. So (13.53) yields \(aK = K \). So

\[K = aK = a^2K = \cdots = \bigcap_{n=1}^{\infty} a^nK. \]

But \(a^nM \supset a^nK \) for all \(n \). Thus \(N \supset K \). But \(N \subset K \). So \(N = K \). Thus (1) holds.

For (2), first assume \(\widehat{M} = 0 \). Then (22.3.1) gives \(M = N \). But \(M \supset aM \supset N \).

Thus \(M = aM \). Conversely, assume \(M = aM \). Then \(a^nM = a^{n+1}M \) for all \(n \geq 0 \).

So \(a^nM = M \) for all \(n \). Hence \(C(M) = Z(M) \). Thus \(\widehat{M} = 0 \).

Thus \(\widehat{M} = 0 \) if and only if \(M = aM \), or equivalently, \(M/aM = 0 \) if \(M/aM \) is finitely generated. (Thus (2) holds.)

Exercise (22.38). — Let \(R \) be a ring, \(m_1, \ldots, m_m \) maximal ideals, and \(M \) module. Set \(m := \bigcap m_i \), and give \(M \) the \(m \)-adic topology. Show \(\widehat{M} = \prod \widehat{M}_{m_i} \).

Solution: For each \(n > 0 \), the \(m_i^n \) are pairwise comaximal by (1.21)(3). So \(R/m^n = \prod_{i=1}^m R/m_i^n \) by (1.21)(4)(b)–(c). Tensor with \(M \); then (8.27)(1) and (8.10) yield \(M/m^n M = \prod_{i=1}^m M/m_i^n M \). But \(M/m_i^n M = M/m_i M_{m_i} \) by (12.31).

So \(M/m^n M = \prod_{i=1}^m (M/m_i M_{m_i}) \). Taking inverse limits, we obtain the assertion by (22.7), because inverse limit commutes with finite product by its construction, or by (8.14) as completion is a linear functor by (22.1).

Exercise (22.39). — (1) Let \(R \) be a ring, \(a \) an ideal. If \(G_a(R) \) is a domain, show \(\widehat{R} \) is an domain. If also \(\bigcap_{n \geq 0} a^n = 0 \), show \(R \) is a domain.

(2) Use (1) to give an alternative proof that a regular local ring \(A \) is a domain.

Solution: Consider (1). Let \(x, y \in \widehat{R} \) be nonzero. Note \(\widehat{R} \) is separated by (22.16)(4). So \(\bigcap_{n \geq 0} \overline{a^n} = 0 \) by (22.3). So there are \(r, s \geq 0 \) with \(x \in \overline{a}^r - \overline{a}^{r+1} \) and \(y \in \overline{a}^s - \overline{a}^{s+1} \). Let \(x' \in G_a(\widehat{R}) \) and \(y' \in G_a(\widehat{R}) \) be the residues of \(x \) and \(y \).

Then \(x' \neq 0 \) and \(y' \neq 0 \). Note \(G(\widehat{R}) = G(R) \) by (22.16)(1).

Assume \(G(R) \) is a domain. Then \(x'y' \neq 0 \). Hence \(x'y' \in G(R+)(\widehat{R}) \) is the residue of \(xy \in \overline{a}^{r+s} \). Hence \(xy \neq 0 \). Thus \(\widehat{R} \) is a domain, as desired.

Assume \(\bigcap a^n = 0 \). Then \(R \subset \widehat{R} \) by (22.3). This \(R \) is a domain if \(\widehat{R} \) is, as desired.

As to (2), denote the maximal ideal of \(A \) by \(m \). Then \(\bigcap_{n \geq 0} m^n = 0 \) owing to (18.23) and (3.2). But \(G(A) \) is a polynomial ring by (21.15), so a domain. Thus \(A \) is a domain by (1), as desired.
Exercise (22.40). — (1) Let R be a Noetherian ring, a an ideal. Assume that $G_a(R)$ is a normal domain and that $\bigcap_{n \geq 0} (sR + a^n) = sR$ for any $s \in R$. Show using induction on n and applying (16.40) that R is a normal domain.

(2) Use (1) to prove a regular local ring A is normal.

Solution: In (1), $G_a(R)$ is a domain; so R is one too by (22.39). Given any $x \in \text{Fr}(R)$ that is integral over R, there is a nonzero $d \in R$ such that $dx^n \in R$ for all $n \geq 0$ by (16.40). Say $x = y/s$ with $y, s \in R$. Let’s show $y \in sR + a^n$ for all n by induction. Then $y \in \bigcap_{n \geq 0} (sR + a^n) = sR$. So $y/s \in R$ as desired.

For $n = 0$, trivially $y \in sR + a^n$. Given $n \geq 0$ with $y \in sR + a^n$, say $y = sz + w$ with $z \in R$ and $w \in a^n$. Given $q \geq 0$, set $w_q := d(x - z)^q$. Then $w_q = \sum_i \pm \binom{q}{i} dx^iz^{q-i}$. But $dx^i \in R$. So $w_q \in R$. But $x = z + (w/s)$. So $d(w/s)^q = w_q$ or $dw^q = w_q s^q$.

Given any nonzero $a, a' \in R$, let $v(a)$ be greatest with $a \in a^{n(a)}$; there is such a $v(a)$, as $\bigcap_{n \geq 0} a^n = 0$ by the hypothesis with $s := 0$. Denote the residue of a in $G_v(a)R$ by $G(a)$. Plainly $G(ad') = G(a)G(a')$ if and only if $G(a)G(a') \neq 0$.

But $G(R)$ is a domain. Hence $G(d)G(w)^q = G(dw^q)G(w_qs^q) = G(w_q)G(s)^q$. So $G(d)G(w)/G(s)^q = G(w_q) \in G(R)$. But $G(R)$ is normal. So (16.40) yields $G(u)/G(s) = G(t)$ for $t \in R$. But $w \in a^n$. Hence $w \equiv st \pmod{a^{n+1}}$. Thus $y \equiv s(z + t) \pmod{a^{n+1}}$. Thus $y \in sR + a^{n+1}$ as desired.

For (2), let m denote the maximal ideal. Since A is Noetherian, (18.35) yields $sA = \bigcap_{n \geq 0} (sA + a^n)$ for every s. Since A is regular, $G(A)$ is a polynomial ring by (21.15). But a polynomial ring is a normal domain by (10.22)(1). Thus (2) follows from (1).

Exercise (22.41). — Let R be a ring, a an ideal, M a module with $\ell_R(M) < \infty$.

(1) Assume M is simple. Show \overline{M} is simple if $a \subset \text{Ann}(M)$, but $\overline{M} = 0$ if not.

(2) Show $\ell_{\overline{R}}(\overline{M}) \leq \ell_R(M)$, with equality if and only if $a \subset \text{rad}(M)$.

Solution: For (1), set $m := \text{Ann}(M)$. Assume $a \subset m$. Then $a^nM = 0$ for $n \geq 1$. So every Cauchy sequence stabilizes. So $M = \overline{M}$. Thus M is simple.

Conversely, assume $a \not\subset m$. Now, m is maximal by (19.2)(2). So $a^n + m = R$. So $a^nM = M$. So every sequence converges to 0. Thus $\overline{M} = 0$. Thus (1) holds.

In (2), M is Noetherian by (19.5). Let $M = M_0 \supset M_1 \supset \cdots \supset M_m = 0$ be a composition series. Set $m_i := \text{Ann}(M_{i-1}/M_i)$. Then $\overline{M} \supset \overline{M}_{i-1}/\overline{M}_i$ is simple if $a \subset m_i$ and is 0 if not by (1). So by (19.3), $\ell_{\overline{R}}(\overline{M}) \leq \ell_R(M)$, with equality if and only if $a \subset m_i$ for all i. But the m_i are maximal by (19.2)(2), and $\{m_i\} = \text{Supp}(M)$ by (19.3) again; so $\bigcap \text{rad}(M)$. Thus (2) holds.

Exercise (22.42). — Let R be a ring, M a module with two filtrations $F^\bullet M$ and $G^\bullet M$. For all m, give G^mM the filtration induced by $F^\bullet M$, and let $(G^mM)^F$ be its completion; filter M^F by the $(G^mM)^F$, and let $(M^F)^G$ be the completion. Define $H^\bullet M$ by $H^pM := F^pM + G^pM$, and let M^H be the completion. Show:

$$(M^F)^G = \lim_{\leftarrow m} \lim_{\rightarrow n} M/(F^nM + G^nM) = M^H.$$ \hspace{1cm} (22.42.1)

Solution: Note $(M^F)^G = \lim_{\leftarrow m} M^F/(G^mM)^F$ by (22.7). Now, for all m,

$$M^F/(G^mM)^F = (M/G^mM)^F = \lim_{\rightarrow n} ((M/G^mM)/(F^n(M/G^mM)))$$

368
by (22.12) (1) and by (22.7) again. But $F^n(M/G^nM) = F^nM/(F^nM \cap G^nM)$ by definition. So $(M/G^nM)/(F^nM/G^nM) = M/(F^nM + G^nM)$ by the two Noether isomorphisms in (4.8). Thus the first equality in (22.42.1) holds.

For the second equality in (22.42.1), note that $M^H = \lim_{\ell \to \infty} M/H^\ell M$ by (22.7) again. Set $M_{m,n} := M/(F^nM + G^nM)$. Thus it suffices to find a canonical map $\alpha : \lim_{\ell \to \infty} M_{m,n} \to \lim_{\ell \to \infty} M_{p,p}$ and to show α is an isomorphism.

Let's show the projections $\pi : \prod_{m=1}^\infty \prod_{n=1}^\infty M_{m,n} \to \prod_{p=1}^\infty M_{p,p}$ induce the desired α.

Let $(x_{m,n}) \in \prod_{m=1}^\infty \prod_{n=1}^\infty M_{m,n}$. Then the residue $x'_{m,n}$ of $x_{m,n}$ in $M_{p,q}$ is $x_{p,q}$ for all $p \leq m$ and $q \leq n$ according to (22.5). In particular, $x'_{m,n} = x_{p,q}$ for all $q \leq n$. So $(x_{p,q}) \in \lim_{\ell \to \infty} M_{p,p}$. Thus π induces a map α.

Suppose $\alpha((x_{m,n})) = 0$. Then $x_{p,q} = 0$ for all p. Hence $x_{m,n} = 0$ for any m, n, as $x_{m,n} = x'_{p,q}$ if $p \geq \max\{m, n\}$. Thus α is injective.

For surjectivity, given $(x_{p,q}) \in \lim_{\ell \to \infty} M_{p,p}$, set $x_{m,n} := x_{p,q}$ where $p \geq \max\{m, n\}$. Then $x_{m,n}$ is well defined, as $(x_{p,q}) \in \lim_{\ell \to \infty} M_{p,p}$. Plainly $(x_{m,n}) \in \lim_{\ell \to \infty} M_{m,n}$. Plainly $\alpha((x_{m,n})) = (x_{p,q})$. Thus α is surjective, so bijective, as desired.

Exercise (22.43). — Let R be a ring, a and b ideals. Given any module M, let M^a be its a-adic completions. Set $c := a + b$. Assume M is Noetherian. Show:

(1) Then $(M^a)^b = M^c$.
(2) Assume $a \supset b$ and $M^a = M$. Then $M^b = M$.

Solution: For (1), use (22.42). Let F^*M be the a-adic filtration, G^*M the b-adic filtration. Then $H^pM := a^pM + b^pM$. So $c^{p+1}M \subset H^pM \subset c^pM$. Thus $M^c = M^H$. Now, $M^a = M^F$. And $(M^b)^c$ is the completion under the filtration by the $(b^mM)^a$. But $b^{m+1}M = (b^mM)^a$ by (22.20). Thus $(M^b)^c = (M^F)^G$. Thus (22.42) yields (1).

For (2), note $c = a$. Thus (1) yields (2).

Exercise (22.44). — Let R be a ring, a an ideal, X a variable, $F_n, G \in R[[X]]$ for $n \geq 0$. In $R[[X]]$, set $b := (a, X)$. Show the following:

(1) Then b^m consists of all $H = \sum h_iX^i$ with $h_i \in a^{m-i}$ for all $i < m$.
(2) Say $F_n := \sum_{i=0}^n f_{n,i}X^i$. Then (F_n) is Cauchy if and only if every $(f_{n,i})$ is.
(3) Say $G := \sum_{i=0}^n g_iX^i$. Then $G = \lim_{\ell \to \infty} F_n$, if and only if $g_i = \lim_{\ell \to \infty} f_{n,i}$ for all i.
(4) If R is separated or complete, then so is $R[[X]]$.
(5) The (a, X)-adic completion of $R[X]$ is $R[[X]]$.

Solution: For (1), given such an H, note $h_iX^i \in b^m$ for all $i < m$. Moreover, $\sum_{i \geq m} h_iX^i = \sum_{i \geq m} (h_i - h_{i-m}X^{i-m})X^m \in b^m$. Thus $H \in b^m$.

Conversely, given $H = \sum_{i=0}^n h_iX^i \in b^m$, let's show $h_i \in a^{m-i}$ for all $i < m$. If $m = 1$, then $H = h_0 + (\sum_{i \geq 1} h_{i-1}X^{i-1})X$. Let $h_0 \in a$. Thus $h_0 \geq 1$.

Note that H is a finite sum of series of the form $(a + FX)G$ with $a \in a$, with $F \in R[[X]]$, and with $G \in b^{m-1}$. Then $aG \in b^m$. But $FG \in b^{m-1}$. So by induction, $FG = \sum_{i \geq 1} a_iX^i$ with $a_i \in a^{m-1-i}$ for $i < m - 1$. So $FGX = \sum_{i \geq 1} a_{i-1}X^i$ with $a_{i-1} \in a^{m-i}$ for $i < m$. Thus $h_i \in a^{m-i}$ for all $i < m$. Thus (1) holds.

For (2), first assume (F_n) is Cauchy. Fix $i \geq 0$. Given n_0, there's $n_1 > i$ with $F_n - F_{n+1} \in b^{n_0+i}$ for $n \geq n_1$. So $f_{n,i} - f_{n+1,i} \in a^{n_0}$ by (1). Thus $(f_{n,i})$ is Cauchy.

Conversely, assume every $(f_{n,i})$ is Cauchy. Given n_0, there's n_1 with $f_{n,i} - f_{n+1,i}$ in a^{n_0+i} for $n \geq n_1$ and $i < n_0$. So $F_n - F_{n+1} \in b^{n_0}$ for $n \geq n_1$ by (1). Thus (F_n) is Cauchy. Thus (2) holds.

For (3), the proof is similar to that of (2).
Solutions

(22.45) / (22.47)

Completion

For (4), first assume R is separated. Given $H \in \bigcap_{m \geq 0} b^m$, say $H =: \sum h_i X^i$. Fix i. Then $h_i \in \bigcap_{m \geq 0} a^m$ by (1). So $h_i = 0$. So $H = 0$. Thus $R[[X]]$ is separated.

Instead, assume R is complete. Assume (F_n) is Cauchy. Say $F_n =: \sum f_{n,i} X^i$. Then every $(f_{n,i})$ is Cauchy by (2), so has a limit, g_i say. Set $G := \sum g_i X^i$. Then $G = \lim F_n$ by (3). Thus $R[[X]]$ is complete. Thus (4) holds.

For (5), set $c := aR[X]$. Then $c^n = a^n R[X]$ for all $n \geq 0$. To use (22.42), set $M = R[X]$ and let $F^* M$ be the c-adic filtration and $G^* M$ the (X)-adic filtration. Then $H_P M := a^n M + \langle X \rangle^p M$. So $\langle a, X \rangle 2^p - 1 \subset H_P M \subset \langle a, X \rangle^p M$. So M^H is the completion in question in (5).

Moreover, $M_{m,n} := R[X]/(c^n + X^m)$. Thus owing to (22.42), it remains to show $\lim_{m \to \infty} \lim_{n \to \infty} M_{m,n} = \hat{R}[[X]]$.

Note that $M_{m,n} = (R[X]/c^n)/(c^n + X^m)/c^n$. But $R[X]/c^n = (R/a^n)[X]$ by (1.16). Thus $M_{m,n} = (R/a^n)[X]/(X)^m = \sum_{i=0}^{m-1} (R/a^n)X^i$.

Note that $\prod_{i=0}^{\infty} (R/a^n)X^i = \prod_{i=0}^{m-1} (R/a^n)X^i$. Hence, for all m, $\lim_{i \to \infty} M_{m,n} = (\lim_{i \to \infty} R/a^n)[X]/(X)^m$. But $\lim_{i \to \infty} R/a^n = \hat{R}$ by (22.7). Moreover, $\lim_{i \to \infty} \hat{R}/(X)^m = \hat{R}[[X]]$ by (22.6).

Exercise (22.45). — Let R be a ring, a an ideal, M a Noetherian module over R. Prove: if $x \notin z.\text{div}(M)$, then $x \notin z.\text{div}(\hat{M})$; and the converse holds if $a \subseteq \text{rad}(M)$.

Solution: Assume $x \notin z.\text{div}(M)$. Then μ_x is injective on M. So by Exactness of Completion (22.18), the induced map $\hat{\mu}_x$ is injective on \hat{M}. Thus $\hat{x} \notin z.\text{div}(\hat{M})$.

Conversely, assume $x \notin z.\text{div}(\hat{M})$ and $a \subseteq \text{rad}(M)$. Then $\hat{\mu}_x$ is injective on \hat{M}. So its restriction is injective on the image of $\kappa_M: M \to \hat{M}$. But κ_M is injective by (22.3) as $a \subseteq \text{rad}(M)$; further, $\hat{\mu}_x$ induces μ_x. Thus $x \notin z.\text{div}(\hat{M})$.

Exercise (22.46). — Let k be a field with $\text{char}(k) \neq 2$, and X, Y variables. Set $P := k[X, Y]$ and $R := P/(Y^2 - X^2 - X^3)$. Let x, y be the residues of X, Y, and set $m := (x, y)$. Prove R is a domain, but its completion \hat{R} with respect to m isn’t.

Solution: First off, R is a domain as $Y^2 - X^2 - X^3$ is irreducible in P.

Set $\mathfrak{m} := (X, Y)$. Then (22.2) yields $\hat{P} = k[[X, Y]]$. Moreover, (22.20) yields $(Y^2 - X^2 - X^3) = (Y^2 - X^2 - X^3 - 3)$. But on R, the \mathfrak{m}-adic topology coincides with the m-adic. Thus (22.12) yields $\hat{R} = \hat{P}/(Y^2 - X^2 - X^3)$.

In \hat{P}, the binomial theorem yields

$$\sqrt{1 + X} = 1 + (1/2)X - (1/8)X^2 + \cdots.$$

Moreover, $Y^2 - X^2 - X^3$ is not irreducible; in fact,

$$Y^2 - X^2 - X^3 = (Y - X \sqrt{1 + X})(Y + X \sqrt{1 + X}).$$

Thus \hat{R} is not a domain.

Exercise (22.47). — Given modules M_1, M_2, \ldots, set $P_k := \prod_{n=1}^{k} M_n$, and let $\pi_k^{k+1}: P_{k+1} \to P_k$ be the projections. Show $\lim_{k \to \infty} P_k = \prod_{n=1}^{\infty} M_n$.

Solution: Let $\xi_k: P_k \to M_k$ be the projections. It’s easy to see that a family of maps $\beta_k: N \to P_k$ with $\beta_k = \pi_k^{k+1} \beta_{k+1}$ amounts to an arbitrary family of maps $\alpha_k: N \to M_k$ via $\alpha_k = \xi_k \beta_k$. Thus $\lim_{k \to \infty} P_k$ and $\prod_{n=1}^{\infty} M_n$ have equivalent UMPs, which are described in (22.5) and (4.13).
Exercise (22.48) . — Let $p \in \mathbb{Z}$ be prime. For $n > 0$, define a \mathbb{Z}-linear map

$$\alpha_n : \mathbb{Z}/(p) \to \mathbb{Z}/(p^n)$$

by $\alpha_n(1) = p^{n-1}$.

Set $A := \bigoplus_{n \geq 1} \mathbb{Z}/(p)$ and $B := \bigoplus_{n \geq 1} \mathbb{Z}/(p^n)$. Set $\alpha := \bigoplus \alpha_n$; so $\alpha : A \to B$.

(1) Show that α is injective and that the p-adic completion \hat{A} is just A.

(2) Show that, in the topology on A induced by the p-adic topology on B, the completion \bar{A} is equal to $\prod_{n=1}^{\infty} \mathbb{Z}/(p)$.

(3) Show that the natural sequence of p-adic completions

$$\hat{A} \xrightarrow{\hat{\alpha}} \hat{B} \xrightarrow{\hat{\beta}} (B/A)^\wedge$$

is not exact at \hat{B}. (Thus p-adic completion is neither left exact nor right exact.)

Solution: In (1), plainly each α_n is injective; so α is too. Now, note $pA = 0$. So every Cauchy sequence stabilizes. Thus $A = \hat{A}$, as desired.

For (2), set $A_k := \alpha^{-1}(p^kB)$. These A_k are the fundamental open neighborhoods of 0 in the topology induced from the p-adic topology of B. And

$$A_k = \alpha^{-1}(0 + \cdots + 0 + \bigoplus_{n>k} \mathbb{Z}/(p^n)) = (0 + \cdots + 0 + \bigoplus_{n>k} \mathbb{Z}/(p)).$$

Hence $A/A_k = \bigoplus_{n=1}^{k} \mathbb{Z}/(p) = \prod_{n=1}^{k} \mathbb{Z}/(p)$. But $\bar{A} = \lim_{\leftarrow k \geq 1} A/A_k$ by (22.7). Thus $\bar{A} = \lim_{\leftarrow k \geq 1} \prod_{n=1}^{k} \mathbb{Z}/(p)$. Finally, take $M_n := \mathbb{Z}/(p)$ in (22.47). Thus (2) holds.

For (3), note that, by (2) and (22.12)(1), the following sequence is exact:

$$0 \to \bar{A} \to \hat{B} \xrightarrow{\hat{\beta}} (B/A)^\wedge \to 0.$$

But $\bar{A} = A$ by (1). And $A \neq \bar{A}$ as A is countable yet \bar{A} isn’t. Thus $\text{Im}(\bar{\alpha}) \neq \text{Ker}(\bar{\beta})$, as desired.

Exercise (22.49) . — Preserve the setup of (22.48). Set $A_k := \alpha^{-1}(p^kB)$ and $P := \prod_{n=1}^{\infty} \mathbb{Z}/(p)$. Show $\varprojlim_{k \geq 1} A_k = P/A$, and conclude \varprojlim is not right exact.

Solution: The sequences $0 \to A_k \to A \to A/A_k \to 0$ give this exact sequence:

$$0 \to \varprojlim A_k \to \varprojlim A \to \varprojlim A/A_k \to \varprojlim A_k \to \varprojlim A$$

by (22.10)(2). Now, $\varprojlim A = 0$ by (22.10)(1). Also, $\varprojlim A = A$ by (22.9) with $Q_n := A$ for all n. And $\varprojlim A_k = 0$ by (22.9) with $Q_n := A_n$ for all n, as $\bigcap A_n = 0$.

Thus the following sequence is exact:

$$0 \to A \to \varprojlim A/A_k \to \varprojlim A_k \to 0.$$

But $A/A_k = \prod_{n=1}^{k} \mathbb{Z}/(p)$; see the solution to (22.48)(2). So $\varprojlim A/A_k = P$ by (22.47). Moreover, $A := \bigoplus \mathbb{Z}/(p)$. Thus $\varprojlim A_k = P/A$.

Note $P/A \neq 0$. So $A \to \varprojlim A/A_k$ isn’t surjective. Thus \varprojlim isn’t right exact.

Exercise (22.50) . — Let R be a ring, a an ideal, and M a module. Show that $\text{Ann}_R(M)\bar{R} \subset \text{Ann}_R(\bar{M})$, with equality if R is Noetherian and if M is finitely generated.
Solutions (22.51) / (22.53) Completion

Solution: Given \(x \in \text{Ann}_R(M) \) and a Cauchy sequence \((m_n)\) in \(M \), clearly \(x m_n = 0 \) for all \(n \geq 0 \). So \(x(m_n) = (0) \). Thus \(\text{Ann}_R(M) \hat{R} \subset \text{Ann}_\hat{R}(\hat{M}) \).

Assume \(R \) is Noetherian and \(M \) is finitely generated. Then \(\hat{R} \) is flat by (22.22). So (9.34) yields \(\text{Ann}_R(M) \hat{R} = \text{Ann}_\hat{R}(M \otimes_R \hat{R}) \). But (22.19) yields \(M \otimes_R \hat{R} = \hat{M} \). Thus equality holds, as desired.

Exercise (22.51). Let \(R \) be a ring, \(a \) an ideal, \(M \) a module. Assume \(aM = 0 \). Set \(b := \text{Ann}_R(M) \). Show \(\hat{b} = \text{Ann}_\hat{R}(\hat{M}) \).

Solution: First, note \(a \subseteq b \subseteq R \). Hence \(a^{n+1} \subseteq b^n \subseteq a^n \) for any \(n \geq 0 \). Thus the topology on \(R \) induces that on \(b \). Thus (22.1) yields \(\hat{b} \subseteq \hat{R} \).

Given a Cauchy sequence \((b_n)\) in \(b \) and one \((m_n)\) in \(M \), their product \((b_n m_n)\) is \((0)\). But \(\hat{b} \subseteq \hat{R} \). Thus \(\hat{b} \subseteq \text{Ann}_\hat{R}(\hat{M}) \). It remains to show \(\text{Ann}_R(M) \subset \hat{b} \).

Given \(x \in \text{Ann}_\hat{R}(\hat{M}) \), represent \(x \) by a Cauchy sequence \((x_n) \in C(R) \). Then there’s \(n_1 \) with \(x_n - x_{n'} \in a \) for all \(n, n' \geq n_1 \).

Given any \(m \in M \), note \((x_n - x_{n'})m \in aM \) for all \(n, n' \geq n_1 \). But \(x_n m \) represents \(x_{22.5} (m) \), which is \((0)\); so \(x_n m \in aM \) for \(n \geq 0 \). So \(x_n m \in aM \) for \(n \geq n_1 \). But \(aM = 0 \). So \(x_n \in b \) for \(n \geq n_1 \). So \(x \in b \). Thus \(\text{Ann}_\hat{R}(\hat{M}) \subset b \), as desired.

(In passing, note that (22.1) yields \(M = \hat{M} \) as \(R \)-modules.)

Exercise (22.52). Let \(R \) be a ring, \(a \) an ideal, and \(M, N, P \) modules. Assume \(aM \subset P \subset N \subset M \). Prove:

1. The \((a \text{-adic}) \) topology on \(M \) induces that on \(N \).
2. Then \((aM)\) \(\subset \hat{P} \subset \hat{N} \subset \hat{M} \), and \(N/P = \hat{N}/\hat{P} \).
3. The map \(Q \rightarrow \hat{Q} \) is a bijection from the \(R \)-submodules \(Q \subset P \) to the \(\hat{R} \)-submodules \(\hat{Q} \) with \(\hat{P} \subset Q' \subset \hat{N} \).

Solution: For (1), note \(aM \subset N \subset M \). Multiplying by \(a^n \) for any \(n \geq 0 \) yields \(a^{n+1}M \subset a^nN \subset a^nM \). Thus (1) holds.

For (2), note (1) implies the topology on \(M \) induces the topologies on \(N, P, aM \). Hence, the topology on \(N \) induces that on \(P \), and that on \(P \) induces that on \(aM \). Thus (22.12)(1)–(2) yield (2).

For (3), note \(Q \rightarrow Q/P \) is a bijection from the \(R \)-submodules \(Q \subset P \subset N \) to the \(R \)-submodules \(N/P \), and \(Q' \rightarrow Q'/\hat{P} \) is a bijection from the \(R \)-submodules \(Q' \) with \(\hat{P} \subset Q' \subset \hat{N} \) to the \(\hat{R} \)-submodules \(\hat{N}/\hat{P} \). But \(N/P = \hat{N}/\hat{P} \) and \(Q/P = \hat{Q}/\hat{P} \) by (2); also, these identifications come from \(\kappa_M \). Thus (3) holds.

Exercise (22.53). Let \(R \) be a ring, \(a \subset b \) ideals, and \(M \) a finitely generated module. Let \(\Phi \) be the set of maximal ideals \(m \in \text{Supp}(M) \) with \(m \supset a \). Use the \(a \)-adic topology. Prove:

1. Then \(\hat{M} \) is a finitely generated \(\hat{R} \)-module, and \(\hat{b} \hat{M} = \hat{b} \hat{M} \subset \hat{M} \).
2. The map \(p \rightarrow \hat{p} \) is a bijection \(\text{Supp}(M/bM) \rightarrow \text{Supp}(\hat{M}/\hat{b} \hat{M}) \). Its inverse is \(p' \rightarrow \kappa_{\hat{R}} p' \). It restricts to a bijection on the subsets of maximal ideals.
3. Then \(\text{Supp}(\hat{M}/a \hat{M}) \) and \(\text{Supp}(\hat{M}) \) have the same maximal ideals.
4. Then the \(\hat{m} \) with \(m \in \Phi \) are precisely the maximal ideals of \(\hat{R} \) in \(\text{Supp}(\hat{M}) \).
5. Then \(\kappa_{\hat{R}} \text{ rad}(\hat{M}) = \bigcap_{m \in \Phi} m \) and \(\text{rad}(\hat{M}) = (\bigcap_{m \in \Phi} m)^{\hat{R}} \).
6. Then \(\Phi \) is finite if and only if \(\hat{M} \) is semilocal.
7. If \(M = R \), then \(\Phi = \{b\} \) if and only if \(\hat{R} \) is local with maximal ideal \(\hat{b} \).

372
Solutions

\[(22.54) / (22.54) \]

Completion

Solution: For (1), fix a surjection \(R' \to M \). It induces a map \(\hat{R'} \to \hat{M} \), which is surjective by (22.12)(1). But completion is a linear functor, so \(\hat{R'} = \hat{R'} \) by (8.14). So there’s a surjection \(\hat{R'} \to \hat{M} \). Thus \(\hat{M} \) is a finitely generated \(\hat{R} \)-module.

Let’s use \(R' \to M \) to construct the following commutative diagram:

\[
\begin{array}{ccc}
\hat{b}R' & \xrightarrow{\alpha} & \hat{b}\hat{M} \\
\beta \downarrow & & \gamma \downarrow \\
\hat{b}\hat{R'} & \xrightarrow{\delta} & \hat{b}\hat{M}
\end{array}
\]

First, \(\hat{b}\hat{M} \subset \hat{M} \) by (22.52)(3) with \(P := bM \) and \(N := M \). Next, \(\hat{b}\hat{M} \subset \hat{M} \) by definition; namely, the product of a Cauchy sequence in \(b \) and one in \(M \) is one in \(M \). In fact, the latter is a sequence in \(bM \). So take \(\gamma \) to be the inclusion.

Similarly, take \(\beta \) to be the inclusion of submodules of \(\hat{R'} \). Plainly, \(\hat{R'} \to \hat{M} \) restricts to give \(\alpha \) and \(\delta \). Trivially, the resulting diagram is commutative.

Plainly, multiplication by \(b \) preserves surjections; so \(b\hat{R'} \to bM \) is surjective. But again, completion preserves surjections by (22.12)(1). Thus \(\delta \) is surjective.

Again, completion preserves finite direct sums; so \(\hat{R'} = \hat{R'} \) and \(\hat{b}\hat{R}' = \hat{b}\hat{R}' \).

But plainly, multiplication by an ideal preserves finite direct sums; so \(\hat{b}\hat{R}' = \hat{b}\hat{R}' \).

Hence \(\hat{b}\hat{R}' = \hat{b}\hat{R}' \) and \(\hat{b}\hat{R}' = \hat{b}\hat{R}' \); correspondingly, \(\beta = 1 \). So \(\delta\beta \) is surjective; so \(\gamma \) is too. Thus (1) holds.

For (2), set \(c := \text{Ann}_R(M/bM) \). Note \(\text{Ann}_R(M/bM) = 0 \). So \(\hat{c} = \text{Ann}_R(M/bM) \) by (22.51). As \(M \) is finitely generated, so is \(M/bM \); hence, \(\hat{M}/b\hat{M} \) is too by (1). Thus (13.4) yields \(\text{Supp}(M/bM) = V(c) \) and \(\text{Supp}(\hat{M}/b\hat{M}) = V(\hat{c}) \).

The topology on \(M \) induces that on \(bM \) by (22.52)(1), so \(\hat{M}/b\hat{M} = \hat{M}/b\hat{M} \) by (22.12)(1). Moreover, \(\hat{b}\hat{M} = \hat{b}\hat{M} \) by (1). Thus \(\text{Supp}(\hat{M}/b\hat{M}) = V(\hat{c}) \).

The map \(p \mapsto p/c \) is a bijection from the ideals \(p \) containing \(c \) to the ideals of \(R/c \); also, \(p \) is prime or maximal if and only if \(p/c \) is. The map \(p' \mapsto p'/\hat{c} \) is similar. By (22.52)(1), the topology on \(p \) induces that on \(c \). So \(\kappa \) induces an identification \(p/c = p/\hat{c} \) by (22.12)(1)–(2). In particular, \(R/c = \hat{R}/\hat{c} \); this identification is a ring isomorphism, so preserves prime ideals and maximal ideals. Thus (2) holds.

For (3), note \(\hat{M} \) is finitely generated by (1). So \(\text{Supp}(\hat{M}/\hat{a}\hat{M}) = \text{Supp}(\hat{M}) \cap V(\hat{a}) \) by (13.46)(1). But every maximal ideal of \(\hat{R} \) contains \(\hat{a} \) by (22.4). Thus (3) holds.

For (4), note \(\text{Supp}(M/\hat{a}M) = \text{Supp}(M) \cap V(a) \) by (13.46)(1) as \(M \) is finitely generated. Thus (2) with \(b = a \) and (3) yield (4).

For (5), note \(\bigcap_{m \in \Phi} \hat{m} = \text{rad}(\hat{M}) \) by (4). So \(\kappa^{-1}_R \text{rad}(\hat{M}) = \bigcap_{\hat{m} \in \Phi} \kappa^{-1}_R \hat{m} \). But \(\kappa^{-1}_R \hat{m} = m \) by (2). So \(\kappa^{-1}_R \text{rad}(\hat{M}) = \bigcap_{m \in \Phi} m \). Thus (22.52)(3) yields (5).

Finally, (6) and (7) both follow immediately from (4).

Exercise (22.54) (UMP of completion). — (1) Let \(R \) be a ring, \(M \) a filtered module. Show \(\kappa_M : M \to \hat{M} \) is the universal example of a map of filtered modules \(\alpha : M \to N \) with \(N \) separated and complete. (2) Let \(R \) be a filtered ring. Show \(\kappa_R \) is the universal filtered ring map \(\varphi : R \to R' \) with \(R' \) separated and complete.

Solution: For (1), first note that \(\hat{M} \) is separated and complete by (22.16)(4), and \(\kappa_M \) is a map of filtered modules by (22.1).

Second, recall from (22.1) that any given \(\alpha \) induces a map of filtered modules \(\hat{\alpha} : \hat{M} \to \hat{N} \) with \(\hat{\alpha} \kappa_M = \kappa_N \alpha \). But \(N \) is separated and complete. So \(\kappa_N \) is
injective by (22.3) and surjective by (22.13)(1). Thus κ_N is an isomorphism of filtered modules by (22.1).

Set $\beta := \kappa_N^{-1}\alpha$. Then $\beta : \hat{M} \to N$ is a map of filtered modules with $\beta \kappa_M = \alpha$. Finally, given any map of filtered modules $\beta' : \hat{M} \to N$ with $\beta' \kappa_M = \alpha$, note $\kappa_N \beta' \kappa_M = \kappa_N \alpha$. So $\kappa_N \beta' = \alpha$ by (22.15). Thus $\beta' = \beta$, as desired.

For (2), revisit the proof of (1) taking $\alpha := \varphi$. It is clear from their construction in (22.1) that α and κ_R are maps of filtered rings; thus β is too, as desired. \qed

Exercise (22.55) (UMP of formal power series). Let R be a ring, R' an algebra, b an ideal of R', and $x_1, \ldots, x_n \in b$. Let $A := R[[X_1, \ldots, X_n]]$ be the formal power series ring. Assume R' is separated and complete in the b-adic topology. Show there's a unique map of R-algebras $\varphi : A \to R'$ with $\varphi(X_i) = x_i$ for all i, and φ is surjective if the induced map $R \to R'/b$ is surjective and the x_i generate b.

Solution: Set $P := R[X_1, \ldots, X_n]$ and $a := (X_1, \ldots, X_n)$. Give P the a-adic filtration. Then $\hat{P} = A$ by (22.2). Form the unique R-algebra map $\pi : P \to R'$ with $\pi(X_i) = x_i$. Notice π respects the filtrations. So by (22.54)(2), there's a unique map of filtered rings $\varphi : A \to R'$ with $\varphi a = \pi$.

Assume $R \to R'/b$ is surjective and the x_i generate b. Then $P/a \to R'/b$ and $a/a^2 \to b/b^2$ are surjective. But b/b^2 generates $G(R')$ as an R'-b-algebra. So $G(\pi)$ is surjective. So $G(\varphi)$ is too, as $G(\varphi) G(\kappa_P) = G(\pi)$. Thus φ is by (22.23)(2). \qed

Exercise (22.56). Let R be a ring, a a finitely generated ideal, and X_1, \ldots, X_n variables. Set $P := R[[X_1, \ldots, X_n]]$. Prove $P/aP = (R/a)[[X_1, \ldots, X_n]]$. (But, it's not always true that $R' \otimes_R P = R'[[X_1, \ldots, X_n]]$ for an R-algebra R'; see (8.18).)

Solution: Let $\kappa : R \to R/a$ be the quotient map. By (22.55), there is a unique ring map $\varphi : P \to (R/a)[[X_1, \ldots, X_n]]$ with $\varphi| R = \kappa$ and $\varphi(X_i) = x_i$ for all i. As κ is surjective, so is φ. But $\text{Ker}(\varphi)$ consists of the power series whose coefficients map to 0 under κ, that is, lie in a. Hence $\text{Ker}(\varphi) = aP$ by (3.19)(5) as a is finitely generated. Thus φ induces an isomorphism $P/aP \cong (R/a)[[X_1, \ldots, X_n]]$.

Alternatively, the two R-algebras are equal, as they have the same UMP: each is universal among complete R-algebras R' with distinguished elements x_i and with $aR' = 0$. Namely, the structure map $\varphi : R \to R'$ induces a unique map $\pi : P \to R'$ such that $\pi(\kappa(X_i)) = x_i$ for all i by (22.55). Then π factors through a unique map $P/aP \to R'$. Indeed π factors through the quotient P/\mathfrak{A} where \mathfrak{A} is the ideal of power series with coefficients in a as $aR' = 0$. But $\mathfrak{A} = aP$ by (3.19)(5) as \mathfrak{A} is finitely generated. So π factors through P/aP. On the other hand, φ factors through a unique map $\psi : R/a \to R'$ as $aR' = 0$; then ψ factors through a unique map $(R/a)[[X_1, \ldots, X_n]] \to R'$ such that $\pi(\kappa(X_i)) = x_i$ for all i by (22.55). \qed

Exercise (22.57) (Cohen Structure Theorem 1). Let $A \to B$ be a local homomorphism, $b \subset B$ an ideal. Assume that $A = B/b$ and that B is separated and complete in the b-adic topology. Prove the following statements:

1. The hypotheses hold if B is a complete Noetherian local ring, b is its maximal ideal, and A is a coefficient field.
2. Then $B \simeq A[[X_1, \ldots, X_r]]/a$ for some r, variables X_i, and some ideal a.

Solution: For (1), note $A = B/b$ holds by definition of coefficient field (21.23). Moreover, as B is Noetherian, it is separated by (22.3). Thus (1) holds.

For (2), say $b = (x_1, \ldots, x_r)$, and take variables X_1, \ldots, X_r. Form the unique
surruction of A-algebras $\varphi: A[[X_1, \ldots, X_r]] \to B$ with $\varphi(X_i) = x_i$ of (22.55), and set $a := \text{Ker}(\varphi)$. Then $A[[X_1, \ldots, X_r]]/a \isom B$. Thus (2) holds. \hfill \square

\textbf{Exercise (22.58) (Cohen Structure Theorem II)} \textcolor{red}{- Let $A \to B$ be a flat local homomorphism of complete Noetherian local rings, and $b \subset B$ an ideal. Denote the maximal ideal of A by m, and set $B' := B/mB$. Assume that $A \to B/b$ and that B' is regular of dimension r. Find an A-isomorphism $\psi: B \isom A[[X_1, \ldots, X_r]]$ for variables X_i with $\psi(b) = \{X_1, \ldots, X_r\}$. Moreover, if $b = \langle x_1, \ldots, x_r \rangle$ for given x_i, find such a ψ with $\psi(x_i) = X_i$.

\textbf{Solution}: As B is complete, Noetherian and local, $B = \hat{B}$ by (22.14). So B is equal to its completion in the b-adic topology by (22.43)(2). Thus by (22.16)(4) or by (22.14) again, B is separated and complete in the b-adic topology.

Set $k := A/m$. Then $B' = B \otimes k$. For the exact sequence of A-modules $0 \to b \to B \to A \to 0$. It yields $0 \to b \otimes k \to B' \to k \to 0$, which is exact by (9.8)(1). Let n' be the maximal ideal of B'. Now, k is a field. Thus $b \otimes k = n'$.

As B' is regular of dimension r, there are $x_1, \ldots, x_r \in b$ whose images in n' form a regular sop, and so generate n'. But $n' = b \otimes k = b/mb$, and $mb = (mb)b$. Also, b is finitely generated as B is Noetherian. Thus by (10.8) the x_i generate b.

Fix any $x_1, \ldots, x_r \in b$ that generate b. Then their images in n' generate n', and so form a regular sop as $\dim(B') = r$. Set $P := A[[X_1, \ldots, X_r]]$ for variables X_i. By (22.55), there’s a surjection of A-algebras $\varphi: P \to B$ with $\varphi(X_i) = x_i$. Set $a := \text{Ker}(\varphi)$. We must show $a = 0$, for then ψ is bijective, and $\varphi := \psi^{-1}$ works.

As $A \to B$ is flat, $0 \to a \otimes k \to P \otimes k \xrightarrow{\varphi \otimes k} B \otimes k \to B' \otimes k \to 0$ is exact by (9.8)(1). Now, $B \otimes k = B'$, and $G(B')$ is the polynomial ring, over $B' \otimes n'$, in the images of x_1, \ldots, x_r by (21.15), and $B'/n' = k$ owing to the second paragraph above.

Moreover, $P \otimes k = k[[X_1, \ldots, X_r]]$ owing to (22.56). But $\varphi(X_i) = x_i$. Hence $G(\varphi \otimes k) = 1$. So $\varphi \otimes k$ is bijective by (22.23). Hence $a \otimes k = 0$. Thus $a = ma$.

As A is Noetherian, so is P by (22.27). Hence a is finitely generated as a P-module. But $a = (mP)a$. Thus (10.6) implies $a = 0$, as desired. \hfill \square

\textbf{Exercise (22.59) \textcolor{red}{- Let k be a field, $A := k[[X_1, \ldots, X_n]]$ the power series ring in variables X_i with $n \geq 1$, and $F \in A$ nonzero. Find an algebra automorphism φ of A such that $\varphi(F)$ contains the monomial X^s for some $s \geq 0$; do so as follows. First, find suitable $m_i \geq 1$ and use (22.55) to define φ by $\varphi(X_i) := X_i + X^m_i$ for $1 \leq i \leq n-1$ and $\varphi(X_n) := X_n$. (22.59.1)

Second, if k is infinite, find suitable $a_i \in k^\times$ and use (22.55) to define φ by $\varphi(X_i) := X_i + a_iX_n$ for $1 \leq i \leq n-1$ and $\varphi(X_n) := X_n$. (22.59.2)

\textbf{Solution}: First, note that (22.55) yields, for any m_i, a unique endomorphism φ of A defined by (22.59.1). Plainly, φ is an automorphism, whose inverse φ' is defined by $\varphi'(X_i) := X_i - X^m_i$ for $1 \leq i \leq n-1$ and $\varphi'(X_n) := X_n$.

To find suitable m_i, order the monomials of F lexicographically. Say $\prod X_i^{s_i}$ is smallest. Take $m > \max\{|s_i|\}$ and $m_i := m^{n-i}$. Then $\varphi(\prod X_i^{s_i})$ contains X^m_i with $s := \sum m_i s_i$. Given any other $\prod X_i^{s_i}$ in F, say $t_i = s_i$ for $i < h$, but $t_h > s_h$. Set $t := \sum m_i t_i$. Then $t - s > m^{n-h} - \sum_{i<h} m^{n-i} s_i > 0$. Thus $\varphi(F)$ contains X^m_i.

Second, note that similarly (22.55) yields, for any a_i, a unique automorphism φ of A defined by (22.59.1). Suppose now k is infinite.

To find suitable a_i, say $F = \sum_{i \geq s} F_i$ with F_i homogeneous of degree i and $F_s \neq 0$. 375
As k is infinite, $F_\circ(a_1, \ldots, a_n) \neq 0$ for some $a_i \in k^\times$ by (3.28)(1) with $\delta := k^\times$.
As F_\circ is homogeneous, we may replace a_i by a_i/a_n. Set $c := F_\circ(a_1, \ldots, a_{n-1}, 1)$.
Then $\varphi(F)$ contains the term $cX^\circ_{n_i}$, as desired.

Exercise (22.60) . — Let A be a separated and complete Noetherian local ring, k a coefficient field, x_1, \ldots, x_s a sop, X_1, \ldots, X_s variables. Set $B := k[[X_1, \ldots, X_s]]$.
Find an injective map $\varphi: B \to A$ such that $\varphi(X_i) = x_i$ and A is B-module finite.

Solution: Set $q := (x_1, \ldots, x_s)$. It’s a parameter ideal. So A has the q-adic topology by (22.1). Thus (22.55) provides $\varphi: B \to A$ with $\varphi(X_i) = x_i$.

Set $n := (X_1, \ldots, X_s)$, and form this canonical commutative diagram:
\[
\begin{array}{c}
1 \\
\downarrow \\
G_n(B) \xrightarrow{G(\varphi)} G_q(A)
\end{array}
\]
where $\phi(x_i)$ is the residue, x'_i say, of x_i in q/q^2.

Given $F \in \text{Ker}(G(\varphi))$, view $F \in (A/q)[X_1, \ldots, X_s]$. Then $\phi(F) = 0$. So by (22.22)(1)-(2), the coefficients of F are in the maximal ideal of A/q. But they’re in k too. So they’re 0. So $G(\varphi)$ is injective. Thus by (22.23)(1), also φ is injective.

As A/q has finite length, it has finite k-dimension by (19.19). But the x'_i generate q/q^2 over A/q. Hence $G_q(A)$ is $G_n(B)$-module finite. But B is complete by (22.2). Also A is separated. Thus by (22.24), A is B-module finite.

Exercise (22.61) . — Let R be a ring, M a nonzero Noetherian module, and q a parameter ideal of M. Show: (1) \widehat{M} is a nonzero Noetherian \widehat{R}-module, and \widehat{q} is a parameter ideal of \widehat{M}; and (2) $e(q, M) = e(\widehat{q}, \widehat{M})$ and $\text{dim}(M) = \text{dim}(\widehat{M})$.

Solution: First, for all $n \geq 0$, note $M/q^nM = \widehat{M}/\widehat{q}^n\widehat{M}$ by (22.12)(1). And $\widehat{q}^n\widehat{M} = \widehat{q}^n\widehat{M}$ by (22.20). Also, $\ell_R(M/q^nM) < \infty$ by (20.9). Thus by (22.41)(2)
\[
\ell_R(M/q^nM) = \ell_R(\widehat{M}/\widehat{q}^n\widehat{M}). \tag{22.61.1}
\]

For (1), note $\kappa_M: M \to \widehat{M}$ is injective by (22.3). But $M \neq 0$. Thus $\widehat{M} \neq 0$. Moreover, \widehat{M} is a Noetherian \widehat{R}-module by (22.26).

Set $m := \text{rad}(M)$. Then $\widehat{m} = \text{rad}(\widehat{M})$ owing to (22.53)(5). But $q \subset m$. Thus $\widehat{q} \subset \widehat{m}$ by (22.1). Also, $\ell_{\widehat{R}}(\widehat{M}/\widehat{q}\widehat{M}) < \infty$ by (22.61.1). Thus \widehat{q} is a parameter ideal. Thus (1) holds.

For (2), note $p_q(M, n) = p_{\widehat{q}}(\widehat{M}, n)$ owing to (22.61.1) and (20.10.2). Also, $d(M) = d(\widehat{M})$ by (21.2); so $\text{dim}(M) = \text{dim}(\widehat{M})$ by (21.4). Thus (2) holds. \hfill □

Exercise (22.62) . — Let A be a Noetherian local ring, m the maximal ideal, k the residue field. Show: (1) \widehat{A} is a Noetherian local ring with \widehat{m} as maximal ideal and k as residue field; and (2) A is regular of dimension r if and only if \widehat{A} is so.

Solution: For (1), note \widehat{A} is Noetherian by (22.26), and it’s local with \widehat{m} as maximal ideal by (22.53)(7). And $\widehat{A}/\widehat{m} = k$ by (22.12)(1)-(2). Thus (1) holds.

For (2), note (1) holds. So $m/m^2 = \widehat{m}/\widehat{m}^2$ by (22.12)(1)-(2). But $\widehat{m}^2 = \widehat{m}^2$ by (22.20). So m and \widehat{m} have generating sets with the same number of elements by (10.9). But $\text{dim}(A) = \text{dim}(\widehat{A})$ by (22.61)(2). Thus (2) holds. \hfill □
Exercise (22.63). — Let A be a Noetherian local ring, $k \subset A$ a coefficient field. Show A is regular if and only if, given any surjective k-map of finite-dimensional local k-algebras $B \to C$, every local k-map $A \to C$ lifts to a local k-map $A \to B$.

Solution: First, assume A is regular. Given $\alpha : B \to C$ and $\gamma : A \to C$, we must lift γ to some $\beta : A \to B$. As B and C are finite dimensional, they’re Artinian by (16.41). It follows, as explained in (22.1), that B and C are separated and complete. Let \mathfrak{n} and \mathfrak{p} be the maximal ideals of B and C.

So (22.54) yields a map of filtered rings $\psi : \hat{A} \to C$ with $\psi_{|A} = \gamma$. Now, A is regular, so \hat{A} is too by (22.62)(2). So $\hat{A} = k[[X_1, \ldots, X_r]]$ for variables X_i by (22.55). As ψ is a map of filtered rings, $\psi(X_i) = \mathfrak{p}$ for all i.

As $\alpha : B \to C$ is surjective, each $\psi(X_i)$ lifts to some $x_i \in \mathfrak{n}$. So (22.55) yields a k-algebra map $\varphi : \hat{A} \to B$ with $\varphi(X_i) = x_i$ for all i. Then $\alpha \varphi(X_i) = \psi(X_i)$. So (22.55) implies $\alpha \varphi = \psi$. Set $\beta := \varphi_{|A}$. Then $\alpha \beta = \gamma$, as desired.

Conversely, assume, given any $\alpha : B \to C$, every $\gamma : A \to C$ lifts to a $\beta : A \to B$. Let \mathfrak{m} be the maximal ideal of A. By (22.62), \hat{A} is Noetherian and local with \mathfrak{m} as maximal ideal and k as coefficient field; also, if \hat{A} is regular, then so is A.

Say $x_1, \ldots, x_r \in \mathfrak{m}$ generate, and r is minimal. Then $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = r$ by (10.9). So $\dim_k(\hat{A}/\mathfrak{m}^2) = r + 1$. Let $P := k[[X_1, \ldots, X_r]]$ be the power series ring. By (22.55), there’s a surjective map of k-algebras $\varphi : P \to \hat{A}$ with $\varphi(X_i) = x_i$. Set $a := (X_1, \ldots, X_r)$. Then φ induces a surjection $\varphi_2 : P/a^2 \to \hat{A}/\mathfrak{m}^2$. But plainly $\dim_k(P/a^2) = r + 1$. Hence φ_2 is bijective. Precede φ_2^{-1} by the quotient map $\hat{A} \to \hat{A}/\mathfrak{m}^2$ to get $\psi_2 : \hat{A} \to P/a^2$. Notice $\psi_2(x_i)$ is the residue of X_i.

Reversely, let’s construct a local k-map $\psi_m : \hat{A} \to P/a^m$ lifting ψ_{m-1} for $m > 2$. By hypothesis, $\psi_{m-1}\kappa_A$ lifts to some local k-map $\beta : A \to P/a^m$. So (22.54)(2) yields a local k-map $\psi_m : \hat{A} \to P/a^m$ with $\psi_m\kappa_A = \beta$. Let $\gamma : P/a^m \to P/a^{m-1}$ be the quotient map. Then $\gamma\psi_m\kappa_A = \psi_{m-1}\kappa_A$. Thus (22.54)(2) yields $\gamma\psi_m\psi_{m-1}$.

By (22.6), $P = \lim P_n$. So (22.5) yields a local k-map $\psi : \hat{A} \to P$ lifting all ψ_m. So $\psi(x_i) = X_i$ (mod a^2) for all i. But $\varphi(X_i) = x_i$. So $\psi\varphi(X_i) = X_i$ (mod a^2). But $G(P) = k[X_1, \ldots, X_r]$. So $G(\psi\varphi) = 1$. So $\varphi\varphi$ is bijective by (22.23). Hence φ is injective. But (22.6) is also surjective. So φ is bijective. But by (22.27), P is regular, so \hat{A} is regular too, as desired.

□

Exercise (22.64). — Let k be a field, $\varphi : B \to A$ a local homomorphism of Noetherian local k-algebras, and \mathfrak{n}, \mathfrak{m} the maximal ideals. Assume $k = B/\mathfrak{n} = A/\mathfrak{m}$, the induced map $\varphi' : \mathfrak{n}/\mathfrak{n}^2 \to \mathfrak{m}/\mathfrak{m}^2$ is injective, and A is regular. Show B is regular.

Solution: Let’s reduce to the case where A and B are complete. Note (22.62) (1)–(2) imply \hat{A} and \hat{B} are Noetherian local rings with \mathfrak{m} and \mathfrak{n} as maximal ideals, \hat{A} is regular, and if \hat{B} is regular, so is B. Also, (22.12)(1)–(2) and (22.20) yield

$$
\hat{B}/\mathfrak{n} = B/\mathfrak{n}, \quad \hat{A}/\mathfrak{m} = A/\mathfrak{m}, \quad \mathfrak{n}/\mathfrak{n}^2 = \mathfrak{m}/\mathfrak{m}^2, \quad \text{and} \quad \mathfrak{m}/\mathfrak{m}^2 = \hat{A}/\mathfrak{m};
$$

hence, $k = \hat{B}/\mathfrak{n} = \hat{A}/\mathfrak{m}$, and the induced map $\varphi' : \mathfrak{n}/\mathfrak{n}^2 \to \mathfrak{m}/\mathfrak{m}^2$ is injective. So we may replace A and B by \hat{A} and \hat{B}, and thus assume A and B complete.

Take $b_1, \ldots, b_r \in \mathfrak{n}$ whose residues in $\mathfrak{n}/\mathfrak{n}^2$ form a k-basis. Set $a_i := \varphi(b_i)$ for all i. As φ' is injective, the residues of a_1, \ldots, a_r are linearly independent in $\mathfrak{m}/\mathfrak{m}^2$. Complete a_1, \ldots, a_n to $a_1, \ldots, a_r \in \mathfrak{m}$ whose residues form a basis of $\mathfrak{m}/\mathfrak{m}^2$. As A is regular, $r = \dim(A)$ by (21.14). So by (22.58), there’s a canonical isomorphism
\[A = k[[X_1, \ldots, X_n]] \] for some variables \(X_i \) and with \(a_i \) corresponding to \(X_i \).

Set \(A' := k[[X_1, \ldots, X_n]] \). Then (22.55) yields \(k \)-surjections \(\psi: A' \to B \) and \(\kappa: A \to A' \) with \(\psi(X_i) = b_i \) for all \(i \) and \(\kappa(X_i) = X_i \) \(1 \leq i \leq n \) and \(\kappa(X_i) = 0 \) for \(n < i \leq r \). Then \(\kappa \psi(X_i) = X_i \) for \(1 \leq i \leq n \); so \(\kappa \psi = 1_{A'} \) by (22.55). So \(\psi \) is injective too. Hence \(0 \to i \) is an isomorphism. Thus (22.27) implies \(B \) is regular. \(\square \)

Exercise (22.65). — Let \(R \) be a Noetherian ring, and \(X_1, \ldots, X_n \) variables. Show that \(R[[X_1, \ldots, X_n]] \) is faithfully flat.

Solution: The inclusion of \(R \) in \(R[[X_1, \ldots, X_n]] \) factors as follows:

\[R \to R[X_1, \ldots, X_n] \to R[[X_1, \ldots, X_n]]. \]

The first map is flat by (9.20). The second map is flat by (22.22). Hence the composition is flat by (9.23). Given any ideal \(a \) of \(R \), its extension \(aR[[X_1, \ldots, X_n]] \) contains only power series with all coefficients in \(a \); so \(a = aR[[X_1, \ldots, X_n]] \cap R \). Thus (9.28) yields the result. \(\square \)

Exercise (22.66) (Gabber–Ramero [8, Lem. 7.1.6]). — Let \(R \) be a ring, \(a \) an ideal, \(N \) a module. Assume \(N \) is flat. Prove the following:

1. The functor \(M \mapsto (M \otimes N) \sim \) is exact on the Noetherian modules \(M \).
2. Assume \(R \) is Noetherian. Then for all finitely generated modules \(M \), there’s a canonical isomorphism \(M \otimes \hat{N} \sim \to (M \otimes N) \sim \), and \(\hat{N} \) is flat over \(R \).

Solution: For (1), let \(0 \to M' \to M \to M'' \to 0 \) be an exact sequence of Noetherian modules. As \(N \) is flat, \(0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0 \) is exact too. Hence \(0 \to (M' \otimes N) \sim \to (M \otimes N) \sim \to (M'' \otimes N) \sim \to 0 \) is exact by (22.12) for any ideal \(a \) of \(R \), provided the \((a\text{-adic}) \) topology on \(M \otimes N \) induces that on \(M' \otimes N \).

Set \(F^n M' := M' \cap a^nM \) and \(F^n(M' \otimes N) := (M' \otimes N) \cap (a^n M \otimes N) \). The \(F^n M' \) form an \(a\text{-stable filtration} \) by the Artin–Rees Lemma (20.12). But \(N \) is flat. So \(F^n(M' \otimes N) \otimes N = F^n(M' \otimes N) \) by (9.18). Hence the \(F^n(M' \otimes N) \) form an \(a\text{-stable filtration} \). Thus by (22.1), it defines the \(a\text{-adic topology} \). Thus (1) holds.

As to (2), the first assertion follows directly from (1) and (8.14). The second assertion results from the Ideal Criterion (9.15): given any ideal \(a \), the inclusion \(a \to R \) induces an injection \(a \otimes \hat{N} \to \hat{N} \) owing to the first assertion and to (1). \(\square \)

Exercise (22.67). — Let \(P \) be the polynomial ring over \(\mathbb{C} \) in \(X_1, \ldots, X_n \), and \(A \) its localization at \(\{X_1, \ldots, X_n\} \). Let \(C \) the ring of all formal power series in \(X_1, \ldots, X_n \), and \(B \) its subring of series converging about the origin in \(\mathbb{C}^n \). Assume basic Complex Analysis (see [7, pp. 105–123]). Show \(B \) is local, and its maximal ideal is generated by \(X_1, \ldots, X_n \). Show \(P \subset A \subset B \subset C \), and \(\hat{P} = \hat{A} = \hat{B} = C \). Show \(B \) is flat over \(A \).

Solution: Set \(\mathfrak{m}_B := \{ F \in B \mid F(0) = 0 \} \). Plainly, \(\mathfrak{m}_B \) is an ideal. But \(B - \mathfrak{m}_B \) consists of units (see [7, 1, p. 108] or 22.89). Thus by (3.5), \(B \) is local, and \(\mathfrak{m}_B \) maximal.

Trivially, \(P \subset B \subset C \). Set \(\mathfrak{m}_P := \{ F \in P \mid F(0) = 0 \} \). Then \(\mathfrak{m}_P = \mathfrak{m}_B \cap P \). But plainly \(\mathfrak{m}_P = \{X_1, \ldots, X_n\} \). So \(\mathfrak{m}_P \) is maximal. Moreover, by (11.3), the inclusion \(P \to B \) induces an inclusion \(A \to B \). Thus \(P \subset A \subset B \subset C \).

Let \(\mathfrak{m}_A \) and \(\mathfrak{m}_C \) be the ideals of \(A \) and \(C \) generated by \(X_1, \ldots, X_n \). They are the maximal ideals of \(A \) and \(C \) by (11.12)(1) and (3.7). Next, let \(b \) be the ideal of \(B \) generated by \(X_1, \ldots, X_n \), and let’s show \(b = \mathfrak{m}_B \).
More generally, fix $r \geq 1$. Let’s show $b^r = m_B^r = B \cap m_C^r$. Note $X_1, \ldots, X_n \in m_B$. So $b^r \subset m_B^r$. Now, m_B lies in the set of all $F \in C$ with vanishing constant term, which is plainly equal to m_C. So $m_B^r \subset m_C^r$. Thus it suffices to show $B \cap m_C^r \subset b^r$.

Given $F \in m_C^r$, say $F = \sum_{j=1}^m M_j G_j$ where the M_j are the monomials of degree r and $G_j \in C$. By induction on $d \geq 0$, let’s define $G_{j,d}$ for all j so that (1) $G_{j,d}$ and $G_{j,d-1}$ differ only in degree d if $d \geq 1$ and (2) there’s no monomial N of degree $r + d$ that appears in $M_j G_{j,d}$ for two different j and (3) $F = \sum_{j=1}^m M_j G_{j,d}$.

Set $G_{j,0} := G_j$ for all j. Then (2) and (3) hold with $d := 0$.

Assume $d \geq 1$ and the $G_{j,d-1}$ are defined. Initially set $G_{j,d} := G_{j,d-1}$ for all j. If there’s a monomial N of degree $r + d$ that appears in both $M_j G_{j,d}$ and $M_i G_{i,d}$ with $1 \leq i < j \leq m$, then let a be the coefficient of N in $M_j G_{j,d}$, replace $G_{j,d}$ by $G_{j,d} - (aN/M_j)$, and replace $G_{i,d}$ by $G_{i,d} + (aN/M_i)$. Repeat until (2) holds (only finitely many triples N, j, i are involved). Then (1) and (3) hold for the $G_{j,d}$ too.

Replace G_j by $\lim_{d \to \infty} G_{j,d}$, which exists owing to (1). Note $F = \sum_{j=1}^m M_j G_j$ owing to (3). Also, all the $M_j G_j$ have different monomials owing to (2). Hence, each monomial N of each $M_j G_j$ appears in F, and N has the same coefficient in both $M_j G_j$ and F.

Suppose also $F \in B$. Then F is absolutely uniformly convergent in a neighborhood U of the origin. Hence, owing to the preceding paragraph, each $M_j G_j$ too is absolutely uniformly convergent in U by the Comparison Test. So $G_j \in B$ for all j. Thus $F \in b^r$. Thus $B \cap m_C^r \subset b^r$. Thus $b^r = m_B^r B \cap m_C^r$.

Suppose also $F \in P$. Recall that each monomial of each $M_j G_j$ appears in F. So $G_j \in P$ for all j. Thus $P \cap m_C^r \subset m_C^r$. But plainly $m_B^r \subset m_C^r$. Thus $m_B^r = P \cap m_C^r$.

So $m_B^r = P \cap (A \cap m_C^r)$. But $m_B^r = P \cap (m_B^r C)$ by (11.12)(1). Also, $m_B^r C = m_A^r$. Thus, by (11.12)(1) again, $m_B^r = A \cap m_C^r$.

Hence, there are induced injections:

$$P/m_B^r \hookrightarrow A/m_A^r \hookrightarrow B/m_B^r \hookrightarrow C/m_C^r.$$

But the composition $P/m_B^r \hookrightarrow C/m_C^r$ is plainly surjective. So all the displayed maps are bijective. Thus (22.7) yields $\widehat{P} = \widehat{A} = \widehat{B} = \widehat{C}$. But $\widehat{P} = C$ by (22.2). Thus $\widehat{P} = \widehat{A} = \widehat{B} = C$.

Finally, C is faithfully flat over A and over B by (22.36) (note B is Noetherian by [7, 3.7, p. 122] or by (22.89)). Thus by (9.25), B is flat over A. □

Exercise (22.68) . — Let R be a Noetherian ring, and a and b ideals. Assume $a \subset \text{rad}(R)$, and use the a-adic topology. Prove b is principal if $b \widehat{R}$ is.

Solution: Since R is Noetherian, b is finitely generated. But $a \subset \text{rad}(R)$. Hence, b is principal if b/ab is a cyclic R-module by (10.8)(2). But $b/ab = \widehat{b}/(ab)$ by (22.12)(1)-(2), and $\widehat{b} = b \widehat{R}$ by (22.20).

Assume $b \widehat{R} = \widehat{R}b$ for some $b \in \widehat{R}$. Then $\widehat{b}/(ab) = \widehat{R}b'$ where b' is the residue of b. Given $x \in \widehat{R}$, say x is the limit of the Cauchy sequence $(\kappa R y_n)$ with $y_n \in R$. Then $x - \kappa R y_n \in \widehat{a}$ for some n. So $xb' = y_n b'$ as $\widehat{b}a \subset (ba)$. Thus $b/ab = Rb'$, as desired. □

Exercise (22.69) (Nakayama’s Lemma for adically complete rings) . — Let R be a ring, a an ideal, M a module. Assume R is complete, and M separated. Show $m_1, \ldots, m_n \in M$ generate assuming their images m'_1, \ldots, m'_n in M/aM generate.
Solutions \((22.70)/(22.71)\)

Solution: Note that \(m'_1, \ldots, m'_n\) generate \(G(M)\) over \(G(R)\). Thus \(m_1, \ldots, m_n\) generate \(M\) over \(R\) by the proof of \((22.24)\).

Alternatively, by \((22.24)\), \(M\) is finitely generated over \(R\) and complete. As \(M\) is separated, \(M = \hat{M}\) by \((22.3)\) and \((22.13)(1)\). So \(M\) is also an \(\hat{R}\)-module. As \(R\) is complete, \(\kappa_R: R \rightarrow \hat{R}\) is surjective by \((22.13)(1)\). But \(a\) is closed by \((22.1)\); so \(a\) is complete; so \(\kappa_a: a \rightarrow \hat{a}\) is surjective too. Hence \(aM = \hat{a}M\). Thus \(M/aM = M/\hat{a}M\). So the \(m_i\) generate \(M/\hat{a}M\). But \(\hat{a} \subset \text{rad}(\hat{R})\) by \((22.4)\). So by Nakayama’s Lemma \((10.8)(2)\), the \(m_i\) generate \(M\) over \(\hat{R}\), so also over \(R\) as \(\kappa_R\) is surjective. \(\square\)

Exercise \((22.70)\). — Let \(A \rightarrow B\) be a local homomorphism of Noetherian local rings, \(m\) the maximal ideal of \(A\). Assume \(B\) is quasi-finite over \(A\); that is, \(B/mB\) is a finite-dimensional \(A/m\)-vector space. Show that \(\hat{B}\) is module finite over \(\hat{A}\).

Solution: Take \(y_1, \ldots, y_n \in B\) whose residues generate the vector space \(B/mB\). By \((22.69)\), the \(y_i\) generate \(\hat{B}\) as an \(\hat{A}\)-module if their residues \(y'_i\) generate \(B/\hat{mB}\) and if \(\hat{B}\) is separated in the \(\hat{m}\)-adic topology. Let’s check those two conditions.

Set \(b := mB\). Let \(n\) be the maximal ideal of \(B\). Given \(n \geq 0\), note \((b^n)^\sim = b^n\hat{B}\) by \((22.20)\) with \(R := B\) and \(a := n\). But \(b^n\hat{B} = m^n\hat{B} = (m^nA)\hat{B}\). Moreover, \(m^nA = (\hat{m})^n\) by \((22.20)\) with \(R := A\) and \(a := m\). Thus

\[(b^n)^\sim = (\hat{m})^n\hat{B}. \quad (22.70.1)\]

Since \(B/b\) is finite-dimensional over \(A/m\), it is Artinian by \((19.10)\). So \(n/b\) is nilpotent by \((19.23)\). Thus there is \(m > 0\) with \(n^m \subset b \subset n^m\).

Hence \(B/b\) is discrete in the \(n\)-adic topology. So \(B/b = (B/b)^\sim\). However, \((B/b)^\sim = \hat{B}/\hat{b}\) by \((22.18)\) with \(R := B\) and \(a := n\). Also \(\hat{b} = \hat{m}\hat{B}\) by \((22.70.1)\) with \(n := 1\). Hence \(B/b = \hat{B}/\hat{m}\hat{B}\). Thus the \(y'_i\) generate \(\hat{B}/\hat{m}\hat{B}\) over \(\hat{A}\), so over \(\hat{A}\).

Again since \(n^n \subset b \subset n^n\), the \(m\)-adic topology on \(B\) is the same as the \(n\)-adic. But \(\hat{B}\) is the separated completion of \(B\) for the \(n\)-adic topology. So \(\hat{B}\) has the topology defined by the filtration \(F^n\hat{B} := (b^n)^\sim\). But \((b^n)^\sim = (\hat{m})^n\hat{B}\) by \((22.70.1)\). Thus \(\hat{B}\) has the \(\hat{m}\)-adic topology, and by \((22.16)(4)\), is separated in it, as desired. \(\square\)

Exercise \((22.71)\). — Let \(A\) be the non-Noetherian local ring of \((18.24)\). Using E. Borel’s theorem that every formal power series in \(x\) is the Taylor expansion of some \(C^\infty\)-function (see [13, Ex. 5, p. 244]), show \(\hat{A} = \mathbb{R}[[x]]\), and \(\hat{A}\) is Noetherian; moreover, show \(\hat{A}\) is a quotient of \(A\) (so module finite).

Solution: Consider the Taylor-series map \(\tau: A \rightarrow \mathbb{R}[[x]]\) of \((18.24)\); it’s defined by \(\tau(F) := \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} x^n\). It’s a ring map; so \(\tau(x^kA) \subset x^k\mathbb{R}[[x]]\) for each \(k\). By Borel’s Theorem, \(\tau\) is surjective. Thus \(\tau\) induces a surjective map \(\tau_k: A/x^kA \rightarrow \mathbb{R}[[x]]/x^k\mathbb{R}[[x]]\).

Suppose \(\tau(F) = x^kG\) where \(G \in \mathbb{R}[[x]]\). By Borel’s Theorem, \(G = \tau(H)\) for some \(H \in A\). So \(\tau(F - x^kH) = 0\). But \(\text{Ker}(\tau) = \bigcap_{n \geq 0} x^nA\) by \((18.24)\). Hence \(F - x^kH \in x^kA\). Thus \(\tau_k\) is injective, so bijective. Thus \(\hat{A} = \mathbb{R}[[x]]\) by \((22.7)\).

Finally, \(\mathbb{R}[[x]]\) is Noetherian by \((22.27)\), so \(\hat{A}\) is Noetherian too.

Moreover, since \(\tau\) is surjective, \(\hat{A}\) is a quotient of \(A\). \(\square\)
Exercise (22.72). — Let R be a ring, q an ideal, M a module. Prove that, if M is free, then M/qM is free over R/q and multiplication of $G_q(R)$ on $G_q(M)$ induces an isomorphism $\sigma_M: G_q(R) \otimes_{R/q} M/qM \to G_q(M)$. Prove the converse holds if either (a) q is nilpotent, or (b) M is Noetherian, and $q \subset \text{rad}(M)$.

Solution: Recall from (20.7) that $G_q(M)$ is a graded $G_q(R)$-module and that $G_q(R)$ is a graded $G_q(0)(R)$-algebra; also $G_q(0)(M) = M/qM$ and $G_q(0)(R) = R/q$. Thus the multiplication pairing induces the desired map σ_M.

Note that σ_R is an isomorphism by (8.5)(2) applied with R/q for R.

Assume M is free, say $M = R^\lambda$ for some λ. Let’s show $\sigma_M = \sigma_R^M$. First, given ideals a, b, set $c := a/b$, and note that $aM = a^c$ by (4.28) and that $a^c/b^c = c^c$ by (5.4). Given $n \geq 0$, take $a := q^n$ and $b := q^{n+1}$. Thus $G_{a,n}(M) = (G_{a,n}(R))^\lambda$.

Taking $n := 0$ yields $M/qM = (R/q)^\lambda$. Thus M/qM is a free R/q-module, as desired. But $G_q(R) \otimes_{R/q} (R/q)^\lambda = (G_q(R) \otimes_{R/q} (R/q))^\lambda$ by (8.10). Thus $\sigma_M = \sigma_R^M$. But σ_R is an isomorphism, thus σ_M is too, as desired.

Conversely, assume M/qM is free over R/q. Say $m_\lambda \in M$ for $\lambda \in \lambda$ yield a free basis of M/qM. Set $F := R^{\lambda_\lambda}$, and define $\alpha: F \to M$ by $\alpha(e_\lambda) := m_\lambda$ where the e_λ form the standard basis. Then α induces an isomorphism $\alpha': F/qF \to M/qM$.

Assume σ_M is an isomorphism too. Consider the commutative diagram

\[
\begin{array}{ccc}
G_q(R) \otimes_{R/q} F/qF & \xrightarrow{\sigma_F} & G_q(F) \\
1 \otimes \alpha' \downarrow & & \downarrow G_q(\alpha) \\
G_q(R) \otimes_{R/q} M/qM & \xrightarrow{\sigma_M} & G_q(M)
\end{array}
\]

Its top, left, and bottom maps are isomorphisms. So its right map $G_q(\alpha)$ is too. So $\sigma: F \to \tilde{M}$ is an isomorphism by (22.23). But $q^n = (0)$ for some n in case (a), and $\bigcap q^n M = 0$ by (18.35) in case (b); so $M \to \tilde{M}$ by (22.3). Thus α is injective.

For surjectivity of α, set $N := \text{Im}(\alpha)$. Then $M = N + qM$ as α' is surjective. Hence $q(M/N) = M/N$. So $M/N = 0$, in case (a) by (3.31), and in case (b) by (10.6). So $M = N$. Hence α is surjective, so bijective. Thus M is free.

22. Appendix: Hensel’s Lemma

Exercise (22.76). — Let R be a ring, a an ideal, X a variable, $F \in R[X]$. Assume its residue $\bar{F} \in (R/a)[X]$ has a supersimple root $\bar{a} \in R/a$, and R is separated and complete. Then F has a unique supersimple root $a \in R$ with residue \bar{a}.

Solution: Set $\tilde{G} := (X - \bar{a})$. As \bar{a} is a supersimple root, (2.34) yields a unique $\bar{H} \in (R/a)[X]$ coprime to \bar{G} with $\bar{F} = \bar{G}\bar{H}$. So (22.75) yields unique coprime $G, H \in R[X]$ with $F = GH$, with residues \tilde{G}, \tilde{H}, and with G monic. Hence $G = X - a$ with $a \in R$ with residue \bar{a}. Thus, by (2.34), a is as desired.

Exercise (22.86). — Show that (22.75) is a formal consequence of (22.85) when R is a local ring with maximal ideal a such that $k := R/a$ is algebraically closed.

Solution: Set $n := \text{deg}(\tilde{G})$. Induct on n. Note that the case $n = 0$ is trivial.

Assume $n \geq 1$. As k is algebraically closed, $\tilde{G} = (X - c)^s\tilde{G}_1$ with $c \in k$ and $s \geq 1$ and $\tilde{G}_1(0) \neq 0$. Let φ be the R-algebra automorphism of $R[X]$ defined by $\varphi(X) := X + c$, and let $\overline{\varphi}$ be the corresponding k-algebra automorphism of $k[X]$. 381
Replace F by $\varphi(F)$ and \tilde{G}, \tilde{G}_1, \tilde{H} by $\varphi(\tilde{G})$, $\varphi(\tilde{G}_1)$, $\varphi(\tilde{H})$, and thus assume $c = 0$.

Set $U := \tilde{G}_1 \tilde{H}$. Then $F = X^s U$ and $U(0) \neq 0$. Say $F := \sum f_i X^i$. Then reducing mod $\mathfrak{a}[X]$ yields $f_s = U(0)$ and $f_i = 0$ for $i < s$. Thus (22.85) yields $U, V \in R[X]$ where $U(0) \in R^X$ and where $V = X^s + v_{s-1} X^{s-1} + \cdots + v_0$ with all $v_i \in \mathfrak{a}$ such that $F = UV$.

Reducing mod $\mathfrak{a}[X]$ yields $F = UV$ and $V = X^s$. But $k[X]$ is a UFD. So $\overline{U} = \tilde{U}$. So $U = \tilde{G}_1 \tilde{H}$. But $\deg(\tilde{G}_1) = \deg(G) - s$ and $s \geq 1$. Also, \tilde{G}_1 is monic as \tilde{G} is, and \tilde{G}_1 and \tilde{H} are coprime as \tilde{G} and \tilde{H} are. So by induction, $U = G_1 H$ where G_1 is monic and G_1 and H are coprime with residues \tilde{G}_1 and \tilde{H}.

Set $G := VG_1$. Then $F = UV = VG_1 H = GH$, and $\overline{U} = X^s \overline{G}_1 = \tilde{G}_1$. As V and G_1 are monic, so is G. By (10.33)(2), as \tilde{G}_1 and \tilde{H} are coprime, so are G and H. Finally, the factorization $F = GH$ is unique by (22.73).

Exercise (22.87). Let k be a field, $B_n := k[[X_1, \ldots, X_n]]$ the local ring of power series in n variables X_i. Use (22.59) and (22.84) to recover, by induction, the conclusion of (22.27), that B_n is Noetherian.

Solution: The case $n = 0$ is trivial. So assume $n \geq 1$ and B_{n-1} Noetherian. Given a nonzero ideal $\mathfrak{a} \subset B_n$, take a nonzero $F := \sum f_i X_i^n \in \mathfrak{a}$. By (22.59), there’s an algebra automorphism φ of B_n such that $\varphi(F)$ contains a term of the form cX^s_i with $c \neq 0$. Say s is smallest; then $f_j(0) = 0$ for $j < s$ and $f_s(0) \neq 0$. It suffices to show $\varphi(\mathfrak{a})$ is finitely generated; so replace \mathfrak{a} by $\varphi(\mathfrak{a})$ and F by $\varphi(F)$.

For any $G \in \mathfrak{a}$, there are $Q \subset B_n$ and $P \subset B_{n-1}[X_n]$ with $G = QF + P$ and with $\deg(P) < s$ by (22.84). Set $M := \mathfrak{a} \cap \sum_{i=0}^{s-1} B_{n-1} X_i^n$. Then $P \in M$. Thus $\mathfrak{a} = (F) + M$. But B_{n-1} is Noetherian; so M is a finitely generated B_{n-1}-submodule of $\sum_{i=0}^{s-1} B_{n-1} X_i^n$. Thus \mathfrak{a} is finitely generated, as desired.

Exercise (22.88). Let k be a field, $B_n := k[[X_1, \ldots, X_n]]$ the local ring of power series in n variables X_i. Use (22.27) and (22.59) and (22.85) to show, by induction, that B_n is a UFD.

Solution: The case $n = 0$ is trivial. So assume $n \geq 1$. Fix a nonzero nonunit $F \in B_n$. Now, B_n is Noetherian by (22.27). So $F = F_1 \cdots F_r$ with F_i irreducible. Suppose also $F = F'_1 \cdots F'_r$ with F'_j irreducible. We must show that $r = r'$ and that after reordering, $F_1 = W_i F'_i$ with W_i a unit.

By (22.59), there’s an algebra automorphism φ of B_n with $(\varphi(F))(0, \ldots, 0, X_n)$ nonzero. Plainly, we may replace F, F_1, and F'_1 by φF, φF_1, and $\varphi F'_1$. Then $F(0, \ldots, 0, X_n)$ is nonzero. So the $F_i(0, \ldots, 0, X_n)$ and $F'_j(0, \ldots, 0, 0, X_n)$ are too.

By (22.85), $F = UV$ and $F_i = U_i V_i$ and $F'_j = U'_j V'_j$ with $U_i, U'_j \in B_n^X$ and $V_i, V'_j \in B_{n-1}[X_n]$ monic with all nonleading coefficients in $\langle X_1, \ldots, X_{n-1} \rangle$. But F_i and F'_j are irreducible in B_n. So V_i and V'_j are irreducible in $B_{n-1}[X_n]$. Moreover, $UV = \prod U_i V_i = \prod U'_j V'_j$. So $U = \prod U_i$ and $V = \prod V_i$ and $\prod V'_j$ owing to the uniqueness assertion in (22.85).

By induction, B_{n-1} is a UFD. So $B_{n-1}[X_n]$ is a UFD too. Hence $r = r'$ and $V_i = W_i V'_i$ with $W_i \in B_{n-1}[X_n]^\times$. Thus $F_i = W_i F'_i$ with $W_i \in B_n^X$, as desired.

Exercise (22.90). (Implicit Function Theorem) Let R be a ring, T_1, \ldots, T_n, X variables. Given a polynomial $F \in R[T_1, \ldots, T_n, X]$ such that $F(0, \ldots, 0, X)$ has a supersimple root $a_0 \in R$. Show there’s a unique power series $a \in R[[T_1, \ldots, T_n]]$ with $a(0, \ldots, 0) = a_0$ and $F(T_1, \ldots, T_n, a) = 0$.

382
Solution: Set $A := R[[T_1, \ldots, T_n]]$ and $\mathfrak{a} = \langle T_1, \ldots, T_n \rangle$. Then A is α-adically separated and complete by (22.2), and $A/\mathfrak{a} = R$ by (3.7).

View $F \in A[X]$. Its residue in $R[X]$ is $F(0, \ldots, 0, X)$. So (22.76) implies F has a unique supersimple root $a \in A$ with $a(0, \ldots, 0) = a_0$, as desired. \square

Exercise (22.91). — Let A be the filtered direct limit of Henselian local rings A_λ with local transition maps. Show A is local and Henselian.

Solution: For all λ, let m_λ be the maximal ideal of A_λ. Set $m := \lim m_\lambda$. Then A is local with maximal ideal m by (7.21). Set $k := A/m$ and $k_\lambda := A_\lambda/m_\lambda$. Then (7.9) implies $k = \lim k_\lambda$. Use ‘−’ to indicate residues modulo m and m_λ.

Let X be a variable. Given $F \in A[X]$ monic, assume $\overline{F} = \overline{G}\overline{H}$ with $\overline{G}, \overline{H} \in k[X]$ monic and coprime. By (7.5)(1) applied coefficientwise, there’s λ_0 such that F and G, H come from $F_{\lambda_0} \in A_{\lambda_0}[X]$ and $G_{\lambda_0}, H_{\lambda_0} \in k_{\lambda_0}[X]$. Take them monic. For all $\lambda \geq \lambda_0$, let $F_\lambda \in A_\lambda[X]$ and $G_\lambda, H_\lambda \in k_\lambda[X]$ be the images of F_{λ_0} and $G_{\lambda_0}, H_{\lambda_0}$.

Note $F - G = 0$. So (7.5)(3) yields $\lambda_1 \geq \lambda_0$ with $\overline{F}_{\lambda_1} = \overline{G}_{\lambda_1}\overline{H}_{\lambda_1}$.

As $\overline{G}, \overline{H}$ are coprime, there are $\overline{G}', \overline{H}' \in k[X]$ with $\overline{G}'\overline{G} + \overline{H}'\overline{H} = 1$. By (7.5)(1),(3), there’s $\lambda_2 \geq \lambda_1$ such that $\overline{G}', \overline{H}'$ come from $\overline{G}'_{\lambda_2}, \overline{H}'_{\lambda_2} \in k_{\lambda_2}[X]$ and $\overline{G}_{\lambda_2}\overline{G}'_{\lambda_2} + \overline{H}_{\lambda_2}\overline{H}'_{\lambda_2} = 1$. Thus $\overline{G}_{\lambda_2}, \overline{H}_{\lambda_2}$ are coprime.

As A_{λ_2} is Henselian, $F_{\lambda_2} = G_{\lambda_2}H_{\lambda_2}$ with monic and coprime $G_{\lambda_2}, H_{\lambda_2}$ having residues $\overline{G}_{\lambda_2}, \overline{H}_{\lambda_2}$. Let $G, H \in A[X]$ be the images of $G_{\lambda_2}, H_{\lambda_2}$. Then $F = GH$ with monic and coprime G, H having residues $\overline{G}, \overline{H}$. Thus A is Henselian. \square

Exercise (22.92). — Let A be a local Henselian ring, m its maximal ideal, B an integral A-algebra, and n a maximal ideal of B. Set $\overline{B} = B/mB$. Show:

1. $\text{Idem}(B) \to \text{Idem}(\overline{B})$ is bijective.
2. B_n is integral over A, and Henselian.

Solution: For (1), let $\{B_\lambda\}$ be the set of module-finite subalgebras of B. By (10.14)(1)\Rightarrow(2), every $x \in B$ lies in some B_λ, namely $A[x]$. By (10.18)(2)\Rightarrow(3), given λ, μ, there’s ν with $B_\lambda, B_\mu \subset B_\nu$. Thus (7.2) yields $B = \lim B_\lambda$.

Set $\overline{B}_\lambda := B_\lambda/mB_\lambda$. Then $\overline{B} = \lim \overline{B}_\lambda$ by (7.9). Furthermore, (7.5) implies $\text{Idem}(B) = \lim \text{Idem}(B_\lambda)$ and $\text{Idem}(\overline{B}) = \lim \text{Idem}(\overline{B}_\lambda)$. But A is Henselian; so each B_λ is decomposable by (22.78)(1)\Rightarrow(3); so $\text{Idem}(B_\lambda) \to \text{Idem}(\overline{B}_\lambda)$ is bijective by (19.15)(3). Thus (1) holds.

For (2), let n_λ be the contraction of n in B_λ. Then $B_n = \lim(B_{\lambda})_{n_\lambda}$ by (11.25). But $(B_{\lambda})_{n_\lambda}$ is module-finite over A, as it is a direct summand of B_λ by (11.18). So $(B_{\lambda})_{n_\lambda}$ is integral over A by (10.18)(3)\Rightarrow(1). Thus B_n is integral over A.

As each $(B_{\lambda})_{n_\lambda}$ is module-finite over A, each is Henselian by (22.79). So B_n is Henselian by (22.91). Thus (2) holds. \square

Exercise (22.93). — Let A be local ring. Show that A is Henselian if and only if, given any module-finite algebra B and any maximal ideal n of B, the localization B_n is integral over A.

Solution: If A is Henselian, then (22.92) implies B_n is integral over A.

Conversely, by (22.78), it suffices to show B is decomposable. So by (13.59), given maximal ideals $n_1, n_2 \subset B$ with $(B_n)_{n_2} \neq 0$, it suffices, to show $n_1 = n_2$.

Fix a prime of $(B_n)_{n_2}$, and let $p \subset B$ and $q \subset A$ be its contractions. Then p can contain no element outside of either n_1 or n_2, so p lies in both n_1 and n_2. 383
Solutions \((22.94) / (22.99) \) App: Hensel’s Lemma

Plainly \(B/p \) is an integral extension of \(A/q \). And both \(n_i/p \) lie over the unique maximal ideal of \(A/q \) by \((14.3)(1)\). Also, \(B/p \) is a domain. But both \(B_n \) are integral over \(A \), and \(B_{n_i}/pB_{n_i} = (B/p)_{n_i} \) by \((12.15)\); hence, both \((B/p)_{n_i} \) are integral over \(A/q \). So \(n_1/p = n_2/p \) by \((14.16)\). Thus \(n_1 = n_2 \), as desired. \(\square \)

Exercise (22.94). Let \(A \) be a local ring, and \(a \) an ideal. Assume \(a \subset \text{nil}(A) \). Set \(A' := A/a \). Show that \(A \) is Henselian if and only if \(A' \) is so.

Solution: If \(A \) is Henselian, then \(A' \) is Henselian owing to (22.73).

Conversely, assume \(A' \) is Henselian. Let \(B \) be a module-finite \(A \)-algebra. Set \(B' := B/aB \). Then \(B' \) is a module-finite \(A' \)-algebra. So \(B' \) is decomposable by (22.78)(1) \(\Rightarrow \) (3). But \(aB \subset \text{nil}(B) \). So \(B \) is decomposable by (13.23)(2) \(\Rightarrow \) (1) or by (19.29). Thus \(A \) is Henselian by (22.78)(3) \(\Rightarrow \) (1). \(\square \)

Exercise (22.95). Let \(A \) be a local ring. Assume \(A \) is separated and complete. Use (22.78)(4) \(\Rightarrow \) (1) to give a second proof (compare (22.75)) that \(A \) is Henselian.

Solution: Let \(m \) be the maximal ideal of \(A \), and \(B \) a module-finite \(A \)-algebra with an isomorphism \(\alpha: B \xrightarrow{\sim} A' \). Give \(B \) the \(m \)-adic topology. Then \(\alpha_B = \kappa_A \alpha \) by (22.54)(1). Plainly \(\kappa_A \) is \(\kappa_A' \). But \(\kappa_A \) is an isomorphism by (22.14)(2) \(\Rightarrow \) (3). Thus \(\kappa_B \) is an isomorphism; put otherwise, \(B = \hat{B} \).

Moreover, (19.15)(1) implies \(B \) has finitely many maximal ideals \(n_i \) and they’re precisely the primes lying over \(m \).

For \(n \geq 1 \), let \(\kappa_n: B/m^nB \rightarrow B/mB \) be the quotient map. Then \(\text{Idem}(\kappa_n) \) is bijective by (3.36), as \(mB/m^nB \subset \text{nil}(B/m^nB) \). So \(B/m^nB \) is decomposable by (19.15)(3). Hence \(B/m^nB = \prod(B/m^nB)_{n_i} \) by (11.18). Thus (12.15) yields \(B/m^nB = \prod B_{n_i}/m^nB_{n_i} \).

Set \(B_i := \varprojlim B_{n_i}/m^nB_{n_i} \). Then \(B_i \) is the \(m \)-adic completion of \(B_{n_i} \) by (22.7). Also \(\varprojlim B/m^nB = \hat{B} \), but \(B = \hat{B} \) by the above. Thus \(B = \prod B_i \). But \(B_i \) is local by (22.53)(7). So \(B \) is decomposable. Thus \(A \) is Henselian by (22.78)(4) \(\Rightarrow \) (1). \(\square \)

Exercise (22.96). Let \(R \) be a ring, \(a \) an ideal, \(u \in R^\times \), and \(n \geq 2 \). Assume \(R \) is separated and complete, and \(u \equiv 1 \) (mod \(n^2a \)). Find an \(n \)th root of \(u \).

Solution: Set \(F(X) := X^n - u \). Then \(F(1) = 1 - u \equiv 1 \) (mod \(n^2a \)), and \((\partial F/\partial X)(1) = n \). Hence (22.82) yields a root \(a \in R \) of \(F \). Thus \(a^n = u \). \(\square \)

Exercise (22.97). Let \(p, a_1, \ldots, a_s, k \) be integers, and \(X_1, \ldots, X_s \) variables. Set \(F := a_1X_1^k + \cdots + a_sX_s^k \). Assume \(p \) prime, each \(a_i \) and \(k \) prime to \(p \), and \(s > k > 0 \). Using (2.45), show \(F \) has a nontrivial zero in \(\hat{Z}_p^s \).

Solution: Note \(F(0, \ldots, 0) = 0 \). So (2.45) yields \(b_i \in \mathbb{Z} \) with \(F(b_1, \ldots, b_s) \equiv 0 \) (mod \(p \)), but \(b_j \neq 0 \) (mod \(p \)) for some \(j \). Set \(G(X) := F(b_1, \ldots, b_s, X) \) with \(X \) in the \(j \)th position. Then \(G(b_j) \equiv 0 \) (mod \(p \)) and \((\partial G/\partial X_j)(G(b_j)) = kb_jk-1 \neq 0 \) (mod \(p \)). So \(G \) has a root in \(\hat{Z}_p \) by (22.76). Thus \(F \) has a nontrivial zero in \(\hat{Z}_p^s \). \(\square \)

Exercise (22.98). Find a cube root of 2 in \(\hat{Z}_5 \).

Solution: Set \(F := X^3 - 2 \in \mathbb{Z}[X] \) and \(F' := \partial F/\partial X \). Then \(F(3) = 25 \equiv 0 \) (mod 5) and \(F'(3) = 27 \equiv 2 \) (mod 5). So (22.76) yields a root in \(\hat{Z}_{(5)} \). \(\square \)

Exercise (22.99). Find a cube root of 10 in \(\hat{Z}_3 \).

384
Solutions

(22.100) / (23.9) Discrete Valuation Rings

Solution: Set \(F := X^3 - 10 \in \mathbb{Z}[X] \) and \(F' := \frac{\partial F}{\partial X} \). Then \(F(1) = -9 \) and \(F'(1) = 3 \). So \(F(1) \equiv 0 \pmod{3} \). But \(F'(1) \equiv 0 \pmod{3} \) and \(F(1) \notin 9(3) \); so both (22.76) and (22.82) appear to fail to provide a root. However, \(F(4) = 54 \equiv 0 \pmod{3} \). Moreover, \(F'(4) = 48 \); so \(F(4) \in F'(4)^2(3) \). Thus after all, (22.82) does yield a root of \(F \), so a cube root of 10.

Exercise (22.100). — In the setup of (22.84), if \(n \geq 1 \), find an alternative proof for the existence of \(Q \) and \(P \) as follows: take a variable \(Y \); view \(R[[X]] \) as an \(R[[Y]] \)-algebra via the map \(\varphi \) with \(\varphi(Y) := F \); and show \(1, X, \ldots, X^{n-1} \) generate \(R[[X]] \) as a module by using Nakayama’s Lemma for adically complete rings (22.69).

Solution: Give \(R[[X]] \) the \((a, X) \)-adic topology. Then \(R[[X]] \) is separated and complete by (22.44)(4). But \(F \in (a, X) \). So (22.55) yields an \(R \)-algebra map \(\varphi: R[[Y]] \to R[[X]] \) with \(\varphi(Y) = F \). Via \(\varphi \), view \(R[[X]] \) as an \(R[[Y]] \)-algebra.

Give \(R[[Y]] \) the \((a, Y) \)-adic topology. Then \(R[[Y]] \) is complete by (22.44)(4). As \(\varphi(Y) = F \), the topology induced on \(R[[X]] \) is the \((a, F) \)-adic. But \((a, F) \subset (a, X) \).

Since the \((a, X) \)-adic topology is separated, so is the \((a, F) \)-adic.

Note \(R[[X]]/aR[[X]] = (R/a)[[X]] \) by (22.56). Denote the residue of \(F \) by \(\overline{F} \).

Then \(\overline{F} = X^nU \) with \(U \) a unit in \((R/a)[[X]] \) by (3.7). Hence

\[
R[[X]]/(a, F) = (R/a)[[X]]/(\overline{F}) = (R/a)[[X]]/(X^n).
\]

Thus \(1, X, \ldots, X^{n-1} \) generate \(R[[X]]/(a, F) \) over \(R[[Y]] \).

So \(1, X, \ldots, X^{n-1} \) generate \(R[[X]] \) over \(R[[Y]] \) owing to (22.69). So there are \(G_i \in R[[Y]] \) such that \(G = \sum_{i=0}^{n-1} \varphi(G_i)X^i \). Say \(G_i = g_i + H_i(Y)X^i \) with \(g_i \in R \) and \(H_i \in R[[Y]] \). Set \(P := \sum g_iX^i \) and \(Q := \sum \varphi(H_i)X^i \). Thus \(G = QF + P \).

23. Discrete Valuation Rings

Exercise (23.7). — Let \(R \) be a normal Noetherian domain, \(x \in R \) a nonzero nonunit, \(a \) an ideal. Show that every \(p \in \text{Ass}(R/(x)) \) has height 1. Conversely, if \(R \) is a UFD and if every \(p \in \text{Ass}(R/a) \) has height 1, show \(a \) is principal.

Solution: Given \(p \in \text{Ass}(R/(xR)) \), note \(pR_p \in \text{Ass}(R_p/(xR_p)) \) by (17.8). Hence \(\text{depth}(R_p) = 1 \) by (23.5)(2). But \(R_p \) is normal by (11.32). Hence \(\dim(R_p) = 1 \) by (23.6)(3)⇒(4). Thus (21.6.1) yields \(\text{ht}(p) = 1 \), as desired.

Conversely, assume that \(R \) is a UFD and that all the primes \(p_i \) of \(a \) have height 1. Then \(p_i = (p_i) \) for some prime element \(p_i \in R \) by (21.32) as \(R \) is a UFD. The corresponding primary ideal of \(a \) is \(p_i^{n_i} \) for some \(n_i \) by (18.6). Thus \(a = \bigcap\langle p_i^{n_i} \rangle \).

Finally, set \(y := \prod p_i^{n_i} \). Then \(\langle y \rangle \subset \bigcap\langle p_i^{n_i} \rangle \). Conversely, if all \(p_i^{n_i} \) divide some \(z \), then \(y \) divides \(z \) too, as the \(p_i \) are distinct prime elements in \(R \), a UFD. Hence the opposite inclusion holds. Thus \(\langle y \rangle = \bigcap\langle p_i^{n_i} \rangle = a \), as desired.

Exercise (23.9). — Let \(A \) be a DVR with fraction field \(K \), and \(f \in A \) a nonzero nonunit. Prove \(A \) is a maximal proper subring of \(K \). Prove \(\dim(A) \neq \dim(A_f) \).

Solution: Let \(R \) be a ring, \(A \subseteq R \subseteq K \). Then there’s an \(x \in R - A \). Say \(x = ut^m \) where \(u \in A^* \) and \(t \) is a uniformizing parameter. Then \(n < 0 \). Set \(y := u^{-1}t^{-n-1} \). Then \(y \in A \). So \(t^{-1} = xy \in R \). Hence \(wt^m \in R \) for any \(w \in A^* \) and \(m \in \mathbb{Z} \). Thus \(R = K \), as desired.

Since \(f \) is a nonzero nonunit, \(A \subseteq A_f \subseteq K \). Hence \(A_f = K \) by the above. Thus \(\dim(A_f) = 0 \). But \(\dim(A) = 1 \) by (23.6), as desired.
Exercise (23.11). — Let R be a domain, M a Noetherian module. Show that M is torsionfree if and only if it satisfies (S_1).

Solution: Assume M satisfies (S_1). By (23.10), the only prime in $\text{Ass}(M)$ is $\langle \emptyset \rangle$. Hence $\text{z.div}(M) = \langle \emptyset \rangle$ by (17.12). Thus M is torsionfree.

Conversely, assume M is torsionfree. Suppose $p \in \text{Ass}(M)$. Then $p = \text{Ann}(m)$ for some $m \in M$. But $\text{Ann}(m) = \langle \emptyset \rangle$ for all $m \in M$. So $p = \langle \emptyset \rangle$ is the only associated prime. Thus M satisfies (S_1) by (23.10).

Exercise (23.16). — Show an equicharacteristic regular local ring A is a UFD.

Solution: First, \hat{A} too is a regular local ring by (22.62). And \hat{A} is faithfully flat by (22.36) with $M := R$. Thus by (23.8), it suffices to show \hat{A} is a UFD.

By (22.16)(4), \hat{A} is separated and complete. But \hat{A} is equicharacteristic. Hence, \hat{A} contains a coefficient field, say k, by (22.81). So $\hat{A} \cong k[[X_1, \ldots, X_r]]$ where $r := \dim(\hat{A})$ by (22.58). Thus \hat{A} is a UFD by (22.88), as desired.

Exercise (23.12). — Let R be a Noetherian ring. Show that R is reduced if and only if (R_0) and (S_1) hold.

Solution: Assume (R_0) and (S_1) hold. Consider any irredundant primary decomposition $\langle 0 \rangle = \bigcap q_i$. Set $p_i := \sqrt{q_i}$. Then $p_i \in \text{Ass}(R)$ by (18.3)(5) and (18.18). So p_i is minimal by (S_1). Hence the localization R_{p_i} is a field by (R_0). So $p_i R_{p_i} = 0$. But $p_i R_{p_i} \supset q_i R_{p_i}$. Hence $p_i R_{p_i} = q_i R_{p_i}$. Therefore, $p_i = q_i$ by (18.20). So $\langle 0 \rangle = \bigcap p_i = \sqrt{\langle 0 \rangle}$. Thus R is reduced.

Conversely, assume R is reduced. Then R_p is reduced for any prime p by (13.57). So if p is minimal, then R_p is a field. Thus (R_0) holds. But $\langle 0 \rangle = \bigcap_{\text{prime}} p$. So p is minimal whenever $p \in \text{Ass}(R)$ by (18.18). Thus R satisfies (S_1).

Exercise (23.17). — Let R be a ring, $0 \to N \to M \to L \to 0$ a short exact sequence, and $x_1, \ldots, x_n \in R$. Set $a_i := (x_1, \ldots, x_i)$ for $0 \leq i \leq n$. Prove:

1. Assume x_1, \ldots, x_n is L-regular. Then $a_i M \cap N = a_i N$ for $0 \leq i \leq n$.
2. Then x_1, \ldots, x_n is both N-regular and L-regular if and only if x_1, \ldots, x_n is M-regular, $a_i M \cap N = a_i N$ for $0 \leq i \leq n$, and $N/a_i N \neq 0$ and $L/a_i L \neq 0$.

Solution: First, for all i, set $N_i := N/a_i N$ and $M_i := M/a_i M$ and $L_i := L/a_i L$. Then there’s a canonical sequence $N_i \xrightarrow{\alpha_i} M_i \xrightarrow{\beta_i} L_i \to 0$. It’s exact, because plainly, β_i is surjective, and $\ker \beta_i = (N + a_i M)/a_i M = \operatorname{Im} \alpha_i$. Plainly, α_i is injective if and only if $a_i M \cap N = a_i N$.

If α_i is injective, then for $0 \leq i < n$ this commutative diagram has exact rows:

\[
\begin{array}{cccc}
0 & \to & N_i & \xrightarrow{\alpha_i} M_i & \to & L_i & \to & 0 \\
\mu_{x_{i+1}} & & \mu_{x_{i+1}} & & \mu_{x_{i+1}} & & \\
0 & \to & N_i & \xrightarrow{\alpha_i} M_i & \to & L_i & \to & 0
\end{array}
\]

The three vertical cokernels are N_{i+1}, M_{i+1}, L_{i+1} by (23.4.1). Denote the three kernels by A_i, B_i, C_i. If α_i is injective, then (5.10) yields this exact sequence:

\[
O \to A_i \to B_i \to C_i \to N_i \xrightarrow{\alpha_{i+1}} M_{i+1} \to L_{i+1} \to 0 \quad (23.17.1)
\]

For (1), induct on i. If $i = 0$, then (1) is trivial, since $a_0 = \langle 0 \rangle$. Given i with $0 \leq i < n$, assume $a_i M \cap N = a_i N$. Then (23.17.1) is exact. But x_1, \ldots, x_n is...
L-regular. So \(C_i = 0 \). So \(\alpha_{i+1} \) is injective. Thus \(\alpha_{i+1} M \cap N = \alpha_{i+1} N \), as desired.

For (2), first assume \(x_1, \ldots, x_n \) is L-regular. Then \(C_i = 0 \) for \(0 \leq i < n \). Further, (1) yields \(\alpha_i M \cap N = \alpha_i N \) for \(0 \leq i \leq n \). Hence (23.17.1) is exact for \(0 \leq i < n \). Assume \(x_1, \ldots, x_n \) is \(N \)-regular too. Then \(A_i = 0 \) for \(0 \leq i < n \). Hence \(B_i = 0 \) for \(0 \leq i < n \). Further, \(N_n \neq 0 \) and \(L_n \neq 0 \) as \(x_1, \ldots, x_n \) is both \(N \)-regular and L-regular. So \(M_n \neq 0 \). Thus \(x_1, \ldots, x_n \) is M-regular.

Conversely, assume \(\alpha_i M \cap N = \alpha_i N \) for \(0 \leq i \leq n \). Then \(\alpha_i \) is injective for \(0 \leq i \leq n \). So (23.17.1) is exact for \(0 \leq i < n \). Assume \(x_1, \ldots, x_n \) is M-regular too. Then \(B_i = 0 \) for \(0 \leq i < n \). Hence \(A_i \) and \(C_i = 0 \) for \(0 \leq i < n \). Assume \(N/\alpha_i N \neq 0 \) and \(L/\alpha_i L \neq 0 \) too. Then \(x_1, \ldots, x_n \) is both \(N \)-regular and L-regular. Thus (2) holds. \(\square \)

Exercise (23.18). — Let \(R \) be a ring, \(M \) a module, \(F : ((R\text{-mod})) \to ((R\text{-mod})) \) a left-exact functor. Assume \(F(M) \) is nonzero and finitely generated. Show that, for \(d = 1, 2 \), if \(M \) has depth at least \(d \), then so does \(F(M) \).

Solution: As \(F \) is linear, \(\text{Ann}(M) \subset \text{Ann}(F(M)) \). Thus \(\text{rad}(M) \subset \text{rad}(F(M)) \).

Assume \(\text{depth}(M) \geq 1 \). Then there’s \(x \in \text{rad}(M) \) with \(M \xrightarrow{\mu_x} M \) injective. So \(x \in \text{rad}(F(M)) \). Also, as \(F \) is left exact, \(F(M) \xrightarrow{\mu_y} F(M) \) is injective too. Thus \(\text{depth}(F(M)) \geq 1 \).

Assume \(\text{depth}(M) \geq 2 \). So there’s an \(M \)-sequence \(x, y \in \text{rad}(M) \subset \text{rad}(F(M)) \). Notice \(x, y \) yield the following commutative diagram with exact rows:

\[
\begin{array}{ccc}
0 & \to & M \\
& \mu_x \downarrow & \mu_y \downarrow \\
& M/\mu_x M & M/\mu_y M \\
\end{array}
\]

Applying the left-exact functor \(F \) yields this commutative diagram with exact rows:

\[
\begin{array}{ccc}
0 & \to & F(M) \\
& \mu_x \downarrow & \mu_y \downarrow \\
& F(M)/\mu_x F(M) & F(M)/\mu_y F(M) \\
\end{array}
\]

Thus again \(x \) is a nonzero divisor on \(F(M) \). Further \(F(M)/xF(M) \hookrightarrow F(M/xF(M)) \).

As \(M/xF(M) \xrightarrow{\mu_y} M/xF(M) \) is injective and \(F \) is left exact, the right-hand vertical map \(\mu_y \) is injective. So its restriction

\[
F(M)/xF(M) \xrightarrow{\mu_y} F(M)/xF(M)
\]

is also injective. Thus \(x, y \) is an \(F(M) \)-sequence. Thus \(\text{depth}(F(M)) \geq 2 \). \(\square \)

Exercise (23.19). — Let \(k \) be a field, \(A \) a ring intermediate between the polynomial ring and the formal power series ring in one variable: \(k[X] \subset A \subset k[[X]] \). Suppose that \(A \) is local with maximal ideal \(\langle X \rangle \). Prove that \(A \) is a DVR. (Such local rings arise as rings of power series with curious convergence conditions.)

Solution: Let’s show that the ideal \(a := \bigcap_{n \geq 0} \langle X^n \rangle \) of \(A \) is zero. Clearly, \(a \) is a subset of the corresponding ideal \(\bigcap_{n \geq 0} \langle X^n \rangle \) of \(k[[X]] \), and the latter ideal is clearly zero. Hence (23.3) implies \(A \) is a DVR. \(\square \)

Exercise (23.20). — Let \(L/K \) be an algebraic extension of fields; \(X_1, \ldots, X_n \) variables; \(P \) and \(Q \) the polynomial rings over \(K \) and \(L \) in \(X_1, \ldots, X_n \). Prove this:

387
(1) Let \(q \) be a prime of \(Q \), and \(p \) its contraction in \(P \). Then \(\text{ht}(p) = \text{ht}(q) \).

(2) Let \(F, G \in P \) be two polynomials with no common prime factor in \(P \). Then \(F \) and \(G \) have no common prime factor \(H \in Q \).

Solution: In (1), as \(L/K \) is algebraic, \(Q/P \) is integral. Further, \(P \) is normal, and \(Q \) is a domain. Hence we may apply the Going-down Theorem (14.6). So given any chain of primes \(p_0 \subseteq \cdots \subseteq p_r = p \), we can proceed by descending induction on \(i \) for \(0 \leq i \leq r \), and thus construct a chain of primes \(q_0 \subseteq \cdots \subseteq q_r = q \) with \(q_i \cap P = p_i \). Thus \(\text{ht} p \leq \text{ht} q \). Conversely, any chain of primes \(q_0 \subseteq \cdots \subseteq q_r = q \) contracts to a chain of primes \(p_0 \subseteq \cdots \subseteq p_r = p \), and \(p_i \neq p_{i+1} \) by Incomparability, (14.3); whence, \(\text{ht} p \geq \text{ht} q \). Hence \(\text{ht} p = \text{ht} q \). Thus (1) holds.

Alternatively, by (15.12), \(\text{ht}(p) + \dim(P/p) = n \) and \(\text{ht}(q) + \dim(Q/q) = n \) as both \(P \) and \(Q \) are polynomial rings in \(n \) variables over a field. However, by (15.10), \(\dim P/p = \text{tr.deg}_K \text{Frac}(P/p) \) and \(\dim Q/q = \text{tr.deg}_L \text{Frac}(Q/q) \), and these two transcendence degrees are equal as \(Q/P \) is integral. Thus again, (1) holds.

For (2), suppose \(F \) and \(G \) have a common prime factor \(H \in Q \). Set \(q := QH \). Then the maximal ideal \(qQ_q \) of \(Q_q \) is principal and nonzero. Hence \(Q_q \) is a DVR by (23.6). Thus \(\text{ht}(q) = 1 \). Set \(p := q \cap P \). Then \(p \) contains \(f \); whence, \(p \) contains some prime factor \(H' \) of \(F \). Then \(p \supseteq PH' \), and \(PH' \) is a nonzero prime. Hence \(p = PH' \) since \(\text{ht} p = 1 \) by (1). However, \(p \) contains \(G \) too. Therefore, \(H' \mid G \), contrary to the hypothesis. Thus (2) holds. (Caution: if \(F := X_1 \) and \(G := X_2 \), then \(F \) and \(G \) have no common factor, yet there are no \(\varphi \) and \(\psi \) such that \(\varphi F + \psi G = 1 \).)

Exercise (23.21). — Prove that a Noetherian domain \(R \) is normal if and only if, given any prime \(p \) associated to a principal ideal, \(pR_p \) is principal.

Solution: Assume \(R \) normal. Say \(p \in \text{Ass}(R/\langle x \rangle) \). Then \(pR_p \in \text{Ass}(R_p/\langle x/1 \rangle) \) by (17.8). So \(\text{depth}(R_p) = 1 \) by (23.5)(2). But \(R_p \) is normal by (11.32). Hence \(pR_p \) is principal by (23.6).

Conversely, assume that, given any prime \(p \) associated to a principal ideal, \(pR_p \) is principal. Given any prime \(p \) of height 1, take a nonzero \(x \in p \). Then \(p \) is minimal containing \(\langle x \rangle \). So \(p \in \text{Ass}(R/\langle x \rangle) \) by (17.14). So, by hypothesis, \(pR_p \) is principal. So \(R_p \) is a DVR by (23.6). Thus \(R \) satisfies (R1).

Given any prime \(p \) with \(\text{depth}(R_p) = 1 \), say \(pR_p \in \text{Ass}(R_p/\langle x/s \rangle) \) with \(x \neq 0 \) by (23.5)(2). Then \(\langle x/s \rangle = \langle x/1 \rangle \subset R_p \). So \(p \in \text{Ass}(R/\langle x \rangle) \) by (17.8). So, by hypothesis, \(pR_p \) is principal. So \(\text{dim}(R_p) = 1 \) by (23.6). Thus \(R \) also satisfies (S2). So \(R \) is normal by Serre’s Criterion, (23.15).

Exercise (23.22). — Let \(R \) be a ring, \(M \) a nonzero Noetherian module. Set

\[
\Phi := \{ \text{p prime} \mid \text{dim}(M_p) = 1 \} \quad \text{and} \quad \Sigma := \{ \text{p prime} \mid \text{depth}(M_p) = 1 \}.
\]

Assume \(M \) satisfies (S1). Show \(\Phi \subset \Sigma \), with equality if and only if \(M \) satisfies (S2).

Set \(S := R - z.\text{div}(M) \). Without assuming (S1), show this sequence is exact:

\[
M \to S^{-1}M \to \prod_{p \in \Sigma} S^{-1}M_p/M_p. \quad (23.22.1)
\]

Solution: Assume (S1). Then, given \(p \in \Phi \), note \(p \notin \text{Ass}(M) \) by (23.10). So (17.12) yields a nonzerodivisor \(x \in p \). Plainly, \(p \) is minimal containing \(\langle x \rangle \). So \(p \in \text{Ass}(M/\langle x \rangle) \) by (17.14). Hence \(\text{depth}(M_p) = 1 \) by (23.5)(2). Thus \(\Phi \subset \Sigma \).

However, as (S1) holds, (S2) holds if and only if \(\Phi \subset \Sigma \). Thus \(\Phi = \Sigma \) if and only if \(M \) satisfies (S2).
Finally without assuming \((S_1)\), consider \((23.22.1)\). Trivially the composition is equal to 0. Conversely, given \(m \in S^{-1}M\) vanishing in \(\prod \overline{S^{-1}M_p} = M_p\), say \(m = n/s\) with \(n \in M\) and \(s \in S\). Then \(n/s \in sM_p\) for all \(p \in \Sigma\). But \(s/1 \in R_p\) is, plainly, a nonzerodivisor on \(M_p\) for every prime \(p\). Hence if \(p \notin \text{Ass}(M_p/sM_p)\), then \(p \notin \Sigma\) by \((23.5)\).(2). Hence \(n \in sM\) by \((18.64)\). So \(m \in M\). Thus \((23.22.1)\) is exact. \(\square\)

Exercise \((23.23)\) *Serre’s Criterion*. — Let \(R\) be a Noetherian ring, and \(K\) its total quotient ring. Set \(\Phi := \{ p \text{ prime} | \text{ht}(p) = 1 \}\). Prove equivalent:

(1) \(R\) is normal.
(2) \((R_1)\) and \((S_2)\) hold.
(3) \((R_1)\) and \((S_1)\) hold, and \(R \to K = \prod_{p \in \Phi} K_p/R_p\) is exact.

Solution: Assume (1). Then \(R\) is reduced by \((14.25)\). So \((23.12)\) yields \((R_0)\) and \((S_1)\). But \(R_p\) is normal for any prime \(p\) by \((14.9)\). Thus (2) holds by \((23.6)\).

Assume (2). Then \((R_1)\) and \((S_1)\) hold trivially. Thus \((23.22)\) yields (3).

Assume (3). Let \(x \in K\) be integral over \(R\). Then \(x/1 \in K\) is integral over \(R_p\) for any prime \(p\). Now, \(R_p\) is a DVR for all \(p\) of height 1 as \(R\) satisfies \((R_1)\). Hence, \(x/1 \in R_p\) for all \(p \notin \Phi\). So \(x \in R\) by the exactness of the sequence in (3). But \(R\) is reduced by \((23.12)\). Thus \((14.25)\) yields (1). \(\square\)

23. **Appendix: Cohen–Macaulay Modules**

Exercise \((23.24)\). — Let \(R\) be a ring, \(M\) a module, and \(x, y\) an \(M\)-sequence.

(1) Given \(m, n \in M\) with \(xm = yn\), find \(p \in M\) with \(m = yp\) and \(n = xp\).
(2) Assume \(y \notin z.\text{div}(M)\). Show \(y, x\) form an \(M\)-sequence too.

Solution: For (1), let \(n_1\) be the residue of \(n\) in \(M_1 := M/xM\). Then \(yn_1 = 0\), but \(y \notin z.\text{div}(M_1)\). Hence \(n_1 = 0\). So there’s \(p \in M\) with \(n = xp\). So \(x(m - yp) = 0\). But \(x \notin z.\text{div}(M)\). Thus \(m = yp\).

For (2), note \(M/(y, x)M \neq 0\) as \(x, y\) form an \(M\)-sequence. Set \(M_1 := M/yM\). Given \(m_1 \in M_1\) with \(xm_1 = 0\), lift \(m_1\) to \(m \in M\). Then \(xm = yn\) for some \(n \in M\).

By (1), there’s \(p \in M\) with \(m = yp\). Thus \(m_1 = 0\). Thus \(x \notin z.\text{div}(M_1)\). \(\square\)

Exercise \((23.26)\). — Let \(R\) be a ring, \(a \subset R\) an ideal, \(M\) a module, \(x_1, \ldots, x_r\) an \(M\)-sequence in \(a\), and \(R'\) an algebra. Set \(M' := M \otimes_R R'\). Assume \(R'\) flat and \(M'/aM' \neq 0\). Prove \(x_1, \ldots, x_r\) is an \(M'\)-sequence in \(aR'\).

Solution: For all \(i\), set \(M_i := M/(x_1, \ldots, x_i)M\) and \(M'_i := M'/\langle x_1, \ldots, x_i \rangle M'\).

Then \(M'_i = M_i \otimes_R R'\) by right exactness of tensor product \((8.10)\). Moreover, by hypothesis, \(x_{i + 1}\) is a nonzerodivisor on \(M_i\). Thus the multiplication map \(\mu_{x_{i + 1}}: M_i \to M_i\) is injective. Hence \(\mu_{x_{i + 1}}: M'_i \to M'_i\) is injective by flatness.

Finally \(\langle x_1, \ldots, x_r \rangle \subseteq a\), so \(M'_r \neq 0\). Thus the assertion holds. \(\square\)

Exercise \((23.27)\). — Let \(R\) be a ring, \(a\) an ideal, \(M\) a Noetherian module with \(M/aM \neq 0\). Let \(x_1, \ldots, x_r\) be an \(M\)-sequence in \(a\), and \(p \in \text{Supp}(M/aM)\). Prove: (1) \(x_1/1, \ldots, x_r/1\) is an \(M_p\)-sequence in \(a_p\), and (2) \(\text{depth}(a, M) \leq \text{depth}(a_p, M_p)\).

Solution: First, \((M/aM)_p \neq 0\) as \(p \in \text{Supp}(M/aM)\). Thus \((12.15)\) yields \(M_p/aM_p \neq 0\). Second, \(R_p\) is \(R\)-flat by \((12.14)\). Thus \((23.26)\) yields (1). Thus the definition of \(\text{depth}\) in \((23.4)\) first yields \(r \leq \text{depth}(a_p, M_p)\), and then yields (2). \(\square\)

Exercise \((23.31)\). — Let \(R\) be a ring, \(a\) an ideal, \(M\) a Noetherian module with \(M/aM \neq 0\), and \(x \in a - z.\text{div}(M)\). Show \(\text{depth}(a, M/xM) = \text{depth}(a, M) - 1\).
Solutions: Set \(r := \text{depth}(a, M/xM) \). Then there’s a maximal \(M/xM \)-sequence \(x_2, \ldots, x_r \) in \(a \) by (23.29). Plainly \(x, x_2, \ldots, x_r \) is a maximal \(M \)-sequence in \(a \). Thus \(\text{depth}(a, M) = r + 1 \). □

Exercise (23.32). — Let \(R \) be a ring, \(M \) a nonzero Noetherian semifield module, and \(x \in \text{rad}(M) - z.\text{div}(M) \). Show that \(\text{depth}(M) = \text{dim}(M) \) if and only if \(\text{depth}(M/xM) = \text{dim}(M/xM) \).

Solution: Note \(\text{rad}(M/xM) = \text{rad}(M) \) by (23.4.2). So \(M/xM \) is semifield. Also (23.31) yields \(\text{depth}(M/xM) = \text{depth}(M) - 1 \). Moreover, (21.5) yields \(\text{dim}(M/xM) = \text{dim}(M) - 1 \). Thus the assertion holds. □

Exercise (23.33). — Let \(R \) be a ring, \(R' \) an algebra, and \(N \) a nonzero \(R' \)-module that’s a Noetherian \(R \)-module. Assume \(N \) is semifield over \(R \) (or equivalently by (21.20)(5), semifield over \(R' \)). Show \(\text{depth}_{R'}(N) = \text{depth}_R(N) \).

Solution: Set \(r := \text{depth}_R(N) \). By (23.29), there is a maximal \(N \)-sequence \(x_1, \ldots, x_r \) in \(\text{rad}(N) \). Its image in \(R' \) lies in \(\text{rad}_{R'}(N) \) by (21.20)(4), and is plainly \(N \)-regular. Set \(N_r := N/(x_1, \ldots, x_r)N \). Then \(\text{depth}_{R'}(N_r) = \text{depth}_R(N) - r \) and \(\text{depth}_{R'}(N_r) = 0 \) by (23.31). Thus we have to prove \(\text{depth}_{R'}(N_r) = 0 \).

By (23.5)(1), there’s a maximal ideal \(m \in \text{Ass}_{R'}(N_r) \). Say \(m = \text{Ann}_R(n) \) where \(n \in N_r \). Set \(R'_1 := R'/(n) \). Then \(R'_1 \) is Noetherian by (16.16). Let \(S \) be the set of annihilators in \(R'_1 \) of nonzero elements of \(N_r \). Let \(T \) be the subset of annihilators that contain \(\text{Ann}_{R_1}(n) \). Then \(T \) has a maximal element, \(m_1 \). Say \(m_1 \in \text{Ass}_{R'_1}(N_r) \) by (17.9). Let \(n' \) be the preimage in \(R' \) of \(m_1 \).

Then \(n' \in \text{Ass}_{R'}(N_r) \) by (17.4). Let \(m' \) be the contraction of \(n \) in \(R' \). Then \(m' \supset m \). But \(m \) is maximal. So \(m' = m \). So \(n \) is maximal by (17.13) and (21.20)(2). Thus (23.5)(1) implies \(\text{depth}_{R'}(N_r) = 0 \), as desired. □

Exercise (23.40). — Let \(R \) be a ring, \(a \) an ideal, and \(M \) a Noetherian module with \(M/aM \neq 0 \). Find a maximal ideal \(m \in \text{Supp}(M/aM) \) with

\[
\text{depth}(a, M) = \text{depth}(a_m, M_m).
\]

Solution: There is a maximal \(M \)-sequence \(x_1, \ldots, x_r \) in \(a \) by (23.28). Given any \(p \in \text{Supp}(M/aM) \), note \(x_1/1, \ldots, x_r/1 \) is an \(M_p \)-sequence by (23.27)(1).

Set \(M_r := M/(x_1, \ldots, x_r)M \). Then \(a \subseteq z.\text{div}(M_r) \) by maximality. So \(a \subseteq p \) for some \(p \in \text{Ass}(M_r) \) by (17.20). Fix any maximal ideal \(m \) containing \(p \).

Then \(m \in \text{Supp}(M_r) \) by (17.13). But \(M_r \) is a quotient of \(M \). So \(m \in \text{Supp}(M) \). But \(a \subseteq m \); so \(m \in V(a) \). Thus (13.46)(1) yields \(m \in \text{Supp}(M/aM) \).

Further, (17.8) yields \(pR_m \in \text{Ass}(M_r)_m \). So \(pR_m = \text{Ann}(m) \) for some nonzero \(m \in (M_r)_m \). Since \(aR_m \subseteq pR_m \subseteq z.\text{div}(M_r)_m \). But \((M_r)_m = M_m/(x_1, \ldots, x_r)M_m \). Hence \(x_1/1, \ldots, x_r/1 \) is maximal in \(aR_m \). Thus (23.29) yields (23.40.1).

Exercise (23.42). — Let \(R \) be a ring, and \(M \) a nonzero Noetherian semifield module. Set \(d := \text{dim}(M) \). Show \(\text{depth}(M) = d \) if and only if \(M \) is Cohen–Macaulay and \(\text{dim}(M_m) = d \) for all maximal \(m \in \text{Supp}(M) \).

Solution: Assume \(\text{depth}(M) = d \). Then \(\text{depth}(M_p) = \text{dim}(M_p) \) for all \(p \) in \(\text{Supp}(M) \) by (23.39). Thus \(M \) is Cohen–Macaulay. Moreover, all maximal chains of primes in \(\text{Supp}(M) \) are of length \(d \) by (23.37). Thus \(\text{dim}(M_m) = d \) for all maximal \(m \in \text{Supp}(M) \).

Conversely, assume that \(M \) is Cohen–Macaulay and that \(\text{dim}(M_m) = d \) for all maximal
maximal \(m \in \text{Supp}(M) \). Now, by (23.40), there’s some maximal \(m \in \text{Supp}(M) \) with \(\text{depth}(M) = \text{depth}(M_m) \). But \(\text{depth}(M_m) = \dim(M_m) \) as \(M \) is Cohen–Macaulay. Moreover, \(\dim(M_m) = d \) as \(m \) is maximal. Thus \(\text{depth}(M) = d \).

Exercise (23.51). — Let \(R \) be a ring, \(M \) a module, and \(x_1, \ldots, x_n \in R \). Set \(a := \langle x_1, \ldots, x_n \rangle \) and assume \(M/aM \neq 0 \). For all \(p \in \text{Supp}(M) \cap \text{V}(a) \), assume \(x_1/1, \ldots, x_n/1 \) is \(M_p \)-regular. Prove \(x_1, \ldots, x_n \) is \(M \)-regular.

Solution: Induct on \(n \). If \(n = 0 \), then the assertion is trivial.
Assume \(n \geq 1 \) and \(x_1, \ldots, x_{n-1} \) is \(M \)-regular. Set \(M_i := M/\langle x_1, \ldots, x_i \rangle M \). We have to prove \(\mu_{x_i}: M_{n-1} \to M_{n-1} \) is injective. By (13.9), it suffices to prove \(\mu_{x_{n-1}/1}: (M_{n-1})_p \to (n_{n-1})_p \) is injective for every prime \(p \).
Assume \(p \notin \text{Supp}(M) \). Then \(M_p = 0 \). In any event, (12.9) yields
\[
(M_{n-1})_p = n_p/\langle x_1/1, \ldots, x_{n-1}/1 \rangle n_p.
\]
So \((M_{n-1})_p = 0\). Thus, in this case, \(\mu_{x_{n-1}/1} \) is injective.
Assume \(a \notin p \). Then \(x_j \notin p \) for some \(j \). So \(x_j/1 \in R_p^\times \). If \(j \leq n - 1 \), then \((M_{n-1})_p = 0\) owing to (23.51.1). If \(j = n \), then \(\mu_{x_{n-1}/1} \) is invertible. Thus, in both cases, \(\mu_{x_{n-1}/1} \) is injective.
So assume \(p \in \text{Supp}(M) \cap \text{V}(a) \). Then \(x_1/1, \ldots, x_n/1 \) is \(M_p \)-regular. Thus \(\mu_{x_{n-1}/1} \) is, by (23.51.1), injective, as desired.

Exercise (23.52). — Let \(R \) be a ring, \(M \) a Noetherian module, \(x_1, \ldots, x_n \) an \(M \)-sequence in \(\text{rad}(M) \), and \(\sigma \) a permutation of \(1, \ldots, n \). Prove that \(x_{\sigma 1}, \ldots, x_{\sigma n} \) is an \(M \)-sequence too; first, say \(\sigma \) just transposes \(i \) and \(i + 1 \).

Solution: Say \(\sigma \) transposes \(i \) and \(i + 1 \). Set \(M_j := M/\langle x_1, \ldots, x_j \rangle M \). Then \(M_{j+1} \quad \xrightarrow{\sim} \quad M_j/\langle x_j, x_{j+1} \rangle n_j \) by (23.4.1), and \(\text{rad}(M_j) = \text{rad}(M) \) by (23.4.2). Hence \(x_i, x_{i+1} \) is an \(M_{i-1} \)-sequence. Hence \(x_{i+1}, x_i \) is an \(M_{i-1} \)-sequence too owing to (23.24)(1) and to (23.25). So \(x_1, \ldots, x_{i-1}, x_{i+1}, x_i \) is an \(M \)-sequence. But \(M/\langle x_1, \ldots, x_i, x_{i+1}, x_i \rangle M = M_{i+1} \). Thus \(x_{i+1}, x_{i+1} \) is an \(M \)-sequence.

In general, \(\sigma \) is a composition of transpositions of successive integers. Thus the general assertion follows.

Alternatively, note \(x_1, \ldots, x_n \) is \(M \)-quasi-regular by (23.48). So \(x_{\sigma 1}, \ldots, x_{\sigma n} \) is, plainly, \(M \)-quasi-regular for any \(\sigma \). Arguing as in the proof that (3) implies (2) of (23.50), we conclude that \(x_{\sigma 1}, \ldots, x_{\sigma n} \) is an \(M \)-sequence, because \(R/\text{Ann}(M) \) is Noetherian by (16.16).

Exercise (23.53). — Let \(R \) be a ring, \(a \) an ideal, and \(M \) a Noetherian module. Let \(x_1, \ldots, x_r \) be an \(M \)-sequence, and \(n_1, \ldots, n_r \geq 1 \). Prove these two assertions:
1. \(x_1^{n_1}, \ldots, x_r^{n_r} \) is an \(M \)-sequence.
2. \(\text{depth}(a, M) = \text{depth}(\sqrt{a}, M) \).

Solution: For (1), induct on \(r \). If \(r = 0 \), then assertion is trivial.
Assume \(r > 0 \). Set \(M_i := M/\langle x_1, \ldots, x_i \rangle M \) and \(M'_i := M/\langle x_1^{n_1}, \ldots, x_r^{n_r} \rangle M \) for all \(i \). Then \(M_r \) is nonzero and a quotient of \(M'_r \). Thus \(M'_r \neq 0 \).
Given \(p \in \text{Supp}(M) \cap \text{V}(\langle x_1, \ldots, x_r \rangle) \), note \(x_1, \ldots, x_r \) is \(M_p \)-regular by (23.27) and (13.49) since \(M \) is Noetherian. But \(\text{V}(\langle x_1^{n_1}, \ldots, x_r^{n_r} \rangle) = \text{V}(\langle x_1, \ldots, x_r \rangle) \). So, owing to (23.51), it suffices to prove \(x_1^{n_1}/1, \ldots, x_r^{n_r}/1 \) is \(n_p \)-regular. Thus replacing \(M, \) and \(x_i \) by \(R_p, M_p, \) and \(x_i/1 \), we may assume \(R \) is local.
Since \(x_1, \ldots, x_r \) is \(M \)-regular, \(x_r \notin z.\text{div}(M_{r-1}) \). Hence \(x_1, \ldots, x_{r-1}, x_r^{n_r} \) is \(M \)-regular. But \(R \) is local; so \(x_1, \ldots, x_{r-1}, x_r^{n_r} \in \text{rad}(M) \). Thus (23.52) yields that \(x_r^{n_r}, x_1, \ldots, x_{r-1} \) is \(M \)-regular.

391
Set $N := M/(x_1^{n_1})$. Then therefore x_1, \ldots, x_{r-1} is N-regular. So $x_1^{n_1}, \ldots, x_{r-1}^{n_{r-1}}$ is N-regular by induction. Hence $x_1^{n_1}, x_1^{n_2}, \ldots, x_{r-1}^{n_{r-1}}$ is M-regular. But R is local. Thus (23.52) yields that $x_1^{n_1}, \ldots, x_r^{n_r}$ is M-regular, as desired.

For (2), note depth$(a, M) \leq \text{depth}(\sqrt{a}, M)$ as $a \subseteq \sqrt{a}$. Furthermore, the opposite inequality holds since, given any M-sequence x_1, \ldots, x_r in \sqrt{a}, there are $n_i \geq 1$ with $x_i^{n_i} \in a$, and since $x_1^{n_1}, \ldots, x_r^{n_r}$ is M-regular by (1). Thus (2) holds.

Exercise (23.54). — Let R be a ring, a an ideal, M a nonzero Noetherian module, $x \in R$. Assume $a \subseteq z \cdot \text{div}(M)$ and $a + \langle x \rangle \subset \text{rad}(M)$. Show depth$(a + \langle x \rangle, M) \leq 1$.

Solution: Set $b := a + \langle x \rangle$. Assume depth$(b, M) \geq 1$. Then there’s $b \in b$ with $b \notin z \cdot \text{div}(M)$. Say $b = a + xy$ with $a \subseteq a$ and $y \in R$. Then (17.33) yields $r \geq 1$ with $b_r := a^r + x \notin z \cdot \text{div}(M)$.

Given any $b' \in b$, say $b' = a' + xy'$ with $a' \subseteq a$ and $y' \in R$. Set $a'' := a' - a'y'$. Then $a'' \subseteq a$. So $a'' \in z \cdot \text{div}(M)$. So a'', b_r is not M-regular. But a'', b_r is M-regular by (23.52). So $a'' \in z \cdot \text{div}(N)$ where $N := M/b_r M$. Say $a''/n = 0$ with $n \in N$ nonzero.

Note $y'b_n = 0$. So $a'' + y'b_r n = 0$. But $a'' + y'b_r n = b'$. So $b'n = 0$. Thus $b \in z \cdot \text{div}(N)$. So the M-sequence b_r is maximal in b. Thus (23.29) yields depth$(b, M) = 1$.

Exercise (23.55). — Let R be a ring, a an ideal, M a nonzero Noetherian module, $x \in R$. Set $b := a + \langle x \rangle$. Assume $b \subseteq \text{rad}(M)$. Show depth$(b, M) \leq \text{depth}(a, M) + 1$.

Solution: Set $r := \text{depth}(a, M)$. By (23.29), there’s a maximal M-sequence x_1, \ldots, x_r in a. Set $M_r := M/(x_1, \ldots, x_r)$. Then $a \subseteq z \cdot \text{div}(M_r)$; moreover, $\text{rad}(M) \subset \text{rad}(M_r)$. So depth$(b, M_r) \leq 1$ by (23.54). Thus by induction on r, (23.31) yields depth$(b, M) \leq r + 1$, as desired.

Exercise (23.56). — Let R be a ring, M a nonzero Noetherian module. Given any proper ideal a, set $c(a, M) := \min\{ \dim M_p | p \in \text{Supp}(M/aM)\}$. Prove M is Cohen–Macaulay if and only if depth$(a, M) = c(a, M)$ for all proper ideals a.

Solution: Given any maximal ideal $m \in \text{Supp}(M)$, note $\text{Supp}(M/mM) = \{m\}$ owing to (13.46)(1). So $c(m, M) = \dim(M_m)$. Thus if depth$(m, M) = c(m, M)$ for all maximal ideals m, then M is Cohen–Macaulay.

Conversely, assume M is Cohen–Macaulay, and fix a proper ideal a. Recall $\text{Supp}(M/aM) = \text{Supp}(M) \cap \mathbf{V}(a)$ by (13.46)(1), and $\text{Supp}(M) = \mathbf{V}(\text{Ann}(M))$ by (13.4)(3). Set $R' := R/\text{Ann}(M)$. Then M is a Noetherian R'-module. Given any ideal b of R, set $b' := bR'$. Then $aM = a'M$.

Moreover, (1.9) and (2.7) imply the map $p \mapsto p'$ is a bijection from the primes of R containing $\text{Ann}(M)$ to the primes of R'. Note $M_p = M_{p'}$ by (12.29)(3). So $p \in \text{Supp}_{R}(M)$ if and only if $p' \in \text{Supp}_{R'}(M)$. Also $p \supset a$ if and only if $p' \supset a'$. Thus $p \mapsto p'$ restricts to a bijection from $\text{Supp}_{R}(M/aM)$ to $\text{Supp}_{R'}(M/a'M)$. Moreover, $\dim_{R_p}(M_p) = \dim_{R_{p'}}(M_{p'})$ by (21.20)(1). Thus $c(a, M) = c(a', M)$.

Further depth$(a, M) = \text{depth}(a', M)$, as plainly a sequence in a is an M-sequence if and only if its image in a' is an M-sequence. Thus replacing R by R' and a by a', we may assume $\text{Ann}(M) = 0$, and, by (16.16), that R is Noetherian.

Note $\text{Supp}(M) = \text{Spec}(R)$ by (13.4)(3). So $\dim(M_p) = \text{ht}(p)$ for $p \in \text{Supp}(M)$.

By (23.27), depth$(a, M) \leq \text{depth}(a_p, M_p)$ for any prime p. Owing to (23.29), depth$(a_p, M_p) \leq \text{depth}(M_p)$. Finally depth$(M_p) \leq \dim(M_p)$ by (23.5)(3). Thus
Assume depth(a, M) ≤ c(a, M). It remains to show the opposite inequality.

There’s a maximal ideal $m \in \text{Supp}(M/aM)$ with depth(a, M) = depth(a, M_m) by (23.40). So it suffices to prove depth(a, M_m) ≥ c(a, M_m) because, plainly, c(a, M_m) ≥ c(a, M). Thus replacing R by R_m, we may assume R is local.

Suppose a is m-primary. Then depth(a, M) = depth(M) by (23.53)(2). Also c(a, M) = dim(M). But M is Cohen–Macaulay, so depth(M) = dim(M). Thus depth(a, M) = c(a, M), as desired.

Suppose a is not m-primary, and belongs to the set S of all ideals a' such that depth(a', M) ≠ c(a', M). As M is Noetherian, S has maximal elements. We may suppose a is maximal.

Let Φ be the set of minimal primes p of a. Note c(a, M) = $\min_{p \in \Phi} \text{ht}(p)$. As R is Noetherian, Φ is finite. As a is not m-primary, $m \notin \Phi$. Hence by Prime Avoidance (3.12) there’s $x \in m - \bigcup_{p \in \Phi} p$. Set $b := a + \langle x \rangle$. Then c($b, M$) > c($a, M$).

Say a can be generated by r elements, but not fewer. Then c(a, M) = r by (21.7). But b can be generated by $r + 1$ elements. So c(b, M) ≤ $r + 1$ by (21.7) again. So c(a, M) + 1 ≥ c(b, M) > c(a, M). Thus c(a, M) + 1 = c(b, M).

But a is maximal in S; so $b \notin S$. So depth(b, M) = c(b, M). But (23.55) yields depth(b, M) + 1 = depth(a, M) + 1. Thus c(a, M) ≤ depth(a, M), as desired. □

Exercise (23.57). — Prove that a Noetherian local ring A of dimension $r ≥ 1$ is regular if and only if its maximal ideal m is generated by an A-sequence. Prove that, if A is regular, then A is Cohen–Macaulay and universally catenary.

Solution: Assume A is regular. Given a regular sop x_1, \ldots, x_r, let’s show it’s an A-sequence. Set $A_1 := A/\langle x_1 \rangle$. Then A_1 is regular of dimension $r - 1$ by (21.16). So $x_1 \neq 0$. But A is a domain by (21.17). So $x_1 \notin z.\text{div}(A)$. Further, if $r ≥ 2$, then the residues of x_2, \ldots, x_r form a regular sop of A_1; so we may assume they form an A_1-sequence by induction on r. Thus x_1, \ldots, x_r is an A-sequence.

Conversely, if m is generated by an A-sequence x_1, \ldots, x_n, then $n ≤ \text{depth}(A) ≤ r$ by (23.4) and (23.5)(3), and $n ≥ r$ by (21.13). Thus then $n = \text{depth}(A) = r$, and so A is regular and Cohen–Macaulay, so universally catenary by (23.45). □

Exercise (23.58). — Let R be a ring, and M a nonzero Noetherian semilocal module. Set $m := \text{rad}(M)$. Prove: (1) \widetilde{M} is a nonzero Noetherian semilocal \widetilde{R}-module, and $\widetilde{m} = \text{rad}(\widetilde{M})$; and (2) $\text{depth}_{\widetilde{R}}(M) = \text{depth}_{\widetilde{R}}(\widetilde{M}) = \text{depth}_{\widetilde{R}}(\widetilde{M})$.

Solution: For (1), note M has a parameter ideal by (19.14). So M is a nonzero Noetherian \widetilde{R}-module by (22.61)(1). Moreover, \widetilde{M} is semilocal and $\widetilde{m} = \text{rad}(\widetilde{M})$ by (22.53)(6) and (5) with $a := m$. Thus (1) holds.

For (2), given any M-sequence x_1, \ldots, x_r in m, set $M_i := M/\langle x_1, \ldots, x_i \rangle M$ for all i. Then $\tilde{M}_i = \widetilde{M}/(\langle x_1, \ldots, x_i \rangle \widetilde{M}) = \widetilde{M}/(\langle x_1, \ldots, x_i \rangle \widetilde{M})$ by (22.12)(1), (22.17) and (22.20). But x_{i+1} is a nonzerodivisor on M_i; so one on \tilde{M}_i owing to (22.18). Also $\tilde{M}_i \neq 0$ as $\langle x_1, \ldots, x_i \rangle \widetilde{R} \subset \text{rad}(\widetilde{M})$ by (1). Thus depth$_{\widetilde{R}}(M) ≤ \text{depth}_{\widetilde{R}}(\widetilde{M})$.

Given any $x ∈ R$, note $xy = \kappa_R(x)y$ for all $y ∈ \tilde{M}$. Hence, given any \tilde{M}-sequence x_1, \ldots, x_r in m, the $\kappa_R(x_i)$ form an \tilde{M}-sequence in \widetilde{m}, that is in $\text{rad}(\widetilde{M})$ by (1). Thus depth$_{\widetilde{R}}(\widetilde{M}) ≤ \text{depth}_{\widetilde{R}}(R\tilde{M})$.

By (23.29), there’s an M-sequence x_1, \ldots, x_r in m with $m ⊂ z.\text{div}(M)$ and $r = \text{depth}_R(M)$. Then (17.20) yields a nonzero R-map $α: R/m → M_r$. Its completion is an \tilde{R}-map $\tilde{α} : \tilde{R}/\tilde{m} → \tilde{M}_r$, as $\tilde{R}/\tilde{m} = \tilde{R}/\tilde{m}$ by (22.12)(1). Plainly
\(\bar{\alpha}(1) = \kappa_M \alpha(1)\). But \(\alpha(1) \neq 0\) as \(\alpha \neq 0\). And \(\kappa_M : M_r \to \widehat{M}_r\) is injective by (22.3). So \(\bar{\alpha}(1) \neq 0\). So \(\bar{\alpha} \neq 0\). So \(\bar{m} \subset z\text{-}\text{div}(\widehat{M}_r)\) by (17.20). So \(r = \text{depth}_{\widehat{R}}(\widehat{M})\) by (23.29). But \(r = \text{depth}_R(M) \leq \text{depth}_{\widehat{R}}(\widehat{M}) \leq \text{depth}_{\widehat{R}}(\widehat{M})\). Thus (2) holds. \(\square\)

Exercise (23.59). — Let \(A\) be a DVR, \(t\) a uniformizing parameter, \(X\) a variable. Set \(P := A[X]\). Set \(m_1 := \langle 1 - tx \rangle\) and \(m_2 := \langle t, X \rangle\). Prove \(P\) is Cohen–Macaulay, and each \(m_i\) is maximal with \(\text{ht}(m_i) = i\).

Solution: Set \(K := \text{Frac}(A)\). Let \(\varphi : P \to K\) be the ring map with \(\varphi(X) = t^{-1}\) and \(\varphi[A\) the inclusion \(A \to K\). Set \(n := \text{Ker}(\varphi)\). Plainly \(\varphi\) is surjective, so \(n\) is maximal. So by (2.20), either \(n = \langle F \rangle\) with \(F\) irreducible, or \(n = \langle t, G \rangle\) with \(G \in P\). But \(t \notin n\) as \(\varphi[A\) is the inclusion. Thus \(n = \langle F \rangle\).

However, \(1 - tx \notin n\). So \(1 - tx = FH\). But \(1 - tx\) is irreducible. So \(H\) is a unit. So \(m_1 = n\). Thus \(m_2 = n\). Further, (21.7) yields \(\text{ht}(m_2) = 2\).

Let \(m\) be any maximal ideal of \(P\) other than \(m_1\) or \(m_2\). By (3.12), there’s \(x \in m - m_1 \cup m_2\). So \(x \in m \cap S\). But \(m_1 \cap S = 0\) and \(m_2 \cap S = 0\). Hence (11.12)(2) implies \(n_1\) and \(n_2\) are the only maximal ideals of \(B\). Thus \(B\) is semilocal. But \(A\) is Cohen–Macaulay. So \(P\) is Cohen–Macaulay by (23.43). Thus \(B\) is Cohen–Macaulay owing to (11.34). Finally, \(\dim(B_n) = i\) as \(\text{ht}(m_i) = i\). \(\square\)

Exercise (23.60). — Let \(R\) be a ring, \(M\) a nonzero Noetherian semilocal module, and \(x_1, \ldots, x_m \in \text{rad}(M)\). For all \(i\), set \(M_i := M/(x_1, \ldots, x_i)M\). Assume that \(\text{depth}(M) = \dim(M)\) and \(\dim(M_{m}) = \dim(M) - m\). For all \(i\), show \(x_1, \ldots, x_i\) form an \(M\)-sequence, and \(\text{depth}(M_i) = \dim(M_i) = \dim(M) - i\).

Solution: Note that \(\dim(M_i/x_{i+1}M_i) \geq \dim(M_{i}) - 1\) for all \(i\) by (21.5). But \(\dim(M_{m}) = \dim(M) - m\). Thus \(\dim(M_i) = \dim(M) - i\) for all \(i\).

Proceed by induction on \(i\). The case \(i = 0\) is trivial. So fix \(i < m\), and assume the assertions hold as stated.

Note \(\dim(M_i/x_{i+1}M_i) = \dim(M_i) - 1\). So \(x_{i+1} \notin p\) for all \(p \in \text{Supp}(M_{i})\) with \(\dim(R/p) = \dim(M_{i})\) by (21.5). But \(\text{depth}(M_{i}) = \dim(M_{i})\). So \(x_{i+1} \notin p\) for all \(p \in \text{Ass}(M_{i})\) by (23.37). So \(x_{i+1} \notin z\text{-}\text{div}(M_{i})\) by (17.12). But \(x_1, \ldots, x_i\) form an \(M\)-sequence. Thus \(x_{i+1}\) do too.

Finally, note \(\text{depth}(M_i) = \dim(M_i)\) and \(x_{i+1} \in \text{rad}(M) - z\text{-}\text{div}(M_{i})\). But \(\text{rad}(M) = \text{rad}(M_i)\) by (23.4.2). Thus by (23.32), \(\text{depth}(M_{i+1}) = \dim(M_{i+1})\). \(\square\)

Exercise (23.61). — Let \(k\) be an algebraically closed field, \(P := k[X_1, \ldots, X_n]\) a polynomial ring, and \(F_1, \ldots, F_m \in P\). Set \(A := \langle F_1, \ldots, F_m \rangle\). For all \(i, j\), define \(\partial F_i/\partial X_j \in P\) formally as in (1.18.1). Let \(A'\) be the ideal generated by \(A\) and all the maximal minors of the \(m\) by \(n\) matrix \((\partial F_i/\partial X_j)\). Set \(R := P/A\) and \(R' := P/A'\). Assume \(\dim R = n - m\). Show that \(R\) is Cohen–Macaulay, and that \(R\) is normal if and only if either \(R' = 0\) or \(\dim R' \leq n - m - 2\).

Solution: Given a maximal ideal \(M \supset A\) of \(P\), note \(P_M\) is regular of dimension \(n\) by (21.14). But \(\dim R_M = n - m\), because \(\dim R_M \geq n - m\) holds by repeated use of (21.5) and \(\dim R_{2M} \leq n - m\) as \(\dim R = n - m\). So (23.60) implies \(R_M\) is Cohen–Macaulay. Thus \(R\) is Cohen–Macaulay.
So \((23.39)\) implies \((S_2)\) holds. Thus Serre’s Criterion \((23.23)\) yields \(R\) is normal if and only if \((R_1)\) holds.

First assume \(n - m = 0\). Then \(\dim R_{\mathfrak{M}} = 0\) for every \(\mathfrak{M}\). So \((R_1)\) holds if and only if every \(R_{\mathfrak{M}}\) is regular. As \(k\) is algebraically closed, \(\mathfrak{M} = \langle X_1 - x_1, \ldots, X_n - x_n \rangle\) for some \(x := (x_1, \ldots, x_n) \in k^n\) by \((15.5)\). So \(R_{\mathfrak{M}}\) is regular if and only if the Jacobian matrix \((\partial F_i/\partial X_j)\) has rank \(n\) at \(x\) by \((21.41)\)(1), so if and only if its determinant \(D\) is nonzero at \(x\), that is, \(D \notin \mathfrak{M}\). But \(\mathfrak{A}' = \langle \mathfrak{A}, D \rangle\), so \(D \notin \mathfrak{M}\) if and only if \(\mathfrak{A}' R_{\mathfrak{M}} = P_{\mathfrak{M}}\). Hence \(R_{\mathfrak{M}}\) is regular if and only if \(R_{\mathfrak{M}} = 0\). Thus \((R_1)\) holds if and only if \(R_{\mathfrak{M}} = 0\) for all \(\mathfrak{M}\), or equivalently by \((13.8)\), \(R' = 0\), as desired.

So from now on, assume \(n - m \geq 1\). Then no minimal prime \(q\) of \(R\) is maximal, as \(\dim R_{\mathfrak{M}} = n - m\) for every \(\mathfrak{M}\). So every minimal \(q\) lies in some height-1 prime \(p\). Then \(R_q\) is the localization of \(R_p\) at \(q R_p\), which is a minimal prime. Hence, if \(R_p\) is a domain, then \(R_q\) is its fraction field.

So \((R_0)\) holds if \(R_p\) is a domain for every height-1 prime \(p\) of \(R\). So by \((23.10)\), \((R_1)\) holds if and only if \(R_p\) is a DVR for every such \(p\). Thus it remains to show that every such \(R_p\) is a DVR if and only if either \(R' = 0\) or \(\dim R' \leq n - r - 2\).

Note that, \(\dim R' > n - m - 2\) means there exists a maximal chain of primes \(p_0 \subseteq \cdots \subseteq p_r\) in \(R\) with \(\mathfrak{A}'/\mathfrak{A} \subseteq p_0\) and \(r > n - m - 2\). In such a chain, \(p_r\) is maximal. So \(\dim R_{p_r} = n - m\). So \(n - m \geq r\). So either \(r = n - m\) or \(r = n - m - 1\).

If \(r = n - m\), then \(p_1\) has height 1. If \(r = n - m - 1\), then \(p_0\) can’t be minimal by \((23.37)\), as \(R_{p_1}\) is Cohen–Macaulay of dimension \(n - m\). Thus \(p_0\) has height 1.

Conversely, given a height-1 prime \(p\) of \(R\) with \(\mathfrak{A}'/\mathfrak{A} \subseteq p_0\), let \(m\) be any maximal ideal containing \(p\). Then \(R_m\) is Cohen–Macaulay of dimension \(n - m\). So by \((23.37)\), in any maximal chain of primes \(p_1 \subseteq \cdots \subseteq p_r\) with \(p_1 = p\) and \(p_r = m\), necessarily \(r = n - m - 1\). Hence \(\dim R' > n - m - 2\). Thus it now suffices to prove: fix any height-1 prime \(p\) of \(R\); then \(R_p\) is a DVR if and only if \(p \not\supseteq \mathfrak{A}'/\mathfrak{A}\).

Given a maximal ideal \(m \supseteq p\), note \((R_m)p = R_p\) by \((11.34)\). But \(R_m\) is Cohen–Macaulay. Thus \((23.37)\) yields \(\dim R_m = 1 + \dim(R_m/p R_m)\).

First, assume \(R_p\) is a DVR. Say \(p R_p = \langle t/s \rangle\) with \(t \in R\) and \(s \in R - p\). Say \(p = \langle g_1, \ldots, g_n \rangle\) with \(g_i \in R\). Then \(gi = tt_i/s s_i\) for some \(t_i \in R\) and \(s_i \in R - p\). Set \(f := ss_1 \cdots s_n\). Then \(p R_f = t R_f\). Since \(p\) is prime, its contraction in \(P\) is also prime. So \((21.41)\)(2) yields a maximal ideal with \(m \supset p\) but \(f \notin m\) such that \((R/p)_m\) is regular. So \((11.34)\) and \((12.15)\) yield

\[
(R/p)_m = ((R/p)_f)_m = (R_f/p R_f)_m = R_m/t R_m
\]

So \(R_m\) is regular by \((21.16)\) with \(a := \langle t \rangle\) as \(\dim R_m/t R_m = \dim(R_m) - 1\). So \(m \not\supseteq \mathfrak{A}'/\mathfrak{A}\) by \((21.41)\)(1). Thus \(p \not\supseteq \mathfrak{A}'/\mathfrak{A}\).

First, assume \(R_p\) is a DVR. Say \(p R_p = \langle t/s \rangle\) with \(t \in R\) and \(s \in R - p\). Say \(p = \langle g_1, \ldots, g_n \rangle\) with \(g_i \in R\). Then \(gi = tt_i/s s_i\) for some \(t_i \in R\) and \(s_i \in R - p\). Set \(f := ss_1 \cdots s_n\). Then \(p R_f = \langle t \rangle\). Moreover, \((21.41)(2)\) yields a maximal ideal \(m\) of \(R\) with \(m \supset p\), but \(f \notin m\), such that \((R/p)_m\) is regular. But \((R/p)_m = R_m/t R_m\). So \(R_m\) is regular by \((21.16)\). So \(m \not\supseteq \mathfrak{A}'/\mathfrak{A}\) by \((21.41)(1)\). Thus \(p \not\supseteq \mathfrak{A}'/\mathfrak{A}\).

Conversely, assume \(p \not\supseteq \mathfrak{A}'/\mathfrak{A}\). Say \(f \in \mathfrak{A}'/\mathfrak{A}\), but \(f \notin p\). Then \((21.41)\)(2) yields a maximal ideal \(m\) of \(R\) with \(m \supset p\), but \(f \notin m\), such that \((R/p)_m\) is regular. So \(m \not\supseteq \mathfrak{A}'/\mathfrak{A}\). So \(R_m\) is regular by \((21.41)(1)\). But \(ht(p) = 1\). So \(p R_m\) is principal by \((21.16)\). So \(p R_p\) is principal. Thus \((23.6)\) implies \(R_p\) is a DVR, as desired.
24. Dedekind Domains

Exercise (24.4) . — Let R be a domain, S a multiplicative subset.

(1) Assume $\dim(R) = 1$. Then $\dim(S^{-1}R) = 1$ if and only if there is a nonzero prime p of R with $p \cap S = \emptyset$.

(2) Assume $\dim(R) \geq 1$. Then $\dim(R) = 1$ if and only if $\dim(R_p) = 1$ for every nonzero prime p of R.

Solution: Consider (1). Suppose $\dim(S^{-1}R) = 1$. Then there's a chain of primes $0 \subseteq p' \subset S^{-1}R$. Set $p := p' \cap R$. Then p is as desired by (11.12)(2).

Conversely, suppose there's a nonzero p with $p \cap S = \emptyset$. Then $0 \subseteq pS^{-1}R$ is a chain of primes by (11.12)(2); so $\dim(S^{-1}R) \geq 1$. Now, given a chain of primes $0 = p_0 \subseteq \cdots \subseteq p_r \subset S^{-1}R$, set $p_i := p_i \cap R$. Then $0 = p_0 \subseteq \cdots \subseteq p_r \subset R$ is a chain of primes by (11.12)(2). So $r \leq 1$ as $\dim(R) = 1$. Thus $\dim(S^{-1}R) = 1$.

Consider (2). If $\dim(R) = 1$, then (1) yields $\dim(R_p) = 1$ for every nonzero p.

Conversely, let $0 = p_0 \subseteq \cdots \subseteq p_r \subset R$ be a chain of primes. Set $p'_i := p_i R_p$. Then $0 = p'_0 \subseteq \cdots \subseteq p'_r$ is a chain of primes by (11.12)(2). So if $\dim(R_p) = 1$, then $r \leq 1$. Thus if $\dim(R_p) = 1$ for every nonzero p, then $\dim(R) \leq 1$, as required. □

Exercise (24.5) . — Let R be a Dedekind domain, S a multiplicative subset. Show that $S^{-1}R$ is Dedekind if there's a nonzero prime p with $p \cap S = \emptyset$, and that $S^{-1}R = \text{Frac}(R)$ if not.

Solution: Assume there's a nonzero p with $p \cap S = \emptyset$. Then $0 \notin S$. So $S^{-1}R$ is a domain by (11.2). And $S^{-1}R$ is normal by (11.32). Further, $S^{-1}R$ is Noetherian by (16.7). Also, $\dim(S^{-1}R) = 1$ by (24.4)(1). Thus $S^{-1}R$ is Dedekind.

Assume there's no nonzero p with $p \cap S = \emptyset$. Then $S^{-1}R$ has no nonzero primes by (11.12)(2). So $S^{-1}R$ is a field by (2.12). Thus (2.3) gives $S^{-1}R = \text{Frac}(R)$. □

Exercise (24.18) . — Let R be a Dedekind domain, and a, b, c ideals. By first reducing to the case that R is local, prove that

\[
\begin{align*}
\forall i \cap (b + c) &= (\forall i \cap b) + (\forall i \cap c), \\
\forall a + (\forall b \cap c) &= (\forall a + b) \cap (\forall a + c).
\end{align*}
\]

Solution: By (13.53), it suffices to establish the two equations after localizing at each maximal ideal p. But localization commutes with intersection and sum by (12.12)(6)(b), (7)(b). So the new equations look like the original ones, but with a, b, c replaced by a_p, b_p, c_p. And R_p is a DVR by (24.6). So replace R by R_p.

Referring to (23.1), take a uniformizing parameter t. Say $a = \langle t^i \rangle$ and $b = \langle t^j \rangle$ and $c = \langle t^k \rangle$. Then the two equations in questions are equivalent to these two:

\[
\begin{align*}
\max\{i, \min\{j, k\}\} &= \min\{\max\{i, j\}, \max\{i, k\}\}, \\
\min\{i, \max\{j, k\}\} &= \max\{\min\{i, j\}, \min\{i, k\}\}.
\end{align*}
\]

However, these two equations are easy to check for any integers i, j, k. □

Exercise (24.19) . — Prove that a semilocal Dedekind domain A is a PID. Begin by proving that each maximal ideal is principal.
Solutions

(24.20) / (24.21) Dedekind Domains

Solution: Let p_1, \ldots, p_r be the maximal ideals of A. Let’s prove they are principal, starting with p_1. By Nakayama’s lemma (10.6), $p_1A_{p_1} \neq p_1^2A_{p_1}$; so $p_1 \neq p_1^2$. Take $y \in p_1 - p_1^2$. The ideals p_1^2, p_2, \ldots, p_r are pairwise comaximal because no two of them lie in the same maximal ideal. Hence, by the Chinese Remainder Theorem, (1.21), there is an $x \in A$ with $x \equiv y \mod p_1^2$ and $x \equiv 1 \mod p_i$ for $i \geq 2$.

The Main Theorem of Classical Ideal Theory (24.8) gives $(x) = p_1^{n_1}p_2^{n_2} \cdots p_r^{n_r}$ with $n_i \geq 0$. But $x \not\in p_i$ for $i \geq 2$; so $n_i = 0$ for $i \geq 2$. Further, $x \in p_1 - p_1^2$; so $n_1 = 1$. Thus $p_1 = (x)$. Similarly, all the other p_i are principal.

Finally, let a be any nonzero ideal. Then the Main Theorem, (24.8), yields $a = \prod p_i^{n_i}$ for some n_i. Say $p_i = (x_i)$. Then $a = (\prod x_i^{n_i})$, as desired. \hfill \square

Exercise (24.20). — Let R be a Dedekind domain, and a a nonzero ideal. Prove (1) R/a is PIR, and (2) a is generated by two elements.

Solution: To prove (1), let p_1, \ldots, p_r be the associated primes of a, and set $S := \bigcap_i S_{p_i}$. Then S is multiplicative. Set $R' := S^{-1}R$. Then R' is Dedekind by (24.5). Let’s prove R' is semilocal.

Let q be a maximal ideal of R'. Set $p := q \cap R$. Then $q = pR'$ by (11.12)(2). So p is nonzero, whence maximal since R has dimension 1. Suppose p is distinct from all the p_i. Then p and the p_i are pairwise comaximal. So, by the Chinese Remainder Theorem, (1.21)(4)(c), there’s a $u \in R$ that is congruent to 0 modulo p and to 1 modulo each p_i. But $S_{p_i} := R - p_i$. Hence, $u \in p \cap S$, but $q = pR'$, a contradiction. Thus $p, p' \in R', \ldots, p, R'$ are all the maximal ideals of R'.

So R' is a PID by (24.19): so every ideal in R'/aR' is principal. But by (12.15), $R'/aR' = S^{-1}(R/a)$. Finally, note that each $u \in S$ maps to a unit in R/a, as its image lies in no maximal ideal of R/a. So $S^{-1}(R/a) = R/a$ by (11.15.1) and (11.4). Thus (1) holds.

Alternatively, we can prove (1) without using (24.19), as follows. The Main Theorem of Classical Ideal Theory, (24.8), yields $a = p_1^{n_1} \cdots p_r^{n_r}$ for distinct maximal ideals p_i. The $p_i^{n_i}$ are pairwise comaximal. So, by the Chinese Remainder Theorem, (1.21), there’s a canonical isomorphism:

$$R/a \cong R/p_1^{n_1} \times \cdots \times R/p_r^{n_r}.$$

Next, we prove each $R/p_i^{n_i}$ is a PIR. Thus (19.27)(1) yields (1).

To prove $R/p_i^{n_i}$ is a PIR, note $p_i/p_i^{n_i}$ is the only prime in $R/p_i^{n_i}$, so each $u \in S_{p_i}$ maps to a unit in $R/p_i^{n_i}$. So $R/p_i^{n_i} = S_{p_i}^{-1}(R/p_i^{n_i})$ by (11.15.1) and (11.4). But $S_{p_i}^{-1}(R/p_i^{n_i}) = R_{p_i}/p_i^{n_i}$, by (12.15). Further, R_{p_i} is a DVR by (24.6), so a PIR by (23.1.3). Thus $R/p_i^{n_i}$ is a PIR. Thus again (1) holds.

Consider (2). Let $x \in a$ be nonzero. By (1), there is a $y \in a$ whose residue generates $a/⟨x⟩$. Then $a = ⟨x, y⟩$. \hfill \square

Exercise (24.21). — Let R be a Dedekind domain, and M a finitely generated module. Assume M is torsion; that is, $T(M) = M$. Show $M \cong \bigoplus_{i,j} R/p_i^{n_i}$ for unique nonzero primes p_i and unique $n_{ij} > 0$.

Solution: Say m_1, \ldots, m_n generate M. Since M is torsion, for each j there’s a nonzero $x_j \in R$ with $x_jm_j = 0$. As R is a domain, $x_1 \cdots x_n$ is nonzero, and it is in Ann(M). Thus Ann(M) $\neq 0$.

Using (24.8), write Ann(M) = $\prod_{i=1}^n p_i^{n_i}$. Then $V(\text{Ann}(M)) = \bigcup_{i=1}^n V(p_i)$ by (13.1). But $V(\text{Ann}(M)) = \text{Supp}(M)$ by (13.4). Also, since each p_i is maximal, $V(p_i) = \{p_i\}$ by (13.16)(2). Thus Supp(M) = $\{p_1, \ldots, p_n\}$.

397
Hence M has finite length by (19.26). Thus (19.3) yields $M = \prod_{i=1}^{n} M_{p_i}$.

By (24.6), each R_{p_i} is a DVR; so each is a local PID by (23.1). Therefore, $M_{p_i} = \bigoplus R_{p_i}/p_{i,j}^{u_{i,j}} R_{p_i}$ with unique $u_{i,j} > 0$ by (5.41)(3). But p_i is maximal. So $R_{p_i}/p_{i,j}^{u_{i,j}} R_{p_i} = R/p_i^{u_{i,j}}$ by (12.31). Thus $M \cong \bigoplus_{i,j} R/p_i^{u_{i,j}}$. □

Exercise (24.22). Let R be a Dedekind domain; X a variable; $F, G \in R[X]$. Show $c(FG) = c(F)c(G)$.

Solution: Owing to (13.56), it suffices to show $c(FG)R_p = c(F)c(G)R_p$ for any given nonzero prime p. But R_p is a DVR by (24.6), so a UFD by (23.1). So $c(G)R_p = \langle f \rangle$ and $c(F)R_p = \langle g \rangle$ and $c(FG)R_p = \langle h \rangle$ where f, g, h are the gcd’s of the coefficients of F, G, FG viewed in $R_p[X]$. But $fg = h$ by (21.34)(3). Thus $c(FG) = c(F)c(G)$, as desired. □

Exercise (24.23). Let R be a Dedekind domain; $x_1, \ldots, x_n \in R$; and a_1, \ldots, a_n ideals. Prove that the system of congruences $x \equiv x_i \mod a_i$ for all i has a solution $x \in R$ if and only if $x_i \equiv x_j \mod (a_i + a_j)$ for $i \neq j$. In other words, prove the exactness (in the middle) of the sequence of R-modules

$$R \xrightarrow{\varphi} \bigoplus_{i=1}^{n} R/a_i \xrightarrow{\psi} \bigoplus_{i<j} R/(a_i + a_j)$$

where $\varphi(y)$ is the vector of residues of y in the R/a_i and where $\psi(y_1, \ldots, y_n)$ is the vector of residues of the $y_i - y_j$ in $R/(a_i + a_j)$.

Solution: Plainly $\text{Ker}(\psi) \supset \text{Im}(\varphi)$. To prove $\text{Ker}(\psi) \subset \text{Im}(\varphi)$, it suffices, by (13.9), to do so after localizing at any maximal ideal. So assume R is local. Then (24.6) implies R is a DVR.

Each a_i is now a power of the maximal ideal by (23.1.3). Reorder the a_i so that $a_1 \subset \cdots \subset a_n$. Then $a_1 + a_j = a_j$ for all j. Given $z \in \text{Ker}(\psi)$, represent z by (z_1, \ldots, z_n) with $z_i \in R$. Then $z_i - z_j \in a_j$ for all j. So (z_1, \ldots, z_1) represents z too. So $\text{Im}(z_1) = z$. Thus $\text{Ker}(\psi) \subset \text{Im}(\varphi)$, as desired. □

Exercise (24.24). Let k be an algebraically closed field, $P := k[X_1, \ldots, X_n]$ a polynomial ring, and $F_1, \ldots, F_m \in P$. Set $\mathfrak{P} := \langle F_1, \ldots, F_m \rangle$. For all i, j, define $\partial F_i/\partial X_j \in P$ formally as in (1.18.1). Let \mathfrak{A} be the ideal generated by \mathfrak{P} and all the $n-1$ by $n-1$ minors M of the m by n matrix $\partial F_i/\partial X_j$. Set $R := P/\mathfrak{P}$. Assume R is a domain of dimension 1. Show R is Dedekind if and only if $1 \in \mathfrak{A}$.

Solution: Let $\mathfrak{M} \supset \mathfrak{P}$ be a maximal ideal of P. Since k is algebraically closed, $\mathfrak{M} = \langle X_1 - x_1, \ldots, X_n - x_n \rangle$ for some $x := (x_1, \ldots, x_n) \in k^n$ by (15.5).

Assume $1 \in \mathfrak{A}$. Then there’s a minor $M \notin \mathfrak{M}$. So $M(x) \neq 0$. So $((\partial F_i/\partial X_j)(x))$ has rank at least $n-1$. But $\dim R_{\mathfrak{M}} = 1$ by (15.12). Hence $R_{\mathfrak{M}}$ is regular by (21.41)(1), so a DVR by (23.6). Thus (24.6) implies R is Dedekind.

Assume $1 \notin \mathfrak{A}$. Then there’s an $\mathfrak{M} \supset \mathfrak{A}$. So $M(x) = 0$ for every minor M. So $((\partial F_i/\partial X_j)(x))$ has rank less than $n-1$. So $R_{\mathfrak{M}}$ is not regular by (21.41)(1). Thus (24.6) implies R is not Dedekind. □
25. Fractional Ideals

Exercise (25.2). — Let R be a domain, M and N nonzero fractional ideals. Prove that M is principal if and only if there exists some isomorphism $M \simeq R$. Construct the following canonical surjection and canonical isomorphism:

$$\pi: M \otimes N \to MN \text{ and } \varphi: (M : N) \to \text{Hom}(N,M).$$

Solution: If $M \simeq R$, let x correspond to 1; then $M = Rx$. Conversely, assume $M = Rx$. Then $x \neq 0$ as $M \neq 0$. Form the map $R \to M$ with $a \mapsto ax$. It's surjective as $M = Rx$. It's injective as $x \neq 0$ and $M \subset \text{Frac}(R)$.

Form the canonical $M \times N \to MN$ with $(x,y) \mapsto xy$. It's bilinear. So it induces a map $\pi: M \otimes N \to MN$, and clearly π is surjective.

Define φ as follows: given $z \in (M : N)$, define $\varphi(z): N \to M$ by $\varphi(z)(y) := yz$. Clearly, φ is R-linear. Say $y \neq 0$. Then $yz = 0$ implies $z = 0$; thus, φ is injective.

Finally, given $\theta: N \to M$, fix a nonzero $n \in N$, and set $z := \theta(n)/n$. Given $y \in N$, say $y = a/b$ and $n = c/d$ with $a,b,c,d \in R$. Then $bcy = adn$. So $b\theta(y) = ad\theta(n)$. Hence $\theta(y) = yz$. Therefore, $z \in (M : N)$ as $y \in N$ is arbitrary and $\theta(y) \in M$; further, $\theta = \varphi(z)$. Thus, φ is surjective, as desired. \qed

Exercise (25.6). — Let R be a domain, M and N fractional ideals. Prove that the map $\pi: M \otimes N \to MN$ of (25.2) is an isomorphism if M is locally principal.

Solution: By (13.9), it suffices to prove that, for each maximal ideal m, the localization $\pi_m: (M \otimes N)_m \to (MN)_m$ is bijective. But $(M \otimes N)_m = M_m \otimes N_m$ by (12.27), and $(MN)_m = M_mN_m$ by (25.4). By hypothesis, $M_m = R_m$ for some R_m. Hence $R_m \simeq R_m$. And $R_m \otimes N_m = N_m$ by (8.5)(2). Thus $\pi_m \simeq 1_{N_m}$. \qed

Exercise (25.9). — Let R be a domain, M and N fractional ideals. Prove this:

1. Assume N is invertible. Then $(M : N) = M \cdot N^{-1}$.
2. Both M and N are invertible if and only if their product MN is. If so, then $(MN)^{-1} = N^{-1}M^{-1}$.

Solution: For 1, note that $N^{-1} = (R : N)$ by (25.8). So $M(R : N)N = M$. Thus $M(R : N) \subset (M : N)$. Conversely, note that $(M : N)N \subset M$. Hence $(M : N) = (M : N)(R : N) \subset M(R : N)$. Thus (1) holds.

In (2), if M and N are invertible, then $(MN)N^{-1}M^{-1} = MM^{-1} = R$; thus MN is invertible, and $N^{-1}M^{-1}$ is its inverse. Conversely, if MN is invertible, then $R = (MN)(MN)^{-1} = M(NMN)^{-1}$; thus, M is invertible. Similarly, N is invertible. Thus (2) holds. \qed

Exercise (25.12). — Let R be a UFD. Show that a fractional ideal M is invertible if and only if M is principal and nonzero.

Solution: By (25.7), a nonzero principal ideal is always invertible.

Conversely, assume M is invertible. Then trivially $M \neq 0$. Say $1 = \sum m_in_i$ with $m_i \in M$ and $n_i \in M^{-1}$. Fix a nonzero $m \in M$.

Then $m = \sum m_in_im$. But $n_im \in R$ as $m \in M$ and $n_i \in M^{-1}$. Set

$$d := \gcd\{n_im\} \in R \quad \text{and} \quad x := \sum(n_im/d)m_i \in M.$$

Then $m = dx$.

Given $m' \in M$, write $m'/m = a/b$ where $a, b \in R$ are relatively prime. Then $d' := \gcd\{n_im'\} = \gcd\{n_im/a\} = a \gcd\{n_im\}/b = ad/b$.

399
Solutions (25.15) / (25.23)

Fractional Ideals

So $m' = (a/b)m = (ad/b)x = d'x$. But $d' \in R$. Thus $M = Rx$. \hfill \Box

Exercise (25.15). — Show that it is equivalent for a ring R to be either a PID, a 1-dimensional UFD, or a Dedekind UFD.

Solution: If R is a PID, then R is a 1-dimensional UFD by (2.17).

Assume R is a 1-dimensional UFD. Then every nonzero prime is of height 1, so principal by (21.32). So R is Noetherian by (16.8). Also R is normal by (10.21). Thus R is Dedekind.

Finally, assume R is a Dedekind UFD. Then every nonzero ordinary ideal is invertible by (25.14), so is principal by (25.12). Thus R is a PID.

Alternatively and more directly, every nonzero prime is of height 1 as dim $R = 1$, so is principal by (21.32). But, by (24.8), every nonzero ideal is a product of nonzero prime ideals. Thus again, R is a PID. \hfill \Box

Exercise (25.17). — Let R be an ring, M an invertible module. Prove that M is finitely generated, and that, if R is local, then M is free of rank 1.

Solution: Say $\alpha: M \otimes N \to R$ and $1 = \alpha(\sum m_i \otimes n_i)$ with $m_i \in M$ and $n_i \in N$. Given $m \in M$, set $a_i := \alpha(m \otimes n_i)$. Form this composition:

$$\beta: M = M \otimes R \to M \otimes M \otimes N = M \otimes N \otimes M \to R \otimes M = M.$$

Then $\beta(m) = \sum a_i m_i$. But β is an isomorphism. Thus the m_i generate M.

Suppose R is local. Then $R - R^\times$ is an ideal. So $u := \alpha(m_i \otimes n_i) \in R^\times$ for some i. Set $m := u^{-1} m_i$ and $n := n_i$. Then $\alpha(m \otimes n) = 1$. Define $\nu: M \to R$ by $\nu(m') := \alpha(m' \otimes n)$. Then $\nu(m) = 1$; so ν is surjective. Define $\mu: R \to M$ by $\mu(x) := xm$. Then $\mu \nu(m') = \nu(m') m = \beta(m')$, or $\mu \nu = \beta$. But β is an isomorphism. So ν is injective. Thus ν is an isomorphism, as desired. \hfill \Box

Exercise (25.18). — Show these conditions on an R-module M are equivalent:

1. M is invertible.
2. M is finitely generated, and $M_m \simeq R_m$ at each maximal ideal m.
3. M is locally free of rank 1.

Assuming the conditions, show M is finitely presented and $M \otimes \text{Hom}(M, R)/R$.

Solution: Assume (1). Then M is finitely generated by (25.17). Further, say $M \otimes N \simeq R$. Let m be a maximal ideal. Then $M_m \otimes N_m \simeq R_m$. Hence $M_m \simeq R_m$ again by (25.17). Thus (2) holds.

Conditions (2) and (3) are equivalent by (13.62).

Assume (3). Then (2) holds; so $M_m \simeq R_m$ at any maximal ideal m. Also, M is finitely presented by (13.15); so $\text{Hom}_R(M, R)_m = \text{Hom}_{R_m}(M_m, R_m)$ by (12.19).

Consider the evaluation map

$$\text{ev}(M, R): M \otimes \text{Hom}(M, R) \to R \text{ defined by } \text{ev}(M, R)(m, \alpha) := \alpha(m).$$

Clearly, $\text{ev}(M, R)_m = \text{ev}(M_m, R_m)$. Clearly, $\text{ev}(R_m, R_m)$ is bijective. So $\text{ev}(M, R)$ is bijective by (13.9). Thus the last assertions hold; in particular, (1) holds. \hfill \Box

Exercise (25.23). — Let R be a Dedekind domain, S a multiplicative subset. Prove $M \to S^{-1}M$ induces a surjective group map $\pi: \text{Pic}(R) \to \text{Pic}(S^{-1}R)$.

400
Solutions (26.3) / (26.17) Arbi trary Valuation Rings

Solution: First, assume $S^{-1}R = \text{Frac}(R)$. Since a field is a UFD, by (25.22) $\text{Pic}(S^{-1}R) = 0$. Thus, trivially, π is a surjective group map.

So assume $S^{-1}R \neq \text{Frac}(R)$. By (24.5), then $S^{-1}R$ is Dedekind.

Given fractional ideals M and N of R, note $(S^{-1}M)(S^{-1}N) = S^{-1}(MN)$ by (25.4). So if $MN = R$, then $(S^{-1}M)(S^{-1}N) = S^{-1}R$; in other words, if M is invertible, so is $S^{-1}M$. Thus $M \mapsto S^{-1}M$ defines a map $\mathcal{F}(R) \to \mathcal{F}(S^{-1}R)$, and as noted, this map preserves multiplication; in other words, it’s a group map.

Suppose $M = xR$ for some nonzero $x \in R$. Then $S^{-1}M = xS^{-1}R$. Thus $M \mapsto S^{-1}M$ carries $\mathcal{F}(R)$ into $\mathcal{F}(S^{-1}R)$, so induces a group map on the quotients, namely, $\pi: \text{Pic}(R) \to \text{Pic}(S^{-1}R)$.

Finally, given $P \in \mathcal{F}(S^{-1}R)$, note P is finitely generated over $S^{-1}R$ by (25.10). So there’s a nonzero $y \in S^{-1}R$ with $yP \subset S^{-1}R$ by (25.3). Hence there’s a nonzero ordinary ideal a of R with $S^{-1}a = yP$ by (11.12)(1). Since R is Dedekind, a is invertible by (25.20). Thus $\mathcal{F}(R) \to \mathcal{F}(S^{-1}R)$ is surjective, so π is too. \hfill \Box

26. Arbitrary Valuation Rings

Exercise (26.3) . — Prove that a valuation ring V is normal.

Solution: Set $K := \text{Frac}(V)$, and let m be the maximal ideal. Take $x \in K$ integral over V, say $x^n + a_1x^{n-1} + \cdots + a_n = 0$ with $a_i \in V$. Then
$$1 + a_1x^{-1} + \cdots + a_nx^{-n} = 0. \quad (26.3.1)$$
If $x \notin V$, then $x^{-1} \notin m$ by (26.2). So (26.3.1) yields $1 \in m$, a contradiction. Hence $x \in V$. Thus V is normal. \hfill \Box

Exercise (26.11) . — Let V be a valuation ring. Prove these statements:

(1) Every finitely generated ideal a is principal.
(2) V is Noetherian if and only if V is a DVR.

Solution: To prove (1), say $a = \langle x_1, \ldots, x_n \rangle$ with $x_i \neq 0$ for all i. Let v be the valuation. Suppose $v(x_1) \leq v(x_i)$ for all i. Then $x_i/x_1 \in V$ for all i. So $x_i \in \langle x_1 \rangle$. Hence $a = \langle x_1 \rangle$. Thus (1) holds.

To prove (2), first assume V is Noetherian. Then V is local by (26.2), and by (1) its maximal ideal m is principal. Hence V is a DVR by (23.6). Conversely, assume V is a DVR. Then V is a PID by (23.1), so Noetherian. Thus (2) holds. \hfill \Box

Exercise (26.16) . — Let V be a domain. Show that V is a valuation ring if and only if, given any two ideals a and b, either a lies in b or b lies in a.

Solution: First, suppose V is a valuation ring. Suppose also $a \nsubseteq b$: say $x \in a$, but $x \notin b$. Take $y \in b$. Then $x/y \notin V$; else $x = (x/y)y \in b$. So $y/x \in V$. Hence $y = (y/x)x \in a$. Thus $b \subseteq a$.

Conversely, let $x, y \in V \setminus \{0\}$, and suppose $x/y \notin V$. Then $\langle x \rangle \nsubseteq \langle y \rangle$; else, $x = wy$ with $w \in V$. Hence $\langle y \rangle \subset \langle x \rangle$ by hypothesis. So $y = zx$ for some $z \in V$; in other words, $y/x \in V$. Thus V is a valuation ring. \hfill \Box

Exercise (26.17) . — Let V be a valuation ring of K, and $V \subset W \subset K$ a subring. Prove that W is also a valuation ring of K, that its maximal ideal p lies in V, that V/p is a valuation ring of the field W/p, and that $W = V_p$.
Solutions (26.18) / (26.20) Arbitrary Valuation Rings

Solution: First, let \(x \in K - W \subseteq K - V \). Then \(1/x \in V \subseteq W \). Thus \(W \) is a valuation ring of \(K \).

Second, let \(y \in p \). Then (26.2) implies \(1/y \in K - W \subseteq K - V \). So \(y \in V \).

Third, \(x \in W - V \) implies \(1/x \in V \); whence, \(V/p \) is a valuation ring of \(W/p \).

Fourth, \(V_p \subseteq W_p = W \). Conversely, let \(x \in W - V \). Then \(1/x \in V \). But \(1/x \notin p \) as \(p \) is the maximal ideal of \(W \). So \(x \in V_p \). Thus \(W = V_p \). \(\Box \)

Exercise (26.18). — Let \(K \) be a field, \(S \) the set of local subrings ordered by domination. Show that the valuation rings of \(K \) are the maximal elements of \(S \).

Solution: Given a valuation ring \(V \) of \(K \), note \(V \in S \) by (26.2). Given \(W \in S \) dominating \(V \), let \(m \) and \(n \) be the maximal ideals of \(V \) and \(W \).

Given any nonzero \(x \in W \), note \(1/x \notin n \) as \(x(1/x) = 1 \notin n \). So also \(1/x \notin m \). So \(x \in V \) by (26.2). Hence, \(W = V \). Thus \(V \) is maximal.

Alternatively, \(n \subseteq V \) and \(W = V_n \) by (26.17). But \(n \subseteq m \) as \(W \) dominates \(V \). So \(n = m \). Hence, \(W = V \). Thus \(V \) again is maximal.

Conversely, let \(V \in S \) be maximal. By (26.6), \(V \) is dominated by a valuation ring \(W \) of \(K \). By maximality, \(V = W \). \(\Box \)

Exercise (26.19). — Let \(V \) be a valuation ring of a field \(K \). Let \(\varphi: V \rightarrow R \) and \(\psi: R \rightarrow K \) be ring maps. Assume \(\text{Spec}(\varphi) \) is closed and \(\psi\varphi: V \rightarrow K \) is the inclusion. Set \(W := \psi(R) \). Show \(W = V \).

Solution: Since \(\psi\varphi: V \rightarrow K \) is the inclusion, \(V \subseteq W \subseteq K \). So \(W \) is also a valuation ring, its maximal ideal \(p \) lies in \(V \), and \(W = V_p \) by (26.17).

Set \(m := \psi^{-1}p \). Then \(m \) is a maximal ideal of \(R \), as \(W = \psi(R) \). So \(\{m\} \) is a closed subset of \(\text{Spec}(R) \) by (13.16)(2). But \(\text{Spec}(\varphi) \) is closed. So \(\{\varphi^{-1}m\} \) is a closed subset of \(\text{Spec}(V) \). So \(\varphi^{-1}m \) is the maximal ideal of \(V \) by (13.16)(2). But \(\varphi^{-1}m = \varphi^{-1}\psi^{-1}p = p \cap V = p \). Thus \(W = V_p = V \), as desired. \(\Box \)

Exercise (26.20). — Let \(\varphi: R \rightarrow R' \) be a map of rings. Prove that, if \(R' \) is integral over \(R \), then for any \(R \)-algebra \(C \), the map \(\text{Spec}(\varphi \otimes_R C) \) is closed; further, the converse holds if also \(R' \) has only finitely many minimal primes. To prove the converse, start with the case where \(R' \) is a domain, take \(C \) to be an arbitrary valuation ring of \(\text{Frac}(R') \) containing \(\varphi(R) \), and apply (26.19).

Solution: First, assume \(R' \) is integral over \(R \). Then \(R' \otimes_R C \) is integral over \(C \) by (10.39). Thus (14.11) implies that \(\text{Spec}(\varphi \otimes_R C) \) is closed.

For the converse, replacing \(R \) by \(\varphi(R) \), we may assume \(\varphi: R \rightarrow R' \) is an inclusion.

First, assume \(R' \) is a domain. Set \(K := \text{Frac}(R') \). By (26.7), the integral closure of \(R \) in \(K \) is the intersection of all valuation rings \(V \) of \(K \) containing \(R \). So given a \(V \), it suffices to show \(R' \subseteq V \). By hypothesis, \(\text{Spec}(\varphi \otimes_R V) \) is closed. Define \(\psi: R' \otimes_R V \rightarrow K \) by \(\psi(x \otimes y) = xy \). Then \(\psi \circ (\varphi \otimes_R V): V \rightarrow K \) is the inclusion. So (26.19) yields \(\psi(R' \otimes_R V) = V \). Thus \(R' \subseteq V \), as desired.

To derive the general case, let \(p_1, \ldots, p_r \) be the minimal primes of \(R' \), and \(\kappa_i: R' \rightarrow R'/p_i \), the quotient map. Given any \(R \)-algebra \(C \), note that \(\kappa_i \otimes_R C \) is surjective. So \(\text{Spec}(\kappa_i \otimes_R C) \) is closed by (13.17). But a composition of closed maps is closed. So by the first case, each \(R'/p_i \) is integral over \(R \). Thus (10.42)(1) implies that \(\prod_{i=1}^r R'/p_i \) is integral over \(R \).

Set \(\mathfrak{a} := \bigcap_{i=1}^r p_i \). Then the canonical map \(R'/\mathfrak{a} \rightarrow \prod_{i=1}^r R'/p_i \) is injective. So \(R'/\mathfrak{a} \) is integral over \(R \). So given any \(x \in R' \), there are \(a_i \in R \) and \(n \geq 1 \) with...
Exercise (26.21) . — Let \(V \) be a valuation ring with valuation \(v : K^\times \to \Gamma \), and \(p \) a prime of \(V \). Set \(\Delta := v(V_p^\times) \). Prove the following statements:

(1) \(\Delta \) and \(\Gamma/\Delta \) are the value groups of the valuation rings \(V/p \) and \(V_p \).

(2) \(v(V - p) \) is the set of nonnegative elements \(\Delta_{\geq 0} \), and \(p = V - v^{-1}\Delta_{\geq 0} \).

(3) \(\Delta \) is isolated in \(\Gamma \); that is, given \(\alpha \in \Delta \) and \(0 \leq \beta \leq \alpha \), also \(\beta \in \Delta \).

Solution: For (1), set \(L := V_p/p \). Note that \(p = pV_p \) and that \(V/p \) and \(V_p \) are valuation rings of \(L \) and \(K \) by (26.17) with \(W := V_p \).

By definition, the value group of \(V/p \) is \(L^\times/(V/p)^\times \). Let’s see that the latter is equal to \(\Delta \). Form the quotient map \(\kappa : V_p \to L \). Note \(V_p - p = \kappa^{-1}(L - 0) \). But \(V_p - p = V_p^\times \) and \(L - 0 = L^\times \). So \(\kappa \) induces a surjection \(\sigma : V_p^\times \to L^\times \). Moreover, as \(\kappa \) is a ring map, \(\sigma \) is a homomorphism of multiplicative groups.

Let \(m \) be the maximal ideal of \(V \). Then \(V - m = \kappa^{-1}((V/p) - (m/p)) \). But \(V - m = V^\times \) and \((V/p) - (m/p) = (V/p)^\times \). So \(V^\times = \sigma^{-1}(V/p)^\times \). So \(\sigma \) induces an isomorphism \(V_p^\times/V^\times \cong L^\times/(V/p)^\times \). Thus the value group of \(V/p \) is equal to \(V_p^\times/V^\times \), which is just \(\Delta \).

The value group of \(V_p \) is \(K^\times/V_p^\times \). Form the canonical map \(K^\times/V^\times \to K^\times/V_p^\times \).

It is surjective, its source is \(\Gamma \), and its kernel is \(V_p^\times/V^\times \), or \(\Delta \). Thus (1) holds.

For (2), recall \(\Gamma_{\geq 0} := v(V - 0) \). But \(\Delta_{\geq 0} := v(V_p^\times) \cap \Gamma_{\geq 0} \). Thus \(\Delta_{\geq 0} \supset v(V - p) \).

Conversely, given \(\alpha \in \Delta_{\geq 0} \), say \(\alpha = v(x) \) with \(x \in V_p^\times \) and \(\alpha = v(y) \) with \(y \in V - 0 \). Then \(v(x) = v(y) \). So \(x = yu \) with \(u \in V^\times \). So \(x \in V \). But \(x \) isn’t in the maximal ideal of \(V_p \), which is \(p \) by (26.17). Thus \(x \in V - p \). Thus \(\Delta_{\geq 0} = v(V - p) \).

So \(V - p \subset v^{-1}\Delta_{\geq 0} \). Conversely, given \(x \in K^\times \) with \(v(x) \in \Delta_{\geq 0} \), say \(v(x) = v(y) \) with \(y \in V - p \). Then \(x = yu \) with \(u \in V^\times \). So \(x \in V - p \). Thus \(V - p = v^{-1}\Delta_{\geq 0} \). Thus (2) holds.

For (3), given \(\alpha \in \Delta \) and \(0 \leq \beta \leq \alpha \), say \(\alpha = v(x) \) with \(x \in V - p \) owing to (2) and say \(\beta = v(y) \) with \(y \in V - 0 \). But \(\alpha - \beta \geq 0 \). So \(v(x/y) \geq 0 \). So \(x/y \in V \), or \(x \in yV \), or \(y \notin p \). So \(y \notin p \). So \(y \in V_p^\times \). Thus \(\beta \in \Delta \). Thus (3) holds.

Exercise (26.22) . — Let \(V \) be a valuation ring with valuation \(v : K^\times \to \Gamma \). Prove that \(p \mapsto v(V_p^\times) \) is a bijection \(\gamma \) from the primes \(p \) of \(V \) onto the isolated subgroups \(\Delta \) of \(\Gamma \) and that its inverse is \(\Delta \mapsto V - v^{-1}\Delta_{\geq 0} \).

Solution: The \(v(V_p^\times) \) are isolated by (26.21)(3). So \(\gamma \) is well defined. It is injective owing to (26.21)(2). Let’s prove it is surjective and find its inverse.

Given an isolated subgroup \(\Delta \), set \(p := V - v^{-1}\Delta_{\geq 0} \). Let’s check that \(p \) is an ideal. Given nonzero \(x, y \in p \) and \(z \in V \), note \(v(x), v(y), v(z) \geq 0 \). Suppose \(x + yz \neq 0 \). Then (26.8.2) and (26.8.1) yield

\[
v(x + yz) \geq \min(v(x), v(yz)) = \min(v(x), v(y) + v(z)) \geq \min(v(x), v(y)) \geq 0.
\]

But \(x, y \in p \). So \(v(x), v(y) \notin \Delta \). But \(\Delta \) is isolated. So \(v(x + yz) \notin \Delta \). Thus \(x + yz \notin p \). Thus \(p \) is an ideal.

Let’s check \(p \) is prime. Given \(x, y \in V - p \), note \(v(x), v(y) \in \Delta_{\geq 0} \). But \(\Delta_{\geq 0} \) is a semigroup. So \(v(xy) = v(x) + v(y) \in \Delta_{\geq 0} \). Thus \(xy \in V - p \). Thus \(p \) is prime.

Finally, (26.21)(2) now implies that \(v(V - p) = v(V_p^\times) \). But \(v(V - p) = \Delta_{\geq 0} \) by definition of \(p \). Thus \(v(V_p^\times) = \Delta \), as desired.
Exercise (26.23). — Let V be a valuation ring, such as a DVR, whose value group Γ is Archimedean; that is, given any nonzero $\alpha, \beta \in \Gamma$, there’s $n \in \mathbb{Z}$ such that $n\alpha > \beta$. Show that V is a maximal proper subring of its fraction field K.

Solution: Let R be a subring of K strictly containing V, and fix $a \in R - V$. Given $b \in K$, let α and β be the values of a and b. Then $\alpha < 0$. So, as Γ is Archimedean, there’s $n > 0$ such that $-n\alpha > -\beta$. Then $\nu(b/a^n) > 0$. So $b/a^n \in V$. So $b = (b/a^n)a^n \in R$. Thus $R = K$. □

Exercise (26.24). — Let R be a Noetherian domain, $K := \text{Frac}(R)$, and L a finite extension field (possibly $L = K$). Prove the integral closure R' of R in L is the intersection of all DVRs V of L containing R by modifying the proof of (26.7): show y is contained in a height-1 prime p of $R[y]$ and apply (26.14) to $R[y]_p$.

Solution: Every DVR V is normal by (23.6). So if V is a DVR of L and $V \supset R$, then $V \supset R$. Thus $\bigcap_{V \supset R} V \supset R$.

To prove the opposite inclusion, take any $x \in K - \overline{R}$. To find a DVR V of L with $V \supset R$ and $x \notin V$, set $y := 1/x$. If $1/y \in R[y]$, then for some n,

$$1/y = a_0y^n + a_1y^{n-1} + \cdots + a_n \quad \text{with} \quad a_\lambda \in R.$$

Multiplying by x^n yields $x^{n+1} - a_nx^n - \cdots - a_0 = 0$. So $x \notin \overline{R}$, a contradiction.

Thus y is a nonzero nonunit of $R[y]$. Also, $R[y]$ is Noetherian by the Hilbert Basis Theorem (16.10). So y lies in a height-1 prime p of $R[y]$ by the Krull Principal Ideal Theorem (21.8). Then $R[y]_p$ is Noetherian of dimension 1. But L/K is a finite field extension, so $L/\text{Frac}(R[y])$ is one too. Hence the integral closure R' of $R[y]_p$ in L is a Dedekind domain by (26.14). So by the Going-up Theorem (14.3), there’s a prime q of R' lying over $pR[y]_p$. Then as R' is Dedekind, R'_q is a DVR of L by (24.6). Further, $y \notin qR'_q$. Thus $x \notin R'_q$, as desired. □
References

Disposition of the Exercises in [4]

Chapter 1, text
1.12, p. 8.— Essentially (4.16)
1.13, p. 9.— Essentially (3.13) and (3.32)
1.18, p. 10.— Essentially (1.13) and (3.39)

Chapter 1, pp. 10–16
1.— Essentially (3.2), owing to (3.13.1).
2.— Essentially (3.42) and (4.20) and (2.35)(2)
3.— Essentially (3.43) and (8.32) and (2.35)(2)
4.— Contained in (3.44)(2)
5.— Contained in (3.7), (3.19), and (3.20)
6.— Essentially (3.33)(1)
7.— Essentially (2.37)
8.— Contained in (3.16)
9.— Essentially (3.14)
10.— Essentially (3.37)
11.— Contained in (1.2), (2.36), and (1.24)(5)
12.— Essentially (3.22)
13.— Essentially (14.13)
14.— Essentially (2.26)
15.— Contained in (13.1)
16.— Essentially (13.17) and (16.67)
17.— Contained in (13.1), (13.2), (13.39), and (13.41)
18.— Essentially (13.16)
19.— Essentially (16.48)
20.— Contained in (16.49), (16.68), and (16.50)(3)
21.— Contained in (13.1), (13.1.6), and (13.36) and (13.35)
22.— Essentially contained in (13.18), (1.12), and (13.1)
23.— Essentially (13.43), and (1.24)(5)
24.— Essentially (1.25), (1.26), (1.27), and (1.28)
25.— Essentially (13.44)
26.— Essentially (14.26)
27.— Contained in (1.29)(1), (1.17)(2), (3), (2.13), and (15.5)
28.— Contained in (1.29)

Chapter 2, text
2.2, p. 20.— Contained in (4.17)
2.15, p. 27.— Contained in (8.8)
2.20, p. 29.— Contained in (9.22)

Chapter 2, pp. 31–35
1.— Essentially (8.29)
2.— Essentially (8.27)(1)
3.— Essentially (10.10)(2)
4.— Contained in (9.5)
5.— Contained in (9.20)
6.— Essentially (8.31)
7.— Contained in (2.32)
8.— i) Contained in (9.21)
ii) Contained in (9.23)
9.— Essentially (5.5)
10.— Essentially (10.27)
11.— Contained in (10.5)(2), (8.25), and (5.32)
12.— Immediate from (5.15), (5.16), and (5.7)
13.— Contained in (8.21)
14.— Contained in (7.4)
15.— Contained in (7.5)
16.— Essentially (6.4)
17.— Essentially (7.2), and (7.11)
18.— Essentially (6.4)
19.— Essentially (7.9)
20.— Essentially (8.10)
21.— Contained in (7.4) and (7.16)(1)
22.— Essentially (7.20), and (7.16)(2)
23.— Essentially (8.33)
24.— Essentially (9.15)
25.— Essentially (9.8)(2)
26.— Essentially (9.15)
27.— Contained in (10.25)
28.— Essentially (10.26), and (2.37) and (13.22)

Chapter 3, text
3.0, p. 37.— Essentially (11.1)

Chapter 3, pp. 43–49
1.— Essentially (12.17)(2)
2.— Essentially (12.24)
3.— Contained in (12.20)(2) and (3)
4.— Essentially (11.15.1)
5.— Essentially (13.57)
6.— Essentially (3.26)
7.— Contained in (3.24) and (3.25)
8.— Essentially (11.23) and (3.25)
9.— Essentially (2.26), (14.7), and (11.26)
10.— Essentially (13.21)
11.— Essentially (13.22) and (13.2)
12.— Contained in (12.35)
13.— Contained in (12.35) and (13.52)
14.— Essentially (13.54)
15.— Essentially (10.5) or (5.32)(2)
16.— Essentially (9.28) and (13.47)
17.— Essentially (9.25)
18.— Essentially (13.48)
Disposition of the Exercises in [4]

19.—i) essentially (13.8) and (13.1); ii) iv), v) contained in (13.4); vi) essentially (13.7); ii), vii) essentially (13.46); viii) essentially (13.49)
20.—Essentially (13.24),
21.—i) essentially (13.25);
 ii) (13.26);
 iii) (13.27);
 iv) (13.28)
22.—Essentially (13.29)
23.—Essentially (13.39) and (13.40)
24.—Essentially (13.42)(2)
25.—Essentially (13.30)
26.—Essentially (13.31)
27.—Essentially (13.32)
28.—Contained in (13.33)
29.—Essentially (13.34)
30.—Essentially (13.33)(4)

Chapter 4, pp. 55–58
1.—Essentially (18.48)(2)
2.—Contained in (18.32)(1)
3.—Essentially (18.50)
4.—Essentially (18.28)
5.—Essentially (18.29)
6.—Essentially (18.51)
7.—Essentially (1.15)(1), (2.32)(1), and (18.52)
8.—Essentially (18.53)
9.—Contained in (18.39)
10.—Contained in (18.49), (18.54), (12.12)(8), and (18.39)(2)
11.—Essentially (18.55)
12.—Contained in (12.12)(6a), (4a), (12.38), and (18.56)
13.—Contained in (18.57)
14.—Essentially (17.9)
15.—Essentially (18.58)
16.—Contained in (18.46)
17.—Essentially (18.41)(2)
18.—Contained in (18.44)
19.—Essentially (18.49) and (18.60)
20.—Essentially (4.17)(2) and (12.22) and (12.39) and (18.57)(2)
21.—Essentially (18.61) and (18.3)(2) and (18.12)(1) and (4.17)(4) and (18.38)
22.—Essentially (18.39)(4)
23.—Contained in (18.48)(1) and (18.37)(6) and (12.23) and (18.43) and (18.45) and (18.46) and (18.47)

Chapter 5, pp. 67–73
1.—Essentially (14.11)
2.—Essentially (14.12)
3.—Contained in (10.39)
4.—Essentially (14.17)
5.—Essentially (14.10)
6.—Essentially (10.41)
7.—Essentially (10.38)
8.—Essentially (14.4)
9.—Essentially (15.17)
10.—Essentially (13.37) and (13.38)
11.—Essentially (14.8)
12.—Essentially (10.35) and (11.22)
13.—Essentially (14.18)
14.—Essentially (10.36) and (10.37)
15.—Essentially (14.19)
16.—Contained in (15.1) and (15.2)
17.—Contained in (15.5)
18.—Essentially (15.4)
19.—Contained in (15.5)
20.—Essentially (15.3)
21.—Essentially (15.19)
22.—Contained in (15.20)
23.—Contained in (15.32) and (15.43)
24.—Essentially (15.36)(2), and (15.45)
25.—Essentially (15.42)
26.—Essentially (15.38), and (15.39)
27.—Essentially (26.18)
28.—Essentially (26.16), and part of (26.17)
29.—Contained in (26.17)
30.—Contained in (26.8)
31.—Contained in (26.8)
32.—Essentially (26.21), and (26.22)
33.—Essentially (26.9)
34.—Essentially (26.19)
35.—Essentially (26.20)

Chapter 6, pp. 78–79
1.—Essentially (10.4), and (16.45)
2.—Contained in (16.11)
3.—Essentially (16.46)
4.—Contained in (16.16) and (16.43)
5.—Essentially (16.52)
6.—Essentially (16.69)
7.—Essentially (16.53) and (16.54)
8.—Essentially (16.55) and (16.57)
9.—Contained in (16.50)(3) and (16.54)
10.—Essentially (16.71)
11.—Essentially (16.58)
12.—Essentially (16.55)(2) and (16.56)

Chapter 7, pp. 84–88
1.—Essentially (16.8)
2.—Essentially (16.25)
3.—Contained in (18.34)
4.—Essentially (16.31)
5.—Essentially (16.18)
6.—Essentially (15.40)
7.—Follows easily from (16.10)
8.—Essentially (16.26)
9.—Essentially (16.29)
10.—Essentially (16.32)
11.—Essentially (16.66)
Disposition of the Exercises in [4]

12. — Essentially (16.28)
13. — Essentially (16.70)
14. — Essentially (15.21)
15. — Essentially (10.12), and (9.15)
16. — Contained in (13.15)
17. — Contained in (18.33)
18. — Contained in (18.18), (17.3), and (17.16)
19. — Contained in (18.18) and (18.34)
20. — Essentially (16.62) and (16.63)
21. — Essentially (16.64)
22. — Essentially (16.72)
23. — Essentially (16.65)
24. — Essentially (16.73)
25. — Contained in (16.74)
26. — Contained in (17.34)
27. — Essentially (17.35)

Chapter 8, pp. 91–92
1. — Essentially (18.57)(5), and (18.66)
2. — Essentially (19.20)
3. — Essentially (19.17)
4. — Essentially (19.21)
5. — Essentially (19.25)
6. — Essentially (19.16)

Chapter 9, p. 99
1. — Essentially (24.5) and (25.23)
2. — Essentially (24.22)
3. — Essentially (26.11)(2)
4. — Essentially (23.3)
5. — Contained in (25.21)
6. — Essentially (24.21)
7. — Essentially (24.20)
8. — Essentially (24.18)
9. — Essentially (24.23)

Chapter 10, pp. 113–115
1. — Contained in (22.48)
2. — Essentially (22.49)
3. — Essentially (22.37)
4. — Contained in (22.45) and (22.46)
5. — Essentially (22.43)(1)
6. — Contained in (22.35)
7. — Contained in (22.36)
8. — Essentially (22.67)
9. — Essentially (22.75)
10. — Contained in (22.76) and (22.83) and (22.90)
11. — Essentially (22.71)
12. — Essentially (22.65)

Chapter 11, pp. 125–126
1. — Contained in (21.41)
2. — Essentially (22.60)
3. — Essentially (15.10) with (15.12)
4. — Essentially (16.30)
5. — Essentially (20.33)
6. — Essentially (15.31)
7. — Essentially (21.40)
Use of the Exercises in this Book

List of Abbreviations

Cor. = Corollary Ex. = Exercise Prp. = Proposition Sbs. = Subsection
Eg. = Example Lem. = Lemma Rmk. = Remark Thm. = Theorem

“Ap” in front of any of the above indicates the subsection is in an appendix.

NOTE: an exercise is indexed only if it’s used later.

Chapter 1

Ex. (1.14) is used in Ex. (13.24) and Ex. (13.27).
Ex. (1.15) is used in Ex. (1.16) and Ex. (2.32).
Ex. (1.16) is used in Eg. (2.19), Thm. (2.20), Ex. (2.32), Ex. (2.39), Ex. (11.35),
Cor. (15.6), Ex. (21.40), Ex. (22.44), ApThm. (22.78), and ApPrp. (23.43).
Ex. (1.17) is used in Ex. (1.18), Ex. (1.19),
Ex. (2.9), Eg. (2.11), Eg. (2.14),
Ex. (2.32), Ex. (2.33), Ex. (3.19),
Sbs. (8.19), Lem. (15.1), Lem. (15.8),
Ex. (16.30), and Ex. (20.16).
Ex. (1.18) is used in Ex. (1.19), and
Ex. (21.41), ApThm. (22.82).
Ex. (1.19) is used in Ex. (2.34), Lem. (14.4),
Ex. (14.13), ApThm. (22.81), and
ApEg. (22.83).
Ex. (1.20) is used in Ex. (2.43).
Ex. (1.21) is used in Ex. (1.22), Sbs. (2.16),
ApEx. (5.41), Ex. (8.34), Ex. (13.18),
Ex. (13.58), Thm. (19.8), Ex. (19.27),
Ex. (22.38), ApThm. (22.78), Prp. (24.7),
Ex. (24.19), and Ex. (24.20).
Ex. (1.23) is used in Ex. (2.29), Prp. (11.18),
Ex. (13.35), Ex. (16.34), and Ex. (19.27).
Ex. (1.24) is used in Ex. (10.25), Ex. (10.26),
and Ex. (13.43).
Ex. (1.25) is used in Ex. (1.26) and Ex. (1.27).
Ex. (1.26) is used in Ex. (1.27), Ex. (1.28) and Ex. (13.45).
Ex. (1.27) is used in Ex. (13.45).
Ex. (1.28) is used in Ex. (13.45).
Ex. (1.29) is used in Ex. (15.23).

Chapter 2

Ex. (2.9) is used in Eg. (2.11), Ex. (18.26),
Ex. (18.30), and ApEx. (18.53).
Ex. (2.18) is used in Thm. (2.20), Ex. (8.29),
and ApPrp. (22.77).
Ex. (2.23) is used in Ex. (2.24), Ex. (2.25),
Sbs. (13.1), Prp. (13.11), ApEg. (16.57),
and Ex. (18.32), Ex. (19.21), Ex. (19.26),
Lem. (23.5), and Prp. (24.7).
Ex. (2.24) is used in Thm. (19.8).
Ex. (2.25) is used in ApSbs. (15.32),
ApEx. (18.57), ApEx. (18.58), and
ApEx. (18.60).
Ex. (2.28) is used in Ex. (2.29).
Ex. (2.29) is used in Ex. (13.32), Ex. (13.57),
Ex. (13.58), Ex. (15.27), Ex. (18.31), and
Ex. (21.9).
Ex. (2.30) is used in ApEx. (5.37).
Ex. (2.31) is used in ApSbs. (15.32).
Ex. (2.32) is used in Ex. (3.42), Ex. (15.18),
Ex. (15.31), ApEg. (16.57), Ex. (16.67),
and ApPrp. (23.43).
Ex. (2.33) is used in Ex. (2.34), and
ApPrp. (22.77).
Ex. (2.34) is used in ApEx. (22.76).
Ex. (2.35) is used in Ex. (21.34).
Ex. (2.36) is used in Ex. (13.44).
Ex. (2.39) is used in Ex. (2.40) and Ex. (10.43).
Ex. (2.41) is used in Ex. (2.42).
Ex. (2.42) is used in Ex. (2.43).
Ex. (2.43) is used in Ex. (2.44) and Ex. (2.45).
Ex. (2.45) is used in ApEx. (22.97).

Chapter 3

Ex. (3.10) is used in Eg. (3.20), Ex. (9.28),
and Thm. (14.6).
Ex. (3.16) is used in Sbs. (3.17), Ex. (3.26),
Ex. (3.41), Ex. (14.21), Ex. (15.20),
Ex. (17.26), ApThm. (18.39),
ApEx. (18.60), and Ex. (21.36).
Ex. (3.19) is used in Eg. (3.20), Ex. (16.25), and Ex. (22.56).
Ex. (3.21) is used in Ex. (3.42).
Ex. (3.22) is used in Prp. (19.15).
Ex. (3.24) is used in Ex. (3.25), Ex. (3.26),
and Ex. (13.40).
Ex. (3.25) is used in Ex. (3.26), Ex. (11.23),
Ex. (11.24), Ex. (13.39), and Ex. (13.40).
Use of the Exercises in this Book

Ex. (3.27) is used in Ex. (16.30), Ex. (3.28) is used in Rmk. (15.2) and Ex. (22.59), Ex. (3.31) is used in Eg. (10.7) and Ex. (22.72), Ex. (3.32) is used in Ex. (18.6) and ApPrp. (18.37), Ex. (3.33) is used in Ex. (13.44), Ex. (3.34) is used in Ex. (10.23) and Ex. (13.44), Ex. (3.35) is used in Ex. (3.36) and ApEx. (13.18), Ex. (3.36) is used in Ex. (19.29) and ApEx. (22.95), Ex. (3.37) is used in Prp. (18.8), Ex. (3.38) is used in Ex. (3.39), Ex. (3.40), Ex. (4.14), Ex. (16.25), Lem. (18.4), Thm. (18.23), ApEx. (18.57), Thm. (19.8), Lem. (19.13), Ex. (19.23), Ex. (20.18), and Prp. (24.7), Ex. (3.39) is used in Ex. (13.36) and Ex. (20.18), Ex. (3.40) is used in Ex. (18.26) and Ex. (19.27), Ex. (3.41) is used in Ex. (13.58), Ex. (3.42) is used in Ex. (3.43) and Ex. (3.44).

Chapter 4

Ex. (4.3) is used in Sbs. (4.13), Ex. (5.28), Ex. (6.20), Sbs. (7.10), Cor. (8.9), Thm. (8.13), Ex. (9.33), and Ex. (16.37), Ex. (4.14) is used in Ex. (7.15), Ex. (4.15) is used in Lem. (10.6), Ex. (17.33), and Ex. (18.35), Ex. (4.16) is used in Ex. (4.17) and ApLem. (18.38), Ex. (4.17) is used in ApPrp. (18.37), Ex. (4.18) is used in Ex. (6.17), Ex. (12.28), ApEx. (18.52), and ApPrp. (23.43), Ex. (4.19) is used in ApEx. (18.52), Ex. (4.20) is used in Ex. (8.32), Ex. (4.21) is used in Ex. (8.27), Cor. (21.10), Ex. (21.25), Sbs. (23.4), ApPrp (23.49), Ex. (4.24) is used in Ex. (10.41), Ex. (4.25) is used in ApThm. (5.38) and Ex. (13.18), Ex. (4.26) is used in Prp. (5.8) and Ex. (8.14), Ex. (4.28) is used in Ex. (22.72), Ex. (4.29) is used in ApEx. (5.41).

Chapter 5

Ex. (5.5) is used in Prp. (5.19), Prp. (5.20), ApEx. (5.41), and Prp. (16.13), Ex. (5.15) is used in Prp. (5.20), Ex. (5.28) Prp. (10.12), Thm. (13.15), and Ex. (17.35), Ex. (5.18) is used in Prp. (5.19), Prp. (5.20), Ex. (5.29), Ex. (5.30), Sbs. (7.8), Prp. (10.12), Prp. (12.18), and Prp. (13.14), Ex. (5.22) is used in ApEx. (5.42), Ex. (5.24) is used in Prp. (20.13), Ex. (5.27) is used in Ex. (9.33), ApEx. (5.36) is used in ApEx. (5.37), ApEx. (5.37) is used in ApThm. (5.38), ApEx. (5.41) is used in ApEx. (5.42), Ex. (8.26), and Ex. (24.21).

Chapter 6

Ex. (6.13) is used in Thm. (12.8), Ex. (6.15) is used in Ex. (6.20), Thm. (8.13), and Ex. (9.33), Ex. (6.17) is used in Ex. (8.31), Ex. (6.19) is used in Prp. (7.7) and Ex. (7.23).

Chapter 7

Ex. (7.2) is used in Eg. (7.3), Prp. (7.7), Ex. (7.11), Ex. (7.12), Ex. (7.13), Ex. (7.14), Ex. (7.23), and ApEx. (22.92), Ex. (7.14) is used in Ex. (7.16), Ex. (7.15) is used in Ex. (13.20), Ex. (7.16) is used in Ex. (7.18), Ex. (13.31), Ex. (13.32), and Ex. (14.13), Ex. (7.17) is used in Ex. (7.21), Ex. (7.19) is used in Ex. (7.20) and Ex. (7.21), Ex. (7.21) is used in ApEx. (22.91), Ex. (7.22) is used in Ex. (7.23).

Chapter 8

Ex. (8.7) is used in Thm. (8.8), Sbs. (8.19), Ex. (8.28), Ex. (10.10), and Ex. (12.27), Ex. (8.14) is used in Sbs. (8.15), Ex. (9.33), Ex. (17.35), Cor. (22.19), Ex. (22.38), Ex. (22.53), and Ex. (22.66), Ex. (8.22) is used in Eg. (9.16), Ex. (8.24) is used in Ex. (10.10), Ex. (13.30), and Ex. (13.49), Ex. (8.27) is used in Ex. (8.28), Ex. (8.29), Ex. (8.30), Ex. (8.34), Ex. (9.27), Ex. (9.28), Ex. (10.10), Ex. (10.25), Ex. (10.30), Ex. (13.28), Ex. (13.46), Ex. (13.47), Ex. (13.49), Thm. (14.8), Prp. (17.20), Ex. (19.28), Ex. (21.37), Ex. (21.38), Ex. (22.36), Ex. (22.38), ApPrp (23.43), and ApPrp (23.47), Ex. (8.28) is used in Ex. (21.36), Ex. (8.30) is used in Ex. (12.32), Ex. (8.31) is used in Ex. (8.32), ApEx. (18.52), and ApPrp (23.43), Ex. (8.32) is used in Ex. (21.22), Ex. (8.33) is used in Ex. (13.32).

410
Use of the Exercises in this Book

Chapter 9
Ex. (9.14) is used in Lem. (9.15), and Ex. (9.35).
Ex. (9.18) is used in Ex. (22.66).
Ex. (9.19) is used in Ex. (9.25), Ex. (9.26), Ex. (9.28), Ex. (10.30), Ex. (13.47), Ex. (16.28), and Ex. (22.36).
Ex. (9.20) is used in Ex. (22.65).
Ex. (9.22) is used in Prp. (13.12), Ex. (13.21), Ex. (13.47), Ex. (13.48), Thm. (14.8), Ex. (17.35), and Cor. (22.22).
Ex. (9.23) is used in Ex. (13.60), Ex. (14.20), and Ex. (22.65).
Ex. (9.24) is used in Ex. (14.20), and Ex. (17.35).
Ex. (9.25) is used in Ex. (22.67).
Ex. (9.26) is used in Ex. (13.48).
Ex. (9.27) is used in Ex. (10.24).
Ex. (9.28) is used in Ex. (9.29), Ex. (9.31), Ex. (10.31), Ex. (22.65), and Thm. (23.8).
Ex. (9.30) is used in Ex. (9.31).
Ex. (9.33) is used in Prp. (12.19).
Ex. (9.34) is used in Ex. (12.17) and Ex. (22.50).
Ex. (9.35) is used in ApPrp. (23.47) and Thm. (25.21).

Chapter 10
Ex. (10.9) is used in Prp. (10.12), Ex. (14.23), Sbs. (21.14) Ex. (21.41), Ex. (22.62), and Ex. (22.63).
Ex. (10.10) is used in Prp. (10.12) and Prp. (13.7).
Ex. (10.23) is used in Ex. (10.24).
Ex. (10.24) is used in Ex. (10.25).
Ex. (10.25) is used in Ex. (10.26), Ex. (13.21), and Ex. (13.22).
Ex. (10.26) is used in Ex. (13.21), Ex. (13.61), and ApEx. (16.56).
Ex. (10.29) is used in Prp. (13.11).
Ex. (10.30) is used in Ex. (10.31), Ex. (13.48), and Ex. (13.60).
Ex. (10.32) is used in ApThm. (22.78).
Ex. (10.33) is used in Ex. (10.34), ApSbs. (22.73), ApThm. (22.75), ApThm. (22.78), and ApEx. (22.86).
Ex. (10.34) is used in ApThm. (22.75).
Ex. (10.35) is used in Ex. (14.18) and Thm. (16.18).
Ex. (10.36) is used in Ex. (10.37).
Ex. (10.37) is used in Ex. (14.19).
Ex. (10.39) is used in Ex. (15.17), ApEx. (16.70), Ex. (19.21), and Ex. (26.20).
Ex. (10.41) is used in Ex. (14.25).
Ex. (10.42) is used in Ex. (14.25) and Ex. (26.20).

Chapter 11
Ex. (11.5) is used in Prp. (11.18), Ex. (11.21), and Ex. (13.57).
Ex. (11.19) is used in Thm. (15.7).
Ex. (11.23) is used in Ex. (11.24), Ex. (13.39), and Ex. (13.40).
Ex. (11.24) is used in Ex. (13.39) and Ex. (13.40).
Ex. (11.25) is used in ApEx. (22.92).
Ex. (11.28) is used in Ex. (13.22) and Ex. (13.57).
Ex. (11.29) is used in Ex. (13.32), Thm. (14.3), Ex. (14.12), Ex. (14.15), and Ex. (14.25).
Ex. (11.30) is used in Ex. (11.31) and Thm. (24.13).
Ex. (11.31) is used in Thm. (15.4).
Ex. (11.32) is used in Sbs. (14.9), Ex. (14.25), Ex. (23.7), Thm. (23.8), Thm. (23.14), Thm. (23.15), Ex. (23.21), and Ex. (24.5).
Ex. (11.34) is used in Ex. (16.30), ApDfn (23.41), ApEx. (23.59), and ApEx. (23.61).
Ex. (11.35) is used in Ex. (11.36), Ex. (12.28), Ex. (15.31), Ex. (16.30), and Ex. (21.40).

Chapter 12
Ex. (12.4) is used in Thm. (12.8), Prp. (12.12), Ex. (12.30), Ex. (12.31), Ex. (13.21), Ex. (13.28), Ex. (13.51), Ex. (13.59), Thm. (19.3), and Ex. (22.37).
Ex. (12.5) is used in Prp. (12.18), Prp. (13.14), Thm. (13.15), Ex. (13.62), and ApEx. (15.47).
Ex. (12.6) is used in Thm. (12.13), Cor. (12.14), Ex. (13.38), and ApEx. (15.46).
Ex. (12.25) is used in ApEx. (18.57).
Ex. (12.27) is used in Ex. (12.30), Prp. (13.7), Prp. (13.12), Ex. (13.28), and Ex. (25.6).
Ex. (12.28) is used in ApPrp. (23.43).
Ex. (12.30) is used in Ex. (12.32).
Ex. (12.31) is used in Ex. (21.41), Ex. (22.38), and Ex. (24.21).
Ex. (12.33) is used in Ex. (13.64).
Ex. (12.34) is used in Ex. (12.35).
Ex. (12.35) is used in Ex. (13.52).
Ex. (12.37) is used in ApPrp. (18.43).
Use of the Exercises in this Book

Ex. (12.38) is used in ApPrp. (18.44).
Ex. (12.39) is used in Lem. (18.12).

Chapter 13
Ex. (13.10) is used in Prp. (13.14) and Ex. (16.29).
Ex. (13.16) is used in Ex. (13.22),
Ex. (13.23), ApEx. (15.39),
ApEx. (16.73), Ex. (19.20), Ex. (19.21),
Ex. (24.21), and Ex. (26.19).
Ex. (13.18) is used in Ex. (13.22) and Ex. (13.23).
Ex. (13.19) is used in Ex. (13.20).
Ex. (13.21) is used in Ex. (13.22) and Ex. (13.61).
Ex. (13.22) is used in Ex. (13.33) and Ex. (13.61).
Ex. (13.23) is used in ApEx. (19.29) and ApEx. (22.94).
Ex. (13.24) is used in Ex. (14.11).
Ex. (13.25) is used in Ex. (13.26), Ex. (13.29), Ex. (13.38), and Thm. (14.8).
Ex. (13.26) is used in Ex. (13.28).
Ex. (13.27) is used in Ex. (13.28).
Ex. (13.28) is used in Ex. (13.30), Ex. (13.31), ApEx. (16.70), and Ex. (19.21).
Ex. (13.29) is used in Ex. (13.38).
Ex. (13.30) is used in Ex. (13.32).
Ex. (13.31) is used in Ex. (13.32), Ex. (13.33), and Ex. (13.38).
Ex. (13.32) is used in Ex. (13.33).
Ex. (13.33) is used in Ex. (13.34).
Ex. (13.36) is used in Ex. (13.37) and ApThm. (16.65).
Ex. (13.37) is used in ApPrp. (16.58).
Ex. (13.38) is used in ApEx. (16.73).
Ex. (13.39) is used in Ex. (13.40).
Ex. (13.40) is used in ApPrp. (16.48).
Ex. (13.41) is used in Ex. (13.43).
Ex. (13.43) is used in Ex. (13.44) and Ex. (13.45).
Ex. (13.44) is used in Ex. (13.45).
Ex. (13.47) is used in Ex. (13.48).
Ex. (13.48) is used in Thm. (14.8).
Ex. (13.49) is used in Thm. (14.8), Prp. (17.20), ApPrp. (23.43), and ApEx. (23.53).
Ex. (13.53) is used in Ex. (13.54), Ex. (13.55), Ex. (13.64), Ex. (22.37), and Ex. (24.18).
Ex. (13.55) is used in Ex. (13.56) and Ex. (14.25).
Ex. (13.56) is used in Ex. (24.22).
Ex. (13.57) is used in Ex. (13.58), Ex. (13.61), Ex. (14.21), Ex. (14.25), ApEx. (15.47), and Ex. (23.12).
Ex. (13.58) is used in Ex. (13.57), Ex. (14.22), and Ex. (14.25).
Ex. (13.59) is used in Thm. (19.3) and ApEx. (22.93).
Ex. (13.60) is used in Ex. (21.40).
Ex. (13.62) is used in Ex. (13.63), Ex. (13.64), ApEx. (15.47), and Ex. (25.18).
Ex. (13.63) is used in Ex. (14.24).

Chapter 14
Ex. (14.11) is used in Ex. (26.20).
Ex. (14.12) is used in Ex. (14.13), Ex. (15.19), Ex. (15.23), and Prp. (26.6).
Ex. (14.13) is used in Ex. (15.20) and Prp. (26.6).
Ex. (14.15) is used in Ex. (14.17).
Ex. (14.16) is used in Ex. (14.17) and ApEx. (22.93).
Ex. (14.18) is used in Ex. (14.19).
Ex. (14.20) is used in Ex. (15.28).
Ex. (14.21) is used in Ex. (14.22), Ex. (14.23), and ApEx. (15.47).
Ex. (14.22) is used in Ex. (14.23) and Ex. (14.25).
Ex. (14.23) is used in Ex. (14.24), ApEx. (15.47), and ApPrp. (23.47).
Ex. (14.25) is used in Ex. (23.23).
Ex. (14.26) is used in ApEx. (18.51).

Chapter 15
Ex. (15.18) is used in ApThm. (16.65).
Ex. (15.19) is used in Ex. (15.20).
Ex. (15.24) is used in Prp. (21.19).
Ex. (15.25) is used in Ex. (15.28), Ex. (21.20), Eg. (24.3), and Cor. (24.14).
Ex. (15.26) is used in Ex. (21.24).
Ex. (15.28) is used in Ex. (21.36).
Ex. (15.31) is used in Ex. (21.40).
ApEx. (15.38) is used in ApEx. (15.39).

Chapter 16
Ex. (16.2) is used in Lem. (16.9), Ex. (16.24), Ex. (16.27), Ex. (16.28), and Ex. (16.32).
Ex. (16.29) is used in Ex. (16.30).
Ex. (16.33) is used in Lem. (18.20) and Ex. (19.16).
Ex. (16.37) is used in Ex. (16.38) and ApLem. (23.35).
Use of the Exercises in this Book

Chapter 17
Ex. (17.4) is used in Prp. (17.10), Prp. (17.12), Thm. (17.14), Prp. (17.18), Prp. (17.19), Prp. (17.20) and ApEx. (23.33).
Ex. (17.21) is used in Ex. (17.23), Ex. (17.24), Lem. (18.17), Ex. (18.25), and Ex. (18.32).
Ex. (17.22) is used in Ex. (18.25).
Ex. (17.28) is used in Ex. (17.29).
Ex. (17.29) is used in Ex. (17.30), Ex. (18.32), Ex. (19.25), Ex. (21.29), and Ex. (21.30).
Ex. (17.31) is used in Sbs. (19.1).
Ex. (17.32) is used in Sbs. (19.1).
Ex. (17.33) is used in ApEx. (23.54).
Ex. (17.34) is used in Ex. (17.35) and ApEx. (20.33).

Chapter 18
Ex. (18.6) is used in Eg. (18.16), Ex. (18.25), and Ex. (23.7).
Ex. (18.7) is used in Eg. (18.16), Ex. (18.30), ApPrp. (18.45), ApPrp. (18.46), ApEx. (18.62), and ApEx. (18.65), and Cor. (24.9).
Ex. (18.27) is used in Ex. (19.27).
Ex. (18.31) is used in Ex. (19.27).
Ex. (18.35) is used in Ex. (22.3), ApEx. (22.40), ApEx. (22.72), and ApPrp. (23.50).
ApEx. (18.49) is used in ApEx. (18.55).
ApEx. (18.52) is used in ApEx. (18.53).
ApEx. (18.54) is used in ApEx. (18.55).
ApEx. (18.55) is used in ApEx. (18.66).
ApEx. (18.57) is used in ApEx. (18.66).
ApEx. (18.59) is used in ApEx. (18.60).
ApEx. (18.62) is used in Thm. (23.8).
ApEx. (18.63) is used in ApEx. (20.31).
ApEx. (18.64) is used in Lem. (23.13) and Ex. (23.22).

Chapter 19
Ex. (19.2) is used in Thm. (19.3), Ex. (19.4), Eg. (19.6), Ex. (19.17), Ex. (19.26), Ex. (22.41), and Thm. (26.13).
Ex. (19.4) is used in Thm. (19.8), Cor. (19.9), Lem. (19.13), Ex. (19.16), Thm. (20.9), Prp. (20.13), Thm. (21.4), Lem. (26.12), and Thm. (26.13).
Ex. (19.17) is used in Ex. (19.21).
Ex. (19.19) is used in Ex. (22.60).
Ex. (19.20) is used in Ex. (19.21) and Ex. (19.24).
Ex. (19.23) is used in Ex. (19.24), Ex. (21.22), Sbs. (22.1), and Ex. (22.70).
Ex. (19.25) is used in Ex. (21.20).
Ex. (19.26) is used in Ex. (21.25) and Ex. (24.21).
Ex. (19.27) is used in Ex. (24.20).
Ex. (19.29) is used in ApEx. (22.94).

Chapter 20
Ex. (20.17) is used in ApEx. (20.32).
Ex. (20.18) is used in Sbs. (21.2).
Ex. (20.21) is used in Ex. (22.3).
ApEx. (20.24) is used in Thm. (20.26).
ApEx. (20.25) is used in Thm. (20.26).

Chapter 21
Ex. (21.9) is used in Thm. (21.17) and Thm. (23.6).
Ex. (21.13) is used in Sbs. (21.14).
Ex. (21.16), Ex. (21.41), Eg. (22.27), and ApEx. (23.57).
Ex. (21.20) is used in ApEx. (23.33), ApPrp. (23.43), and ApEx. (23.56).
Ex. (21.22) is used in Ex. (21.23) and Ex. (22.60).
Ex. (21.23) is used in Ex. (21.24) and Ex. (22.57).
Ex. (21.25) is used in ApPrp. (23.38).
Ex. (21.27) is used in Ex. (21.35).
Ex. (21.28) is used in Ex. (21.29).
Ex. (21.29) is used in Ex. (21.30).
Ex. (21.31) is used in Ex. (21.34).
Ex. (21.32) is used in Ex. (21.34), Ex. (21.41), Ex. (23.7), and Ex. (25.15).
Ex. (21.33) is used in Thm. (23.8).
Ex. (21.34) is used in Ex. (24.22).
Ex. (21.35) is used in Ex. (21.39).
Ex. (21.36) is used in Ex. (21.37) and Ex. (21.38).
Ex. (21.38) is used in Ex. (21.39).
Ex. (21.41) is used in ApEx. (23.61) and Ex. (24.24).

Chapter 22
Ex. (22.3) is used in Ex. (22.8), Ex. (22.14), Lem. (22.24), Ex. (22.28), Ex. (22.36),
Use of the Exercises in this Book

Ex. (22.39), Ex. (22.45), Ex. (22.54), Ex. (22.57), Ex. (22.61), Ex. (22.69), Ex. (22.72), Eg. (23.2), and ApEx. (23.58).

Ex. (22.8) is used in Ex. (22.15), Ex. (22.9) is used in Eg. (22.11) and Ex. (22.49).

Ex. (22.12) is used in Ex. (22.16), Thm. (22.18), Cor. (22.19), Cor. (22.20), Thm. (22.26), Ex. (22.33), Ex. (22.36), Ex. (22.42), Ex. (22.46), Ex. (22.48), Ex. (22.52), Ex. (22.53), Ex. (22.61), Ex. (22.62), Ex. (22.64), Ex. (22.66), Ex. (22.68), and ApEx. (23.58).

Ex. (22.13) is used in Ex. (22.14), Ex. (22.15), Lem. (22.24), Ex. (22.33), Ex. (22.54), and Ex. (22.69).

Ex. (22.14) is used in Ex. (22.16), Ex. (22.35), Ex. (22.58), ApThm. (22.81), and ApEx. (22.95).

Ex. (22.15) is used in Ex. (22.16), Ex. (22.28) and Ex. (22.54).

Ex. (22.16) is used in Thm. (22.26), Ex. (22.33), Ex. (22.39), Ex. (22.54), Ex. (22.70), and Ex. (23.16).

Ex. (22.28) is used in ApThm. (22.84).

Ex. (22.34) is used in Ex. (22.35).

Ex. (22.35) is used in Ex. (22.36), ApThm. (22.75), and ApCor. (22.85).

Ex. (22.36) is used in Ex. (22.67) and Ex. (23.16).

Ex. (22.39) is used in Ex. (22.40).

Ex. (22.41) is used in Ex. (22.61).

Ex. (22.42) is used in Ex. (22.43) and Ex. (22.44).

Ex. (22.43) is used in Ex. (22.58).

Ex. (22.44) is used in ApEx. (22.100).

Ex. (22.47) is used in Ex. (22.48) and Ex. (22.49).

Ex. (22.48) is used in Ex. (22.49).

Ex. (22.51) is used in Ex. (22.53).

Ex. (22.52) is used in Ex. (22.53).

Ex. (22.53) is used in Ex. (22.61), Ex. (22.62), ApEx. (22.95), and ApEx. (23.58).

Ex. (22.54) is used in Ex. (22.55), Ex. (22.63), and ApEx. (22.95).

Ex. (22.55) is used in Ex. (22.56), Ex. (22.57), Ex. (22.58), Ex. (22.59), Ex. (22.60), Ex. (22.63), Ex. (22.64), ApThm. (22.82), and ApEx. (22.100).

Ex. (22.56) is used in Ex. (22.58), ApEx. (22.100), and ApEg. (23.30).

Ex. (22.58) is used in Ex. (22.64), Eg. (23.2), and Ex. (23.16).

Ex. (22.59) is used in ApEx. (22.87), ApEx. (22.88), and ApSbs. (22.89).

Ex. (22.61) is used in Ex. (22.62) and ApEx. (23.58).

Ex. (22.62) is used in Ex. (22.63), Ex. (22.64), ApSbs. (22.89), and Ex. (23.16).

Ex. (22.67) is used in ApSbs. (22.89).

Ex. (22.69) is used in Ex. (22.70) and ApEx. (22.100).

ApEx. (22.86) is used in ApSbs. (22.89).

ApEx. (22.87) is used in ApSbs. (22.89).

ApEx. (22.88) is used in ApSbs. (22.89) and Ex. (23.16).

ApEx. (22.91) is used in ApEx. (22.92).

ApEx. (22.92) is used in ApEx. (22.93).

Chapter 23

Ex. (23.7) is used in Thm. (23.8).

Ex. (23.11) is used in Lem. (23.13) and ApPrp. (23.47).

Ex. (23.12) is used in Thm. (23.15) and Ex. (23.23).

Ex. (23.17) is used in ApThm. (23.48).

Ex. (23.23) is used in ApEx. (23.61).

ApEx. (23.24) is used in ApThm. (23.29) and ApEx. (23.52).

ApEx. (23.26) is used in ApEx. (23.27) and ApPrp. (23.34).

ApEx. (23.33) is used in ApPrp. (23.43).

ApEx. (23.40) is used in ApDfn (23.41), ApEx. (23.42), and ApEx. (23.56).

ApEx. (23.42) is used in ApPrp. (23.43) and ApThm. (23.45).

ApEx. (23.51) is used in ApEx. (23.53).

ApEx. (23.52) is used in ApEx. (23.53) and ApEx. (23.54).

ApEx. (23.53) is used in ApEx. (23.56).

ApEx. (23.54) is used in ApEx. (23.55).

ApEx. (23.55) is used in ApEx. (23.56).

ApEx. (23.60) is used in ApEx. (23.61).

Chapter 24

Ex. (24.4) is used in Ex. (24.5), Prp. (24.6), and Cor. (24.9).

Ex. (24.5) is used in Prp. (24.6), Ex. (24.20), and Ex. (25.20).
Use of the Exercises in this Book

Chapter 25
Ex. (24.19) is used in Ex. (24.20).

Ex. (25.2) is used in Ex. (25.6) and Thm. (25.14).
Ex. (25.6) is used in Prp. (25.19) and Sbs. (25.22).
Ex. (25.9) is used in Thm. (25.14).
Ex. (25.12) is used in Ex. (25.15).
Ex. (25.15) is used in Sbs. (25.22).
Ex. (25.17) is used in Ex. (25.18) and Sbs. (25.22).

Ex. (25.18) is used in Prp. (25.19).

Chapter 26
Ex. (26.3) is used in Thm. (26.7).
Ex. (26.11) is used in Cor. (26.15).
Ex. (26.17) is used in Ex. (26.18), Ex. (26.19), and Ex. (26.21).
Ex. (26.19) is used in Ex. (26.20).
Ex. (26.21) is used in Ex. (26.22).
\(\triangle \): (1.2)
\((R\text{-alg}):\) (6.1)
\((R\text{-mod}):\) (6.1)
\((\text{Rings})\): (6.1)
\((\text{Sets})\): (6.1)
\((a, b)\): (1.4)
\((M : N)\): (25.1)
\((N : a)\): (4.16)
\((N : L)\): (4.17)
\((R_n)\): (23.10)
\((S_n)\): (23.10)
\((x_n)\): (4.10)
\[\bigoplus \mathcal{M}_\lambda \] (6.5)
\[\bigoplus \mathcal{R}_\lambda \] (8.33)
\[\bigcup \mathcal{M}_\lambda \] (6.5)
\[\bigcap \mathcal{M}_\lambda \] (1.4)
\[\bigoplus \mathcal{M}_\lambda \] (4.13)
\[\bigcap \mathcal{M}_\lambda \] (4.13)
\[\sum \mathcal{M}_\lambda \] (4.10)
\[\sum \mathcal{R}_\lambda \] (4.10)
\[\sum \mathcal{R}_n \] (4.10)
\[\partial F/\partial X \] (1.18)
\[\sqrt{a} \] (3.13)
\[(a) \] (1.4)
\[(a_1, \ldots, a_n) \] (1.4)
\[(m_1, \ldots, m_n) \] (4.10)
\[\mathcal{D}(f) \] (13.1)
\[\mathcal{V}(a) \] (13.1)
\[a_\lambda \] (1.4)
\[a_\lambda a \] (1.4)
\[aN \] (4.1)
\[aN^2 \] (1.4)
\[aM \] (11.9)
\[b/a \] (1.9)
\[\delta S \] (8.19)
\[a \otimes a' \] (8.4)
\[\beta : M \to N \] (5.14)
\[\Gamma_\alpha(M) \] (4.14)
\[\delta_{\mu\lambda} \] (4.10)
\[\iota_{\lambda} \] (4.13)
\[\mu_R \] (4.4)
\[\mu_z \] (4.4)
\[\rho_{\mathcal{M}} \] (4.13)
\[\varphi \] (1.8)
\[\varphi^{S} \] (11.1): (12.2)
\[\varphi^{f} \] (11.6): (12.2)
\[\varphi^{p} \] (11.13): (12.2)
\[1_{\lambda} \] (6.1)
\[1_{\mathcal{M}^{\times}} \] (4.2)
\[\otimes \] (2.3)
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{nil}(M))</td>
<td>(12.22)</td>
</tr>
<tr>
<td>(\text{nil}(R))</td>
<td>(3.13)</td>
</tr>
<tr>
<td>(\text{ord}(F))</td>
<td>(1.8)</td>
</tr>
<tr>
<td>(\text{Pic}(R))</td>
<td>(25.22)</td>
</tr>
<tr>
<td>(\text{rad}(M))</td>
<td>(4.1)</td>
</tr>
<tr>
<td>(\text{rad}(R))</td>
<td>(3.1)</td>
</tr>
<tr>
<td>(\text{rank}(M))</td>
<td>(4.10)</td>
</tr>
<tr>
<td>(\text{rank}(R))</td>
<td>(3.1)</td>
</tr>
<tr>
<td>(\text{Spec}(R))</td>
<td>(13.1)</td>
</tr>
<tr>
<td>(\text{Supp}(M))</td>
<td>(13.3)</td>
</tr>
<tr>
<td>(\text{Supp}_R(M))</td>
<td>(13.3)</td>
</tr>
<tr>
<td>(\text{tr})</td>
<td>(24.11)</td>
</tr>
<tr>
<td>(\text{tr})</td>
<td>(24.11)</td>
</tr>
<tr>
<td>(\text{tr. deg})</td>
<td>(15.8)</td>
</tr>
<tr>
<td>(\text{Tril}_{R,R'}(M,N,P;Q))</td>
<td>(8.8)</td>
</tr>
<tr>
<td>(\text{z.div}(M))</td>
<td>(17.11)</td>
</tr>
<tr>
<td>(\text{z.div}(R))</td>
<td>(2.1)</td>
</tr>
</tbody>
</table>

417
Index

A
algebra: (1.1)
 algebra finite: (4.5)
coproduct: (8.17)
extended Rees Algebra: (20.7)
faithfully flat: (9.4)
finitely generated: (4.5)
finitely presented: (7.6)
flat: (9.4)
generators: (4.5)
group algebra: (26.9)
homomorphism: (1.1)
integral over a ring: (10.13)
localization: (11.15)
map: (1.1)
module finite: (10.13)
structure map: (1.1)
subalgebra: (4.5)
generated by: (4.5)
tensor product: (8.17)

C
canonical: (1.1); (4.2)
category theory
coequalizer: (6.6)
colimit: (6.4)
composition law: (6.1)
associative: (6.1)
coproduct: (6.5)
direct limit: (6.4)
 has: (6.4)
 indexed by: (6.4)
preserves: (6.4)
dually: (5.2)
filtered direct limit: (7.1)
identity: (6.1)
unitary: (6.1)
 inclusion: (6.5)
initial object: (6.5)
insertion: (6.4)
inverse: (6.1)
isomorphism: (6.1)
map: (6.1)
morphism: (6.1)
object: (6.1)
pushout: (6.16)
transition map: (6.4)
category: (6.1)
directed set: (7.1)
discrete: (6.5)
filtered: (7.1)
functor: (6.4)
product: (6.1)

D
small: (6.4)

E
element
 annihilator: (4.1)
 Cauchy sequence: (22.1)
 complementary idempotents: (1.10)
 constant term: (3.7)
 coprime: (2.16)
 degree: (1.7)
 equation of integral dependence: (10.13)
 formal power series: (3.7)
 free: (4.10)
 generators: (1.4); (4.10)
 greatest common divisor: (2.5)
grlex hind monomial: (2.3)
grlex hind term: (2.3)
grlex leading coefficient: (2.3)
grlex leading monomial: (2.3)
grlex leading term: (2.3)
homogeneous: (20.1)
homogeneous component: (20.22)
homogeneous of degree n: (15.2); (20.22); (20.27)
idempotent: (1.10)
initial component: (20.22)
integral over a ring: (10.13)
inTEGRALLY dependent on a ring: (10.13)
irreducible: (2.5)
Kronecker delta function: (4.10)
lift: (5.15)
limit: (22.1)
linear combination: (1.4); (4.10)
linearly independent: (4.10)
 multiplicative inverse: (1.1)
nilpotent: (3.13); (12.22)
nonzerodivisor: (2.1); (17.11)
order: (1.8)
 p-adic divisor: (22.1)
prime: (2.5)
 primitive polynomial: (21.34)
 reciprocal: (1.1)
 relatively prime: (2.18)
 residue of: (1.5)
restricted vectors: (4.10); (4.13)
root: (1.19)
 simple: (1.19)
 supersimple: (1.19)
 uniformizing parameter: (23.1)
bilinear: (8.1)
bimodule homomorphism: (8.6)
endomorphism: (1.1); (4.4)
extends: (1.1)
extension: (1.1)
Going-down Property: (13.38)
Going-up Property: (13.37)
homogeneous: (20.22)
homomorphism: (1.1); (4.2)
isomorphism: (1.1); (4.2)
lift: (5.14)
local homomorphism: (10.11)
Noether Isomorphisms: (4.8)
of filtered modules: (22.1)
 quasi-flat: (21.10)
quotient map: (1.5); (4.6)
regular: (1.29)
retraction: (5.7)
section: (5.7)
trilinear: (8.8)
matrix of cofactors: (10.2)
module: (4.1)
\textit{S-torsion}: (12.35)
\textit{a-dic topology}: (22.1)
ascending chain condition (acc): (16.11)
amnihilator: (4.1)
Artinian: (16.21)
associated graded: (20.7)
associated prime: (17.1)
bimodule: (8.6)
bimodule homomorphism: (8.6)
catenary: (15.13)
chain stabilizes: (16.11); (16.21)
characteristic polynomial: (10.1)
closed under: (4.1)
Cohen–Macaulay: (23.41)
coinage: (4.9)
cokernel: (4.9)
colength: (19.1)
complete: (22.1)
composition series: (19.1)
cyclic: (4.7)
depth: (23.4)
descending chain condition (dcc): (16.21)
dimension: (21.1)
direct product: (4.13)
direct sum: (4.10); (4.13)
discrete: (22.1)
embedded prime: (17.1)
dependomorphism: (4.4)
extension of scalars: (8.6)
faithful: (4.4)
faithfully flat: (9.4)
filtration: (20.7)
\textit{q-adic}: (20.7)
\textit{q-filtration}: (20.7)
Hilbert–Samuel Function: (20.7)
Hilbert–Samuel Polynomial: (20.7)
Hilbert–Samuel Series: (20.7)
shifting: (20.7)
stable \textit{q-filtration}: (20.7)
topology: (22.1)
finitely generated: (4.10)
finitely presented: (5.12)
flat: (9.4)
free: (4.10)
free basis: (4.10)
free of rank \(t\): (4.10)
generate: (4.10)
graded: (20.1)
homogeneous component: (20.1)
Hilbert Function: (20.3)
Hilbert Polynomial: (20.3)
Hilbert Series: (20.3)
shifting (20.1)
homomorphism: (4.2)
image: (4.2)
inverse limit: (22.5)
inverse system: (22.5)
Mittag-Leffler Condition: (22.30)
invertible: (25.16)
irreducible: (18.33)
isomorphism: (4.2)
kernel: (4.2)
length: (19.1)
localization: (12.2)
localization at \(f\): (12.2)
localization at \(p\): (12.2)
locally finitely generated: (13.13)
locally finitely presented: (13.13)
locally free: (13.13)
maximal condition (maxc): (16.11)
minimal condition (minc): (16.21)
minimal generating set: (10.9)
minimal prime of: (13.5)
modulo: (4.6)
\(M\)-regular: (23.4)
\(M\)-sequence: (23.4)
length: (23.4)
maximal: (23.28)
multiplicity: (20.11)
Noetherian: (16.11)
nonzerodivisor: (17.11)
parameter ideal: (19.12)
presentation: (5.12)
prime of: (17.1)
projective (5.14)
quotient map: (4.6)
quotient: (4.6)
\(R\)-linear map: (4.2)
radical: (4.1)
Rees Module: (20.7)
reflexive: (6.20)
residue: (4.6)
restriction of scalars: (4.5)
scalar multiplication: (4.1)
Index

ring: (1.1)
seminormal: (11.13)
separable: (22.1)
separated completion: (22.1)
Serre’s Condition: (23.10)
simple: (19.1)
standard basis: (4.10)
sum: (4.8)
support: (13.3)
tensor product, see also: (24.21)
torsionfree: (13.52)
torsionfree localization: (23.44)
zerodivisor: (17.11)

minimal prime of: (3.17); (13.5)
modulo: (1.5)
nilradical: (3.13)
Noetherian: (16.1)
nonzerodivisor: (2.1)
normal: (10.19); (14.9)
normalization: (10.19)
of invariants: (1.1)
p-adic integers: (22.1)
Picard Group: (25.22)
polynomial ring: (1.3)
Principal Ideal Domain (PID): (2.17)
Principal Ideal Ring (PIR): (9.35)
product ring: (1.11)
quasi-finite: (22.70)
quotient map: (1.5)
quotient ring: (1.5)
radical: (3.1)
reduced: (3.13)
regular local: (21.14)
regular system of parameters: (21.14)
ring of fractions: (11.1)
seminormal: (3.4)
Serre’s Conditions: (23.10)
spectrum: (13.1)
principal open set: (13.1)
quasi-compact: (13.2)
Zariski topology: (13.1)
subring: (1.1)
total quotient ring: (11.2)
Unique Factorization Domain (UFD): (2.5)
universally catenary: (23.44)
valuation: (26.1)
Zariski: (22.36)
zerodivisor: (2.1)

S
sequence
M-quasi-regular: (21.11)
Cauchy: (22.1)
converge: (22.1)
each: (5.1)
M-sequence: (23.4)
length: (23.4)
maximal: (23.28)
regular sequence: (23.4)
short exact: (5.3)
isomorphism of: (5.17)
split exact: (5.7)
submodule: (4.1)
p-prime component: (18.13)
old-primary: (18.1)
acceptable chain: (17.31)
homogeneous: (20.22)
p-primary: (18.1)
primary: (18.1)
primary decomposition: (18.13)

R
Absolutely flat: (10.25)
acted on by group: (1.1)
Artinian: (16.21)
ascending chain condition (acc): (16.3)
associated graded: (20.7)
associated prime: (17.1)
Boolean: (1.2)
catenary: (15.13)
Cohen-Macaulay: (23.41)
decomposable: (11.17)
Dedekind domain: (24.1)
dimension: (15.9)
Discrete Valuation Ring (DVR): (23.1)
domain: (2.3)
dominate: (26.5)
embedded prime: (17.1)
extension: (1.1)
factor ring: (1.5)
field, see also: (3.7)
formal power series ring: (20.1)
Gröbner Group: (17.13); (17.35)
Henselian (22.73)
homomorphism: (1.1)
Ideal Class Group: (25.22)
integral closure: (10.19)
integral domain: (2.3)
integally closed: (10.19)
Jacobson: (15.32)
Jacobson radical: (3.1)
kernel: (1.5)
Laurent series: (3.8)
local homomorphism: (10.11)
local: (3.4)
equicharacteristic: (22.80)
residue field: (3.4)
localization: (11.1)
localization at f: (11.6)
localization at p: (11.13)
map: (1.1)
maximal condition (maxc): (16.3)
irredundant: (18.13)
minimal (18.13)
saturated: (12.11)
saturation: (12.11)
torsion: (13.52)
subset
characteristic function: (1.2)
multiplicative: (2.2)
generated by (11.20)
saturated: (3.11)
saturation: (3.25)
symmetric difference: (1.2)
system of parameters (sop): (21.2)
 regular (21.14)
system of parameters (sop): (21.2)

T
tensor product: (8.2)
adjoint associativity: (8.8)
associative law: (8.8)
cancellation law: (8.9)
commutative law: (8.5)
unitary law: (8.5)

Theorem
Additivity of Length: (19.7)
Akizuki–Hopkins: (19.8)
Characterization of DVRs: (23.6)
Cauchy–Davenport: (2.44)
Cayley–Hamilton: (10.1)
Chevalley’s: (16.65)
Chevalley–Warning: (2.45)
Chinese Remainder: (1.21)
Cohen Existence: (22.81)
Cohen Structure I: (22.57)
Cohen Structure II: (22.58)
Determinant Trick: (10.2)
Dimension: (21.4)
Direct limits commute: (6.11)
Elementary Divisors: (5.38)

Exactness
Left, of Hom: (5.11)
of Completion: (22.18)
of Filtered Direct Limits: (7.9)
of Localization: (12.13)
Right, of tensor product: (9.2)

Finiteness of Integral Closure
finite separable extension: (24.13)
Noether’s: (24.16)
First Uniqueness: (18.18)
Gauss’s: (10.21)
Going-up: (14.3)

Going-down
for flat modules: (14.8)
for integral extensions: (14.6)
Hilbert Basis: (16.10)
Hilbert–Serre: (20.3)
Incomparability: (14.3)
Jordan–Hölder: (19.3)

Krull Intersection: (18.23); (20.21)
Krull Principal Ideal: (21.8)
Krull–Akizuki: (26.13)
Lasker–Noether: (18.19)
Lazard: (9.13)
Lying over: (14.3)
Main of Classical Ideal Theory: (24.8)
Maximality: (14.3)
Noether on Invariants: (16.18)
Nullstellensatz
 Alon’s Combinatorial: (2.43)
 Generalized Hilbert: (15.36)
 Hilbert: (15.7)
 Scheinnullstellensatz: (3.14)
 Zariski: (15.4)
Samuel’s: (20.9)
Schwartz–Zippel: (2.41)
Second Uniqueness Theorem: (18.22)
Serre’s Criterion: (23.15); (23.23)
Stone’s: (13.44)
Structure: (5.41); (5.41)
Tower Law for Integrality: (10.17)
Unmixedness: (23.37)
Watts’: (8.13)
Weierstraß Division: (22.84)
Weierstraß Preparation: (22.85)

topological space
 T1: (13.22)
 T2: (13.16)
 closed point: (13.16)
 closed map: (13.37)
 compact: (13.43)
 constructible subset (16.59)
 irreducible component: (16.47)
 irreducible: (16.47)
 Jacobson: (15.38)
 locally closed subset: (15.38)
 Noetherian: (16.47)
 Noetherian induction (16.53)
 open map: (13.38)
 quasi-compact: (13.2)
 totally disconnected: (13.22)
 very dense subset: (15.38)

topology
 a-adic: (22.1)
 constructible: (13.32)
 discrete: (1.2)
 separated: (22.1)
 Zariski: (13.1)
 totally ordered group: (26.8)
 Archimedean: (26.23)
 isolated subgroup: (26.21)
 value group: (26.8)

 U
 unitary: (6.1)
 Universal Mapping Property (UMP)
 coequalizer: (6.6)
Index

cokernel: (4.9) localization: (11.3); (12.3)
colimit: (6.4) polynomial ring: (1.3)
completion: (22.54) pushout: (6.16)
coproduct: (6.5) residue module: (4.6)
direct limit: (6.4) residue ring: (1.5)
direct product: (4.13) tensor product: (8.3)
direct sum: (4.13)
formal power series: (22.55)
fraction field: (2.3)
free module: (4.10)
inverse limit: (22.5)
kernel: (4.2)

V
valuation
 discrete: (23.1)
 general: (26.8)
p-adic: (23.2)
A Term of Commutative Algebra