Groundwater Recharge

Irina Engelhardt
Glossary

Recharge: Water which percolates down through the unsaturated zone and enters the dynamic ground-water flow system, *thereby contributing to replenishment of the groundwater reservoir.*

Recharge area: Area receiving water from infiltration and percolation. Flow of water is directed *downward away from the water table.* The recharge area encompasses most of the upper free surface of the groundwater reservoir.

Discharge area: The area of a groundwater basin in which the groundwater flow is *directed toward the water table.*

(Modified from Freeze and Cherry 1979, Schwartz and Zhang 2008, Poehls and Smith 2009)
Groundwater Flow Net with Recharge and Discharge Area

Topographically controlled flow pattern:

- Water table is higher under topographically high areas and lower under topographically low areas
- Water table relief is less marked than the relief of the ground surface
 - Works best in areas with plenty of recharge
 - In arid areas and strongly heterogeneous areas, water table does often not resemble the ground surface

(Hubbert 1940)
Recharge as Component of the Water Balance

\[N = ET + Q \pm \Delta S \]

- \(N \) = precipitation
- \(ET \) = evapotranspiration
- \(Q \) = discharge
- \(\Delta S \) = change in storage

\[R = N_R - ET_R - Q_s \]

- \(R \) = recharge to ground water which equals \(D \) (groundwater discharge)
- \(Q_s \) = surface runoff
- \(ET \) = evapotranspiration

(Modified from Freeze & Cherry 1979)
Recharge of groundwater may occur from: precipitation, rivers, canals, lakes, irrigation, urbanization

Direct recharge: water added to the groundwater reservoir in excess of soil moisture and evapotranspiration deficits, by direct vertical percolation of water.

Indirect recharge: results from percolation to the water table following runoff and localization in joints, as ponding in low lying areas and lakes, or through beds of surface water courses.

(Lerner et al. 1990) (Stephens 1996)
Groundwater Recharge

In which regions do you expect local recharge to be a major component to refresh the groundwater resources?
Groundwater Recharge – Time Scales

- Time period over which recharge is averaged:
 - Instantaneous
 - Event
 - Season
 - Year
 - Historical average
 - Geological time

- Time steps used for:
 - Scientific studies:
 - Groundwater resource studies:

- Time steps for various factors in a resource study:
 - Size of study area:
 - Small
 - Large
 - Level of study:
 - Design
 - Reconnaissance
 - Degree of aridity:
 - Arid
 - Humid
 - Resource exploitation:
 - Heavy
 - Light
 - Quantity of data:
 - Large
 - Small

(Lerner et al. 1990)
Guidelines to Determine Groundwater Recharge

• How much groundwater can an aquifer store? (a "full" aquifer cannot take up more water).

• How much water percolates through the unsaturated zone per time? (potentially high groundwater recharge may never happen because the hydraulic conductivities of the geological layers are too small, e.g. loess)

• Where does the excess water flow to in cases of potentially high groundwater recharge? (e.g. interflow)

• Relationship between potential and actual groundwater recharge?

• What are the results from other methods to determine groundwater recharge? (If possible, apply more than one method)
Errors and Inaccuracies Effecting Groundwater Recharge Calculations

- **Conceptual model:** A wrong conceptual model is the most important error. It is the result of misconceptualisation of the groundwater recharge process, or the process has been oversimplified.

- **Temporal and spatial interpretation:** Most of the groundwater recharge processes are non-linear with respect to time. Errors are generated when monthly, annual, or long-term data series are used, to quantify shorter time periods.

- **Errors associated with measurement:** Those errors are created by the measuring device itself.

- **Calculation errors.**
Conceptual Models of Groundwater Recharge in Temperate Humid Climate

(modified from Dörhöfer and Josopait 1996)
Conceptual Models of Groundwater Recharge in Temperate Humid Climate

(modified from Dörhöfer and Josopait 1996)
Methods for Estimating Groundwater Recharge

1. **Direct** measurements
2. **Water balance** calculations
3. **Darcy** approaches
4. Deconvolution of **hydrographs**
5. **Tracer** techniques
6. Other approaches, mainly **empirical methods**
Direct Measurement of Recharge with Lysimeters

- requires expensive construction
- accurate
- point measurement
- do not account for loss by interflow
- upscaling to catchment area difficult

http://www.igw.uni-jena.de/angeol/lysimeterstation/start.html
Types of Lysimeters

- Water is pumped in or out to maintain the same water level inside and out.

- Lysimeter base above the water table with suction drainage. It is relatively complicated to have the same potentials in the lysimeter and in the surrounding soil.
What must be measured in a lysimeter to calculate recharge?
Requirements of a lysimeter for estimating recharge

- undisturbed soil
- large enough to minimize edge effects
- large and deep enough to enclose complete root systems
- surrounded by similar vegetation
- surrounded by the similar hydraulic conditions
- watertight, except for the drainage to be measured

(Lerner et al. 1990)
Estimation of Recharge by Water Balance Approaches

\[N = ET + Q \pm \Delta S \]

- \(N \) = precipitation
- \(ET \) = evapotranspiration
- \(Q \) = discharge
- \(\Delta S \) = change in storage

\[R = N_R - ET_R - Q_s \]

- \(R \) = recharge to ground water
- \(N_R \) = precipitation
- \(ET_R \) = evapotranspiration
- \(Q_s \) = surface runoff

(Modified from Freeze & Cherry 1979)
Precipitation

- includes various forms of water, that fall to the ground surface from the atmosphere
- highly variable in space and time
- examples: rain, drizzle, snow, ice crystals

Precipitation is characterized by:

- precipitation depth h_N [mm]
- precipitation duration T_N
- spatial distribution
- frequency n, annual occurrence $T_n = 1/n$
- temporal change of intensity $i_N(t)$
- type of precipitation

Source: ARD2010
Measuring of Precipitation with a Weather Radar

Measurement of Precipitation

Local measurement with rain gauges

- Simplest instruments are containers that collect precipitation through the storm event
- More sophisticated rain gauges record the time, duration and intensity of precipitation
- Accuracy of measurement is affected by the physical setting and by disturbances
- Snow measurements typically underestimate the actual precipitation, particularly at high wind speeds
- Precipitation data are available from regional networks (for example DWD, USGS)

Spatial measurement

- Weather radar
Rain gauges

Figure 2.1 Examples of gages used for measuring precipitation. Panel (a) shows an 8-inch standard U.S. rain gage. The collection funnel inside directs the rain to a plastic measurement tube. Panel (b) shows a tipping bucket recording rain gage. The buckets are calibrated to tip after 0.01 in. of rainfall and are recorded by a data system.

(Schwartz and Zhang 2003)
Examples of Rain Gauges and Weather Stations

Fotos: Sebastian Schmidt
Weather Station Networks

Approaches for areal estimates of precipitation from networks

Arithmetic average

\[P_a = \frac{1}{N} \sum_{i=1}^{N} P_i \]

Area-weighted average (Thiessen-weighted average)

\[P_a = \frac{\sum_{i=1}^{N} P_i a_i}{\sum_{i=1}^{N} a_i} \]

*\(P_a \) = average precipitation for the area
*\(P_i \) = precipitation at station \(i \)
*\(N \) = number of weather stations
*\(a_i \) = area of the polygon around station \(i \)
Evapotranspiration

Evapotranspiration \(ETP = E + T \) unit \([L/T]\) or \((\text{mm/a})\)

Evaporation: physical process by which liquid water is converted into water vapor and removed from the evaporating surface. The rate is controlled by the availability of energy at the evaporating surface and how water can diffuse into the atmosphere.

Evaporation refers to the quantity of water loss from soils, rivers, and lakes.

Ward and Elliot, 1995
Transpiration: "process by which moisture is carried through plants from roots to small pores on the underside of leaves, where it changes to vapor and is released to the atmosphere. Transpiration is essentially evaporation of water from plant leaves."

Studies have revealed that transpiration accounts for about 10 percent of the moisture in the atmosphere, with oceans, seas, and other bodies of water (lakes, rivers, streams) providing nearly 90 percent, and a tiny amount coming from sublimation (ice changing into water vapor without first becoming liquid)." (source: USGS)
Potential and Actual Evapotranspiration

Potential evapotranspiration: assumes that the ET flux will not exceed the available energy and sufficient water is available, i.e. the potential ETP = maximum ETP.

Actual evapotranspiration: Evapotranspiration under field conditions, for example, when not enough water is available from soil moisture.
Measurement of Evaporation

Measurement of potential evaporation E_p with an evaporation pan
- shallow tank that contains water
- water depth is measured daily
- water is added or removed to adjust for evaporation losses
- in general, evaporation from a pan is higher than evaporation from a lake because the water can heat up by the metal sides considerably
- pan evaporation E_{pan} is corrected with an empirical pan coefficient C_{et} that varies depending on the month

$$E_p = E_{pan} \times C_{et}$$

(Schwartz and Zhang 2003)
Determination of Evaporation from Open Water Surfaces

Dalton equation

\[E = f(u) \times (e_s - e) \]

- \(E \) = evaporation from a water surface
- \(e_s \) = saturation water pressure of the surface
- \(e \) = actual vapor pressure
- \(f(u) \) = function of wind speed in a given height

Mass transfer equation

Penman (1948)

\[E = \frac{R_n}{L} \times s + \gamma \times f(v) \times (e_s - e) \]

- \(s \) = slope of the saturated vapor pressure curve
- \(R_n \) = net radiation
- \(L \) = latent heat of vaporization
- \(\gamma \) = psychrometric constant

Combination of energy balance equation with the Dalton equation

(from DVWK 1996)
Potential Evapotranspiration (ETp) – Calculation

Formula by Thorntwaite
Thorntwaite and Wilen (1948) developed an equation to calculate the potential evapotranspiration from grasland that is based on the temperature.

\[ET_p = k_1 k_m (10 \frac{T_m}{I})^a \]

\[I = \sum_{M=1}^{12} \left(\frac{T_m}{5} \right)^{1.514} \]

- \(ET_p \) = monthly potential evapotranspiration (cm)
- \(k_1 \) = 16 mm/month
- \(k_m \) = monthly correction factor, function of the latitude
- \(T_m \) = mean monthly air temperature (°C)
- \(I \) = annual heat index, the sum of the 12 monthly values of \(\left(\frac{T_m}{5} \right)^{1.514} \)

\[a = 6.75 \times 10^{-7} I^3 - 7.71 \times 10^{-5} I^2 + 1.79 \times 10^{-2} I + 0.49 \]
Example – water balance approach on different time scales

N > Etpot: ETa = ETpot
Large soil moisture: ETa = ETpot
Groundwater recharge, methods, discharge methods

Darcy- approach

If hydraulic potentials, hydraulic conductivities and boundary fluxes are known, groundwater recharge can be calculated by applying Darcy’s law. Two approaches exist:

a) the field measurement and
b) numerical modeling.

A simple approach for homogeneous conditions and unconfined aquifers is presented.
Isotopes and chemical tracers are commonly used to determine groundwater recharge in arid and semi-arid climate. They can be:

- natural tracers, i.e. tracers that are already in the geosphere
- man-made tracers, i.e. tracers of anthropogenic origin.

In general, tracers can be used to follow the travel path of a water molecule.

Application of a mass balance approach, the amount of water can be quantified for a given streamline (i.e. flow path).

Requirements:

a) conservative behaviour of tracers, i.e. no interaction of the tracer with the solid phase of the aquifer,

b) a contrast, i.e. differences of tracers in the different components,

c) knowledge of concentrations in the respective component.
Groundwater recharge: Tracer methods

Tracers can be used in different ways:

1. **Tracer method**: Tracer is added to a certain amount of water, and the concentration change of the tracer is observed in time (bomb tritium, artificially produced tracer). That method is usually applied to the unsaturated zone.

2. **Discharge method**: This method calculates fluxes of tracer and water for both the saturated and the unsaturated zone. Natural tracers are commonly used.

3. **Calculation of mean residence time**: This method is applied on the catchment area scale. Radioactive isotopes are commonly used.
Groundwater recharge: Tracer methods

Tracer profiles (Chandrasekharan, 1988)
Simulation
variabel gesättigter Strömung
Flow in the Unsaturated Zone

The quantity of water in a partly saturated zone is defined as volumetric water content θ with:

$$\theta = \frac{V_w}{V_T}$$

If the porous medium is fully saturated the volumetric water content equals the porosity.

$$0 \leq \theta \leq n$$

\[\text{in the saturated zone the water flow follows the head gradient and the pressure head } \psi > 0\]

\[\text{in the unsaturated zone the water pressure is below atmospheric pressure and the pressure head } \psi < 0\]

ψ is called suction, matric suction, tension
If two or more fluid phases occupy a porous medium, one of the fluid is adsorbed on the solid surface more strongly than the other.

The fluid that is most strongly adsorbed is called wetting fluid or wetting phase.

The displaced phase is the non-wetting phase.

Without interfacial forces (surface tension) separate phases would not exist.

Concept: surface tension
Capillary Pressure

- The interfacial forces acting on the curved interface between the phases is balanced by a difference in pressure at the contact between the phases.

- The pressure difference is called capillary pressure p_c:
 \[p_c = p_{nw} - p_w \]

- The capillary pressure increases from p_{c1} to p_{c2}

Laplace Equation:

\[p_c = \sigma \frac{1}{r_1} + \frac{1}{r_2} = \sigma \frac{2}{r^*} \]
Capillary Pressure – Saturation Relationship

Macroscopic consideration: $p_c = f(S)$

- If the pore space is initially fully occupied with water a finite capillary pressure " p_e " must be exceeded before air can entry the pore: *Entry pressure*

It is mostly at a saturation between 0.8 and 0.9
Capillary Hysteresis

The $p_c(S)$ relationship depends on the saturation history

→ Capillary Hysteresis
Saturation Domains

• The residual saturation S_r is reached if the capillary pressure increases rapidly with negligible decrease in saturation.

• The residual saturation equals a saturation when the phase film over the solid phase are not connected anymore.

The effective saturation S_e

is defined as: $S_e = \frac{S - S_r}{1 - S_r}$
Empirical pc-S Relationships

Brooks-Corey Model:

\[p_c(S_w) = p_e S_e^{-\lambda^{-1}} \quad \text{for} \quad p_c > p_e \]

\[S_e(p_c) = \left(\frac{p_e}{p_c} \right) ^ \lambda \]

- \(\lambda \) (BC - Parameter) and \(m, n \) (VG-Parameter) account for the pore size distribution.
- \(\lambda \) can vary between 0.2 and 6.
- \(\lambda \) increases with decreasing porosity.
- Materials with uniform pores have large \(\lambda \) values.
- \(\alpha \) accounts for the air entry pressure.

van Genuchten Model:

\[p_c(S_w) = \frac{1}{\alpha} \left(S_e^{-1/m} - 1 \right)^{1/n} \]

\[S_e(p_c) = \left[\frac{1}{1 + (\alpha p_c)^n} \right]^m \]
Relative Permeability: Microscopic Consideration

In a two or more phase system the effective permeability K_f of a phase depends on the shape and pore size through the phase flows:

$$K_f = K k_{r\alpha} \frac{\rho_{\alpha} g}{\mu_\alpha}$$

with:

- K_f = effective permeability [m2]
- K = intrinsic permeability [m2]
- $k_{r\alpha}$ = relative permeability of each phase

$$0 \leq \sum_{\alpha=1}^{n_{phas}} k_{r\alpha} (S_\alpha) \leq 1$$
Relative Permeability: Microscopic Consideration

- If capillary effects exist the wetting fluid occupies the smaller pores and the non-wetting fluid the larger pores.
- Tortuosity has a strong influence on the flow, when the actual flow direction is not in the direction of the Darcy flow:

\[
T_s = \left(\frac{l}{l_1}\right)^2 < 1
\]

\[
\left(\frac{T_1}{T_s}\right)_w \approx S^2 e
\]

\[
\left(\frac{T_1}{T_s}\right)_{nw} \approx (1 - S_e)^2
\]

\[
I = \text{straight line} \\
L_l = \text{effective flow line} \\
T_s = \text{Tortuosity under saturated conditions} \\
T_1 = \text{Tortuosity of the wetting/non-wetting fluid under unsaturated conditions}
\]
The relative permeability also depends on the saturation at macro scale:

Brooks & Corey model

\[
\begin{align*}
k_{rel_w} &= S_e^{2+3\lambda/\lambda} \\
k_{rel_{nw}} &= (1 - S_2)^2 (1 - S_e)^{(2+\lambda)/\lambda}
\end{align*}
\]

van Genuchten model

\[
\begin{align*}
k_{rel_w} &= S_e^\epsilon \left[1 - \left(1 - S_e^{m^{-1}}\right)^m \right]^2 \\
k_{rel_{nw}} &= (1 - S_e)^\gamma \left[1 - \left(1 - S_e^{m^{-1}}\right)^m \right]^2
\end{align*}
\]

\(\epsilon\) and \(\gamma\) account for the connectivity of the pores