Numerical Solution I
Stationary Flow

R. Kornhuber (FU Berlin)

Summerschool “Modelling of mass and energy transport in porous media with practical applications”
October 8 - 12, 2018
Schedule

• Classical Solutions (Finite Differences)

• The Conservation Principle (Finite Volumes)

• Principle of Minimal Energy (Finite Elements)

• Adaptive Finite Elements

• (Fast) Solvers for Linear Systems

• Random Partial Differential Equations
Saturated Groundwater Flow (Darcy Equation)

\[S_0 p_t = \text{div}(K \nabla p) + f \]

\(p: \) pressure

\[S_0 = \rho g \frac{\partial n}{\partial p} \geq 0: \] specific storage coefficient

\[K = (K_1, K_2, K_3) : \Omega \rightarrow \mathbb{R}^{3,3}: \] hydraulic permeability

\[f = \rho g \text{div} K_3 + gF: \] gravity and source terms
Darcy’s and Poisson’s Equation

Darcy’s equation:

\[S_0 = 0: \text{ pressure-stable granular structure} \]

\[-\text{div}(K \nabla p) = f \]
Darcy’s and Poisson’s Equation

Darcy’s equation:

\[S_0 = 0: \] pressure-stable granular structure
\[-\text{div}(K \nabla p) = f \]

Poisson’s equation:

homogeneous soil: \(K \in \mathbb{R}^{3,3} \quad \Rightarrow \quad K \nabla p(x) = \nabla p(Kx) \)

transformation of variables: \(p(x) \leftrightarrow p(Kx) =: u(x) \)
\[-\Delta u = f \]

Laplace operator: \(\Delta u = \sum_{i=1}^{3} u_{x_i x_i} = u_{x_1 x_1} + u_{x_2 x_2} + u_{x_3 x_3} \)
Classical Solution of Poisson’s Equation

Poisson’s equation: \(\Omega \subset \mathbb{R}^d \) (bounded domain)

\[-\Delta u = f \quad \text{on } \Omega \quad + \quad \text{boundary conditions on } \partial \Omega\]

boundary conditions (BC):

\[u = g\] pressure BC \quad (Dirichlet BC, 1. kind)

\[\alpha u + \beta \frac{\partial}{\partial n} u = g\] transmission BC \quad (Robin BC, 3. kind)

Theorem (well-posedness)

Assumption: \(\Omega, f, g \) sufficiently smooth.

Assertion: There exists a unique solution \(u \in C^2(\Omega) \cap C(\Omega) \) and \(u \) depends continuously on \(f, g \).
Ill-Posed Problems

flux boundary conditions:

\[\frac{\partial u}{\partial n} = g \quad \text{outflow BC (Neumann BC, 2. kind)} \]

no uniqueness: \(u \) solution \(\Rightarrow u + c \) solution for all \(c \in \mathbb{R} \)

necessary for existence: \(\int_{\Omega} f \, dx + \int_{\partial\Omega} g \, d\sigma = 0 \) \ (Green’s formula)
Ill-Posed Problems

flux boundary conditions:

\[\frac{\partial}{\partial n} u = g \] outflow BC (Neumann BC, 2. kind)

no uniqueness: \(u \) solution \(\rightarrow \) \(u + c \) solution for all \(c \in \mathbb{R} \)

necessary for existence: \(\int_{\Omega} f \, dx + \int_{\partial\Omega} g \, d\sigma = 0 \) (Green’s formula)

different BCs on disjoint subsets \(\Gamma_D \cup \Gamma_N \cup \Gamma_R = \partial\Omega \) allowed
Ill-Posed Problems

flux boundary conditions:

\[\frac{\partial}{\partial n} u = g \] outflow BC (Neumann BC, 2. kind)

no uniqueness: \(u \) solution \(\rightarrow \) \(u + c \) solution for all \(c \in \mathbb{R} \)

necessary for existence: \(\int_{\Omega} f \, dx + \int_{\partial \Omega} g \, d\sigma = 0 \) (Green’s formula)

different BCs on disjoint subsets \(\Gamma_D \cup \Gamma_N \cup \Gamma_R = \partial \Omega \) allowed

Caution: \(\Gamma_D \) too small, e.g. \(\Gamma_D = \{x_0, x_1, .., x_m\} \), \(\Rightarrow \) no uniqueness!!
Finite Differences

rectangular mesh with mesh size h:
Finite Difference Approximations

1. order forward and backward:

\[D_1^+ U(x_Z) = \frac{U(x_O) - U(x_Z)}{|x_O - x_Z|} \]

\[D_1^- U(x_Z) = \frac{U(x_Z) - U(x_W)}{|x_Z - x_W|} \]

2. order central finite differences:

\[D_{11} U(x_Z) = \frac{2}{|x_O - x_W|} \left(D_1^+ U(x_Z) - D_1^- U(x_Z) \right) \]
Finite Difference Discretization (Shortley/Weller)

discrete Laplacian: \(\Delta_h U(x) = D_{11} U(x) + D_{22} U(x) \)

discrete problem:

\[-\Delta_h U = f \quad \text{on} \quad \Omega_h, \quad U(x) = g \quad \text{on} \quad \partial\Omega_h \]

linear system: \(A^{FD} \overline{U} = b \)

Theorem (Convergence):

Assumption: \(u \in C^3(\Omega). \)

Assertion: \(\max_{x \in \Omega_h} |U(x) - u(x)| = O(h) \)
Heterogeneous Media

piecewise constant permeabilities:

\[K = \begin{cases}
 k_1 & x \in \Omega_1 \\
 k_2 & x \in \Omega_2
\end{cases} \quad \Omega = \Omega_1 \cup \Omega_2 \cup \Gamma \]

no classical solution of: \(\text{div}(K\nabla u) = f \) on \(\Omega \)
Heterogeneous Media

piecewise constant permeabilities:

\[K = \begin{cases} k_1 & x \in \Omega_1 \\ k_2 & x \in \Omega_2 \end{cases} \quad \Omega = \Omega_1 \cup \Omega_2 \cup \Gamma \]

no classical solution of: \(\text{div}(K \nabla u) = f \) on \(\Omega \)

- finite difference discretizations lead to interface problems
- interface problems require finite difference approximations of flux across the interface
Conservation Principle

conservation of mass in $\Omega' \subset \Omega$:

$$\int_{\partial\Omega'} K(x) \frac{\partial}{\partial n} u(x) \, d\sigma + \int_{\Omega'} f(x) \, dx = 0$$

regularity condition: $K \nabla u \in C^1(\overline{\Omega})^d$

Green’s formula:

$$\int_{\partial\Omega'} K(x) \frac{\partial}{\partial n} u(x) \, d\sigma = \int_{\Omega'} \operatorname{div}(K(x) \nabla u(x)) \cdot 1 \, dx + \int_{\Omega'} K(x) \nabla u(x) \cdot \nabla 1 \, dx$$

Darcy’s equation:

$$\int_{\Omega'} \operatorname{div}(K(x) \nabla u(x)) + f(x) \, dx = 0 \quad \forall \Omega' \subset \Omega$$
Finite Volumes

finite dimensional ansatz space: \(S_h, \dim S_h = n, \ v|_{\partial \Omega} = 0 \quad \forall v \in S_h \)

finite decomposition of \(\Omega \) into control volumes \(\Omega_i \): \(\Omega = \bigcup_{i=1}^{n} \Omega_i \)

finite volume discretization:

\[
\begin{align*}
 u_h \in S_h : & \quad - \int_{\partial \Omega_i} K \frac{\partial}{\partial n} u_h \, d\sigma = \int_{\Omega_i} f \, dx \quad \forall i = 1, \ldots, n
\end{align*}
\]

linear system:

choice of basis: \(S_h = \text{span}\{ \varphi_i \mid i = 1, \ldots, n\} \)

\[
A \overline{u}_h = b, \quad a_{ij} = \int_{\partial \Omega_i} K \frac{\partial}{\partial n} \varphi_j \, d\sigma, \quad b_i = \int_{\Omega_i} f \, dx
\]

solution: \(u_h = \sum_{i=1}^{n} u_i \varphi_i, \quad \overline{u}_h = (u_i) \)
Choice of Ansatz Space

triangulation: \(\mathcal{T}_h = \{ T \mid T \text{ triangle} \} \), \(\Omega = \bigcup_{T \in \mathcal{T}_h} T \)

linear finite elements: \(S_h := \{ v \in C(\overline{\Omega}) \mid v|_T \text{ linear } \forall T \in \mathcal{T}_h, \ v|_{\partial\Omega} = 0 \} \)

nodal basis: \(\lambda_p(q) = \delta_{p,q}, \quad p, q \in N_h \)
Vertex-Centered Finite Volumes

control volumes: linear connection of barycenters

linear system:

$$A^{FV} u_h = b^{FV}, \quad u_h = \sum_{p \in \mathcal{N}_h} u_p \lambda_p$$
Principle of Minimal Energy

quadratic energy functional:

\[\mathcal{J}(v) = \frac{1}{2} a(v, v) - \ell(v), \quad a(v, w) = \int_{\Omega} K \nabla v \nabla w \, dx, \quad \ell(v) = \int_{\Omega} f v \, dx \]

minimization problem:

\[u \in H^1_0(\Omega) : \quad \mathcal{J}(u) \leq \mathcal{J}(v) \quad \forall v \in H^1_0(\Omega) \]

variational formulation:

\[u \in H^1_0(\Omega) : \quad \mathcal{J}'(u)(v) = a(u, v) - \ell(v) = 0 \quad \forall v \in H^1_0(\Omega) \]

weak solution \(u \in H^1_0(\Omega) \) (Sobolev space)
Weak Versus Classical Solution

regularity condition: \(K \nabla u \in C^1(\overline{\Omega})^d \)

Green’s formula:

\[
0 = a(u, v) - \ell(v) = -\int_{\Omega} (\text{div}(K \nabla u) + f) v \, dx + \int_{\partial \Omega} (K \frac{\partial}{\partial n} u) v \, d\sigma
\]

suitable choice of test functions \(v \in C^1_0(\overline{\Omega}) \):

\[
-\text{div}(K \nabla u) = f \quad \text{on} \ \Omega
\]
Ritz-Galerkin Method

finite dimensional ansatz space: $S_h \subset H^1_0(\Omega)$, $\dim S_h = n$

Ritz-Galerkin method

$$u_h \in S_h : \quad J'(u_h)(v) = a(u_h, v) - \ell(v) = 0 \quad \forall v \in S_h$$

linear system:

choice of basis: $S_h = \text{span}\{\varphi_i \mid i = 1, \ldots, n\}$

$$A \overline{u}_h = b, \quad a_{ij} = a(\varphi_j, \varphi_i), \quad b_i = \ell(\varphi_i)$$

solution: $u_h = \sum_{i=1}^{n} u_i \varphi_i, \quad \overline{u}_h = (u_i)$
Finite Element Discretization

triangulation: \(\mathcal{T}_h = \{T \mid T \text{ triangle}\}, \quad \Omega = \bigcup_{T \in \mathcal{T}_h} T \)

linear finite elements: \(S_h := \{v \in C(\overline{\Omega}) \mid v|_T \text{ linear } \forall T \in \mathcal{T}_h, \ v|_{\partial \Omega} = 0\} \)

nodal basis: \(\lambda_p(q) = \delta_{p,q}, \quad p, q \in \mathcal{N}_h \)

linear system: \(A^{\text{FE}} \overline{u}_h = b^{\text{FE}} \)
Finite Elements Versus Finite Volumes

Theorem (Hackbusch 89)

\[A^{\text{FV}} = A^{\text{FE}}, \quad |b^{\text{FV}} - b^{\text{FE}}|_{-1} = \mathcal{O}(h^2) \]

Corollary:

\[\|u^{\text{FV}}_h - u^{\text{FE}}_h\|_1 = \mathcal{O}(h^2), \quad \|v\|_1^2 = \int_{\Omega} v^2 + |\nabla v|^2 \, dx \]

in general:

- finite volumes: finite element discretization with suitable test functions
- finite elements: finite volume discretization with suitable numerical flux
Stability

maximum principle:

\[-\Delta u_1 = f_1, \quad -\Delta u_2 = f_2 \quad \text{on } \Omega, \quad u_1 = u_2 = 0 \quad \text{on } \partial \Omega\]

\[f_1 \geq f_2 \quad \implies \quad u_1 \geq u_2\]

"bad" angles of triangles might cause oscillations!

remedy: Delaunay triangulation
Stability

maximum principle:

\[-\Delta u_1 = f_1, \quad -\Delta u_2 = f_2 \quad \text{on } \Omega, \quad u_1 = u_2 = 0 \quad \text{on } \partial \Omega\]

\[f_1 \geq f_2 \implies u_1 \geq u_2\]

no discrete maximum principle:

\[A^{FE}u_1 = b_1^{FE}, \quad A^{FE}u_2 = b_2^{FE}\]

\[b_1^{FE} \geq b_2^{FE} \implies \overline{u}_1 \geq \overline{u}_2\]

"bad" angles of triangles might cause oscillations!

remedy: Delaunay triangulation
Stability

maximum principle:

\[-\Delta u_1 = f_1, \quad -\Delta u_2 = f_2 \quad \text{on } \Omega, \quad u_1 = u_2 = 0 \quad \text{on } \partial \Omega\]

\[f_1 \geq f_2 \implies u_1 \geq u_2\]

no discrete maximum principle:

\[A^{FE}u_1 = b_1^{FE}, \quad A^{FE}u_2 = b_2^{FE}\]

\[b_1^{FE} \geq b_2^{FE} \implies \overline{u}_1 \geq \overline{u}_2\]

"bad" angles of triangles might cause oscillations!

Summerschool 2018
Stability

maximum principle:

\[-\Delta u_1 = f_1, \quad -\Delta u_2 = f_2 \quad \text{on } \Omega, \quad u_1 = u_2 = 0 \quad \text{on } \partial \Omega\]

\[f_1 \geq f_2 \quad \implies \quad u_1 \geq u_2\]

no discrete maximum principle:

\[A^{FE}u_1 = b_1^{FE}, \quad A^{FE}u_2 = b_2^{FE}\]

\[b_1^{FE} \geq b_2^{FE} \quad \implies \quad \bar{u}_1 \not\geq \bar{u}_2\]

"bad" angles of triangles might cause oscillations!

remedy: Delaunay triangulation \(\mathcal{T}_h \)
Discretization Error

Galerkin orthogonality: \(a(u - u_h, v) = 0 \) \(\forall \ v \in S \)

optimal error estimate:
\[
\|u - u_h\| = \inf_{v \in S_h} \|u - v\|,
\quad \|v\|^2 = a(v, v) \quad \text{(energy norm)}
\]

ellipticity: \(\alpha \|v\|_1 \leq \|v\| \leq \beta \|v\|_1, \quad \alpha, \beta > 0, \quad \forall \ v \in H^1_0(\Omega) \)

quasioptimal error estimate: \(\|u - u_h\|_1 \leq \frac{\beta}{\alpha} \inf_{v \in S_h} \|u - v\|_1 \)

estimate of the discretization error
\[
\inf_{v \in S_h} \|u - v\|_1 \leq c\|u\|_{2h} = \mathcal{O}(h), \quad c = c(T_h)
\]
Adaptive Multilevel Methods

Mesh $T := T_0$

Discretization w.r.t. T

Local refinement $T := Ref(T)$

Multigrid solution

- coarse grid generator
- finite element discretisation
- (iterative) algebraic solver
- a posteriori error estimate
- local refinement indicators
- local marking and refinement strategy

$\text{Error} < TOL$
Adaptive Multilevel Methods

- coarse grid generator
- finite element discretisation
- (iterative) algebraic solver
- a posteriori error estimate
- local refinement indicators
- local marking and refinement strategy

quasioptimal error estimate:

\[\|u - u_j\|_1 \leq cn_j^{-1/d} \]
Phase Transition
Hierarchical A Posteriori Error Estimators

extended ansatz space: \(Q_h = S \oplus V_h \)

(hopefully) better discretization: \(u_Q^h \in Q_h : \quad a(u_Q^h, v) = \ell(v) \quad \forall v \in Q_h \)

basic idea: \(\| u_Q^h - u_h \|_1 \approx \| u - u_h \|_1 \)

algorithmic realization:

basis of \(V_h \): \(V_h = \text{span}\{\mu_e \mid e \in E_h\} \) (quadratic bubbles)

weighted residuals: \(\eta_e = \frac{r(\mu_e)}{a(\mu_e, \mu_e)}, \quad r(\mu_e) = \ell(\mu_e) - a(\mu_e, \mu_e), \quad e \in E_h \)

Theorem (Deuflhard, Leinen & Yserentant 88)

The saturation assumption: \(\| u - u_Q^h \|_1 \leq q \| u - u_h \|_1, \quad q < 1 \)

implies the error bounds: \(c\eta \leq \| u - u_h \|_1 \leq C\eta, \quad \eta = \sum_{e \in E_h} \eta_e \)
Adaptive Refinement Strategy

Local errors have local origin (wrong for transport equations!):

\[\eta_e \geq \theta \implies \text{mark all } T \text{ with } T \cap e \neq \emptyset \text{ for 'red' refinement!} \]

'green' closures:
Stable Refinement in 3D

'red' refinement: What to do with the remaining octahedron?
Stable Refinement in 3D

’red’ refinement: What to do with the remaining octahedron?

Learn from crystallography (Bey 91)!
Linear Algebraic Solvers

stiffness matrix \(A = (a(\lambda_p, \lambda_q))_{p,q \in N_h} \)

\(A \) is symmetric, positive definite and sparse

condition number: \(\frac{1}{\mathcal{O}(1)} \leq \kappa(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} \leq \mathcal{O}(h^{-2}) \)

\(A \) is arbitrarily ill-conditioned for \(h \to 0 \)

Corollary:

Use iterative solvers for small \(h \) or, equivalently, large \(n \) \((n \geq 20 \ 000 - 50 \ 000)\)
Conjugate Gradient (CG) Iteration

Underlying idea: inductive construction of an A-orthogonal basis of \mathbb{R}^n

Algorithm (Hestenes und Stiefel, 1952)

initialization: $U^0 \in \mathbb{R}^n$, $r_0 = b - AU^0$, $e_0 = r_0$

iteration: $U^{k+1} = U^k + \alpha_k e_k$, $\alpha_k = \frac{\langle r_k, r_k \rangle}{\langle e_k, Ae_k \rangle}$

update: $r_k \rightarrow r_{k+1}$, $e_k \rightarrow e_{k+1}$

error estimate:

$$\|U - U^k\| \leq 2\rho^k \|U - U^0\|, \quad \rho = \frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}$$

Corollary: Slow convergence for $\kappa(A) \gg 1$
Preconditioned Conjugate Gradient (CG) Iteration

Underlying idea: inductive construction of an A-orthogonal basis of \mathbb{R}_n

Algorithm (Hestenes und Stiefel 1952)

initialization: $U^0 \in \mathbb{R}^n$, $r_0 = B(b - AU^0)$, $e_0 = r_0$

iteration: $U^{k+1} = U^k + \alpha_k e_k$, $\alpha_k = \frac{\langle r_k, Br_k \rangle}{\langle e_k, Ae_k \rangle}$

update: $r_k \rightarrow r_{k+1}$, $e_k \rightarrow e_{k+1}$

error estimate:

$$\|U - U^k\| \leq 2\rho^k \|U - U^0\|,$$

$$\rho = \frac{\sqrt{\kappa(BA)} - 1}{\sqrt{\kappa(BA)} + 1}$$

Corollary: Fast convergence for $\kappa(BA) \approx 1$

preconditioner B: optimal complexity $O(n_j)$ and $B \approx A^{-1}$
Subspace Correction Methods

basic idea: solve many small problems instead of one large problem

subspace decomposition: \(S_h = V_0 + V_1 + \cdots + V_m \)

Algorithm (successive subspace correction) Xu 92

\[
\begin{align*}
w_{-1} &= u^k \\
v_l &\in V_l : \quad a(v_l, v) = \ell(v) - a(w_{l-1}, v) \quad \forall v \in V_l \quad w_l = w_{l-1} + v_l \\
u^{k+1} &= w_m
\end{align*}
\]

- Gauß-Seidel iteration: \(V_p = \text{span}\{\lambda_p\} \) \quad \rho_h = 1 - O(h^{-2})

- Jacobi-iteration: parallel subspace correction \quad \rho_h = 1 - O(h^{-2})

- domain decomposition, multigrid, \ldots \quad \rho_h \leq \rho < 1 \quad \text{BPXW 93}
Multigrid Methods

hierarchy of grids (adaptive refinement!): $\mathcal{T}_0 \subset \mathcal{T}_1 \subset \cdots \subset \mathcal{T}_j = \mathcal{T}_h$

hierarchy of frequencies: $\mathcal{S}_0 \subset \mathcal{S}_1 \subset \cdots \subset \mathcal{S}_j = \mathcal{S}_h$

multilevel decomposition: $\mathcal{S}_h = \sum_{k=0}^{j} \sum_{p \in \mathcal{N}_k} \mathcal{V}_p^{(k)}$, $\mathcal{V}_p^{(k)} = \text{span}\{\lambda_p^{(k)}\}$

multigrid method with Gauß-Seidel smoothing and Galerkin restriction
Poisson’s Equation on the Unit Square

\[\Omega = (0, 1) \times (0, 1), \quad f \equiv 1, \quad V(1, 0) \text{ cycle, symmetric Gauß-Seidel smoother} \]

coarse grid \(T_0 \)

approximate solution

convergence rates:

<table>
<thead>
<tr>
<th>(\rho_j)</th>
<th>(j=2)</th>
<th>(j=3)</th>
<th>(j=4)</th>
<th>(j=5)</th>
<th>(j=6)</th>
<th>(j=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_j)</td>
<td>0.28</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Approximation History (L-Shaped Domain)

<table>
<thead>
<tr>
<th>levels</th>
<th>nodes</th>
<th>iterations</th>
<th>est. error</th>
<th>(\frac{\text{est. error}}{n_j^{-1/2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>—</td>
<td>0.34985</td>
<td>0.989</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>2</td>
<td>0.21165</td>
<td>0.969</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>2</td>
<td>0.11978</td>
<td>0.965</td>
</tr>
<tr>
<td>3</td>
<td>225</td>
<td>2</td>
<td>0.06441</td>
<td>0.966</td>
</tr>
<tr>
<td>4</td>
<td>833</td>
<td>2</td>
<td>0.03427</td>
<td>0.989</td>
</tr>
<tr>
<td>5</td>
<td>2.359</td>
<td>2</td>
<td>0.02185</td>
<td>1.061</td>
</tr>
<tr>
<td>6</td>
<td>3.320</td>
<td>2</td>
<td>0.01672</td>
<td>0.963</td>
</tr>
<tr>
<td>7</td>
<td>4.118</td>
<td>2</td>
<td>0.01505</td>
<td>0.966</td>
</tr>
<tr>
<td>8</td>
<td>10.032</td>
<td>2</td>
<td>0.01002</td>
<td>1.003</td>
</tr>
<tr>
<td>9</td>
<td>13.377</td>
<td>2</td>
<td>0.00805</td>
<td>0.931</td>
</tr>
<tr>
<td>10</td>
<td>16.369</td>
<td>2</td>
<td>0.00742</td>
<td>0.950</td>
</tr>
<tr>
<td>11</td>
<td>40.035</td>
<td>2</td>
<td>0.00494</td>
<td>0.989</td>
</tr>
<tr>
<td>12</td>
<td>53.188</td>
<td>2</td>
<td>0.00399</td>
<td>0.921</td>
</tr>
<tr>
<td>13</td>
<td>64.647</td>
<td>2</td>
<td>0.00371</td>
<td>0.943</td>
</tr>
<tr>
<td>14</td>
<td>159.064</td>
<td>2</td>
<td>0.00247</td>
<td>0.986</td>
</tr>
</tbody>
</table>
Uncertain Data

uncertainty of permeability, source terms, boundary conditions, ...

• by lack of sufficiently accurate measurements

• by external sources

random Darcy equation:

\[S_0 p_t(t, x, \theta) = \text{div}(K(x, \theta) \nabla p(t, x, \theta)) + f(x, \theta), \quad \theta \in \Theta, \]

probability space \((\Theta, \mathcal{A}, P)\).
Random Partial Differential Equations

random Darcy equation:

\[S_0 p_t(t, x, \theta) = \text{div}(K(x, \theta)\nabla p(t, x, \theta)) + f(x, \theta) \]

desired statistics of solutions:

- expectation value \(E[p] := \int_{\Theta} p \, dP \)
- variance \(E[(p - E[p])^2] \)
- probability of particular events \(P[\int_{\Omega} p(t, x, \theta) \, dx < 0 \text{ for } t < 1] \)
Numerical Approximation of Random PDEs

Monte-Carlo Method:

(i) generate N independent, P-equidistributed samples $\theta_1, \ldots, \theta_N$.

(ii) compute approximations of the N solutions for the samples $\theta_1, \ldots, \theta_N$.

(iii) compute the corresponding expectation value, variance,

advantage: always feasible and simple
disadvantage: convergence rate $\frac{1}{\sqrt{N}} \implies N$ has to be very large
Numerical Approximation of Random PDEs

Monte-Carlo Method:

(i) generate N independent, P-equidistributed samples $\theta_1, \ldots, \theta_N$.

(ii) compute approximations of the N solutions for the samples $\theta_1, \ldots, \theta_N$.

(iii) compute the corresponding expectation value, variance,

advantage: always feasible and simple

disadvantage: convergence rate $\frac{1}{\sqrt{N}} \implies N$ has to be very large

Multilevel Monte Carlo methods:
solve random PDEs with almost deterministic computational cost!