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Introductory remarks

Newt onds physi cs isliased dndaasde equdtionsne cohsarvation laws,
like the preservation of mass, energy, and momentum etc. Also the quantities involved in the
theory had in parts already studied by Galilei, Kepler, Descartes, and Huygens, it was on
Newton (1687) to dafie the proper relations and to built a first unique system. The only
exception was the conservation of energy, a law which was only recognized since the middle
of the 19" century ly Mayer, Jouleand independently by Helmholtz. The strange point is that
the conservation of energy was experimentally first proved in the ed?get@ury, at a time

when the Newtonian physics was already overcome by relativity theory.

In order to integrate previous observations in a concise theory, Newton also developed one
form of differential calculus calling the new method the fluxeon theory, obviously motivated
by physics in terms of flows (fluxes). At the same time Leibnitz invented his more formal way
for defining differentials and the differential calculus, a paraélelopment which caused a
dispute about the ownership between the two opponents for all their lifetime. However,
despite their dispute, a new powerful tool had developed, which can be elucidated by the
concept of the

Black Box Analogy

Consider you getome electrical devise with two pairs of terminals, one marked input and the
other one output. And, you are not able to open the devise; otherwise it would be disturbed
(not unreasonable if you consider a computer chip). What you can do is to connéoed de
source at the input and to observe the output, let say by an oscilloscope which displays the
output current as a function of time. Then by knowing the rules of electricity you may try to
find a circuit which is equivalent to the content of the devisse example, assuming the
content consists of a coil of induction and a resistance as shown,

; =
Input R Output

Then the current | satisfies the differential equation

di :

— + =
L ot Ri=¢(t),
e(t) is the input voltage. By solving the equation formally you canwbsther your
hypotheses about the content is verified by some combination of L and R values, otherwise
you may try another configuration unless you derived a model about the unknown processes
within the box.

During the 18 century a branch of physics dgeped which did not focus mainly at finite
objects considered in addition continua (e.g. Euler). However, essential results concerning the
integration of observations and theory where only achieved during theeb®ury, e. g. the
concept of the stresensor was developed by Cauchy also he still tried to unify it with
popular concepts of particle interaction, Navier and Stokes developed the theory of viscous
flow which in principle solved basic problems of the insufficient Euler equations but even
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today provide serious problems concerning their solutions, or Kirchhoff formulated the
precise theory of bending a beam for which before twice an award was proposed by the
French National Academy of Sciences. In other areas a closed theory, or even the basic
experiment, was only established during the earfy @&ntury.

When Newton and Leibnitz invented the differential calculus, they found a strong opposition
in the church because some infinitely small simply could not exist. This problem was still not
really overcome in the century and sometimes it is still showing up today, not at least in
connection with porous media. As mentioned, Navier tried to relate his flow equations to the
interaction of particles and failed. Similar, until today, attemptsiadertaken to derive flow

in porous media from first principles at the microscopic level with more or less success.
Obviously a porous medium consists of solids and pores as illustrated in the sketch and the
flow is naturally restricted to the pores.

SE S TS
Seeg

In this case differentiability obviously seems to be violated in terms of what one has learned

in terms of differentiable functions which now should be applied to two or even three

di mensi ons. However, as wi || t ur consdertasob el ow
called

Characteristic Volume

Consider we take randomly very small probes like ¥ fnom the idealized porous medium
sketch above, we will find basically two separated samples, one just consisting of rock and
the other one representing just fluid within the pore, between these extremes we will find very
few samples consisting partly abck and partly of fluid. Now, by increasing the sampling
area or volume continuously we will find less and less samples which contain only one of the
extremes and increasingly more containing a certain fraction of both states. While increasing
the sizeof the sample volume, the variance of the resulting probability distribution will
decrease and approach a rather sharp peak. Whenever the sample size has grown to a volume
for which the variance approaches zero, we can talk about the characteristic Vodgangse

the parameter under consideration can be precisely predicted from a single sample.

This at least theoretical approach is illustrated in the figure below, where the average
conductivity for an artificial material produced in the computer has bakmlated. The
material is composed of the two extreme states totally conductive (1) and totally isolating (0)
and the measured variability of observed conductivities is plotted against the characteristic
volume measured in pixels.
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Chapter 2: Mass and Energy Balance, Basics

In textbooks on porous flowou may find either just the governing differential equations or
some differencescheme is derived from a simple rectangular area. In a physical sense any
geometrical restriction to a control volume is not acceptable because otherwise you could not
be sure that your result, in our case partial differential equations, is of genena. natu
Nevertheless, we start with some simple geometrical objects to clarify basics before entering
into a more general description.

Let s consider a simple parallel flux field
some mass or energpansport or even some force as illustrated in the following sketch.

©

N

el
From G we cut a sub area G1 bounded by an arbitrarily closed polygon. The simple question
to be solved then is whether the inflow is balanced with the outflow or, perhaps, does
something happen inside. In order to calculate the amount entering or leaving we have to
consider every surface element and to divide the flux vector into a component perpendicular
to the surface, the amount entering, and a second one parallel to the surfaest, elem

indicating the amount bypassing. Because we will similar considerations later on, lets do that
as an

D{

Exercise
Given a flux vector, this is approaching an oblique oriented surface element (line) of your
choice. Separate it graphically into the flusxngponents parallel and oblique to the surface



The graphic procedure, however, is not really satisfying. In order to derive a computational
scheme one defines the normal vector to the surface element. There are three rules or simply
definitions necessary in order to avoid confusion:

The normal vector of a surface element for a claged satisfies the conditions
1) The normal is perpendicular to the surface.
2) The normal vector points to the outside of the closed are.
3) The closed area iaglways surrounded anticlockwise

Given the normal vector, the fluxes entering into the area are simply calculated by
Il [
in V.

In order to understand the negative sigenconsider the rather simple configuration where at
the left all fluxes (black) are directed outside while at the right they are all directed inward.

| |

In this special case and in the tdimensional projection, the normal vectors of the surface
are gven by (consider the anticlockwise rule)

i =(10),(02),(0- 1), (- 10).
The fluxes for the left case are
v =(20),(0,2),(0- a),(- 3,0)

Taking the sum over the scalar produ«‘zfp‘aji over the surface areas (which bre L=the
lengthof the bounding area element) we get the total flux
4981 =4,

although all fluxes are leaving the area under consideration. So if we take the view from
inside the control area the change within the area is correctly described by

change = § \(/j,r(%lI L.

or in terms of a continuous differentiable surface we get the surface integral
a
change= «ﬁvﬁis.

S
NOTE: The change observed within the area under consideration obviously is a scalar

value whilethenput to our Obl ack box6 is a vectc



Exercise
Show that the results are the same for the case of fluxes entering the area, as illustrated by the
right cube in the sketch.

Fluxes derived from a potential

In many cases the fluxes are derived franscalar field which frequently satisfies the
conditions of a potential fieM{X, y, z) . The gradient of such scalar field generates a vector

field or more precisely the gradient field
T: gradw
or in Cartesian coordinates
i =pwW
In this case]l measures the slope of the scalar field and has a positive value if the height of

the surface increases in the neighborhood of the point under consideration. "The sketch below
illustrates two special cases with regard to local coordinates: At the left the point under
consideration sitting on a ridge and at the right at the bottom of a valley.

> < o
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VQ>0| VQ<0 VQ<0] VQ>0

The sign ofBW is hill upward positive while the transport always should ibelbwnward in
order to satisfy the minimum principle of energy. The fluxes, therefore, are opposite to the
gradient of the scalar function
V = - gradW
or
vV=- 8V,

and the Balance equations become

change = & - grad(W)AL = & grad(W)f L,

or

change= @ - @rad(\/\/)rqu = A gﬁid(W)rC]jds.

Summary
If we consider an arbitrary bounded area within a flux field, the changes within this are or the
difference between in and outgoing fluxegiigen by

By= 1/

out ~ \I/:n =- ﬁ\i}ﬁjs = ‘ﬁ gﬁid(\/\/)rqu



Now, the balance equation derived depends on the size or volume of our control volume V. In
order to make it comparable to other materials, by example, we have to normalize it
STV .
(DV/V _(]out_ Jln)/v .
PV defines what happens within theea under consideration:

BV'>0 something is produced:  source
PV'=0 nothing happens: flow equilibrium
BV<0 something is consumed:  sink

The Divergence Theorem

We already considered the neednofmalizing our control volume. In a more mathematical
sense we may also consider a small volume V surrounding a point M. Then by reducing the
volume we will arrive finally at the value of change taking place at the point itself, leading to
the divergencat that point

~ N
Vﬁﬁ
div() = im ﬁv .

We will see later, that this limit is not necessary to derive the appropriate differential
equations otherwise we would restrict ourselves to homogeneous media not in agreement with
porous media. Nevertheless, tblowing exercise is useful:

Exercise

2
Show in the ondimensional case thadiv(W) = VOMDI Vi = C; \;V andfor a rectangular cube
X

that divw=D>?W, even in three dimensions.

The Gauss or GausOstrogradadski Formula

Without prove we give thillowing important relation known as Gauss formula:

~ d ~ Nn
N PV = A vpps
V S

whereV indicates the vector field of fluxes amdthe normal vector of the surface, the scalar
productvh is the projection ofV' onto .

Here a surface integral within a vector field is related to a volume integral and vice versa.
This will be used in deriving the governing partial differential equations amvides the
base for Greens formulae which play an essential role in thadtkod.
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GaussTh@r em and Greends For mul ae

Let G be an area bounded by piecewise smooth surface elements, then we find

a) Given the continuous vector field v=(U(x,y,z), V(X,y,z), W(x,y&)hin G, then we have
by the Gaussd theorem

N Pvag=Avinds.

b)Now | etWsYFWNVNFY®G, W=YHoru=Yy,
whereY ,F,G,H are functions of (x,y,zthen

N Y®Y[A9=- N pPvde+ Ay Ky nds

c) Another special case is derived if the vector v(F,G,H) is the gradient of a scalar field (e.g.
temperature, pressure, concentratiom PF :

N TP do=-fi @Yfi* BF)dg+f YiPF)*nds
G G S
and in case oY =c =const:

N AF9=A®ET)*nds

These equations play a significant role in deriving FE and FV methods from partial
differential equations.

11



Mass and Energy Balance continued

During the previous discussion we have seen that the surface integral within a flux field
taken over a specific control volume provides a scalar value. Considering that this value
results from a not necessarily continues scalar fielavithin the control volume we can
consider its temporary change whiat any instance has to be equal to the difference between
the in and outflow:

d
gt 1AV - ﬁv

Provided the control Volume(s) under consideration does not change we can write
~ — ~ d
A oy =- AV
V S

and by use of the Gauss Theoremrtgbt hand side can be rewritten as

& qi',‘u%ﬁdiv(\r)))dv =0
qi',‘u%ﬁdiv(\r)))dv ~0

in case there is no gain or loss within the control volume. Otherwise we have some production
or destruction Q which has to be measured as [value/time unit] and wilwresider

A fY A FRAY=- A Ay

with Q positive in the case of production and negative in case of destruction. Summarizing
this case we get

& qi‘%ﬁdiv(\'/‘) ° Q)dV =0

Vv
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KEY QUESTION
Under which conditions will the equality in the equations

& qi',‘u%ﬁdiv(\r)))dv ~0

and

& qii%ﬁdiv(\'/‘) ° Q)dV =0

hold, independent of the size of the control volume?
Please state:

Note: You should end up with a differential equation without using the divergence
theorem or any consideration of a limit as-X0.

Remark1

The assumption that the control volume does not change is a first order approximation for
sedimentary sequences. During continuous sedimentation the overload increases and the
sediments will compact just due to mechanical forces, or equiypdhke volume will
decrease during timeln addition, chemicghysica processes like pressure solution and
redistribution may occur which complicate the stress dependent processes in addition.
consider this aspect is beyond the present scope.

Remark 2
The equation

A (#H%ﬁQ)dV = - & Vs

where Q may be zero, provides a weak formulation of the problem to solve transport
processes. For that purpose subdivide the area under consideration into aerial subsets, by
example triangles as illustrated in the sitet

13



Then we can evaluate the volume integral e. g. by using the Gauss theorem and we can
formally evaluate the fluxes through the bounding lines or surfaces. An interesting aspect is
that, by considering the anti clockwise rule for the surface iategjt internal boundaries
vanish. This is equivalent to the statement that the flow leaving one internal volume element
along boundary i has to be equal to the flux entering the neighboring element along the same
boundary. Or in other words, the mechanismsures the conservation of the property u
within the area under consideration as long as nothing is lost during the outer boundary
indicated as an ellipse in the sketch. The equation of course does not include a rule how to
calculate the flux at the bodaries between elements or the scalar u within the elements. This
final problem is the topic of numerical mathematics and is differently done by example in
Finite Differences (FD), Finite Volumes (FV) or Finite Elements (FE).
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The equation
& q%ﬁdiv(\')) ° Q)dV =0
V

is certainly satisfied if

U-u : d) o U

— 4+ = o —_

holds for every point within the area under consideratiGonsider the case of a porous
medium andV the pore water flux. €rtainly, within the solids nothing is flowing and all
parts of the differential equation have to evaluate to zero. Within the pores flow occurs
satisfying the differential equation.

If V'is derived from a scalar field or potentl, i. e. V' = - gradW the equations become

HodM@Ed Q=0 u-DWr Q=0

I n case there is no tempor al change or produ
to the Laplacequation

2\\/—
b°W=0

which played an essential role before digital computers had become available. First, some
fundamental solutions are known for the Laplace equation basic solutions are known,
especially in two dimensions, and from these tsahs for more complex areas can be derived

by conformal maps.

The differential equations derived, obviously cannot be solved because we lack a relation
betweenuand V'. We will return to this problem below. Howayeot even the Laplace
equation can be solved unless we define an area with closed boundaries and additional
conditions along the boundary. There are two basic and one derived boundary conditions:

kind or DIRICHLET®&s condition: Find a har
considered area so that the solutioMx, y, z) satisfies given values oV = f (s)

along the boundary.
2%kind or NEUMANNGS c o ndasolationdfar the iftérior f tha har m
considered area so that the solutiol\X, Y, z) satisfies given values of the

normal derivativeM: f (s) along the boundary.
N
3" kind or mixed condition: Find a solution for the interior of the caidered area so

that the solution WX, Y, z)satisfies the equatioaW+ bM:f(s), and
pN

(@, b =consta’ + b> , 0) along the boundary.
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In case of the time dependent equation, we obviously need additionally an initial condition
within the areaunder consideration, i.e. the state from which the process starts. Observe
that this state has not to satisfy the differential equation and that the solution for very long
time will be determined by the boundary conditions.

Exercises

1)

2)

3)
4)

U
Find (qualitatively the solution for the-D problemu— =0 with u=a at x=0 and u=b

at x=1.
What would be the solution over a square with values of u given at the four corner
points?

u
How can the boundary conditioﬁnﬁ =0 be interpreted (2 pasbilities).

Consider a well located within a homogeneous aquifer with free surface. The well has
diameterr and you are pumping continuously[m?®] water. The free water surface
within the well than will have dropped to height Through the surface areaf the

well water will flow v [m/s]which is proportional to the slope of the free water

surface or V= K% , with y the height of the free water surface. At the boundary of the

well the water level in the aquifer will be equal to the free water level within the well.
Derive the differential equation, the required boundary conditions and the solution.
Sketch theolution.

1€
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Notation of Differentials
Let U be a scalar function U(x,y,z), then

bU =gradU = (E’E’E) =(U,.,U,,U,) generates a vector.
MX Wy pz

b : NablaOper#or
grad: the gradient, in euclidean space equivaler®to

TheNablaoperator is used like a vector, i.e. the rules of vector algebra apply:

p? :D*D:“_2+“_2+”_2:
H)(2 |Jy2 H22

or, if the operator is applied twice, a scalar field results. Alternatively the Divergence
div or the D: LaplaceOpeator. are used

2 2 2
P :“L; +“L§ +“L2J =DU =div(gradU)=U , +U  +U_,
TGT VT
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Chapter 3: Fluxesand Special Partial Differential Equations

The divergence or Gauss theorem provides us with an abstract relationship between a state
and a flux, however, not with an equation which could be salwéekss we find a functional
relationship between the two properties. Concerning the fluxes, these relationships are based
on experience (experiments) which are performed on a representative volume. By example,
consider a coarse grained rock like granitel @3 heat conduction. If you perform your
experiment at a very small volume you may measure just from a feldspar or a quartz grain,
only if your volume is Orepresentatived you
a single type of mineral.here have been and there are many attempts to solve the so called
up scaling problem that means to derive large scale properties from rather small scale or even
microscopic ones. Although this attempt in is fascinating in itself, mostly it is not very
pradical and well designed experiments are more successful. First attempts in this direction
have been made in B0of the 19' century in terms of the theory of irreversible
thermodynamic processes. However, the closure with classical thermodynamics was neve
fully established. Here we will consider only rather simple examples with the fluxes derived
from a scalar field or potential, sufficient for the problems considered here.

Fi c k8aw is tlescribing the redistribution of a soluble chemical specidsnat fluid in

the sense of the continuums theory. The flux is

j. =-DPBC,

C is the concentration of the substance and D is the Diffusion coeffidi@mtiously C is a
scalar property while D may be a tensor if the medium is anisotropicisircdee we can
derive an explanation from classical thermodynamics, especially the Brownian motion;
however, one cannot explain an initial disturbance within the frame of the classical theory.
The flux then is related to the temporal change observed by

We _ D(DPC)
or if we have to consider chemical reactions between the solid and fluid indicafgd by
“’%’ * Q=B(DBO);

J Cis the volume of fluid within the porous medium. In addition, considerpitie®ious
arguments.

Exercise

C can be, dependent on the purpose be defined in different unit¥oég(e.g. spirits),g/|

or kg/m® , oralternativelymol/l. Dependent on the definition the dimension of the diffusion
coefficientD will be modified. The rule, however, is that the dimension at the left side has to
be identical with the dimension of the right side of the equation, a statement which always has
to be true. Derive the dimensionDfor the different measurements menédn

Based on the previous equation one can elucidate how fluxes derived from a potential are
related to random processes which may occur on the microscopic level and how they even
may affect numerical solutions.

Consider we have two areas with differeiiffusion coefficients B < D, and we add some
concentrated solute (say as Dirac delta function) right at the boundary, then by our flow law
the material will move faster into area (2) than area (1). The spreading process of the particles
can be descrilieby a simple Markov process; however, we have to consider that the distance
any particle will move per time unit (speed) depends on the area where it is moving. The

16



distance in R will be proportional to B/ D, if we select the distance of grid points s
within D, Thus, the problem to solve the spreading process into areas of different
permeabilities by a random model is simply solved by transforming the distance between
discrete grid points to which particles may jump within one time unit, with gtardies being
proportional to the ratio of the diffusion coefficients.

Alternatively we may derive a finite difference scheme for solving the stationary equation
B(DbC) =0, which we can write as

Dz(Cz - Cl) _ Dl(Cl - Co) —
{ x i~ 1 /(Dx) =0

or by changing the distance between grid points by the transformation
Dx, = Dx/ D,; Dx, = Dx/ D, we get

(G- C) - (C, - Cp), ;DX + Dx, =
- T e =0

In the first case the equation looks symmetrical and one may conclude that the order of the
approximation is h while after the simple transformation it becomes clear that the
approximation is asymmetrical, in the case the approximation is only of order h!! The same is
true for the time dependent equation.

Heat Conduction
Heat conduction follows exactly the law diffusion. The difference is that we now follow
the spreading of a heat impulse:

jy =- /DT

with / the heat conductivity which may be once more a tensor. Concerning the energy
balance (measured in J/s), however, this equation has to be related to the total energy change
within a specific volume and that becomes

|

kai?

o

with ¢ the hetcapacity andr the density of the material.

In a very careful consideration one has to observe that not just/c arel functions of the

temperature but that the specific volume also depends on temperaturendldres that the
integral boundaries become a function of temperature, an effect usually ignored because for
most solids the temperature dependent volume changes are rather small, however, that may
not be true with certain metals or if we consider largewnts of solids as it is sometimes the

case in geological problems. Here we will assume that the volume change can be ignored so
that we can take the partial differential rather than the total (substantial) differential and the
partial differential equatio becomes

perT

=p(/PT).
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Observe that heat conduction occurs within the solid and the fluid. In principle we need two
additional equationsc =c(T) and r = r(T), so that we arrive at a nonlinear problem unless
one considers ¢ and to be constant (independent of Temperature), an assumption frequently

applied in simple geological and geophysical models. For the dimensions of the parameters
seethe appendix to this chapter.

In large scale geological systems it becomes sometimes necessary to consider heat production
within certain rock types due to radioactive decay or chemical processes which also may
consume heat. Typical rocks producing heatlay example granites and claystones. In this
case we have to consider the more general equation

HerT Q=D(/PT)

In the literature you will find frequently the equation

cr%zD(/DT), i.e. the Otemper at uifer=eastimawhicond wh
case the equation can be further simplified:

ur =p(D,bT), D =L

ut T e

In porous media we have to consider an additional aspect: The medium consists of solids and
of pores filled wit some fluid likevater, oil or some gas (air). The ratio of the pores to the
volume is defined by the porosity

. _ porevolume

, a dimensionless number (butklume=total volume).
bulkvolume

In detail then we have to consider the composition of the porous medium arataheeters
become

r=rouw=Q7 ) soigst/ g
C = Coui = (1- / )Csoiius*/ Cruia
Thereby the solids may be further differentiated if their fractipasefknown:

Fwics=a firi, Cows=a fic, af=1

In a similar way the heat conductivity is split into two components, however, as it may be a
tensor, the process is at best a first order approximation if it can be considered a scalar. The
approximation sometimes used is the geoimetean or

[ =10, Which obviously is less easily extended to a multi component system, to do it

solid

iS a nice exercise.
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Exercises

1)

2)

Linearize the equatior%T =P(/DT) by partially differentiating the time derivative

with respect tdhe parametersobserving that c=c(T) and = r(T).

Consider the heat flow from the interior of the earth which mostly is considered
stationary, i.e. it is governed by the equati®(/BT) =0 or B(/DT)=Q. At the
surface an average thermal gradient of 30°C is observed. At about 100 km depth the
boundary between the lithosphere and the astenosphere is reached, the latter behaves
like a fluid due to seismological data, the temperature at this boundary is
approximately 1300°C, due to experiments.
a) Compute the expected temperature at the base of the lithosphere based on the
average surface gradient.
b) Compute the expected temperature gradient throughout the lithosphere, based
on a surface temperature of 0°C.
c) Discuss for a layered crust qualitatively how the thermal conductivaiyould
vary with depth if the equatioB(/DT) =0 holds. Compare your results with

conductivity data for real rocks.
d) Determine for a homogenous lithosphere the ratio@f/ required to match

the observed boundary conditions.
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Fluid Flow in Porous Media

What 6s |l eft is the fluid flow through a por
indeedmay be the dominating process; the discussion has been shifted to the end because
there is a lot of confusion and alternative approaches around in the literature. You may find
essentiallythree different definitions which also affect the definition of perability:

1) &’M = k—r(E)p-dgcjllr), the mass flow of the fluid [(kg m)/s],
m

2) G = KD(p- g7Z), the Darcy velocity [m/s],
3) (th = K'D(h) or S'h =K’ % or’ (‘fD =KBb(p/g+2), as an alternative definition of the

Darcyvelocity [m/s].

The parameters and variables involved are:

r , the actual density at a certain point in space;

7, the constant density at a constant temperature, ignoring the pressure dependence of the
fluid (water close to zero);

g, the unit weight of water [kp];

m, the dynamic viscosity of the fluid which may also depend on temperature;

g, is the normalized acceleration on earth and

g, the vetor in the direction of acceleration (in small scale models it acts in the vertical (2)
direction);

z, is the height of a water column as measured in a piezometer or a well,

p, is the pressure in the fluid [N

k,K,K", have differentdimensions although they formally describe the same property but
with different assumptions concerning the variability mand 7 ; k has the dimension
[m?], K is, especially in the oil industry, referred in [Ddtcgnd K has the dimension
[m/s]. The different definitions and assumptions caused confusion very early and it is not
easy to recalculate published permeability data between the different concepts. This is well
illustrated by the facsimile at the endtothi s chapter from 6Theor e
(John Wiley and Sons, l nc. , 1943) . Not e t
notation (vice versa), here we follow the presently (mostly) accepted notation.

88. Flow of water through soils. The path along which a water
particle travels through a mass of soil is called a flow line. If the
flow lines are straight and parallel the flow is a linear flow. The flow
of water in a downward direction through a horizontal bed of sand is an
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example of this type. If the water particles trave: along eurves in
parallel planes, the flow is two-dimensional. All other types of flow,
such as the flow toward wells, are three-dimensional. In eonnection
with foundation problems we are primarily interested in two-dimen-
sional types of flow. The flow of water out of a storage reservoir
through the soil located beneath the foundation of a dam belongs in
this category.

t
ﬁ =l‘r-l'|.-||l'i "& P _H
Hyelraulic head

s

-F £ Wi
Freramefric fead

o
“l Fosition fead
¥

TES

e () ()

Fig. 72. Meaning of terms and symbols used in theory of seepage if used in con-
nection with (a) linear flow and (b) two- or three-dimensional flow involving
curved flow lines of which i is an element.

Figure 72a is a section through one of several types of an apparatus
which could be used to establish a linear flow in & soil sample with
finite dimensions. The sample is contained in a prismatic box with a
length ! and a cross-sectional area A. The sides of the box are im-
permeable. The two ends are perforated to permit free communication
between the soil and the adjoining columns of free water. The line ab
represents one of the flow lines, The neutral stress at point @ is -

Ul = Ywhul [1]
and at point b

If the water stands at the same level in the two piezometric tubes at
a and b the water is in a state of rest, although the neutral stresses wy
and u,e may be very different. In order to cause the water to flow
through the sand it is necessary to establish a hydraulic head h (Fig,
72a) which increases the hydrostatic pressure in one tube by v,k in
excess of the hydrostatic pressure in the other tube at the same level.
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This excess hydroslatic pressure v,k represents the force which drives the
water through the sand. The ratio
: h
ip = ‘Yw"l' (3]
represents the pressure gradient between the points @ and . It has the
dimension of a unit weight, gm ém™%. The ratio
. % h
g == = - 4
S [4]
is the hydraulic gradient. 1t is a pure number.

The quantity of water which percolates per unit of time through the
unit of area of a section at right angles to the direction of the flow is
called the discharge velocity v. For fine sands and for soils finer than
sand the relation between the pressure gradient i, equation 3, and the
corresponding discharge velocity v can be expressed almost exactly by
the equation

K .

v = tp (5]
wherein n (gm ¢m™? sec) is the coefficient of viscosity of the liquid and
K (cm?®) an empirical constant. The value 4 depends to a certain
extent on the temperature of the liquid and the value K on the porosity
and on the shape and size of the voids in the porous material. In
physics the value X is called the coefficient of permeability. By com-
bining equations 4 and 5 we get

n

The only liquid with which the civil engineer has to deal in connec-
tion with seepage problems is water. Within the range of temper-
atures to be encountered under field conditions the values 4 (viscosity)
and v, (unit weight) of water are almost constant. Therefore it
is customary in civil engineering to assume that both values are con-
stant and to substitute in the preceding equation the value

K
k=—vy : (6]
Ui
whence
h
v=ki=k7 [7)

!
The value k is also called the coefficient of permealnlity. However, in
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contrast to the value K used by the physicists it has the dimension of a
velocity, em per sec. It represents the discharge velocity for a hy-
draulic gradient £ equal to unity, and the law expressed by equation 7
is called Darey's law (Darcy 1856). According to this law the quantity
of water which flows per unit of fime through the sample shown in
Figure 72a is

qg= Av = Aki

In connection with equation 6 it should be emphasized that the permeability
characteristics of a porous material are expressed by K (cm?®) and not by & (em sec™),
because K is independent of the unit weight and the viscosity of the percolating
liquid whereas k depends on these factors. The exclusive use of k in this book
and in civil engineering in general is justified only by convenience.

Within the sample the water occupies only a volume n per unit of
volume of the soil. Therefore the average velocity with which the
water particles travel in a direction parallel to the flow lines is

v, = ;1;0 (8]

which is called the seepage velocily.

From the data shown in Figure 72a we obtain the following relations. If Ay
and ks represent the piezometric heads at a and b respectively, the hydrostatic head
h is equsl to

A= het = hus — H (9]
and the hydraulic gradient is

. h ho~hea H
"3 ] (0]

Bines A1 = ty1/ve (€q. 1) and huz = wwa/vw (eq. 2), equation 10 can be replaced by

‘.-i-uwl"uwl_g (1
Yo l {
If the flow oceurs in a vertical direction, H in equations 10 and 11 is equal to },
whence
‘._hﬂ—-kw:_l o1 tor —tes
H Yo H

A positive value of 7 indicates that the hydraulic gradient produces a flow in an
upward direction.

In Figure 72b the line ab represents an element of an arbitrarily curved flow
line. The length of the element is dl. At one end a of the element the water
nises in a piezometrie tube to a height ke above a and at the other end b it rises to
an elevation

1 {12]

O
hn-l-a‘dl
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The difference between the elevation of the observation points @ and b is ds.
Substituting in equation 10

k ok dh
I =dl, 1-—61' kot = hy, hln-hs’*‘adl
and
H == dz
we obtain ’
dh Ohy Oz
S R 12
Since
Uy dh 1 duy
Up = hyye OF hng‘h’ d al v ol
we can also write
1 duy 02
$ —7\0 al al n4]
The pressure gradient is equal to '
ah .
ip = — Yo o = Vet [15]
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Concerning the different definitions for the fluid qugM :ﬁ(E)p- gr) is the most general
m

one from which the other ones can be derived. By balancing with the changes in a certain
volume the following differential equation for the mass of fluidesived:

W = ©p- §ry),
pt m

which can only be solved together with the equation of stater(p) or more general
r =r(p,T). Qis asource/sink term which in large scale geological systems can be related to
the alteration of minerals which under certain conditions release or bind water.

Assuming ; =const, Q=0, and r =r(p)the equation can be lingzed by partial
differentiation:

. k d
YW 5 @p- §r)).
p pt m

Considering— = const we get
Hp

. kr d
je, ® =@ (p- §r)).
ut m

a linear equation which only depends orcpis the compressibility of the fluid .

Assuming further that = 7 =const and p = grhwe find from the last equation

e, M =p X phy),
i gm

which is sometimes found in the literature. However, here the dog is biting in its tail because

previously we only assuméd- =const, now we are actually assuming that const, in
Hp

which case the original equation becomes
0= E)(L B(h)) or 0=D(K'B(h)),
gm

i.e. the time dependent problem reduces to a pure stationary one, which hasf been
importance before the invention of digital computers because it was possible to solve this
equation analytically for simplified models or by using analog computers in therD6d'

of the 20" century, using the black box analogy with electrostatifise discrepancy,
however, only occurs if we consider the three dimensional case or a confined aquifer. If, in
case of an unconfined aquifer, the problem is reduced to two dimensions (x,y) and the third
dimension (z) becomes the dependent variable instevfnthe hydraulic head h, then an
equation of the type

th kK
S— =B(—b(h
¢ =0, o)

results, with S the storage capacity whiclsis/ ¢, h.
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There are some more approaches available to relate Bandjr , which are more concise,
however this will be explained in the context of FEFLOW®.

REMARK

Darcyds |l aw is valid as |l ong as the flow t hi
forces, even if very narrow joints are involved. However, as soon as the connections within

the prous medium approach pipe size like sometimes in coarse gravel or in open joints this
basic approach fails. In this case other laws have been developed e.g. the

Forchheimer equatiorad+b§? =B(K (Bp- §r))
Or potential functions 0(5]“ =D(K(bp- (fglr)).

In addition adispersionterm is sometimes introduced which considers that the pore network

provides a net with complex interactions causing a lateral dispersion of the flow. However,
this term is hardly determined experimentally in large scale systechst should depend on

the flow velocity, going to zero as the flow goes to zero or it may approach the diffusion
coefficient in case solutes are involved.
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Dimensionsoccurring in the equations

The classical literature is confused by a varietglifferent units which have been in use in
the past. Hex some relationships are sumined.

Joule: work=Force X Distance, 1J=1Nm = frkg $°=1 W s
1J =10 erg=10"dyn cm = 10cnf g s?
1 cal=4.1855J
Watt: 1 W = 10 erg/s=(10 cnf g)/s* =1J/s=1 m N/s
Newton [N]: N=mas$ acceleraton, 1 N=1 m kg
1 N=10° dyn=10 cm g § =0.1019716 kp
Pressure, Pascal [PaJpressure=force/area,
1 Pa=1 N n¥ = 10° bar=0.101972 kp i =0.98693*10° atm
Velocity: [m sY]
Mass flux: [kg m s']
Mass[ r ]: [kg mi?|
Porosity [/ ], sometimegn] : Volume of pore space/ Bulk volume [dimensionless]
Permeability, intrinsic [k]: [m?]
Permeabilty, Darcy [K]: ((dynamic viscosity)/(pressur@lifference)) X ((flow
rate)/area)
1 D=(10? dyn s/cri)/(1 atm/cm) *(1 cnf /s)/(1 cnf )= 0.987*10% cnt
Permeability, hydrostatic [K " ]: [m/s]
Heat conduction [/ ]: 1 J/(s m °K)
Specific Heat, [c]1 J/(°C kg) = 1 J/(°Kkg)= 10* cm/($ °K)
Heat production: W=J/s, mostly given agWV
Dynamic Viscosity: 10 g/(cm s)=1 kg/(m s)=(0.102 kp s)¥m
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Coupled Mass and Energy Transport

In the last chaptewe considered the transport equation for mass, heat, and fluid transport and
already observed that they are not independent concerning the state variables involved.
However, in addition we have to consider that the moving fluid may transport excessive mass
as well as heat, both modifying the associated properties and in addition may modify the state
parameters liker,/,c,m. Returning to the considerations of chapter 2, the fluid flow
provides an external vector field or flow field modifying the content of the control volume
despite any additional complications like chemical reactions. It is left to you to verify the
following equations by using the machinery developed in chapter 2.

The conservation of mass becomes

1) '“VTF - p(D(®C)) +B(Ch +Q. = 0.
Similar we get for the heat transport
2) Katel - B (BT +B(c, 7, T +Q; =0,

where the subscripb defines the bulk value (k density, bulk heat capacity, while the
subscriptf stays for the properties of the pore fluid. Equations relating the bulk properties
with the fluid properties have been given above.

The pore water flow is given by

h

. _ kr d
3) wmrf +Da+Qf=O, q——77(Dp- ar).

In order to solve this non linear set of equations we need additional information concerning
the state variables:

J =/ (p,T,Q.)usually is not considered, i.g. =const, otherwise additional equations,

perhapsexpressed as differential equations may be involved or in other words the
basic consideration concerning a stationary volume will be violated, as previously has
been discussed for the thermal expansion/contraction.

D=D(T) provides a good approximation, glianly

G, =¢(p.T,Q.),c, =c,(p,T,Q,) are normally reduced to a pure temperature dependence,

/ is mostly considered constant, also it varies with p an T and, of course with the
composition of the fluid!”

k is also mostly considered constant, although it strongly depends on the consolidation
state of the rocks, including mechanical compaction and chemical reactions.
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Mechanical compaction once more violates the way the differential equations have
been derivedbecause the control volume will change through time.

r.=r.(p,T,Q;) aswell asr, =r (p,T,Q;,Q,), however, may have to be considered at

least asr;, = r,(p,T) in the case of large scale geological models involving a wide

varietyofp essure and temperature values or if
case of a gas.

Q the various source/sink terms require additional assumptions like radioactive heat
production, chemical reactions etc.

fluid and bulkpropertiesare related by equations like
r="rou=Q /) soigst/ fia
C = Cyui = (- / )Csoiias*/ Chuia

as discussed previously. They may generalized further as discussed above.

Considering all the aspects we approach slowly the real world. However, at the end we have
an extremely high nehnear system which hardly can be solved with regard to the available
algorithms and computer power, at least within the lifetime of a sdieats/ practical
application, therefore will require simplified assumptions which focus at the major processes.

Recommended Exercise

Try to linearize equations (1) to (3) with regard to the time dependent state variables by
ignoring possible source/sinkrms (use partial differentiation).

Mathematical formulation of the thermohaline flow problem in FEFLOW

In the previous paragraphs, different constitutigeiagions describing mass, heatd fluid

flow are given in the form of linear relationships between fluxes and driving forces
(gradients). We already observed that those equations are not independent concerning the
state variables involved. As additional remark, we should point oufatttats of one type can

generate flows of another type (Bear, 1988). By example, mass flux can be caused by
temperature gradient (Soret effect) in addit
the opposite case, concentration gradient cancmdieat flow (Dufour effect), in addition to

the temperatur e gr addowsethese cfobsffacts areenegiested! Wew ) . I
will rather assume that groundwater is driven by the gradiepef, g2, appearing in the

Dary 6s | aw, as explained in the.

In nature, depending on the characteristics of the basin (e.g. presence of minerals and/or heat
source), t he Acombinati ono of al | or S 0ome
determines the quantity @b+ ,g2 and therefore the actual hydrologic regime of the basin.

In other words, the synergy between the different processes is referred to as coupling. If in
some regions the fluid density is greater than in the underlying units, the less densaeilfluids w
tend to rise inducing convective currents. The archetypal example is the coupling of heat and
dissolved halite which both strongly affect fluid density variation. The flow is then called
thermohaline convection (Nield and Bejan 1999).
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Here the mathenti@al formulation of coupled transport processes is given according to the
notationused in FEFLOW.

S) WE + dl\(q) :(%oussin esq

Eq.1.1
a . Fe- £
q= Kgrad(/) Ar_u
(; of Eq.1.2
WC | div(qC) -div(Dgrad
" iv(qC) -div(Dgrad(Q) € Eq.1.3
H fre +(Q - )f e 1 G oi :
G rer@ - )re) v o) degr@p @ Eq.1.4

Eq. 1.1 is the equation of fluid mass conservaticy.is the medium storativity which
physically represents the volume of water released (or added to) from storage in the aquifer
per unit volume of aquifer and per unit decline (or rise) of lie&koussinesdS the Boussinesq

term which incorporates firstrder derivatives of masdependent and temperature dependent
compression effects} is the Darcy (or volumetric flux density velocity) defining the specific

di scharge of the fluid. T h.2whdeKr i< thedhydrallia w i s
conductivty tensor. Eq.1.3 is the equation of solute mass conservation wheis the
porosity of the porous mediur@, is the mass concentratioD,is the tensor of hydrodynamic
dispersion and). is a mass supply. Ed..4 is the energy balance equation of thedland

porous mediacs and ¢ is the heat capacity of the fluid and solid respectivélyis the
temperatureg-is the tensor of hydrodynamic thermodispersion.
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Constitutive and phenomenological relations of the different physical parameters involved
in the equations are needed to close this coupled system. Here the hydraulic conductivity
relation and the Equation of State (EOS) for the fluid density are recalled:

- K0 Eq.1.5
m(C.T)
ri=6@d-®pT %) €UP(p B —+(C G Eq.1.6
(o Cs_CO

The hydraulic conductivity tensdf is related to the reference fluid dengty, g is the
gravitational acceleratiork, is the tensor of permeability;(C,T) takes into account the fluid
viscosity effects due to temperature and concentration variatidres EOS for the fluid
density Eq.1.6is related to the reference temperatligepressurgy and concentratio®o. U
is the mass concentration ratin( Tis the) coefficient of thermal expansion and Tis the)

coefficient of compressibility.

As previously, mentioned the primary coupling between groundwater flow, mass and heat
transport processes is through the Darcy law. The Darcy flowgrateEg. 1.2 controls the
rate of heat and mass convected through the media (equat®asd 1.4) andis also a
function of fluid density and dynamic viscosity, which are both related on temperature, solute
concentration and pressure by the respective EOS.

Therefore coupled fluid flow processes are intrinsically controlled by (1) the hydraulic
permeabilitydistribution and (2) fluid properties appearing in the Darcy law. In other words,
the interplay of both solid and fluid properties determines the distribution of fluid pressure,
flow rates, heat and solute migration.

1. Since sedimentation processes opeth over geological timsecale, hydraulic
conductivity can exhibit a wide range of values in the vertical direction. The heterogeinity of
hydraulic conductivity is also evident in the surroundings of piercing salt domes-(quasi
impervious), Pleistocene amaels (highly permeable) and faults (permeable/impervious
depending on the core properties). For instancesitin measured permeability data in
fractured crystalline rocks can display variations of several orders of magnitude (Ingebristen
and Sanford, 199. Furthermore compositionally identical rocks can have different
permeability at different depths because of consolidation and temperature effects. An example
of the relative importance of hydraulic permeability in controlling coupled processes is
faulted systems is given fdhe western Anatolia example.

2. The major fluid properties coupling fluid flow processes are density and viscosity. On
one hand, density variations must be accounted in the Darcy formulation to correctly calculate
buoyant driving foces, in addition to the pressure gradient (E@). Only very small
concentration differences are required to achieve density driven flow gradients equivalent to
typical field scale hydraulic head gradients (Simmons, 2005). On the other hand, as fluid
viscosity appears in the denominator of the hydraulic conductivity formulal(Bg.small
viscosity variations will highly impact the effective hydraulic conductivity and consequently
the flow rates. EOS are needed to correctly describe temperature r@r@sdLconcentration
dependences of density (Efj.6) and viscosity. As fluid properties strongly depend on
temperature and concentration, any effect which causes a significant variation in temperature
and concentration will play a fundamental role in coliihg groundwater flow. In
sedimentary basins, salt diapirs strongly influence the concentration of dissolved solids.
Furthermore, salt diapirs also perturb the temperature field because of their high thermal
conductivity which is two to four times greatthan that of the surrounding sediments. In this
regard, one can say that salt diapirs are a unique geological environment controlling
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thermohaline flow. Near salt domes, the impact of fluid viscosity is twofold: In a colder and
highly saline environmentsuch as a shallow salbme crest, it retards brine flow by
decreasing the effective hydraulic conductivity. In a warmer and less saline environment,
variable fluid viscosity enhances thermally induced fldWe coupling of transport processes
will be illustrated for the salt domes of the North East German Basin (NEGB).

A key number which controls the flow dynamics is the Rayleigh number. If the Rayleigh
number is large enough, then cellular motion can develop. As a result, a multitude of stability
analyes based on laboratory experiments were carried out on saturated porous media with
vertical gradients of temperature and salinity in order to determine the critical Rayleigh
number for the onset of thermohaline convection (Horton and Rogers 1945; Lap94fd 1
Elder 1967).
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Stability criteria

A dimensional analysis of the governing balance equations (Eq.(1.1) to Eq.(1.4)) yield to
the definition of the several adimensional numbers (Nield and Bejan 1999).

The key dimensionless number is the Rayleiginber Ra), which is the ratio between
buoyancydriven forces and resisting forces caused by diffusion and dispersion:

T

Schematic temperature and concentration
Porouemedia profilesof a homogeneous porous layer heate
Y (K. A.D) from below. Given thephysical properties of tt
medium, the Rayleigh numbers can be
determined (Eq.1.7 and Eq.1.8).
( A
KbDTd
. Rar =
Thermal Rayleigh numbezs L a.7)
a__xocd
Ra, = Csat' CO
Solutal Rayleigh numbeRra, €Dy (1.8)

whereK is the hydraulic conductivity as defined in Eq.(1%)introduces the effect of a
density change due to the concentration the solute at temperature and pteisstine
coefficient of thermal expansion at constant pressure and concentnatisnthe thermal
diffusivity, bc and pr are respectively the concentration and temperature variatios,a
characteristic length of the porous media (e.g., the layer thicknessjhe porosity,D, is the
coefficient of molecular diffusion.

The solutal and thermal Rayleigh numbers are related by:
Ra, = N3 Led® Rar (1.9)
where the dimensionless numbers in connection with heat and mass transport are:

Buoyancy ratio (Turner)N is the relative effects of concentration and temperature on
controlling groundwater density

2 e
N Csat;CO
bDT (1.10)
Lewis numberLe is the ratio of thermal to mass diffusivity
Le:L
Dy (1.11)

The stability criteria is thoroughly explained in Nield (1991), Diersch and Kolditz (2002).
Here the main points are recalled

A The monotonic instability (or stationary convection) boundary is a straight line defined
by Ra =Ra +Ra =4p?, where Ra Iis the critical Rayleigh numberThe critical
Rayleigh number defines the transition between dispersive/diffusive solute transport (
Ra<Rg: ) and convective transport by densityven fingers Ra>Ra. ). Ra. depends
on the boundary conditions, geometry and anisotropy (Nield 1968).
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A The region delimited byra +Ra <4p? is a stable regime characterized by pure
conduction and no convection.

A In a range betweenp? <Ra +Ra, <240- 300 steady state convective cells develop as

two-dimensional rolls rotating in clockwise or countbockwise direction. A second
critical Rayleigh numbeRa, =240- 300is identified as an upper limit.

A For Ra +Ra >Ra, the convection regime is unstable and characterized by a transition
to an oscillatory and transient convection behaviour.

From Eq.(1.7) and Eq.(1.8), it can be seen that given the diffusivities of the unit, Rayleigh
numbers are directly proportional to units thickness and hydraulic conductivity. Therefore
convective flows (i.e. high Rayleigh numbers) likely occur within teicknd more permeable
layers.

Brief description of driving forces in large-scale groundwater flow systems

In sedimentary basins, different driving forces contribute to the transfer of mass and heat.
These are often referred tolaglrogeologic regimedow, transport and reaction at the scale

of sedimentary basins are in most cases slow processes. However, over the scale of geologic
time, they effects are of great importance as they can generate important energy resources.

Topography driven flow (forceadonvection) (Fig. 1.3) is the dominant regiorstale
groundwater flow in uplifted sedimentary basins, both in the shallow and deeursate
(Freeze et al., 1967).

Uplifted foreland Maximum flow rate 1 -10 m/ yr

Discharge area

= ‘7 317
(

km 0

Modified after Garven 1995

Fig. 1.3: Topography driven flow(forced convection) in an uplifted sedimentary basin. The dashed line
illustrates the watetable that is a replica of the landscape. Vectors indicate the flow field. Stronger flow (thicker
vector) occurs in more permeable units (m/yr: meter per year).

Usually, in a foreland basin the water table mimics the topographic relief (blue dashed lines in
Fig. 1.3). A regional flow is induced because of the differences in the hydrostatic head that
drive fluid from highelevation recharge areas to l@levation disharge areas. In general,
groundwater flow is calletbrced convectiomhen it is driven by water table gradients.

Flow lines (bold vectors in Fig. 1.3) and rates depend on several factors as the geometry of
the aquifers (e.g variable thickness) and thphysical properties (e.g., hydraulic
permeability). For instance, vigorous recharge flow can be observed within the fault as well as
in the adjacent thin and highly permeable sand unit. Pleistocene channels (not displayed in
Fig. 1.3) are also importantglegical features that strongly impact the velocity field and flow
patterns. Almost no flow occurs in the bottom unit (e.g. impervious clay). Accordingly,
typical maximum flow rates can strongly vary, ranging from 1 to 10 m'year
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Thermally driven flow (e convection)ln sedimentary basins, the presence of a geothermal
field induces fluiddensity variations which in turn drive groundwater flow. Fluid motion
caused by density difference due to temperature variations is frakecbnvectiortFig. 1.4).

Most commonly, heating of groundwater in a geothermal system is provided by a heat source
located at depths. In a porous media heated from below, the warmer fluid (i.e. less dense)
starts to ascend. During this upward migration, the fluid loses its Tieatefore buoyancy
forces weaken and the fluid starts to sink again. The resulting flow path is called convective
cell. Convective patterns are mainly controlled by the hydraulic permeability and the
thickness of the units. Stronger convective flows amgeeted to take place in thick and
permeable stratigraphic units whereas thin aquitards prevent the formation of any free
convective motion. In highly permeable faults, a madtilular regime can develop and drive

hot fluids to shallow depths. In the swnalings of faults, pressure and temperature patterns
are strongly perturbed and differ from linear hydrostatic and conductive regimes. The impact
of faults and less permeable units on geothermal energy migration is illustrated for the
Western Anatolia exapte.

Fig. 1.4: Thermally driven flow (free convectioir) a geothermal basin. Vectors illustrate the convective cells.
Stronger convective flow (thicker vector) occurs in more permeable units. Near the faults, cells pattern are
elongated toward the faults indicating that these units act as preferential yatlowdluid migration. (m/yr:

meter per year).

In this regard, dimensionless studies based on Rayleigh and Prandtl numbers, as well as the
evaluation of the buoyancy ratio, have been developed to determine the onset of convection in
systems having a givahickness and constant physical parameters (Nield, 1968). However,

in sedimentary basins, these conditions rarely, if ever, occur. Therefore, determining the onset
of thermal convection by dimensionless analysis of the basin system is often not practical
(Simmons et al., 2001). Flow rates in convection cells may vary from few centimeters per
year up to a meter per year.

Gravity drivenflow (or density driven flow) is the term used when the convective currents are
induced by density differences due to vaoias of solute concentration. A favorable scenario

for gravitational convection is the presence of large salt bodies extending into shallow units
(Fig. 1.5). The formation of dense brines by dissolution at the base of these salt sheets
destabilizes the tyostatic equilibrium within the underlying sediments.
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