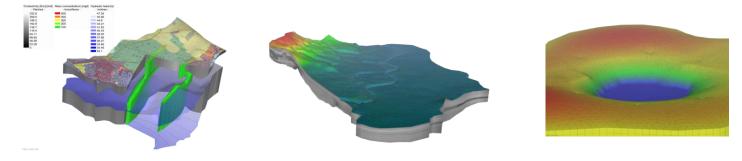
Modeling Subsurface Flow and Transport using **FEFLOW**

FEFLOW – More than Groundwater

More than "just" groundwater:

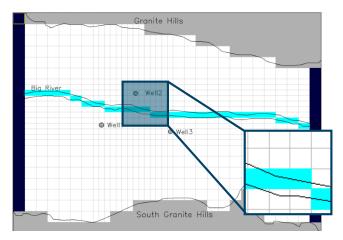
Subsurface Flow and Transport

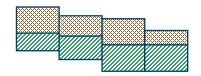
FEFLOW handles groundwater flow and related processes in one software environment and one simulation model:

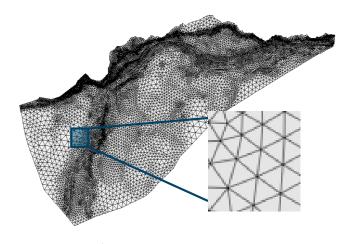

- Variably saturated flow
- o Contaminant transport
- Heat transport
- Density-affected flow
- Chemical reactions
- o And more...

FEFLOW – More than Groundwater

The software must be ...

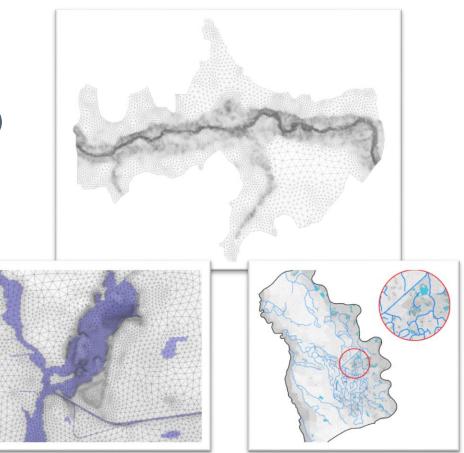

- Easy-to-use and intuitive to quickly master everyday groundwater projects
- Powerful and comprehensive to model the complex subsurface processes

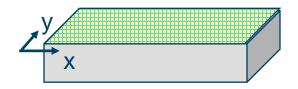




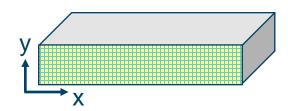
Flexible Meshes

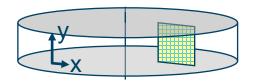
• Finite Differences vs. Finite Elements




Flexible Meshing

- Triangular or quad elements (2D)
- Prisms or cuboids (3D)
- 3D or 2D horizontal / vertical / axisymmetric projection
- 1D and 2D for fracture / pipe / borehole flow

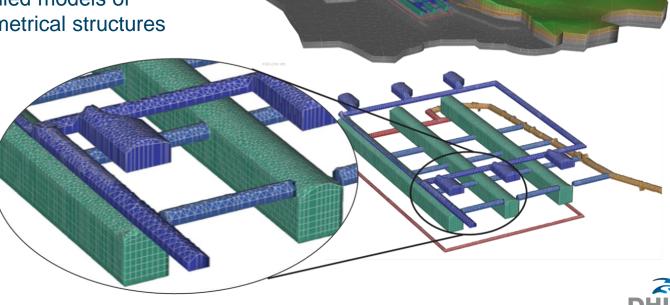




2D Model Projections

Vertical projection

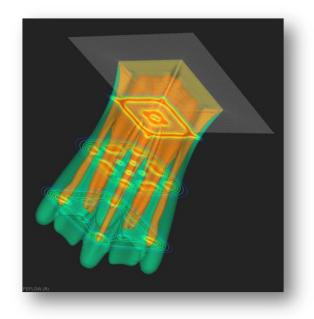
Axisymmetric projection



Flexible Meshing

3D Geometry

complex geometrical structure


...allows detailed models of complex geometrical structures

Physics

Groundwater and vadose-zone flow

- Saturated flow (Darcy law)
- Unconfined conditions (different approaches)
- Unsaturated / variably saturated flow (Richards equation)
- Fracture flow
- Density- and viscosity-dependent flow

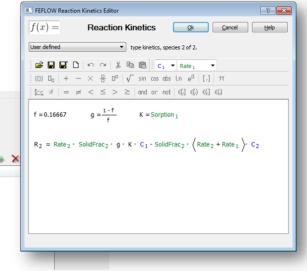
Physics

Transport

- Heat transport (advection-conduction equation)
- Solute transport (advection-diffusion equation)

Cher

Che

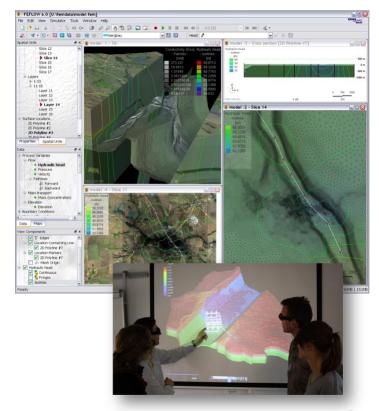

FLL

50

5 6 7

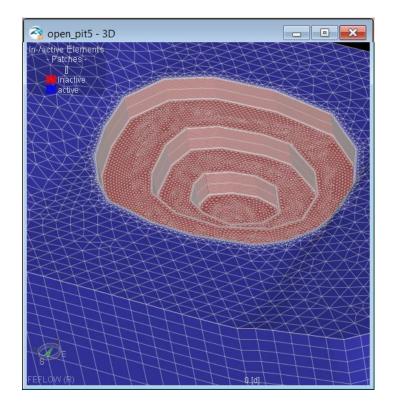
- Combined solute / heat transport
- o Sorption, decay
- Multispecies simulation
- Kinetic reaction systems

			(D) D ₀ + - ×
mical species definition			1 \$2\$ if = ≠ <
emical species are associated with a phase: UID PHASE species dissolved in a mobile fluid phase subjected to dispersion and advection			f = 0.16667 g
	becies of an immobile so aving no dispersion and	no advection	$R_2 = Rate_2 \cdot SolidFr$
Name	Phase	* ×	
PCE	fluid		
TCE	fluid		
DCE	fluid		
VC	fluid		
02	fluid		
NO3-	fluid		
Cl-	fluid		

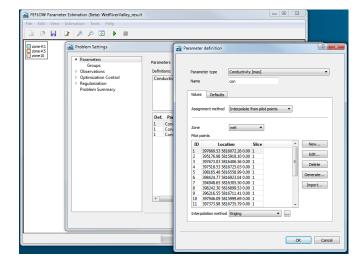

Ease of Use

- User interface for preprocessing, simulation, and postprocessing
- GIS/CAD/ASCII file interfaces for import and export
- 2D/3D map support
- Advanced computational methods
 - o Powerful mesh generators
 - Automatic time-stepping scheme
 - Algebraic multigrid solver
 - Parallelization

Visualization

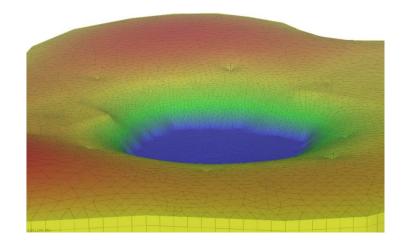

- 2D top / cross-section / data-trace views
- 3D views
- 2D / 3D map support
- 3D clipping and carving
- Live, interactive visualization during simulation run
- Hardware acceleration via OpenGL
- 3D stereoscopic display/projector support

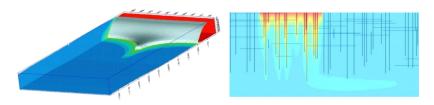
Temporal Element Deactivation


- Elements of the finite-element mesh can be temporally deactivated and reactivated.
- Simulation of time-varying model domain geometry (e.g. open-pit simulation projects, long-term morphological changes, etc.).

FePEST: Parameter Estimation with PEST

- Interface between FEFLOW and PEST
- Part of FEFLOW installation
- Calibration, optimisation, predictive analysis and sensitivity analysis
- Latest versions of PEST.exe and PLPROC.exe accessible
- Features:
 - Pilot-point method
 - Constant values within specified zones
 - 2D and 3D models
 - Steady state and transient models (version 6.2)
 - Tikhonov regularization, SVD, SVD-Assist


Extensibility


- Open programming interface
 - o Documented API interface
 - o User can develop plug-ins for
 - Additional functionality
 - Workflow automation
- Application Examples
 - Groundwater / surface-water coupling
 - o Integration of technical installations in geothermal modeling
 - o Import of model properties
 - Export of model results
- Development Services
 - Plug-in development as a consulting service

Fields of Application

- Regional groundwater management
- Mine-water management
- Groundwater management in construction and tunneling
- Geothermal energy (deep and near surface, both open-loop and closed-loop systems)
- Remediation / natural attenuation
- Seepage through dams and levees
- Groundwater surface water interaction
- Capture-zone delineation
- Saltwater intrusion
- Industrial porous materials

• ... and many more

