Exercise Sheet 1

Submission: $30.04 .2024,12: 15 \mathrm{PM}$ (start of lecture)

Exercise 1.

(7 points)
Consider the real projective plane $\mathbb{R} P^{2}=\mathbb{S}^{2} \backslash \sim$ where

$$
p \sim q \Longleftrightarrow x=y \text { or } x=-y \text { for all } x, y \in \mathbb{S}^{2}
$$

i) Show that \sim is an equivalence relation.
ii) Construct an atlas for $\mathbb{R} P^{2}$ consisting of exactly three charts explicitly.

Exercise 2.

(4 points)
Find two smooth atlases for the real line \mathbb{R} which are not smoothly compatibl ${ }^{1}$ to each other and thus yield two different smooth structures for \mathbb{R}. Justify your solution.

Exercise 3.

Let $p \in \mathbb{R}^{k}$. A derivation at p is a map $X_{\mid p}: C^{\infty}\left(\mathbb{R}^{k}\right) \rightarrow \mathbb{R}$ that satisfies the following conditions:
$\star X_{\mid p}(\alpha f+\beta g)=\alpha X_{\mid p}(f)+\beta X_{\mid p}(g)$ for all $\alpha, \beta \in \mathbb{R}$ and $f, g \in C^{\infty}\left(\mathbb{R}^{k}\right)$ (linearity),
$\star X_{\mid p}(f \cdot g)=X_{\mid p}(f) \cdot g+f \cdot X_{\mid p}(g)$ for all $f, g \in C^{\infty}\left(\mathbb{R}^{k}\right)$ (Leibnitz rule).
i) Show $X_{\mid p}(f)=0$ for f constant.
ii) Show $X_{\mid p}(f \cdot g)=0$ for $f(p)=g(p)=0$.

Exercise 4.

Consider the following parametrization of the hyperbolic paraboloid

$$
h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto\left(\begin{array}{c}
u \\
v \\
u^{2}-v^{2}
\end{array}\right)
$$

Further, denote with $u^{i}, i \in\{1,2\}$, the standard coordinates in \mathbb{R}^{2}.
i) Use the given parametrization to derive a (single) chart φ to represent the image of \mathbb{R}^{2} under h as a differentiable 2-manifold M.
ii) Derive coordinates $\left(x^{1}, x^{2}\right)$ for M explicitly, where $x^{i}(p)=u^{i}(\varphi(p))$ for $p \in M$ and $i \in\{1,2\}$.
iii) Determine the derivatives $\frac{\partial f}{\partial x^{i}}, i \in\{1,2\}$, at a point $p \in M$ for the function $f: M \rightarrow \mathbb{R}$ which is the restriction to M of the function $(x, y, z) \mapsto z$ on \mathbb{R}^{3} explicitly.

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ chart (U, φ) is smoothly compatible with a chart (V, ψ) if either $U \cap V=\emptyset$ or the transition map $\psi \circ \varphi^{-1}: \varphi(U \cap V) \rightarrow$ $\psi(U \cap V)$ is a diffeomorphism.

