Differential Geometry II Summer Semester 2024 Freie Universität Berlin

Exercise Sheet 1

Submission: 30.04.2024, 12:15 PM (start of lecture)

Exercise 1.

Consider the real projective plane $\mathbb{R}P^2 = \mathbb{S}^2 \setminus \sim$ where

$$p \sim q \iff x = y \text{ or } x = -y \text{ for all } x, y \in \mathbb{S}^2.$$

- i) Show that \sim is an equivalence relation.
- ii) Construct an atlas for $\mathbb{R}P^2$ consisting of exactly three charts explicitly.

Exercise 2.

Find two smooth atlases for the real line \mathbb{R} which are not smoothly compatible¹ to each other and thus yield two different smooth structures for \mathbb{R} . Justify your solution.

Exercise 3.

Let $p \in \mathbb{R}^k$. A derivation at p is a map $X_{|p}: C^{\infty}(\mathbb{R}^k) \to \mathbb{R}$ that satisfies the following conditions:

- * $X_{|p}(\alpha f + \beta g) = \alpha X_{|p}(f) + \beta X_{|p}(g)$ for all $\alpha, \beta \in \mathbb{R}$ and $f, g \in C^{\infty}(\mathbb{R}^k)$ (linearity),
- * $X_{|p}(f \cdot g) = X_{|p}(f) \cdot g + f \cdot X_{|p}(g)$ for all $f, g \in C^{\infty}(\mathbb{R}^k)$ (Leibnitz rule).
- i) Show $X_{|p}(f) = 0$ for f constant.
- ii) Show $X_{|p}(f \cdot g) = 0$ for f(p) = g(p) = 0.

Exercise 4.

Consider the following parametrization of the hyperbolic paraboloid

$$h: \mathbb{R}^2 \to \mathbb{R}^3, (u, v) \mapsto \begin{pmatrix} u \\ v \\ u^2 - v^2 \end{pmatrix}$$

Further, denote with u^i , $i \in \{1, 2\}$, the standard coordinates in \mathbb{R}^2 .

- i) Use the given parametrization to derive a (single) chart φ to represent the image of \mathbb{R}^2 under h as a differentiable 2-manifold M.
- ii) Derive coordinates (x^1, x^2) for M explicitly, where $x^i(p) = u^i(\varphi(p))$ for $p \in M$ and $i \in \{1, 2\}$.
- iii) Determine the derivatives $\frac{\partial f}{\partial x^i}$, $i \in \{1, 2\}$, at a point $p \in M$ for the function $f : M \to \mathbb{R}$ which is the restriction to M of the function $(x, y, z) \mapsto z$ on \mathbb{R}^3 explicitly.

(7 points)

(3 points)

(4 points)

(2 points)

¹A chart (U, φ) is smoothly compatible with a chart (V, ψ) if either $U \cap V = \emptyset$ or the transition map $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \emptyset$ $\psi(U \cap V)$ is a diffeomorphism.