Prof. Dr. Konrad Polthier Eric Zimmermann Version: 1 Scientific Visualization Summer Semester 2023 Freie Universität Berlin

Bonus Exercise Sheet

Submission: 25.07.2023, 10:15 AM

Note: This sheet is not mandatory and it is supposed to gather missing points. It recovers some exercises from the first half of the course.

Figure 1: Left: Drawing of simplicial complex. Right: Image for texturing.

Exercise 1. (4 points) Let $P = \{P_0, \ldots, P_3\} \subset \mathbb{R}^2$ be a set of control points given by

$$P_0 = \begin{pmatrix} 3\\0 \end{pmatrix}, P_1 = \begin{pmatrix} 1\\1 \end{pmatrix}, P_2 = \begin{pmatrix} 0\\3 \end{pmatrix}$$
, and $P_3 = \begin{pmatrix} 2\\4 \end{pmatrix}$.

Give an explicit representation of the *Bézier curve* given by the set of control points. Calculate new vertices arising from the algorithm of de Casteljau for t = 0.5.

Exercise 2. (4 points) Consider the simplicial complex illustrated in Figure 1a, where shaded regions depict 2-faces. Write down the simplicial complex and determine $link(\{v_4, v_5\})$ and $star(\{v_4\})$. Give a drawing of an example for a simplicial complex having Euler characteristic -1.

Exercise 3. (4 points) Consider the set of control points $S^0 = P$, with P from Exercise 1. Determine the first two subdivision steps S^1 and S^2 starting with S^0 using Chaikin's corner cutting scheme explicitly.

Exercise 4. (4 points) Let $p_0 = (1,0,0)$, $p_1 = (0,2,0)$, $p_2 = (0,0,1)$ be vertices of a triangle \mathcal{T} in \mathbb{R}^3 , $p = \frac{1}{2}(1,2,0)$ a point in \mathcal{T} , and an image with image domain $D_I = [0,3] \times [0,3]$ shown in Figure 1b. Provide an example for a texture map $t : \mathcal{T} \to D_T = [0,1]^2$ with D_T is normalized texture domain and a map $L : D_T \to D_I$ mapping it to the image domain. Sketch your maps and the result of the texture remapped to the triangle. Which color is assigned to p, i.e. what is $I \circ L \circ t(p)$?

Exercise 5. (4 points) Consider the 1D image consisting of eight pixels given by pixel values

$$C = [c_0, \ldots, c_7] = [2, 4, 0, 1, 1, -2, 4, 7].$$

The values c_i determine a function $f = \sum c_i \Phi_i^3 \in V^3$ w.r.t. the box basis $\mathcal{B} = \{\Phi_i^3\}$ of V^3 , $i \in \{0, \ldots, 7\}$. Sketch f and determine the wavelet transformation of f.