Bonus Exercise Sheet

Submission: 25.07.2023, 10:15 AM

Note: This sheet is not mandatory and it is supposed to gather missing points. It recovers some exercises from the first half of the course.

Figure 1: Left: Drawing of simplicial complex. Right: Image for texturing.

Exercise 1. (4 points) Let $P=\left\{P_{0}, \ldots, P_{3}\right\} \subset \mathbb{R}^{2}$ be a set of control points given by

$$
P_{0}=\binom{3}{0}, P_{1}=\binom{1}{1}, P_{2}=\binom{0}{3}, \text { and } P_{3}=\binom{2}{4} .
$$

Give an explicit representation of the Bézier curve given by the set of control points. Calculate new vertices arising from the algorithm of de Casteljau for $t=0.5$.

Exercise 2. (4 points) Consider the simplicial complex illustrated in Figure 1a where shaded regions depict 2 -faces. Write down the simplicial complex and determine $\operatorname{link}\left(\left\{v_{4}, v_{5}\right\}\right)$ and $\operatorname{star}\left(\left\{v_{4}\right\}\right)$. Give a drawing of an example for a simplicial complex having Euler characteristic -1 .

Exercise 3. (4 points) Consider the set of control points $S^{0}=P$, with P from Exercise 1. Determine the first two subdivision steps S^{1} and S^{2} starting with S^{0} using Chaikin's corner cutting scheme explicitly.
Exercise 4. (4 points) Let $p_{0}=(1,0,0), p_{1}=(0,2,0), p_{2}=(0,0,1)$ be vertices of a triangle \mathcal{T} in \mathbb{R}^{3}, $p=\frac{1}{2}(1,2,0)$ a point in \mathcal{T}, and an image with image domain $D_{I}=[0,3] \times[0,3]$ shown in Figure 1b. Provide an example for a texture map $t: \mathcal{T} \rightarrow D_{T}=[0,1]^{2}$ with D_{T} is normalized texture domain and a map $L: D_{T} \rightarrow D_{I}$ mapping it to the image domain. Sketch your maps and the result of the texture remapped to the triangle. Which color is assigned to p, i.e. what is $I \circ L \circ t(p)$?

Exercise 5. (4 points) Consider the 1D image consisting of eight pixels given by pixel values

$$
C=\left[c_{0}, \ldots, c_{7}\right]=[2,4,0,1,1,-2,4,7] .
$$

The values c_{i} determine a function $f=\sum c_{i} \Phi_{i}^{3} \in V^{3}$ w.r.t. the box basis $\mathcal{B}=\left\{\Phi_{i}^{3}\right\}$ of $V^{3}, i \in\{0, \ldots, 7\}$. Sketch f and determine the wavelet transformation of f.

