Prof. Dr. Konrad Polthier Eric Zimmermann Version: 1

Exercise Sheet 10

Submission: 18.07.2023, 10:15 AM

Exercise 1. (2 points) Let $v : \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$ be a differentiable vector field. Show that $\operatorname{curl}(v) = -\operatorname{div}(Jv)$ and $\operatorname{curl}(Jv) = \operatorname{div}(v)$ with $J = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ denoting a rotation matrix in dimension 2 by angle $\alpha \in [0, 2\pi)$. Which angle in the rotation is needed?

Exercise 2. (4 points) Let $v : \mathbb{R}^2 \to \mathbb{R}^2$, $x \mapsto \begin{pmatrix} 2x_1 - x_2 \\ x_1 + x_2 \end{pmatrix}$ be a vector field and $\gamma : [0,1] \to \mathbb{R}^2$, $t \mapsto \begin{pmatrix} \cos(2\pi t) \\ \sin(2\pi t) \end{pmatrix}$ a curve. Calculate¹ $\int_0^1 \langle v(\gamma(t)), \gamma'(t) \rangle dt$. What does the result mean for the vector field v? Can you provide a potential function such that v accounts as its gradient field?

Exercise 3. (2 points) Let M be a closed simplicial surface and $v \in \Lambda^1(M)$ a differentiable vector field on M. Derive a notion² for curl $v(x) := \int_{\text{link}(e)} v$ where x lies on the edge e and is neither one of the two endpoints. Provide an example for v s.t. the curl of v vanishes at x.

Exercise 4. (8 points) Consider the flat triangulation M with vertices

$$P_0 = \begin{pmatrix} 0\\0 \end{pmatrix} \text{ and } P_{k+1} = \begin{pmatrix} \cos\left(\frac{2\pi k}{6}\right)\\\sin\left(\frac{2\pi k}{6}\right) \end{pmatrix} \text{ for } k \in \{0,\dots5\}.$$

For the following two vector fields $v^i \in \Lambda^1(M)$ on M determine the discrete divergence and rotation at the center vertex P_0 :

- i) v^1 given by $v_0 = \ldots = v_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and
- ii) v^2 given by $v_0 = \frac{1}{2} \begin{pmatrix} -1\\\sqrt{3} \end{pmatrix}$, $v_1 = \begin{pmatrix} -1\\0 \end{pmatrix}$, $v_2 = -\frac{1}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix}$, $v_3 = \frac{1}{2} \begin{pmatrix} 1\\-\sqrt{3} \end{pmatrix}$, $v_4 = \begin{pmatrix} 1\\0 \end{pmatrix}$, and $v_5 = \frac{1}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix}$. Sketch v^2 as shown below.

Figure 1: Not a scale model.

¹Here we refer to the integrability of vector fields discussed in lecture 20.

²Similar to those we derived in the lecture for the curl of v at x being a vertex or lying inside a triangle.