Exercise Sheet 10

Submission: 18.07.2023, 10:15 AM

Exercise 1. (2 points) Let $v: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a differentiable vector field. Show that $\operatorname{curl}(v)=$ $-\operatorname{div}(J v)$ and $\operatorname{curl}(J v)=\operatorname{div}(v)$ with $J=\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right)$ denoting a rotation matrix in dimension 2 by angle $\alpha \in[0,2 \pi)$. Which angle in the rotation is needed?

Exercise 2. (4 points) Let $v: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, x \mapsto\binom{2 x_{1}-x_{2}}{x_{1}+x_{2}}$ be a vector field and $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$, $t \mapsto\binom{\cos (2 \pi t)}{\sin (2 \pi t)}$ a curve. Calculat $\bigcap^{1}\left[\int_{0}^{1}<v(\gamma(t)), \gamma^{\prime}(t)>d t\right.$. What does the result mean for the vector field v ? Can you provide a potential function such that v accounts as its gradient field?

Exercise 3. (2 points) Let M be a closed simplicial surface and $v \in \Lambda^{1}(M)$ a differentiable vector field on M. Derive a notion ${ }^{2}$ for $\operatorname{curl} v(x):=\int_{\operatorname{link}(e)} v$ where x lies on the edge e and is neither one of the two endpoints. Provide an example for v s.t. the curl of v vanishes at x.

Exercise 4. (8 points) Consider the flat triangulation M with vertices

$$
P_{0}=\binom{0}{0} \text { and } P_{k+1}=\binom{\cos \left(\frac{2 \pi k}{6}\right)}{\sin \left(\frac{2 \pi k}{6}\right)} \text { for } k \in\{0, \ldots 5\} .
$$

For the following two vector fields $v^{i} \in \Lambda^{1}(M)$ on M determine the discrete divergence and rotation at the center vertex P_{0} :
i) v^{1} given by $v_{0}=\ldots=v_{5}=\binom{1}{1}$ and
ii) v^{2} given by $v_{0}=\frac{1}{2}\binom{-1}{\sqrt{3}}, v_{1}=\binom{-1}{0}, v_{2}=-\frac{1}{2}\binom{1}{\sqrt{3}}, v_{3}=\frac{1}{2}\binom{1}{-\sqrt{3}}, v_{4}=\binom{1}{0}$, and $v_{5}=\frac{1}{2}\binom{1}{\sqrt{3}}$. Sketch v^{2} as shown below.

Figure 1: Not a scale model.

[^0]
[^0]: ${ }^{1}$ Here we refer to the integrability of vector fields discussed in lecture 20.
 ${ }^{2}$ Similar to those we derived in the lecture for the curl of v at x being a vertex or lying inside a triangle.

