Prof. Dr. Konrad Polthier Eric Zimmermann Version: 1 Scientific Visualization Summer Semester 2023 Freie Universität Berlin

Exercise Sheet 9

Submission: 11.07.2023, 10:15 AM

Figure 1: Left shows a representation of a regular pentagon with two additional edges and right a representation of the tutors' initial using L-systems.

Exercise 1. (8 points)

Let $v, v' : \mathbb{R}^2 \to \mathbb{R}^2$ be vector fields and $f : \mathbb{R}^2 \to \mathbb{R}$ a scalar field. Both are supposed to be twice continuously differentiable¹.

- i) Show that $\operatorname{curl}(\operatorname{grad}(f)) = 0$. What can you tell about $\operatorname{div}(\operatorname{curl}(v))$?
- ii) Show whether $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$, $(x, y) \mapsto (x^2 + y^2)^{-\frac{1}{2}}$ is harmonic². Describe and sketch how the gradient of f behaves and looks as a vector field.
- iii) Suppose div v = div v' = 0. Do v + v' and $v \odot v'$ necessarily have zero divergence³?
- iv) Show that $\operatorname{div}(fv) = \operatorname{grad}(f) \cdot v + f \operatorname{div}(v)$ with \cdot denoting the scalar product.

Exercise 2. (8 points) Solve the following tasks using L-systems⁴.

- i) Use the alphabet $\{F, f, +, -, [,]\}$ as mentioned in the lecture and an appropriate angle to find a word describing the pattern in Figure 1 on the left, which is a regular⁵ pentagon with two additional edges.
- ii) Let a turtle draw your first initial⁶ in a creative way, like in Figure 1 on the right. Therefore, provide the used alphabet, replacement rules, axiom, angle, and number of iterations. Either attach an image to your solutions or send it via mail with your submission.

¹Hint: Schwarz's theorem about the equality of mixed partials might be helpful.

²A twice differentiable function $f : \mathbb{R}^2 \to \mathbb{R}$ is *harmonic* if $\operatorname{div}(\operatorname{grad}(f)) = 0$.

³Here \odot denotes the Hadamard product, i.e. for two matrices A, B of same dimension $m \times n$ the product is an $m \times n$ matrix with entries $(A \odot B)_{ij} = (A)_{ij}(B)_{ij}$. In our case an *n*-vector could be considered an $n \times 1$ matrix.

 $^{^{4}}$ You can find a project dealing with L-systems in JavaView: File - New - Project - L-System. 5 All the edges have the same length and the inner angles are of the same size for the regular pentagon itself.

⁶One example per group suffices.