Exercise Sheet 9

Submission: 11.07.2023, 10:15 AM

Figure 1: Left shows a representation of a regular pentagon with two additional edges and right a representation of the tutors' initial using L-systems.

Exercise 1. (8 points)
Let $v, v^{\prime}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be vector fields and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a scalar field. Both are supposed to be twice continuously differentiabl $\underbrace{1}$
i) Show that $\operatorname{curl}(\operatorname{grad}(f))=0$. What can you tell about $\operatorname{div}(\operatorname{curl}(v))$?
ii) Show whether $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R},(x, y) \mapsto\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}$ is harmonic ${ }^{2}$. Describe and sketch how the gradient of f behaves and looks as a vector field.
iii) Suppose $\operatorname{div} v=\operatorname{div} v^{\prime}=0$. Do $v+v^{\prime}$ and $v \odot v^{\prime}$ necessarily have zero divergenc ξ^{3} ?
iv) Show that $\operatorname{div}(f v)=\operatorname{grad}(f) \cdot v+f \operatorname{div}(v)$ with \cdot denoting the scalar product.

Exercise 2. (8 points) Solve the following tasks using L-systems ${ }_{4}^{4}$.
i) Use the alphabet $\{F, f,+,-,[]$,$\} as mentioned in the lecture and an appropriate angle to find a$ word describing the pattern in Figure 1 on the left, which is a regular ${ }^{5}$ pentagon with two additional edges.
ii) Let a turtle draw your first initia $]^{6}$ in a creative way, like in Figure 1 on the right. Therefore, provide the used alphabet, replacement rules, axiom, angle, and number of iterations. Either attach an image to your solutions or send it via mail with your submission.

[^0]
[^0]: ${ }^{1}$ Hint: Schwarz's theorem about the equality of mixed partials might be helpful.
 ${ }^{2}$ A twice differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is harmonic if $\operatorname{div}(\operatorname{grad}(f))=0$.
 ${ }^{3}$ Here \odot denotes the Hadamard product, i.e. for two matrices A, B of same dimension $m \times n$ the product is an $m \times n$ matrix with entries $(A \odot B)_{i j}=(A)_{i j}(B)_{i j}$. In our case an n-vector could be considered an $n \times 1$ matrix.
 ${ }^{4}$ You can find a project dealing with L-systems in JavaView: File - New - Project - L-System.
 ${ }^{5}$ All the edges have the same length and the inner angles are of the same size for the regular pentagon itself.
 ${ }^{6}$ One example per group suffices.

