Exercise Sheet 8

Submission: 04.07.2023, 10:15 AM

Exercise 1. (8 points) Let \mathcal{M} be a simplicial surface and define S as

$$
S:=\left\{f: \mathcal{M} \rightarrow \mathbb{R} \mid f \text { is (affine) linear on each } \sigma \in \mathcal{M} \text { and } f \in C^{0}(\mathcal{M})\right\} .
$$

Show that S is a real vector space (equipped with pointwise addition and scalar multiplication).
Exercise 2. (8 points) Consider the following triangulation with vertices
$P_{0}=\binom{0}{0}, P_{1}=\binom{1}{0}, P_{2}=\frac{1}{2}\binom{1}{\sqrt{3}}, P_{3}=\frac{1}{2}\binom{-1}{\sqrt{3}}, P_{4}=\binom{-1}{0}, P_{5}=-\frac{1}{2}\binom{1}{\sqrt{3}}$, and $P_{6}=\frac{1}{2}\binom{1}{-\sqrt{3}}$,
and triangles $T_{i}=\left[P_{0}, P_{i}, P_{i+1}\right]$ for $i=1, \ldots, 5$ and $T_{6}=\left[P_{0}, P_{6}, P_{1}\right]$. Let further $u \in S$ be a continuous, piecewise (affine) linear function with values $u_{i}:=u\left(P_{i}\right)$ given by

$$
u_{0}=1, u_{1}=1, u_{2}=1, u_{3}=\frac{1}{2}, u_{4}=\frac{1}{3}, u_{5}=2, \text { and } u_{6}=-3 .
$$

i) Determine the gradient field ∇u and sketch it.
ii) For the triangle $T_{0}=\left[P_{0}, P_{1}, P_{2}\right]$ let $w \in S$ be a function with $w_{1}=1, w_{2}=-1$, and gradient $\nabla w_{T_{0}}=\binom{4}{0}$. Determine w_{0}.

