Scientific Visualization Summer Semester 2023 Freie Universität Berlin

Exercise Sheet 7

Submission: 27.06.2023, 10:15 AM

Exercise 1. (3 points) Show that on $\mathbb{R}^3 \setminus \{0\}$ an equivalence relation is given by

 $v \sim v' \iff \exists \lambda \in \mathbb{R} \setminus \{0\} : v = \lambda \cdot v'.$

Exercise 2. (8 points)

- i) Given the rotation R_{φ} around the angle $\varphi \in [0, 2\pi)$, the scaling S_{λ} by $\lambda \in \mathbb{R} \setminus \{0\}$, and the translation T_t by $t \in \mathbb{R}^2$ as (affine) maps $\mathbb{R}^2 \to \mathbb{R}^2$. Determine the corresponding linear maps $\mathbb{R}^3 \to \mathbb{R}^3$ and R_{φ}^{-1} , S_{λ}^{-1} , T_t^{-1} , and $(R_{\varphi}T_t)^{-1}$ in terms of R_{φ} , T_t , and S_{λ} .
- ii) Let $P = \{P_1, P_2, P_3, P_4\} \subset \mathbb{R}^2$ be given by

$$P_1 = \begin{pmatrix} 0\\0 \end{pmatrix}, P_2 = \begin{pmatrix} 1\\0 \end{pmatrix}, P_3 = \begin{pmatrix} 1\\1 \end{pmatrix}$$
, and $P_4 = \begin{pmatrix} 0\\1 \end{pmatrix}$

Determine an affine map $A: \mathbb{R}^2 \to \mathbb{R}^2$ such that $P_i \mapsto A(P_i) = Q_i$ for $i \in \{1, 2, 3, 4\}$ and

$$Q_1 = \begin{pmatrix} 2\\1 \end{pmatrix}, Q_2 = \begin{pmatrix} 3\\2 \end{pmatrix}, Q_3 = \begin{pmatrix} 2\\3 \end{pmatrix}, \text{ and } Q_4 = \begin{pmatrix} 1\\2 \end{pmatrix}$$

If possible determine A^{-1} .

Exercise 3. (5 points) Consider the simplicial surface defined by the set of points

$$P_1 = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, P_2 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, P_3 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \text{ and } P_4 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

with triangles $\{P_1, P_3, P_2\}$, $\{P_1, P_4, P_3\}$, and $\{P_1, P_2, P_4\}$. Determine the error quadric Q_1 at point P_1 as defined in the algorithm by Garland and Heckbert.