Exercise Sheet 7

Submission: 27.06.2023, 10:15 AM

Exercise 1. (3 points) Show that on $\mathbb{R}^{3} \backslash\{0\}$ an equivalence relation is given by

$$
v \sim v^{\prime} \Longleftrightarrow \exists \lambda \in \mathbb{R} \backslash\{0\}: v=\lambda \cdot v^{\prime}
$$

Exercise 2. (8 points)
i) Given the rotation R_{φ} around the angle $\varphi \in[0,2 \pi)$, the scaling S_{λ} by $\lambda \in \mathbb{R} \backslash\{0\}$, and the translation T_{t} by $t \in \mathbb{R}^{2}$ as (affine) maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Determine the corresponding linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $R_{\varphi}^{-1}, S_{\lambda}^{-1}, T_{t}^{-1}$, and $\left(R_{\varphi} T_{t}\right)^{-1}$ in terms of R_{φ}, T_{t}, and S_{λ}.
ii) Let $P=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\} \subset \mathbb{R}^{2}$ be given by

$$
P_{1}=\binom{0}{0}, P_{2}=\binom{1}{0}, P_{3}=\binom{1}{1}, \text { and } P_{4}=\binom{0}{1} .
$$

Determine an affine map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $P_{i} \mapsto A\left(P_{i}\right)=Q_{i}$ for $i \in\{1,2,3,4\}$ and

$$
Q_{1}=\binom{2}{1}, Q_{2}=\binom{3}{2}, Q_{3}=\binom{2}{3}, \text { and } Q_{4}=\binom{1}{2} .
$$

If possible determine A^{-1}.
Exercise 3. (5 points) Consider the simplicial surface defined by the set of points

$$
P_{1}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), P_{2}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), P_{3}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \text { and } P_{4}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

with triangles $\left\{P_{1}, P_{3}, P_{2}\right\},\left\{P_{1}, P_{4}, P_{3}\right\}$, and $\left\{P_{1}, P_{2}, P_{4}\right\}$. Determine the error quadric Q_{1} at point P_{1} as defined in the algorithm by Garland and Heckbert.

