Exercise Sheet 6

Submission: 20.06.2023, 10:15 AM

Exercise 1. (6 points) Consider the following three representations of three vector fields in \mathbb{R}^{2} :

i) Find explicit representations on the open square U approximating the three shown vector fields.
ii) Try to find potential functions ${ }^{1} f \in C^{1}(U), i=1,2,3$, whose gradient ${ }^{2}$ fields grad f_{i} look as in the figures above, or explain if and why such a function cannot exist.

Exercise 2. (5 points) Let $D_{I}=[-2,2]^{2} \subset \mathbb{R}^{2}$ be an image domain and $v: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto(-y, x)$ a vector field. Further let $\varepsilon=1, x_{0}=(1,0)$, and $L=2$.
i) Calculate the values $\left\{\gamma_{i}\right\}$ for $i \in\{0, \ldots, L\}$ approximating the integral curve $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ using the Euler method w.r.t. step size ε, starting point x_{0}, and vector field v.
ii) Determine the LIC color values $I\left(\gamma_{0}\right)$ and $I\left(\gamma_{1}\right)$ w.r.t. L using some white nois $\underbrace{3}$.

Exercise 3. (5 points)
i) For the cube shown below (left image) find and sketch two straightest discrete geodesics connecting the two highlighted points, one of them being a shortest, the other one not being a shortest geodesic. Justify your solution.
ii) Consider the quadrangular surface of genus 2 (right image). Find and sketch three straightest geodesics connecting the two highlighted points.

[^0]
[^0]: ${ }^{1}$ Hint: Let $f: U \rightarrow \mathbb{R}^{n}, U \subset \mathbb{R}^{n}$ open, with partial derivatives $\frac{\partial f}{\partial x_{i}}, \frac{\partial f}{\partial x_{j}}$, and further $\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} f$ exists and is continuous. Then $\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{i}} f$ exists and $\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} f=\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{i}} f$, cf. Theodor Bröcker - Analysis II.
 ${ }^{2}$ If $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable in u then the vector $\operatorname{grad}(f)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$ is called gradient of f at point u.
 ${ }^{3}$ Here you might consider random values from a noise function $N: D_{I} \rightarrow C$, with C a color space of gray scales distributed uniformly. Fun question: How can you simulate to draw uniformly from $\{0, \ldots, 255\}$ with the least sum Σ of natural objects and attempts? For instance throwing a dice once would give you a number from 1 to 6 , i.e. $\Sigma=2$.

