Prof. Dr. Konrad Polthier Eric Zimmermann Version: 1 Scientific Visualization Summer Semester 2023 Freie Universität Berlin

Exercise Sheet 6

Submission: 20.06.2023, 10:15 AM

Exercise 1. (6 points) Consider the following three representations of three vector fields in \mathbb{R}^2 :

- i) Find explicit representations on the open square U approximating the three shown vector fields.
- ii) Try to find potential functions¹ $f \in C^1(U)$, i = 1, 2, 3, whose gradient² fields grad f_i look as in the figures above, or explain if and why such a function cannot exist.

Exercise 2. (5 points) Let $D_I = [-2, 2]^2 \subset \mathbb{R}^2$ be an image domain and $v : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (-y, x)$ a vector field. Further let $\varepsilon = 1$, $x_0 = (1, 0)$, and L = 2.

- i) Calculate the values $\{\gamma_i\}$ for $i \in \{0, \dots, L\}$ approximating the integral curve $\gamma : [0, 1] \to \mathbb{R}^2$ using the Euler method w.r.t. step size ε , starting point x_0 , and vector field v.
- ii) Determine the LIC color values $I(\gamma_0)$ and $I(\gamma_1)$ w.r.t. L using some white noise³.

Exercise 3. (5 points)

- i) For the cube shown below (left image) find and sketch two straightest discrete geodesics connecting the two highlighted points, one of them being a shortest, the other one not being a shortest geodesic. Justify your solution.
- ii) Consider the quadrangular surface of genus 2 (right image). Find and sketch three straightest geodesics connecting the two highlighted points.

¹Hint: Let $f: U \to \mathbb{R}^n$, $U \subset \mathbb{R}^n$ open, with partial derivatives $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$, and further $\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f$ exists and is continuous. Then $\frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} f$ exists and $\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f = \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} f$, cf. Theodor Bröcker - Analysis II.

²If $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is differentiable in u then the vector $\operatorname{grad}(f) = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right)$ is called *gradient* of f at point u. ³Here you might consider random values from a noise function $N: D_I \to C$, with C a color space of gray scales distributed uniformly. Fun question: How can you simulate to draw uniformly from $\{0, \ldots, 255\}$ with the least sum Σ of natural objects and attempts? For instance throwing a dice once would give you a number from 1 to 6, i.e. $\Sigma = 2$.