Exercise Sheet 1

Submission: 02.05.2023, 10:15 AM

Exercise 1. (3 points) Let $\mathcal{P}=\left\{P_{0}, \ldots, P_{2}\right\} \subset \mathbb{R}^{2}$ be a set of control points given by

$$
P_{0}=\binom{4}{0}, P_{1}=\binom{1}{1}, \text { and } P_{2}=\binom{0}{4} .
$$

Determine all resulting control points using the de Casteljau algorithm for $t=0.5$. Determine $\mathrm{b}(\mathrm{t})$ explicitly. Represent the given control points, the resulting control points, and $\mathrm{b}(\mathrm{t})$ graphically.

Exercise 2. (3 points) Let m_{0} and m_{1} be two tangent directions belonging to the points P_{0} and P_{1} given by

$$
m_{0}=\binom{1}{0}, \text { and } m_{1}=\binom{0}{-1}, P_{0}=\binom{2}{6}, \text { and } P_{1}=\binom{4}{4} .
$$

Determine a C^{1} cubic polynomial passing through the given points with the given tangent directions. Illustrate your results.

Exercise 3. $\left(3+2=5\right.$ points) Show the following properties of the Bernstein polynomials with $n \in \mathbb{N}_{0}$ and $i \in[n]_{0}$:
i) $B_{i}^{n}(t)$ has exactly one maximum in $[0,1]$ for $n>0$;
ii) $B_{i}^{n}(t)=\frac{i+1}{n+1} B_{i+1}^{n+1}(t)+\frac{n+1-i}{n+1} B_{i}^{n+1}(t)$.

Exercise 4. (5 points) Represent your initials with combined Bézier curves using postscript t^{11} based on the code presented in the lecture ${ }^{2}$. An example is shown in Figure 1. Send in an executable ps-file called 01-Name0Name1.ps (one choice of initials per group suffices).

Figure 1: An illustrative example.

[^0]
[^0]: ${ }^{1}$ An interpreter for postscript can be found on https://www.ghostscript.com/index.html.
 ${ }^{2}$ Additional information can be found in the lecture notes and script uploaded on the course page

