Prof. Dr. Konrad Polthier

Eric Zimmermann

Version: 1

Differential Geometry I Winter Semester 2023/2024 Freie Universität Berlin

Bonus Sheet

Submission: 20.02.2024, 12:15 PM

Note: This sheet contains 18 bonus points.

Exercise 1.

Determine the curvature κ and torsion τ of the curve $t \mapsto (\sin(t), -t, \cos(t))$.

f

Exercise 2.

For a profile curve mapping $u \mapsto (r(u), h(u))$ let

$$: [a,b] \times [0,2\pi) \to \mathbb{R}^3$$
$$(u,v) \mapsto \begin{pmatrix} \cos(v)r(u)\\ \sin(v)r(u)\\ h(u) \end{pmatrix}$$

parametrize a surface of revolution. Determine for f the differential Df, surface normal N, metric g, second fundamental form b, shape operator S, principal curvatures κ_1, κ_2 , Gaussian curvature K, and mean curvature H.

Exercise 3.

Is there a surface $f: \Omega \to \mathbb{R}^3$ with the following first fundamental form g and shape operator S, i.e.

$$g = \begin{pmatrix} 1 & 0 \\ 0 & \cos^2(u) \end{pmatrix}$$
 and $S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$?

Justify your solution.

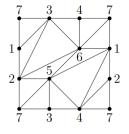
Exercise 4.

(3 points) The hyperbolic space of dimension 2 can be modeled via the upper half plane $\mathbb{H}^2 = \{(u, v) \in \mathbb{R}^2 \mid v > 0\}$ equipped with the metric $g(u,v) = \frac{1}{v^2}I_2$, with I_2 the identity matrix of dimension 2. Consider the following geodesic triangle¹:

Determine its area by integration.

Exercise 5.

Determine $\operatorname{star}([1,6])$, $\operatorname{link}([7])$, and the total Gauß curvature of the Császár torus² shown below.



¹The triangle is enclosed by the three arcs.

(5 points)

(3 points)

(3 points)

(4 points)

²A model of the Császár torus can be found in JavaView, i.e. in File - Open - JavaView Models in the category Polytope.