Exercise Sheet 12

Submission: 13.02.2024, 12:15 PM (start of lecture)

Figure 1: Quadrilateral surface.

Exercise 1.

Let p be an inner point of a simplicial regular ${ }^{1}$ surface S.
i) Determine the number of triangles incident to p such that the discrete Gauss curvature K in p is equal to $\frac{2 \pi}{3}, 0$, or $-\frac{2 \pi}{3}$ resp. Illustrate your results.
ii) Determine the number of triangles incident to p such that $K(p)=42 \pi$ resp. $K(p)=-42 \pi$.
iii) Determine the discrete Gauss curvature for the surface depicted in Figure 1 where all angles are equal to $\left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}\right\}$ as indicated in the figure.

Exercise 2.
Consider the triangle Δ given by the three vertices $p_{1}=\binom{-1}{1}, p_{2}=\binom{-1}{-1}$, and $p_{3}=\binom{2}{-1 / 2}^{4}$.
i) Determine the hat functions $\varphi_{i}, i \in\{1,2,3\}$, introduced in the lecture on Δ explicitly.
ii) Illustrate your results.
iii) Find the linear combination of a constant function on Δ.
iv) Find the barycenter.

Exercise 3.

Let \mathcal{M} be a simplicial surface and define S as

$$
S:=\left\{f: \mathcal{M} \rightarrow \mathbb{R} \mid f \text { is (affine) linear on each } \sigma \in \mathcal{M} \text { and } f \in C^{0}(\mathcal{M})\right\} .
$$

Show that S is a real vector space (equipped with pointwise addition and scalar multiplication).

[^0]
[^0]: ${ }^{1}$ All edges have the same length, and therefore, all angles are equal, too.

