Exercise Sheet 11

Submission: 06.02.2024, 12:15 PM (start of lecture)

Note: This sheet contains 2 bonus points.

Figure 1: Left: Quadrilateral surface. Right: Drawing of Császár torus.

Exercise 1.

i) Determine the genus of a closed simplicial surface with 20 triangles and 12 vertices.
ii) Sketch ${ }^{1}$ two nonisomorphic examples of a closed simplicial surface with 20 triangles and 12 vertices which are both not the icosahedron. Why are your examples nonisomorphic?
iii) How many edges does a simplicial double torus with 1200 vertices have?
iv) Let Q be a quadrilateral surface (see Figure 1 afor an example) and v, e, f, g, and χ denote the number of vertices, number of edges, number of faces, genus, and Euler characteristic of Q. Determine v, e, f, g, and χ for the example shown in Figure 1 a.
v) Give three examples for simplicial complexes having the same Euler characteristic but which are not simplicially isomorphi ${ }^{2}$, Justify your choice.

Exercise 2.

The Császár torus 3^{3} is a two-dimensional simplicial surface consisting of 7 vertices, 21 edges, and 14 triangles, cf. Figure 1b. Vertices labeled with the same index are identified and the edges are identified accordingly. Determine

- $\operatorname{star}([2]), \operatorname{star}([3,4]), \operatorname{star}([1,5,6])$,
- $\operatorname{link}([2]), \operatorname{link}([3,4]), \operatorname{and} \operatorname{link}([1,5,6])$.

Please use the definition of a star stated in the script.

Exercise 3.

i) Show that every m-simplex has 2^{m+1} faces, i.e. subsimplices for $k \in\{0, \ldots, m\}$.
ii) The Euler characteristic can be translated to higher dimensions via defining

$$
\chi(K)=\sum_{k \geq 0}(-1)^{k} f_{k}(K)
$$

where f_{k} denotes the number of k-faces of a simplicial complex K. Let Δ^{n} denote the n-simplex. Show $\chi\left(\Delta^{n}\right)=1$.

[^0]
[^0]: ${ }^{1}$ Think of an appropriate representation.
 ${ }^{2}$ They are not isomorphic as simplicial complexes.
 ${ }^{3}$ A model of the Császár torus can be found in JavaView, i.e. in File - Open - JavaView Models in the category Polytope.

