Exercise Sheet 9

Submission: 16.01.2024, 12:15 PM (start of lecture)

Note: This sheet contains 1 bonus point.

Exercise 1.

Let M be a closed surface triangulated by a finite triangulation \mathcal{T}. For a vertex $p \in \mathcal{T}$ we define the discrete graph Gauss curvature K by

$$
K(p):=6-\operatorname{val}(p),
$$

where $\operatorname{val}(p)$ denotes the valence of the vertex p, i.e. the number of adjacent edges. Show that the following version of a discrete Gauss-Bonnet theorem holds:

$$
\int_{M} K:=\sum_{p \in \mathcal{T}} K(p)=6 \chi(M) .
$$

Exercise 2.

i) Show that for a closed quadrilateral surface the Euler characteristic $\chi=v-e+f$ still holds, with v, e, and f the number of vertices, edges, and faces, respectively.
ii) Construct a quadrilateral torus T and illustrate your result.
iii) Count the vertices of T with positive, negative, and zero angle defect.
iv) Determine the Euler characteristic χ the total discrete Gaussian curvature of T.

Exercise 3.

Consider a parametrized surface S with negative Gaussian curvature $K<0$ everywhere. Prove the following statements:
i) At each point $q \in S$ there are two linearly independent asymptotic directions, i.e. two linearly independent tangent vectors $X, Y \in T_{q} S$ such that $b(X, X)=b(Y, Y)=0$.
ii) S is a minimal surface if and only if the asymptotic directions in each point on S are perpendicular to each other.

Exercise 4.

Show that the surface parametrized by $f(u, v)=\left(u, v, \log \left(\frac{\cos (v)}{\cos (u)}\right)\right), \cos (u) \neq 0$ and $\frac{\cos (v)}{\cos (u)}>0$, is a minimal surface.

