Exercise Sheet 8

Submission: 09.01.2024, 12:15 PM (start of lecture)

Note: This sheet contains 8 points and therefore 3 bonus points.

Exercise 1.

(3 points)
Which tiling by a regular (n, α)-gon has the same symmetries as the one shown in Figure 1? Provide the number of edges n and the corner angle α of the polygon and draw the tiling by the (n, α)-gon on top of Figure 1.

Figure 1: M. C. Escher's "Circle Limit IV", (c) 1997 Cordon Art. All rights reserved. Available from: researchgate, accessed $14 \mathrm{Dec}, 2023$.

Exercise 2.

Consider the so-called Cayley map ${ }^{1}$

$$
f_{C}: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}, \quad z \mapsto \frac{z-i}{z+i}
$$

i) Sketch the images under f_{C} of those lines which are parallel to the real or imaginary axis.
ii) Determine f_{C}^{-1}.
iii) Conclude that f_{C} is a bijection from the upper half-plane $\mathbb{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ to the unit disk $\mathbb{D}:=\{w \in \mathbb{C}| | w \mid<1\}$.
iv) Determine the coordinates of an arbitrary point (x, y) in the half-plane model that is mapped to the disk model.

Exercise 3.

Enjoy your holidays and have a good start into the new year!

[^0]
[^0]: ${ }^{1}$ A complex number $z \in \mathbb{C}$ can be written as $z=x+i y$ with $x=\operatorname{Re}(z) \in \mathbb{R}$ (real part of z) and $y=\operatorname{Im}(z) \in \mathbb{R}$ (imaginary part of z), and i the imaginary unit with property $i^{2}=-1$. Further we set $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$ and for $z=x+i y \in \mathbb{C}$ we have $|z|:=\sqrt{x^{2}+y^{2}}$.

