Exercise Sheet 7

Submission: 19.12.2023, 12:15 PM (start of lecture)

Exercise 1.

(4 points)
Describe the initial value problem for geodesics on a torus

$$
f:(u, v) \mapsto(\cos (u)(R+r \cos (v)), \sin (u)(R+r \cos (v)), r \sin (v)), \quad 0<r<R .
$$

Use the differential equations to verify that the following curves on the torus are geodesics:
i) $t \mapsto f\left(u_{0}, t\right)$ for a constant u_{0};
ii) $t \mapsto f(t, 0)$;
iii) $t \mapsto f(t, \pi)$.

Exercise 2.

Prove the following statements:
i) Let X_{1} and X_{2} denote the principal curvature directions on a surface at a given point and assume that the corresponding curvatures are not equal, i.e. $\kappa_{1} \neq \kappa_{2}$. Then X_{1} and X_{2} are orthogonal.
ii) There is no asymptotic line passing through an elliptic point 1^{1}.

Exercise 3.

Let $r(t)=e^{t}$ and $h(t)=\int_{0}^{t} \sqrt{1-e^{2 x}} d x$. The resulting surface of revolution is called a pseudosphere. Determine the asymptotic lines and the curvature lines for the pseudosphere. Show that the Gaussian curvature is -1 everywhere and that the asymptotic lines are tangential to the limit circle $(t=0)$.

Exercise 4.

The hyperbolic space of dimension 2 can be modeled via the upper half plane $\mathbb{H}^{2}=\left\{(u, v) \in \mathbb{R}^{2} \mid v>0\right\}$ equipped with the metric $g(u, v)=\frac{1}{v^{2}} I_{2}$, with I_{2} the identity matrix of dimension 2. Consider the following geodesic triangle ${ }^{2}$ in \mathbb{H}^{2} whose vertices are lying all at infinity:

Determine its area by integration.

[^0]
[^0]: ${ }^{1}$ Such a point has Gaussian curvature larger zero.
 ${ }^{2}$ The triangle is given by the part colored in gray.

