Exercise Sheet 6

Submission: 12.12.2023, 12:15 PM (start of lecture)

Note: This sheet contains 3 bonus points.

Exercise 1.

Let $c=f \circ \gamma$ be an arc-length parametrized curve that is contained in a surface $f: \Omega \rightarrow \mathbb{R}^{3}$. Prove the following statements.
i) If $c^{\prime \prime}$ is parallel to the normal of the surface, then c is a geodesic.
ii) The curve c is a straight line if and only if it is both an asymptotic line (i.e. $\kappa_{n}(s)=0$ for all s) and a geodesic.
iii) If c is a line of curvature $\left(c^{\prime}(s)\right.$ is principal curvature direction for all $\left.s\right)$ and a geodesic, then c is a planar curve.

Exercise 2.

(4 points)
Let $f:[0, \pi) \times[0,2 \pi) \rightarrow \mathbb{R}^{3},(u, v) \mapsto(\cos (u) \cos (v), \sin (u) \cos (v), \sin (v))$ parametrize the unit sphere. Determine an explicit parametrization of a geodesic c with initial values $p=c(0)=(0,0,1)^{t}$ and $c^{\prime}(0)=(1,0,0)^{t} \in T_{p} f$, and show that c satisfies the differential equations of geodesics.

Exercise 3.

Let the first and second fundamental forms for a surface f with parameters (u, v) be given by

$$
g=\left(\begin{array}{cc}
E & 0 \\
0 & G
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{cc}
L & 0 \\
0 & N
\end{array}\right) .
$$

Show that the integrability conditions, i.e. the Codazzi-Mainardi equations simplify to

$$
\begin{aligned}
& L_{v}=\frac{E_{v}}{2}\left(\frac{L}{E}+\frac{N}{G}\right)=E_{v} \cdot H \\
& N_{u}=\frac{G_{u}}{2}\left(\frac{L}{E}+\frac{N}{G}\right)=G_{u} \cdot H
\end{aligned}
$$

and the Gauß equation simplifies to

$$
K=-\frac{1}{2 \sqrt{E G}}\left(\left(\frac{E_{v}}{\sqrt{E G}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{E G}}\right)_{u}\right)
$$

where K and H denote the Gaussian and mean curvature respectively.

Exercise 4.

Let $f: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a conformal parametrization with conformal factor λ^{2}. Show that

$$
f_{u u}+f_{v v}=2 \lambda^{2} H N
$$

with H the mean curvature and N the surface normal of f.

Exercise 5.

Is there a surface $f: \Omega \rightarrow \mathbb{R}^{3}$ with the following first and second fundamental forms?
i) $\left.\left(g_{i j}\right)\right|_{(u, v)}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left.\left(b_{i j}\right)\right|_{(u, v)}=\left(\begin{array}{ll}0 & 0 \\ 0 & u\end{array}\right)$;
ii) $\left.\left(g_{i j}\right)\right|_{(u, v)}=\left(\begin{array}{cc}1 & 0 \\ 0 & \cos ^{2}(u)\end{array}\right)$ and $\left.\left(b_{i j}\right)\right|_{(u, v)}=\left(\begin{array}{cc}1 & 0 \\ 0 & \sin ^{2}(u)\end{array}\right)$.

