Exercise Sheet 5

Submission: 28.11.2023, 12:15 PM (start of lecture)

Exercise 1.

Determine the Christoffel symbols for the following surfaces:
i) $f_{1}:[0, \pi) \times[0,2 \pi) \rightarrow \mathbb{R}^{3},(u, v) \mapsto(\cos (u) \cos (v), \cos (u) \sin (v), \sin (u)), r>0$ and
ii) $\left.f_{2}:[0,2 \pi) \times[0,2 \pi) \rightarrow \mathbb{R}^{3},(u, v) \mapsto((R+r \cos (u)) \cos (v),(R+r \cos (u)) \sin (v), r \sin (u))\right), 0<r<R$.

Exercise 2.

Let $c=f \circ \gamma$ be a curve parametrized by arc length which is contained in a surface patch $f: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. The Darboux frame $\{T, B, N\}$ is defined by the relations $T(s):=c^{\prime}(s), B(s)=N(s) \times T(s)$, and $N(s)$ is the surface normal at $c(s)$. The frame equations of this generalized frame are

$$
\left(\begin{array}{c}
T^{\prime} \\
B^{\prime} \\
N^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa_{g} & \kappa_{n} \\
-\kappa_{g} & 0 & \tau_{g} \\
-\kappa_{n} & -\tau_{g} & 0
\end{array}\right)\left(\begin{array}{c}
T \\
B \\
N
\end{array}\right)
$$

where κ_{g} is the geodesic curvature, κ_{n} the normal curvature, and τ_{g} the geodesic torsion.
i) Derive the Darboux equations.
ii) Show that the normal curvature κ_{n} satisfies $\kappa_{n}=b\left(\gamma^{\prime}, \gamma^{\prime}\right)$, and-in case that c is a Frenet curvethat its curvature satisfies $\kappa^{2}=\kappa_{g}^{2}+\kappa_{n}^{2}$.
iii) Show that if c is a Frenet curve and an asymptotic line (i.e. $\kappa_{n}(s)=0$ for all s) then the geodesic torsion is equal to the torsion of the Frenet frame (i.e. $\tau_{g}(s)=\tau(s)$).

Exercise 3.

(4 points)
Let $z: \Omega \rightarrow \mathbb{R}$ be a C^{2}-function and let $f: \Omega \rightarrow \mathbb{R}^{3},(u, v) \mapsto(u, v, z(u, v))$ denote its graph. Show that the second fundamental form of f is given by

$$
\left(b_{i j}\right)=\frac{1}{\sqrt{1+\|\nabla z\|^{2}}} \operatorname{hess}(z)
$$

