Exercise Sheet 4

Submission: 21.11.2023, 12:15 PM (start of lecture)

Note: This sheet contains 3 bonus points.

Exercise 1.

The one parameter family of surfaces

$$
\begin{aligned}
f:[0,2 \pi] \times(-\infty, \infty) \times[0, \pi] & \rightarrow \mathbb{R}^{3} \\
(u, v, t) & \mapsto\left(\begin{array}{c}
\cos (t) \cos (u) \cosh (v)+\sin (t) \sin (u) \sinh (v) \\
-\cos (t) \sin (u) \cosh (v)+\sin (t) \cos (u) \sinh (v) \\
\cos (t) v+\sin (t) u
\end{array}\right)
\end{aligned}
$$

describes a transformation of the catenoid $f(-;-; 0)$ into the helicoid $f(-;-; \pi / 2)$. Show that this transformation has the following properties:
i) The surface normals remain unchanged, i.e. $\frac{\partial}{\partial t} N=0$;
ii) All surfaces $f(-;-; t)$ are isometric, i.e. $\frac{\partial}{\partial t} g=0$;
iii) The mean curvature vanishes for all u, v, and t.

Exercise 2.

For $t>0$ consider the tractrix $(r, h)(t):=\left(\frac{1}{\cosh (t)}, t-\tanh (t)\right)$ and the corresponding surface of rotation ${ }^{1}$

$$
f: \mathbb{R} \times[0,2 \pi) \rightarrow \mathbb{R}^{3},(t, \varphi) \mapsto(r(t) \cos (\varphi), r(t) \sin (\varphi), h(t))
$$

i) Sketch the tractrix.
ii) Determine both principal curvatures κ_{1} and κ_{2}.
iii) Show that its Gaussian curvature is constant.
iv) Determine its surface area.

Exercise 3.

Let $f: \Omega \rightarrow \mathbb{R}^{3}$ be a parametrized surface with metric g, second fundamental form b and shape operator S. In each point $u \in \Omega$, the third fundamental form is a symmetric bilinear form h given by

$$
h(v, w):=g(S v, S w) \text { for all } v, w \in T_{u} \Omega
$$

Show the following equality

$$
h(v, w)-2 H b(v, w)+K g(v, w)=0,
$$

where K denotes the Gaussian and H the mean curvature of $f(\Omega)$.

Exercise 4.

Compute the Gaussian and mean curvature for
i) the sphere: $(u, v) \mapsto(\cos (u) \cos (v), \cos (u) \sin (v), \sin (u))$ and
ii) the torus: $(u, v) \mapsto((R+r \cos (u)) \cos (v),(R+r \cos (u)) \sin (v), r \sin (u)))$ for constants $0<r<R$ (cf. sheet 3).

[^0]
[^0]: ${ }^{1}$ It is also called surface of revolution and this specific example is called tractroid or pseudosphere.

