Exercise Sheet 1

Submission: 31.10.2023, 12:15 PM (start of lecture)

Exercise 1.

(4 points)
An epicycloid ${ }^{1}$ is the path traced out by a point on a circle c which rolls around a fixed circle C. Let r and R denote positive radii of c and C, respectively. Derive a parametrization of the epicycloid and plot $\|^{2}$ the curve for $r=1$ and $R=3$.

Exercise 2.

Show the following properties of the Bernstein polynomials with $n \in \mathbb{N}_{0}$ and $i \in[n]_{0}=\{0, \ldots, n\}$:
i) $\frac{d}{d t} B_{i}^{n}(t)=n\left(B_{i-1}^{n-1}(t)-B_{i}^{n-1}(t)\right)$;
ii) $B_{i}^{n}(t)$ has exactly one maximum in $[0,1]$ for $n>0$;
iii) $B_{i}^{n}(t)=\frac{i+1}{n+1} B_{i+1}^{n+1}(t)+\frac{n+1-i}{n+1} B_{i}^{n+1}(t)$.

Exercise 3.

Consider the following control points

$$
P_{0}=\binom{1}{1}, P_{1}=\binom{2}{2}, P_{3}=\binom{3}{1} \in \mathbb{R}^{2}
$$

Determine $\gamma(t)=\sum_{i=0}^{2} B_{i}^{2}(t) P_{i}$ explicitly, transform it into the monomial basis $\left\{t^{k}\right\}: k \leq 3$, and sketch $\gamma(t)$. Show that γ is a regular curve.

Exercise 4.

Let $\gamma: I \rightarrow \mathbb{R}^{2}, t \mapsto \gamma(t)$ be a regular C^{2}-curve (not necessarily parametrized by arc length). Its curvature is defined as

$$
\kappa=\frac{\operatorname{det}\left(\gamma^{\prime}, \gamma^{\prime \prime}\right)}{\left\|\gamma^{\prime}\right\|^{3}}
$$

Show that this definition is consistent with the curvature function given for curves parametrized by arc length, i.e. if γ is parametrized by arc length, then $\kappa=\left\langle\gamma^{\prime \prime}, J \gamma^{\prime}\right\rangle$ where J denotes the rotation by $\frac{\pi}{2}$.

Exercise 5.

Design ${ }^{3}$ a heart shape (see below) using two cubic Beziér curves b_{1}, b_{2} and transform your curves b_{i} into the monomial basis $\left\{t^{k}\right\}: k \leq 3$. What are the control points?

[^0]
[^0]: ${ }^{1}$ A related curve is the cycloid, where c rolls along a straight line. You can visualize these curves with Java View (File New - Project - Curves - Cycloid Curves).
 ${ }^{2}$ Examples for plotting parametric curves are WolframAlpha using the command parametric plot or JavaView (File New - Geometry - Curves - Parametrized Curve).
 ${ }^{3}$ Vector graphics software such as Inkscape usually provide Beziér spline modelling or you could use the De Casteljau algorithm implemented in JavaView (File - New - Project - Curves - De Casteljau).

