(8 points)

Freie Universität Berlin Institut für Mathematik Prof. Dr. K. Polthier, H.-S. Lipschütz

Status: February 7, 2018

Differential Geometry I – Homework 13

Submission: February, 14, 2018, 12:15 am

1. Exercise

Let $S := \{A \in \mathbb{R}^{3,3} | A = -A^T\}$ denote the set of skew-symmetric matrices and let

$$Cay: S \to SO(3)$$
$$A \mapsto Cay(A) = (I+A)(I-A)^{-1}$$

be the Cayley map. Show the following statements (for $A \in S$):

- 1.) for $\mu \in \mathbb{R}_+$, A and $(\mu I \pm A)^{-1}$ commute,
- 2.) $Q = (I + A)(I A)^{-1}$ is an orthogonal matrix,
- 3.) let P be an orthogonal matrix which has no eigenvalue equal to -1, then $(I-P)(I+P)^{-1} \in S$,
- 4.) determine an expression for $Cay(A)^{-1}$. Justify your solution.
- 5.) Is Cay a surjective map? Justify your answer.

2. Exercise

(8 points)

Let M be a differentiable manifold. A tangent vector at $p \in M$ is an equivalence class of differentiable curves $(\epsilon > 0)$ – the so called germs —

 $[c] \mathrel{\mathop:}= \{c: (-\epsilon, \epsilon) \to M \ | \ c(0) = p\} / \sim$

where $c \sim \tilde{c}$ if and only if $(\varphi \circ c)'(0) = (\varphi \circ \tilde{c})'(0)$ for every chart φ .

- 1.) Show that \sim is indeed an equivalence relation.
- 2.) Show that the set of germs forms a real vector space.

Total: 16