(7 points)

Status: October 20, 2017

Differential Geometry I – Homework 01

Submission: October 30, 2017, 12:15 am

1. Exercise

1.) Show that the *Bernstein polynomials*

$$B_j^n(t) = \binom{n}{j} t^j (1-t)^{n-j}, \ j = 0, \dots, n,$$

form a basis of the real vector space of polynomials \mathbb{P}^n of degree at most n on [0, 1]. 2.) Let $b(t) = \sum_{j=0}^n B_j^n(t)P_j$ be the *Bézier curve* of degree n associated to the n+1 control points P_0, \ldots, P_n . Show

$$b'(t) = \sum_{j=0}^{n-1} (P_{j+1} - P_j) B_j^{n-1}(t)$$

and determine b'(0) explicitly.

3.) Show that the Bézier curve b(t) lies in the convex hull of its control points.

2. Exercise

Consider the following control points

$$P_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, P_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, P_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \in \mathbb{R}^2$$

Determine $\gamma(t) = \sum_{j=0}^{2} B_j^2(t) P_j$ explicitly where $B_j^2(t)$ denotes the *j*-th Bernstein polynomial of degree 2. Show that γ is a regular curve and determine its length for $t \in [0, 1]$.

3. Exercise

Let $\gamma: I \to \mathbb{R}^2$, $t \mapsto \gamma(t)$ be a regular C^2 -curve which is not necessarily parametrized by arc length. Its curvature is defined as

$$\kappa = \frac{\det(\gamma', \gamma'')}{||\gamma'||^3}.$$

1.) Show that this definition is consistent with the curvature function given for curves parametrized by arc length: if γ is parametrized by arc length, then $\kappa = \langle \gamma'', J\gamma' \rangle$ where J denotes the rotation by π .

(4 points)

(5 points)

2.) Show that κ is invariant under orientation preserving reparametrizations: if $\varphi : \tilde{I} \to I$ is bijective and C^2 with $\varphi' > 0$ and if $\tilde{\gamma} := \gamma \circ \varphi$ is the reparametrized curve then $\tilde{\kappa} = \kappa \circ \varphi$ where $\tilde{\kappa}$ denotes the curvature function as defined above for $\tilde{\gamma}$. What happens if φ reverses orientation, i.e. $\varphi' < 0$?

Total: 16