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Figure 1: The initial point set of the Venus torso (a) was disturbed with a 3% normal and tangential noise to produce the initial noisy point set
(b). Figures (c) and (d) show the point set after 20 respectively 50 iterations of the anisotropic fairing algorithm which detects and emphasizes
high principal curvature values. Figure (e) shows a denoised torso with varying point density in z-direction. The original low resolution model
of a Venus torso was subdivided to a resolution of 68K vertices and then disturbed with tangential noise to remove the visible subdivision
patterns. All point sets are colored by their maximal principal curvature which is calculated from the point set.

ABSTRACT

The use of point sets instead of meshes became more popular during
the last years. We present a new method for anisotropic fairing of a
point sampled surface using an anisotropic geometric mean curva-
ture flow. The main advantage of our approach is that the evolution
removes noise from a point set while it detects and enhances geo-
metric features of the surface such as edges and corners. We derive
a shape operator, principal curvature properties of a pointset, and
an anisotropic Laplacian of the surface. This anisotropic Laplacian
reflects curvature properties which can be understood as thepoint
set analogue of Taubin’s curvature-tensor for polyhedral surfaces.
We combine these discrete tools with techniques from geometric
diffusion and image processing. Several applications demonstrate
the efficiency and accuracy of our method.
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1 INTRODUCTION

A classical approach to describe surfaces is to describe them by
local approximations. Many powerful and sophisticated methods
have been developed to describe and design complex surfacesus-
ing splines, finite elements, or other polynomial approximations of
higher order, and patch these local pieces of information together.
Using relatively few sample points, it is possible to describe quite
complex objects. Nevertheless, linear approximations, e.g. triangu-
lations, became very popular. The advantage of easy handling is
paid at the cost of a larger number of sample points needed forgood
approximations. Modern computer equipment is not only capable of
handling large point sets, but also uses them: 3D-scanning devices
naturally hand back large points sets that represent a givensurface.
An obvious direction of research aims therefore to associate struc-
ture (e.g. a triangulation) to these samples. By algorithmsas the
crust algorithmpresented by Amenta, Bern, and Kamvysselis [2]
such a mesh can be constructed. Moreover, it provably recovers the
type of the surface correctly if some conditions on the sampling rate
are satisfied. Once such a mesh is obtained, classical methods can
be used to manipulate the data.

A different direction that became more and more popular during
the last years is to deal with unstructured point samples only. At the
cost of larger sample sets, the advantage is that no mesh structure
has to be managed. Pure point based geometries are surprisingly
flexible: up- and downsampling of the point set can be done as a
postprocessing step as well as Gaussian fairing and surfaceediting;
a good starting point for these subjects are for example [1] and [8].

Very often the samples one has to deal with are not precisely
taken, that means, the sample points are obtained from measure-
ments which are more or less accurate. Higher accuracy mightbe
obtained at higher cost and/or more elaborate technical solutions,
but software engineering can also help to obtain improved results.

Note: http://www.zib.de/polthier/articles/pointSet
provides video animations of the experiments.



A classical approach in denoising is the use of Laplacian curva-
ture evolution. This has been implemented for meshes as wellas
for point based geometries. A side-effect of thisisotropic Gaussian
fairing that uses mean curvature is a smoothing effect at pointed
features or edges. This is not wanted in general. We solve this prob-
lem by taking additional curvature information into account to ob-
tain ananisotropic fairing.

We present an methods for anisotropic fairing of point sets which
uses directional curvature information and principal curvatures to
detect features such as edges, see Figure 4 for example. In order to
obtain the information on principal curvatures, we use ideas from
differential geometry. A similar approach in the completely differ-
ent setting of polyhedral meshes is described by Taubin

This paper developes curvature properties of unstructuredpoint
sets which extend several methods known for polygonal surfaces:
1. We define directional curvatures for the points of the sample in

subsection 3.1. This is done in an obvious way: We consider an
approximation of directional curvatures for smooth surfaces.

2. We define a Weingarten map and principal curvatures for points
of a point cloud in subsection 3.2 and 3.3. This is achieved by
discretizing an integral formula for the smooth Weingartenmap.
A major difficulty is that sample densities may vary in differ-
ent directions and one has to take this fact into account for the
discretization.

3. We apply the derived notions of curvature to modify the well-
known (isotropic) Laplacian to obtain an anisotropic Laplacian
and use this anisotropic Laplacian for mean curvature flow tech-
niques in section 4. This enables us to fair noisy point samples
without smoothing edges, see Figures 5, 6, and 7 for a first im-
pression.

1.1 Related Work
A moving least squaresmethod to associate a manifold structure
to the point sample is considered for example in [7] and [1]. Levin
describes a general method inR

d that consists of two steps. Firstly,
an approximating hyperplane has to be determined for pointsp near
the(d− 1)-dimensional hypersurfaceS which is sampled by{pi}.
This is done by solving a non-linear minimization problem. Then
the hypersurface is interpolated locally by polynomials that have the
hyperplane defined in the first step as domain. In [1], this method
is applied to surfaces inR3. The non-linear minimization problem
is reformulated as an eigenvalue problem of an associated weighted
covariance matrix. The second step is a system of linear equations
whose size depends on the degree of the approximating polynomi-
als. The main idea of this method is to implicitly define an approxi-
mating surface. [1] also describes a method to up- and downsample
the set of sample points by using the implitly defined surface.

Anotherpoint based modelis described by Pauly, Kobbelt, and
Gross, [8], where no implicit surface is constructed. They use a lo-
cal approximation of the tangent space for each point of the sam-
ple that is also found by an appropriate eigenvector of a covari-
ance matrix. To proceed in this direction one needs the notion of
neighborhood of a point. Pauly, Kobbelt, and Gross considerk-
neighborhoods, i.e. thek nearest neighbors w.r.t. Euclidean dis-
tance. Laplacian and multilevel smoothing is covered as well as up-
and downsampling and surface editing.

From differential geometry we know how to compute the curva-
ture tensor of a surface in a point. This knowledge can be usedfor
anapproximation of the curvature tensor for polyhedral surfacesat
any vertex of the polyhedral surface inR

3, as already described by
Taubin [13]. Firstly, a normal vector is computed by averaging over
(weighted) normals of all polygons that containp. Here it is essen-
tial that one deals with meshes instead of point sets. The tangent
plane atp is then defined, one has a projection of all edgesei that
containp to this tangent plane, and a directional curvature in direc-

tion of ei can be computed. This gives rise to a(3 × 3)-matrix that
can be transformed into a discretized Weingarten map. Its eigen-
values are0 with eigenvector in normal direction and the principal
curvatures atp with principal directions as eigenvectors.

Isotropic Laplacian smoothingis discussed in the literature for
meshes as well as for point based models, [4] and [8] and the ref-
erences therein. A smooth Laplacian is linearly approximated in a
vertexp by the umbrella operator for which a neighborhood ofp
must be specified. A discretized diffusion process (evolution) that
is solved using an Euler scheme gives the denoising evolution. A
well-known problem of this iterative smoothing is shrinkage. Dif-
ferent methods are introduced to cope with this: Taubin [14]varies
a scale parameter, Desbrun, Meyer, Schröder, and Barr [4] rescale
after each evolution step by the factor of shrinkage while Pauly,
Kobbelt, and Gross [8] measure the shrinkage locally and displace
neighbors to compensate the downsized volume. Theanisotropic
diffusion problemgeneralizes the model for isotropic smoothing. It
is discussed in [3], [11], and [12] and dates back to work of Perona
and Malik [9] who introduced this method as a smooth method for
edge-enhancing and denoising of pictures.

The paper started as an effort to transfer the recent resultsfor
mesh optimization and noise removal of simplicial meshes [6] to
point sets. This includes the derivation of a discrete shapeoperator
to determine principal curvature directions.

2 REVIEW OF THE POINT BASED
MODEL

Point samples taken from a smooth surface sufficiently densedo
somehow reflect the structure of the surface. Points sufficiently
close together should be distributed nearby the tangent plane, so the
idea that the covariance matrix of neighboring vertices is somehow
related to the tangent space and its normal is not too surprising.

The first task is to translate the objects from differential geometry
to a point based model, that is in particular, we need a sensible def-
inition of a tangent space. This is done by in a common approach
using a notion of neighborhood. We interprete this in such a way
that the tangent plane minimizes a least squares energy functional.
If one has a notion of tangent space, it is straight-forward to transfer
the technique of mean curvature flows from triangulated spaces to
point clouds. This can also be found in the literature, [8].

The presented point based model is almost the same as the one
used in [8] where a linear approximation is done more or less in the
same way. The model differs from the one in [7] and [1] since they
add a second step which defines their implicit surface. For our pur-
poses a linear approximation is sufficient. The set of samples will
be denoted byP = { pi | 1 ≤ i ≤ N } and we assume that
P describes some underlying surfaceS that is embedded inR3. In
particular, all pointspi are given by their3 real-valued coordinates.

2.1 Neighborhoods
All computations will be based purely on neighborhoods induced
by the Euclidean notion of vicinity instead of combinatorial prox-
imity in the mesh setting. For fine samples and small Euclidean
neighborhoods, both notions will be similar; a number of ap-
proaches for point sets are studied in [5]. The notion ofk-nearest
neighborhoodeNk is used in [8]: eNk(pi) consists of thek nearest
neighbors ofpi relative to the Euclidean distance. For the mov-
ing least-squares method normally all sample points are used and
weighted according to distance. We consider anε-k-neighborhood
Nε

k(p) of a sample pointp, i.e. the intersection of thek sample
points closest top with the sample points contained in anε-ball
aroundp. The parametersε andk will be globally set, therefore we
use the shorthandNp or Ni for neighborhoods ofp or pi.
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Figure 2: A cylinder with constant positive mean curvature is intersected with plane. The point set consists of the unionof both surfaces (a).
3% tangential and normal noise are added to the point set (b).After 50 iterations (d) the planar area clearly shows zero mean curvature (blue)
while the cylindrical area (greenish) still has non-vanishing H. All figures are colored by the length of the anisotropicmean curvature vector.
Figure (c) is after 15 iterations. Positive mean curvature leads to shrinking, and intersecting geometries have no well-defined principal cur-
vature directions along the intersection line. Therefore this example demonstrates the behavior of our algorithm in two non-trivial test cases.
Despite of the low resolution of the point set the positive mean curvature of the cylinder is recovered. The intersectionline is recognized as
an area of higher principal curvature and clearly separatesthe two areas, the curved cylinder and the flat plane.

2.2 Tangent Spaces
The neighborhood is now used to approximate the tangent spaceTi

at pi which in turn is determined by a minimization problem: Let
b ∈ R

3 be any point and minimize the least squares energy given
by

E(n, r) =
X

x∈Nk(pi)

(〈x − b, n〉 − r)2,

wheren denotes the normal vector of the hyperplane andr the dis-
tance of the minimizing hyperplane to the hyperplane through b. It
turns out that the barycenterb̄ of Ni is distinguished in the sense
that the minimizing hyperplane must containb̄. Moreover, a critical
normal directionn is neccesarily an eigenvector of the covariance
matrixMi of pi:

Mi · n = E(n, r) · n. (1)

We denote a unit-length eigenvector of the smallest eigenvalue of
Mi by ni and consider it as normal vector defining the approxima-
tion of the tangent space atpi.

Approximating the tangent plane is sufficient for our purposes.
We therefore do not use the higher order approximation proposed
in the second step of the projection procedure of [7] and [1].

2.3 Isotropic Gaussian Fairing
We shortly discuss some well-known facts and methods concern-
ing the isotropic Laplacian to fix notation. Section 3.1 willthen be
concerned with the anisotropic case. As in differential geometry,
we think of the Laplacian as the composition ofdiv and∇. Once
a neighborhood is fixed, these operators have a combinatorial ana-
logue.

The discrete version of(∇)|pi
is determined by the neighboring

verticespj ∈ Ni of pi for vector-valued functionsf :

(∇pj
)|pi

(f) = (f(pi) − f(pj))eij

and
(∇ )|pi

(f) =
X

pj∈Ni

(f(pi) − f(pj))eij ,

whereeij denotes the vectorpi − pj . The interpretation ofdiv
atpi is as follows: For a vectorv =

P
pj∈Ni

vjeij , the divergence

div|pi
at pi is given as

P
pj∈Ni

〈v, eij〉 =
P

pj∈Ni
vj . The inner

product〈 , 〉 is not the inner product ofR3 but the combinatorial
inner product ofRNi where theeij form an orthonormal basis. We
define the isotropic Laplacian∆|pi

atpi as(div ◦∇)|pi
, i.e.

∆|pi
f =

X

pj∈Ni

(f(pi) − f(pj)).

This definition coincides with the definition of∆ as umbrella oper-
ator. The Laplacian∆ can be interpreted as a matrix, a samplepi is
mapped to a linear combination of its neighbors.

Isotropic Gaussian fairing is achieved via a PDE-method, i.e. by
the diffusion equation

∂S

∂t
= λ∆S,

which can be solved using a simple Euler scheme:

S
n+1 = (Id+λ∂t∆)Sn

,

see [4] for details in case of meshes and [8] in case of point sets.
In each step the Laplacian has to be recomputed. For this compu-
tation, it has proven useful to keep the neighborhood of eachpoint
determined in the beginning instead of reassigning a new neighbor-
hood at each step. Besides efficiency improvements, stability is also
meliorated since clustering effects are prevented.

3 CURVATURES OF POINT SETS

The main goal of this section is the derivation of equation (4) for
the Weingarten mapWi at each vertexpi of a point set.

3.1 Directional Curvature
Once a tangent plane is specified, directional curvatures for points
of the sample can be introduced by approximating a well-known
formula from differential geometry.

Let us start with with the notion of directional curvatureκp(v),
wherev denotes a unit length vector in the tangent space inp of a
smooth surfaceS. Such a directional curvature in differential ge-
ometry can be obtained by the following limit:

κp(v) = lim
s→0

2〈n, γ(s) − p〉

‖γ(s) − p‖2
,

wheren denotes the surface normal andγ is a certain curve inS
with γ(0) = p andγ′(0) = v. Since we have defined a tangent
space and a normal for each pointpi of the sample, we now define
the directional curvatureκij in pi in direction ofpj ∈ Ni:

κij :=
2〈ni, pj − pi〉

‖pj − pi‖2
, (2)



whereni denotes the normal vector inpi defined in the last para-
graph. It is worth to mention that the directional curvatureκp is a
quadratic form and satisfies the identiy

κp(eϕ) = e
⊥
ϕ

„
κ11

p κ12
p

κ21
p κ22

p

«
eϕ, (3)

where eϕ =
` cos ϕ

sin ϕ

´
relative to a basis{v1, v2} of TpS with

κ11
p = κp(v1), κ22

p = κp(v2), andκ12
p = κ21

p .

3.2 Weingarten Map
We now rewrite the Weingarten map in integral form where direc-
tional curvatures can be found in the integrand. This integral for-
mula is then approximated by a sum, but one has to be careful since
the sample density in different directions may vary. We takethis
into account by estimating directional densities.

We can choose a basis that diagonolizes the matrix in (3). This
is done by the principal curvature directions. Let us assumethatv1

andv2 are already the principal curvature directions with princi-
pal curvaturesκ1

p andκ2
p. With respect to this basis the Weingarten

mapWp reads as

„
κ1

p 0
0 κ2

p

«
. The task is now to express the Wein-

garten map in integral form, i.e. we have to solve

Wp =
1

2π

Z 2π

o

µϕeϕe
⊥
ϕ ,

whereµϕ = µ1 cos2 ϕ + µ2 sin2 ϕ. This yields

µ1 =
3κ1

p − κ2
p

2
µ2 =

−κ1
p + 3κ2

p

2
.

We denote the mean curvature ofS atp by Hp and getWp in terms
of the directional curvaturesκϕ:

„
κ1

p 0
0 κ2

p

«
=

1

π

Z 2π

0

(2κϕ − Hp)eϕe
⊥
ϕ ,

These computations can also be performed in the ambient
3-space. We now translate this integral formula of the smoothcat-
egory into a discrete formula in the point set setting by estimating
the Weingarten map by

X

pj∈Ni

wijκije
tan
ij e

tan⊥
ij ,

whereNi denotes the neighborhood ofpi, wij are weights that have
to be determined in order to approximate the integral correctly, κij

is the directional curvature inpi in direction ofpj , andetan
ij is the

normalized tangential part of the vectoreij = (pi − pj).
The problem we face now is to estimate the weightswij . We will

cope with this problem by estimating the density of samples in dif-
ferent directions. The approach is to consider the tangential part of
the covariance matrixMi (the covariance matrix encodes the distri-
bution around the barycenter), express it similarly in integral formR 2π

0
δϕeϕe⊥ϕ where we approximate the densityδϕ by the quadratic

form δϕ = δ1 cos2 ϕ + δ2 sin2 ϕ. We obtain

δ1 =
3c1 − c2

2
δ2 =

−c1 + 3c2

2
,

whereci are the eigenvalues of theMi. All computations are similar
to those forµi earlier. If we now denote the normalized tangential
part of an edgeeij by etan

ij and the tangential eigenvectors ofMi by
v1 andv2, we obtain for the densityδij in eij direction

δij =
3c1 − c2

2
〈etan

ij , v1〉 +
−c1 + 3c2

2
〈etan

ij , v2〉

= 2e
tan
ij Mie

tan⊥
ij −

1

2
trace(Mi).

Since we know the result for regular|Ni|-gons of radius1, we have
to normalize, i.e. rescale by a factor2

Ni
. Moreover, since we want

integrative invariance, we have to substitute∆x by
2π‖pi−pj‖

δij
in

a Riemannian sum approximation and are now able to define the
Weingarten mapWi at a vertexpi of the point set:

Wi =
1

π

X

pi∈Ni

4π‖pi − pj‖

|Ni|δij

(2κij − Hi)e
tan
ij e

tan⊥
ij . (4)

Note that this shape operator is a translation of the operator
Taubin [13] derived for polygonal meshes. The major difference in
the point set category is our incorperation of a discrete directional
density measure. This is not neccessary in the mesh setting since
volumes and interior angles of triangles are naturally available to
incorporate directional denseties of the sample.

3.3 Principal Curvatures
The eigenvalues and eigenvectors of our discrete shape operatorWi

are the principal curvatures and principal curvature directions inpi.
They are fundamental in the next section to define the anisotropic
Laplacian and for the anisotropic fairing algorithm we present.

(a) (b) (c)

Figure 3: In contrast to most other sequences we compute in this example the connectivity of the point set from the original uv-parametrized
torus which is for convenience shown with reduced transparency as the underlying surface. Note, the connectivity is calculated from the
original point set of the torus only, and it ignores the uv-mesh. Figures (b) and (c) after 15 respectively 50 iterations show how much of the
original structure can be recovered if only the spatial adjacency of the original unnoised point set is known.
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Figure 4: The octahedron is a standard test case for anisotropic smoothing. Our algorithm recognizes and recovers sharpedges. Note the
single vertex on top of the figure (c) which got stuck because all of its principal curvatures are above the curvature threshold. The original
octahedron (a) with 32K vertices is obtained from a regular 4-1 subdivision. Figure (b) shows the initial point set with 1.5% tangential and
normal noise. (c) shows the recovery of features and after 100 iterations with anisotropic MC flow. For comparison, Figure (d) shows an
isotropic Laplacian smoothing which leads to lost sharpness of edges.

4 ANISOTROPIC MEAN CURVATURE
FLOW

We use an anisotropic Laplacian∆A to fair the point sample. The
general idea of this approach as described in [11] and [3] canbe
summarized to solve a parabolic PDE with boundary constraints
which reduces to the isotropic case forA ≡ 1. The modified PDE
we consider is a bit less general compared to the one in [11] and is
obtained by substituting the isotropic Laplacian by

∆A
|pi

:= div|pi
◦(Ai · ∇)|pi

,

with (Ai ·∇pj
)|pi

(f) := gij · (f(pi)− f(pj))eij . The real-valued
functiong is called cut-off function and will normally have the unit
interval as range. The cut-off function can be used to further modify
the Laplacian and to consider further geometric data, for example,
we use it to distinguish between neighbors with small and high di-
rectional curvatures. Or we can detect features like an edge, for ex-
ample, by comparing the two principal curvatures: If one is almost
vanishing while the other is larger than a certain threshold, then we
may consider the sample point as being sampled from a straight
edge.

5 EXPERIMENTAL RESULTS

The described ideas for computing directional and principal curva-
tures have been implemented using the JavaView environment[10].
We now discuss features of the implementation and observations
made while fairing examples.

As neighborhoods are concerned, we compute aNε
k-

neighborhood for each sample from the noisy data. This neighbor-
hood is kept fixed during the evolution unless an update is forced
by the user. Undesirable clustering effects are avoided by this well-
established convention for isotropic denoising, as also observed by
Pauly, Kobbelt, and Gross [8]. Whenever neighborhoods are recom-
puted, the user can reassign new global values forε (the diameter of
the ball containing the neighbors of a vertex) and an upper bound
for the numberk of samples in a neighborhood. As a side remark,
we made the following interesting observation: the fairingworks
well if we determine the neighborhood of a noisy point cloud.But
assume one knows for some reason the neighborhood of a point in
case of a noiseless configuration and applies these neighborhoods
to the samples after adding noise. The result of fairing under this
rather artificial condition is amazing, see Figures 3 and 6 (d). This
leads to the observation that the proper notion of neighborhood is
extremely important for the whole process of denoising.

Tangent spaces, directional, principal curvatures, and the
anisotropic Laplacian are automatically computed after each step
of the Euler scheme.

The anisotropic Laplacian depends crucially on the choice of Ai

as described in the preceeding section. At the time of writing, we
offer two choices that are tuned by a threshold parameterλ: ei-
ther a sharp cut-off functiongsharp

ij or a continuous cut-off function
gcont

ij . In the first case, the neighborhood might be lessened: a sam-
ple pj ∈ Ni is not considered for∆A

|pi
if |κij | ≥ λ, while in the

continuous case the sample is shaded out. More precisely we con-
sider

g
sharp
ij =

(
1 |κij | < λ,

0 |κij | ≥ λ;
g

cont
ij =

(
1 |κij | < λ,

λ2

λ2+10(κij−λ)2
|κij | ≥ λ.

The effect of this anisotropic fairing at each step of the mean curva-
ture flow can be summarized as follows. The fairing process prefers
to consider neighbors of a directional curvature less thanλ. The
idea is that rather “flat directions” are flattened by the meancurva-
ture flow, while directions of “large” curvature remain suchdirec-
tions.

In order to focus on the evolution in normal direction and to ne-
glect tangential drift, the user can choose theconstrain interiorop-
tion where the mean curvature vector is projected onto the normal
direction, and this projected vector is used in the evolution.

We color the samples according to their value of either the maxi-
mal principal curvature or the length of the anisotropic mean curva-
ture vector. We parametrize the color circle from0 to 2π and con-
sider the linear function that assigns to the minumum the color that
corresponds to0 and to the maximum the color that corresponds to
1.5π.

(a) (b)

Figure 5: The two figures show the same point sets as in Figure
4 without vertex coloring. The coloring by principal curvature is
replaced with a constant yellow point color. Figure (a) shows the
initial noise and (b) the result of 100 iterations.



(a) (b)

(c) (d)

Figure 6: The smooth Costa surface is a minimal surface whereboth
principal curvatures have equal absolute value and different sign.
The points of a discrete Costa surface were randomly moved innor-
mal and tangential direction with 3% noise (a) and then smoothed
where Figures (b) and (c) show the status after 20 respectively 50
iterations. The vectors show the anisotropic mean curvature vector
H whose length is also used for color coding of the vertices. The
connectivity of the point set is taken from the noisy initialpoint set
(a) and kept fixed during the iteration. Figure (d) shows the result of
50 iterations when using the connectivity of the un-noised point set
(which is still different than the original connectivity ofthe triangle
mesh).

(a) (b)

(c) (d)

Figure 7: This example shows how the anisotropic mean curvature
vector changes direction and length during an iteration on alow
resolution model (<1K). The anisotropic shape operator recognizes
the sharp edges and corner of the cube. The low resolution cube
(a) has 2.5% noise, (b) is after 50 iterations. The truncatedoctahe-
dron has two type of edges with different dihedral angle. Oneset of
edges has the same dihedral angle as an octahedron (109.47◦) and
the others (125.26◦) are about 15◦ larger. This difference makes it
harder to distinguish edges on a noisy version of the truncated octa-
hedron. Figure (c) shows the truncated octahedron with 2% noise.
After 60 iterations the edges are clearly recovered as feature lines
(d). All four surfaces show the anisotropic mean curvature vector
and are colored by its magnitude.

We can also use the principal curvatures instead of directional
curvatures to detect features of the point sample. Three different
approaches have been studies so far. The first focusses on a pa-
rameter we calledge quotient. The user chooses an edge quotient
thresholdQ and for every pointp of the sample the quotientqp of
the principal curvatures is computed. Ifqp < Q thenp is contained
in features that should be enhanced. This approach works finein
order to detect the edges of the cube, the octahedron and the edge
of the Costa surface. Unfortunately, manually tuning is required to
choose an appropriate value ofQ. Secondly, we successfully detect
a point of a feature if the larger principal curvature is larger than a
threshold. Thirdly, we tried also to detect features by saying that a
point pi belongs to a feature if there is a directional curvatureκij

such that|κij | > T , whereT is a parameter that has to be chosen
sufficiently. This approach does not work well.

6 CONCLUSION AND FUTURE RE-
SEARCH

It is possible to fair noisy point samples by the anisotropicsmooth-
ing presented in this paper. In contrast to the isotropic mean cur-
vature flow method for denoising, that converges to a sphere,the
presented method is able to recover edges of the original surface
as the polytopes and the Venus surface show where no underlying
mesh is used. Unfortunately, the features are not yet automatically
detected; manual choice a proper value for the edge quotientis nec-
essary.

Interesting is also the rôle which the choice of neighborhoods
plays: The result of anisotropic (and isotropic) fairing changes sig-
nificantly if different neighborhoods are choosen in the beginning.
The examples of the torus and the Costa surface show an even better
fairing if one determines the neighborhood of the surface without
noise, adds noise to the surface and starts anisotropic fairing with
the noiseless neighborhoods compared to the fairing started with
proposedNε

k-neighborhoods determined from a noisy sample. We
admit that thesetrue neighborhoods are artificial. But interesting
questions are related. So far, the effect of different initial neighbor-
hoods has not been studied. Is it possible to determine better neigh-
borhoods than for example theNε

k-neighborhoods from the noisy
sample?
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