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Figure 1: The initial point set of the Venus torso (a) wasutised with a 3% normal and tangential noise to produce thilimoisy point set
(b). Figures (c) and (d) show the point set after 20 respelgtBb0 iterations of the anisotropic fairing algorithm wiidetects and emphasizes
high principal curvature values. Figure (e) shows a dediseso with varying point density in z-direction. The origl low resolution model
of a Venus torso was subdivided to a resolution of 68K vestimed then disturbed with tangential noise to remove théleisubdivision
patterns. All point sets are colored by their maximal ppaticurvature which is calculated from the point set.

ABSTRACT

The use of point sets instead of meshes became more poptitag du
the last years. We present a new method for anisotropiaépaf a
point sampled surface using an anisotropic geometric meamac
ture flow. The main advantage of our approach is that the gwalu
removes noise from a point set while it detects and enharees g
metric features of the surface such as edges and cornerseie d
a shape operator, principal curvature properties of a Eaptand
an anisotropic Laplacian of the surface. This anisotroiplacian
reflects curvature properties which can be understood agdiné
set analogue of Taubin’s curvature-tensor for polyhednaiases.
We combine these discrete tools with techniques from gemenet
diffusion and image processing. Several applications datnate
the efficiency and accuracy of our method.
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1 INTRODUCTION

A classical approach to describe surfaces is to describa the
local approximations. Many powerful and sophisticated huds
have been developed to describe and design complex surfaces
ing splines, finite elements, or other polynomial approxiores of
higher order, and patch these local pieces of informatigetteer.
Using relatively few sample points, it is possible to ddserjuite
complex objects. Nevertheless, linear approximatiorns,téangu-
lations, became very popular. The advantage of easy hanglin
paid at the cost of a larger number of sample points needegbfmt
approximations. Modern computer equipment is not only bbeaf
handling large point sets, but also uses them: 3D-scanréniges
naturally hand back large points sets that represent a givdace.
An obvious direction of research aims therefore to asseatic-
ture (e.g. a triangulation) to these samples. By algoritasishe
crust algorithmpresented by Amenta, Bern, and Kamvysselis [2]
such a mesh can be constructed. Moreover, it provably resole
type of the surface correctly if some conditions on the sargphte
are satisfied. Once such a mesh is obtained, classical nsetlaod
be used to manipulate the data.

A different direction that became more and more populamdyri
the last years is to deal with unstructured point sampleg éukthe
cost of larger sample sets, the advantage is that no mestiusgu
has to be managed. Pure point based geometries are siglyrisin
flexible: up- and downsampling of the point set can be done as a
postprocessing step as well as Gaussian fairing and s\ethieg;
a good starting point for these subjects are for examplerid][8].

Very often the samples one has to deal with are not precisely
taken, that means, the sample points are obtained from meeasu
ments which are more or less accurate. Higher accuracy rbight
obtained at higher cost and/or more elaborate technicatisos,
but software engineering can also help to obtain improvedlta

Notee http://wwmwv zi b. de/ pol thier/articles/point Set
provides video animations of the experiments.



A classical approach in denoising is the use of Laplaciamacur
ture evolution. This has been implemented for meshes asasell
for point based geometries. A side-effect of tisistropic Gaussian

tion of e; can be computed. This gives rise t¢3ax 3)-matrix that
can be transformed into a discretized Weingarten map. disnei
values ard) with eigenvector in normal direction and the principal

fairing that uses mean curvature is a smoothing effect at pointed curvatures ap with principal directions as eigenvectors.

features or edges. This is hot wanted in general. We solsgtbb-
lem by taking additional curvature information into accbtmob-
tain ananisotropic fairing

We present an methods for anisotropic fairing of point sétiskv
uses directional curvature information and principal etuves to
detect features such as edges, see Figure 4 for examplaldntor
obtain the information on principal curvatures, we use sdegam
differential geometry. A similar approach in the completdiffer-
ent setting of polyhedral meshes is described by Taubin

This paper developes curvature properties of unstructpoat
sets which extend several methods known for polygonal cesta
1. We define directional curvatures for the points of the darimp

Isotropic Laplacian smoothing discussed in the literature for
meshes as well as for point based models, [4] and [8] and the re
erences therein. A smooth Laplacian is linearly approx@tian a
vertexp by the umbrella operator for which a neighborhoodpof
must be specified. A discretized diffusion process (evoh)tthat
is solved using an Euler scheme gives the denoising evalufio
well-known problem of this iterative smoothing is shrinkadif-
ferent methods are introduced to cope with this: Taubin {biles
a scale parameter, Desbrun, Meyer, Schroder, and Barr4§daie
after each evolution step by the factor of shrinkage whilalypa
Kobbelt, and Gross [8] measure the shrinkage locally anplatie
neighbors to compensate the downsized volume. arisotropic

subsection 3.1. This is done in an obvious way: We consider an diffusion problengeneralizes the model for isotropic smoothing. It

approximation of directional curvatures for smooth susfac

. We define a Weingarten map and principal curvatures fartpoi
of a point cloud in subsection 3.2 and 3.3. This is achieved by
discretizing an integral formula for the smooth Weingarteap.
A major difficulty is that sample densities may vary in differ
ent directions and one has to take this fact into accounthir t
discretization.

. We apply the derived notions of curvature to modify thelwel
known (isotropic) Laplacian to obtain an anisotropic Lafa
and use this anisotropic Laplacian for mean curvature flah-te
nigues in section 4. This enables us to fair noisy point sampl
without smoothing edges, see Figures 5, 6, and 7 for a first im-
pression.

1.1 Related Work

A moving least squaremethod to associate a manifold structure
to the point sample is considered for example in [7] and [&lih
describes a general methodRf that consists of two steps. Firstly,
an approximating hyperplane has to be determined for ppinesar
the (d — 1)-dimensional hypersurfacg which is sampled byp; }.
This is done by solving a non-linear minimization problenmen
the hypersurface is interpolated locally by polynomiakt thave the
hyperplane defined in the first step as domain. In [1], thishoet
is applied to surfaces iR3. The non-linear minimization problem
is reformulated as an eigenvalue problem of an associatigghted
covariance matrix. The second step is a system of lineartiegsa
whose size depends on the degree of the approximating palyno
als. The main idea of this method is to implicitly define anrapp
mating surface. [1] also describes a method to up- and donpisa
the set of sample points by using the implitly defined surface

Anotherpoint based modek described by Pauly, Kobbelt, and
Gross, [8], where no implicit surface is constructed. They a lo-
cal approximation of the tangent space for each point of #me-s
ple that is also found by an appropriate eigenvector of argova
ance matrix. To proceed in this direction one needs the maifo
neighborhood of a point. Pauly, Kobbelt, and Gross consider
neighborhoods, i.e. thé nearest neighbors w.r.t. Euclidean dis-
tance. Laplacian and multilevel smoothing is covered asasgalip-
and downsampling and surface editing.

From differential geometry we know how to compute the curva-
ture tensor of a surface in a point. This knowledge can be faged
anapproximation of the curvature tensor for polyhedral sodsat
any vertex of the polyhedral surfacel¥¥, as already described by
Taubin [13]. Firstly, a normal vector is computed by avenggiver
(weighted) normals of all polygons that containHere it is essen-
tial that one deals with meshes instead of point sets. Thgetdn
plane atp is then defined, one has a projection of all edgethat
containp to this tangent plane, and a directional curvature in direc-

is discussed in [3], [11], and [12] and dates back to work obRa
and Malik [9] who introduced this method as a smooth methed fo
edge-enhancing and denoising of pictures.

The paper started as an effort to transfer the recent refaults
mesh optimization and noise removal of simplicial meshé<d6
point sets. This includes the derivation of a discrete slugaeator
to determine principal curvature directions.

2 REVIEW OF THE POINT BASED
MODEL

Point samples taken from a smooth surface sufficiently delose
somehow reflect the structure of the surface. Points suitigie
close together should be distributed nearby the tangenépto the
idea that the covariance matrix of neighboring vertice®mahow
related to the tangent space and its normal is not too sigris
The first task is to translate the objects from differentedigetry
to a point based model, that is in particular, we need a skendds-
inition of a tangent space. This is done by in a common approac
using a notion of neighborhood. We interprete this in suchag w
that the tangent plane minimizes a least squares energtidoat
If one has a notion of tangent space, it is straight-forwardansfer
the technique of mean curvature flows from triangulated epaa
point clouds. This can also be found in the literature, [8].

The presented point based model is almost the same as the one

used in [8] where a linear approximation is done more or lesise
same way. The model differs from the one in [7] and [1] sin@yth
add a second step which defines their implicit surface. Fopor
poses a linear approximation is sufficient. The set of sasnypié
be denoted by? = { p; | 1 < i < N } and we assume that
P describes some underlying surfage¢hat is embedded iR®. In
particular, all pointg; are given by theiB real-valued coordinates.

2.1 Neighborhoods

All computations will be based purely on neighborhoods @etii
by the Euclidean notion of vicinity instead of combinatbpaox-
imity in the mesh setting. For fine samples and small Eucfidea
neighborhoods, both notions will be similar; a number of ap-
proaches for point sets are studied in [5]. The notiok-ofearest

neighborhoodV}, is used in [8]: Ny (p;) consists of thek nearest
neighbors ofp; relative to the Euclidean distance. For the mov-
ing least-squares method normally all sample points ard ard
weighted according to distance. We considek-dnneighborhood
Ni(p) of a sample poinp, i.e. the intersection of thé sample
points closest t@ with the sample points contained in arball
aroundp. The parametersandk will be globally set, therefore we
use the shorthand, or N; for neighborhoods of or p;.



(b)

(d)

Figure 2: A cylinder with constant positive mean curvatwétersected with plane. The point set consists of the uoidmoth surfaces (a).
3% tangential and normal noise are added to the point seAfigy. 50 iterations (d) the planar area clearly shows zeramwirvature (blue)
while the cylindrical area (greenish) still has non-vaimighH. All figures are colored by the length of the anisotrapiean curvature vector.
Figure (c) is after 15 iterations. Positive mean curvatesel$ to shrinking, and intersecting geometries have nedeéithed principal cur-
vature directions along the intersection line. Therefore éxample demonstrates the behavior of our algorithm @rten-trivial test cases.
Despite of the low resolution of the point set the positiveameurvature of the cylinder is recovered. The intersedtieis recognized as
an area of higher principal curvature and clearly sepathtesvo areas, the curved cylinder and the flat plane.

2.2 Tangent Spaces

The neighborhood is now used to approximate the tangenedpac
at p;, which in turn is determined by a minimization problem: Let

b € R® be any point and minimize the least squares energy given

by

E(n,r) = Z (<£E*b,n> 77‘)27
zENE(p;)
wheren denotes the normal vector of the hyperplane atfike dis-
tance of the minimizing hyperplane to the hyperplane thidudt
turns out that the barycentérof IV; is distinguished in the sense
that the minimizing hyperplane must contairMoreover, a critical
normal directionn is neccesarily an eigenvector of the covariance

matrix M; of p;:
M;-n = E(n,r)-n. 1)

We denote a unit-length eigenvector of the smallest eideavaf
M; by n; and consider it as normal vector defining the approxima-
tion of the tangent space a{.

Approximating the tangent plane is sufficient for our pugms
We therefore do not use the higher order approximation Eepo
in the second step of the projection procedure of [7] and [1].

2.3 Isotropic Gaussian Fairing

We shortly discuss some well-known facts and methods cancer
ing the isotropic Laplacian to fix notation. Section 3.1 lién be
concerned with the anisotropic case. As in differentialrgetry,
we think of the Laplacian as the compositiondifr and V. Once
a neighborhood is fixed, these operators have a combiniao@a
logue.

The discrete version dfV),,,, is determined by the neighboring
verticesp; € N; of p; for vector-valued functiong:

(Vo )ips (f) = (f(ps) — f(ps))es;

and

(V) ()= D (F(:) = f(ps))eis,

P;EN;
wheree;; denotes the vectgs; — p;. The interpretation ofliv
atp; is as follows: For a vectos = ijeNi v;e;;, the divergence
divy,, atp;is given asy’, o (v,eij) = >, <y, vj- The inner
product( , ) is not the inner product dR® but the combinatorial

inner product ofR™: where thee;; form an orthonormal basis. We
define the isotropic Laplaciaf\ |, atp; as(divoV),,, i.e.

Ap f= > (fps) = f(3).

P EN;

Ipi

This definition coincides with the definition & as umbrella oper-
ator. The Laplaciar\ can be interpreted as a matrix, a samplés
mapped to a linear combination of its neighbors.

Isotropic Gaussian fairing is achieved via a PDE-methed by
the diffusion equation

oS

2 A
N AAS,

which can be solved using a simple Euler scheme:
ST = (Id +M0tA)S™,

see [4] for details in case of meshes and [8] in case of poist se
In each step the Laplacian has to be recomputed. For thisicomp
tation, it has proven useful to keep the neighborhood of gadtt
determined in the beginning instead of reassigning a neghber-
hood at each step. Besides efficiency improvements, staiSiklso
meliorated since clustering effects are prevented.

3 CURVATURES OF POINT SETS

The main goal of this section is the derivation of equationf¢4
the Weingarten map/; at each vertey; of a point set.

3.1 Directional Curvature

Once a tangent plane is specified, directional curvatunrepdimts
of the sample can be introduced by approximating a well-kmow
formula from differential geometry.

Let us start with with the notion of directional curvatutg(v),
wherev denotes a unit length vector in the tangent spagedfia
smooth surfaces. Such a directional curvature in differential ge-
ometry can be obtained by the following limit:

o 200905) — )

o) = M 0@ — ol

wheren denotes the surface normal amds a certain curve irf
with v(0) = p and+/(0) = v. Since we have defined a tangent
space and a normal for each paojntof the sample, we now define
the directional curvature;; in p; in direction ofp; € N;:

2(ni, pj — pi)
lp; —pill?

Rij ‘=

)



wheren; denotes the normal vector i defined in the last para-
graph. It is worth to mention that the directional curvatugeis a
quadratic form and satisfies the identiy

11 12
1 (K K.
- e(p <K)§1 52) e(P7

(Sme) relative to a basis{vi,v2} of 15,5 with

_2
=Ky .

®)

Kp(ep)

wheree, =

11

Kyt = kp(v1), K22 = Kp(v2), andep?

3.2 Weingarten Map

We now rewrite the Weingarten map in integral form wheredire
tional curvatures can be found in the integrand. This iratefpr-
mula is then approximated by a sum, but one has to be carafid si
the sample density in different directions may vary. We tke
into account by estimating directional densities.

We can choose a basis that diagonolizes the matrix in (35 Thi
is done by the principal curvature directions. Let us asstmaty,
andwv, are already the principal curvature directions with prnci
pal curvatures:;, andx2. With respect to this basis the Weingarten
Kp
0 P
garten map in integral form, i.e. we have to solve

1 27
= _/ Hweweéy
2m /,

wherepu, = p1 cos? @ + 2 sin® . This yields

mapW, reads as( KOQ . The task is now to express the Wein-

Wy

1 2
_ 3kp — Kp

= —n,l, —&—3}@12,
5 e

piz = 3

We denote the mean curvature®tp by H, and gefiv,, in terms
of the directional curvatures,:

Hl O 1 27 n
<0p ”z = ;/0 2Ky — Hp)esoew

These computations can also be performed in the ambient

3-space. We now translate this integral formula of the smoath
egory into a discrete formula in the point set setting byneating
the Weingarten map by

... tan tanl
Wijkij€ij €5

p;EN;

(b)

whereN; denotes the neighborhoodjaf w;; are weights that have
to be determined in order to approximate the integral ctsrec;;

is the directional curvature ip; in direction ofp;, andetfj” is the
normalized tangential part of the vectar = (p; — p;).

The problem we face now is to estimate the weights We will
cope with this problem by estimating the density of sampiedifi
ferent directions. The approach is to consider the tanalepairt of
the covariance matrix/; (the covariance matrix encodes the distri-
bution around the barycenter), express it similarly ingn& form
fOQ’r 5w6w6$ where we approximate the density by the quadratic

formd, = 6 cos? © + 02 sin? . We obtain
—c1 + 3c2

361—62
e ) 5y = — 122

5
! 2 2

wherec; are the eigenvalues of the;. All computations are similar
to those foru, earlier. If we now denote the normalized tangential
part of an edge;; by €3 and the tangential eigenvectors/af, by

v1 andvz, we obtain for the density;; in e;; direction

3c1 —c —c1 + 3¢
51']' = ! 2 2 <eti§'n7 'Ul) + : 2 : <eti§'n7 ’U2>

1
— 2eti§nM¢eti§nl -5 trace(M;).

Since we know the result for regulf¥;|-gons of radiud, we have
to normalize, i.e. rescale by a fact@%. Moreover, since we want
. . . . . 2 P .
integrative invariance, we have to substitute: by M in

a Riemannian sum approximation and are now able to define the
Weingarten mapV; at a vertexp; of the point set:

1

PiEN;

4m||pi — p;

W@w — Hi)eel™. (4
Note that this shape operator is a translation of the operato

Taubin [13] derived for polygonal meshes. The major diffesin

the point set category is our incorperation of a discreteatiional

density measure. This is not neccessary in the mesh settiog s

volumes and interior angles of triangles are naturally laisée to

incorporate directional denseties of the sample.

3.3 Principal Curvatures

The eigenvalues and eigenvectors of our discrete shapatop8r;
are the principal curvatures and principal curvature dioes inp;.
They are fundamental in the next section to define the aoigiatr
Laplacian and for the anisotropic fairing algorithm we s

(©

Figure 3: In contrast to most other sequences we computésiexhmple the connectivity of the point set from the originaparametrized
torus which is for convenience shown with reduced transpares the underlying surface. Note, the connectivity isudated from the
original point set of the torus only, and it ignores the uvsimerigures (b) and (c) after 15 respectively 50 iteratidraswshow much of the
original structure can be recovered if only the spatial egljey of the original unnoised point set is known.



(a) (b)

(d)

Figure 4: The octahedron is a standard test case for arfgotsmoothing. Our algorithm recognizes and recovers skdges. Note the
single vertex on top of the figure (c) which got stuck becadisef s principal curvatures are above the curvature thots. The original
octahedron (a) with 32K vertices is obtained from a regutarstibdivision. Figure (b) shows the initial point set wits% tangential and
normal noise. (¢) shows the recovery of features and aft@ritb@ations with anisotropic MC flow. For comparison, Figyd) shows an

isotropic Laplacian smoothing which leads to lost sharpré®dges.

4 ANISOTROPIC MEAN CURVATURE
FLOW

We use an anisotropic Laplaciax® to fair the point sample. The
general idea of this approach as described in [11] and [3]bean
summarized to solve a parabolic PDE with boundary conggrain
which reduces to the isotropic case for= 1. The modified PDE
we consider is a bit less general compared to the one in [djsan
obtained by substituting the isotropic Laplacian by

A\é’i = div\m O(Ai : v)\pw
with (Ai - V)1, (f) := gi5 - (f(pi) — f(p;))ei;. The real-valued
functiong is called cut-off function and will normally have the unit
interval as range. The cut-off function can be used to funthedify
the Laplacian and to consider further geometric data, fang!e,
we use it to distinguish between neighbors with small andh kg
rectional curvatures. Or we can detect features like an,ddgex-
ample, by comparing the two principal curvatures: If oneliscst
vanishing while the other is larger than a certain threshbleh we
may consider the sample point as being sampled from a straigh
edge.

5 EXPERIMENTAL RESULTS

The described ideas for computing directional and pridapeava-
tures have been implemented using the JavaView environib@ht
We now discuss features of the implementation and obsensati
made while fairing examples.

As neighborhoods are concerned, we compute Na-
neighborhood for each sample from the noisy data. This beigh
hood is kept fixed during the evolution unless an update isefbr
by the user. Undesirable clustering effects are avoidediisyntell-
established convention for isotropic denoising, as alsented by
Pauly, Kobbelt, and Gross [8]. Whenever neighborhoodsemam-
puted, the user can reassign new global values (bre diameter of
the ball containing the neighbors of a vertex) and an uppantio
for the numbert of samples in a neighborhood. As a side remark,
we made the following interesting observation: the fairmarks
well if we determine the neighborhood of a noisy point cloBdt
assume one knows for some reason the neighborhood of a point i
case of a noiseless configuration and applies these nelybruts
to the samples after adding noise. The result of fairing tlis
rather artificial condition is amazing, see Figures 3 and)6THis
leads to the observation that the proper notion of neigtdmmths
extremely important for the whole process of denoising.

Tangent spaces, directional, principal curvatures, ane th
anisotropic Laplacian are automatically computed aftehestep
of the Euler scheme.

The anisotropic Laplacian depends crucially on the choicé;o
as described in the preceeding section. At the time of vg;itime
offer two choices that are tuned by a threshold paramgtesi-
ther a sharp cut-off functiogf?a'por a continuous cut-off function

g$2™. In the first case, the neighborhood might be lessened: a sam-
plep; € N; is not considered foAA, if |ki5| > A, while in the

continuous case the sample is shaded out. More preciselpme ¢

sider
1 1
= — >\2

The effect of this anisotropic fairing at each step of the maava-
ture flow can be summarized as follows. The fairing procesteps
to consider neighbors of a directional curvature less thafhe
idea is that rather “flat directions” are flattened by the maawa-
ture flow, while directions of “large” curvature remain sutinec-
tions.

|kij] < A,
|/€ij| 2 .

[Kij| < A,
[Kij| > X

cont
ij

sharp
1z

In order to focus on the evolution in normal direction and ée n
glect tangential drift, the user can choose ¢bastrain interiorop-
tion where the mean curvature vector is projected onto thmalo
direction, and this projected vector is used in the evotutio

We color the samples according to their value of either theima
mal principal curvature or the length of the anisotropic mearva-
ture vector. We parametrize the color circle frono 27 and con-
sider the linear function that assigns to the minumum therdblat
corresponds t0 and to the maximum the color that corresponds to
1.57.

(b)
Figure 5: The two figures show the same point sets as in Figure
4 without vertex coloring. The coloring by principal curveg is
replaced with a constant yellow point color. Figure (a) sbdte
initial noise and (b) the result of 100 iterations.



(b)

(d)

Figure 6: The smooth Costa surface is a minimal surface wiathe
principal curvatures have equal absolute value and diffesign.
The points of a discrete Costa surface were randomly movedrin
mal and tangential direction with 3% noise (a) and then shrezbt
where Figures (b) and (c) show the status after 20 respbct@e
iterations. The vectors show the anisotropic mean curgatactor
H whose length is also used for color coding of the verticdse T
connectivity of the point set is taken from the noisy inifint set
(a) and kept fixed during the iteration. Figure (d) shows #sailt of
50 iterations when using the connectivity of the un-noiseitfset
(which is still different than the original connectivity tife triangle
mesh).

@ (b)

(©) (d)
Figure 7: This example shows how the anisotropic mean aumvat
vector changes direction and length during an iteration dowa
resolution model (<1K). The anisotropic shape operatovgeizes

the sharp edges and corner of the cube. The low resolutioa cub
(a) has 2.5% noise, (b) is after 50 iterations. The truncattahe-
dron has two type of edges with different dihedral angle. Sateof
edges has the same dihedral angle as an octahedron (10an&’7
the others (125.29 are about 15 larger. This difference makes it
harder to distinguish edges on a noisy version of the tredoatta-
hedron. Figure (c) shows the truncated octahedron with 2&%eno
After 60 iterations the edges are clearly recovered as fiedines

(d). All four surfaces show the anisotropic mean curvatigetor
and are colored by its magnitude.

We can also use the principal curvatures instead of dineatio
curvatures to detect features of the point sample. Thrderelift
approaches have been studies so far. The first focusses on a pa
rameter we caledge quotientThe user chooses an edge quotient
threshold@ and for every poinp of the sample the quotiert, of
the principal curvatures is computedg)f < Q thenp is contained
in features that should be enhanced. This approach worksrfine
order to detect the edges of the cube, the octahedron andigee e
of the Costa surface. Unfortunately, manually tuning isinexyl to
choose an appropriate value@f Secondly, we successfully detect
a point of a feature if the larger principal curvature is &rthan a
threshold. Thirdly, we tried also to detect features by rsgyhat a
point p; belongs to a feature if there is a directional curvateyg
such thatx;;| > T', whereT is a parameter that has to be chosen
sufficiently. This approach does not work well.

6 CONCLUSION AND FUTURE RE-
SEARCH

Itis possible to fair noisy point samples by the anisotragomoth-
ing presented in this paper. In contrast to the isotropicnmza-
vature flow method for denoising, that converges to a sptibee,
presented method is able to recover edges of the originédcgur
as the polytopes and the Venus surface show where no unagrlyi
mesh is used. Unfortunately, the features are not yet auticetig
detected; manual choice a proper value for the edge quatiept-
essary.

Interesting is also the rdle which the choice of neighbodsoo
plays: The result of anisotropic (and isotropic) fairinganoges sig-
nificantly if different neighborhoods are choosen in theibeigng.
The examples of the torus and the Costa surface show an etten be
fairing if one determines the neighborhood of the surfaciouit
noise, adds noise to the surface and starts anisotropindairith
the noiseless neighborhoods compared to the fairing dtavith
proposedN;.-neighborhoods determined from a noisy sample. We
admit that theserue neighborhoods are artificial. But interesting
guestions are related. So far, the effect of differentahiteighbor-
hoods has not been studied. Is it possible to determiner etigh-
borhoods than for example th€;-neighborhoods from the noisy
sample?
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