Patch Layout from Feature Graph

Matthias Nieser®, Konrad Polthier®, Christian Schulz®

% Freie Universitdt Berlin, Mathematical Geometry Processing Group
Arnimallee 6, 14195 Berlin, Germany

Abstract

Structuring of surface meshes is a labor intensive task in reverse engineering.
For example in CAD, scanned triangle meshes must be divided into characteris-
tic/uniform patches to enable conversion into high-level spline surfaces. Typical
industrial techniques, like rolling ball blends, are very labor intensive.

We provide a novel, robust and quick algorithm for the automatic generation
of a patch layout based on a topology consistent feature graph. The graph
separates the surface along feature lines into functional and geometric building
blocks. Our algorithm then thickens the edges of the feature graph and forms
new regions with low varying curvature. Further these new regions - so called
fillets and node patches - will have highly smooth boundary curves making it
an ideal preprocessor for a subsequent spline fitting algorithm.

Key words: reverse engineering, surface decomposition, curvature based
segmentation

1. Introduction

Reverse engineering deals with the reconstruction of CAD surfaces, typically
from scanned 3D geometries. Since current CAD system are based mainly on
spline geometries, a scanned triangle mesh must be converted into a highly
structured and segmented data structure. Our algorithm aims to automate the
reconstruction process. It is a two step process. In a first step we generate the
topology of the final patch layout. This topology is encoded in a feature graph,
i.e. there exists a one to one relation between feature graph elements such as
nodes, edges and regions to the patches of the final layout. Furthermore the
feature graph is an intersection free graph embedded on the surface whereas its
smooth edges are oriented along geometric surface features. In a second step,
out of the feature graph a geometrically reasonable patch layout is generated.
The resulting patches have a uniform curvature distribution and are encircled by
smooth boundaries. Such an automatic algorithm avoids many labor intensive
manual segmentation approaches.

1.1. Previous work
Our patch layout algorithm is related to many previous techniques in surface
segmentation and graph smoothing algorithms.

Preprint submitted to Elsevier November 2, 2009

A general overview about surface decomposition methods is given in [23]. Tt
starts with its roots in image processing, where surfaces are treated as height
fields, i.e. there exists a canonical parametrization of the surface over a planar
domain as used in [22]. The main part of [23] contains a detailed overview about
segmentation algorithms working on general triangulated surfaces, showing their
variety of applications and implementations. Due to different aims possible
objectives range from remeshing, animation [1], shape matching [8], mesh editing
to geometry compression and other areas. Here, we focus on segmentation of
CAD parts for reverse engineering.

Some related work focuses on surface segmentation by approximation with
several kinds of predefined types of primitives. In [3], planes are being fitted,
[26] uses a collection of CAD primitives, such as spheres or rolling ball blends.

The use of parametrized shapes is suggested in [12]. This idea is further
explored in [14], where the notion of morphological properties of shape templates
is introduced. In this work the author proposes a two step generic algorithm to
identify a surface part with an instance of a shape template. It starts to assign
a shape instance to a surface region by varying its morphological properties,
followed by an embedding of the matched template into the surface.

Another approach for partitioning is demonstrated in [18] [9]. There vertices
of a triangulated surface are clustered into groups belonging to a specific shape
type using multiresolution.

Julius et. al and Shatz et. al [13, 24] shows a tiling of a given model into
nearly-developable charts. This kind of chart tiling makes it possible to recreate
the given surface as paper craft model.

Levy et al. [16] use a region growing algorithm for creating patches whose
boundaries run along sharp features. In a first step, some surface features
are being detected. Then a set of regions is constructed, which meet at these
features.

There are many approaches on computing a feature layout using Morse the-
ory. In [5], an eigenvector of the Laplacian is computed and used as Morse
function. The Morse complex which is then built from this function segments
the surface into quads. In [7, 2], the construction of a Morse-Smale complex
is described. With prescribing an adequate Morse function which represents
the important parts of the surface, one can control the alignment of the feature
layout. In [6], a curvature based Morse function is used to construct a Morse-
Smale complex which aligns to surface features. This approach is applied to
CAD models in [25].

We also need to smooth patch boundary curves. In [15] the use of snakes for
the generation of smooth curves on triangulated surfaces is proposed. This ap-
proach requires the repeated projection of the actual curve onto a two-dimensio-
nal domain. The curve smoothness is controlled via an energy term. Recasting
the problem of smooth curves on triangulated manifolds to a high dimensional
optimization problem is described in [11]. Furthermore, the alignment of curves
along features can be driven by the use of the feature sensitive metric introduced
in [20]. Thickening of smooth curves is mentioned in [25] but without going into
the actual details of the thickening procedure.

1.2. Contributions

The underlying structure of a given CAD surface is determined by its main
building blocks, i.e. a set of characteristic CAD surface types. The methods
mentioned above aim for such a decomposition into meaningful patches. The
boundaries of these patches form an embedded graph on the surface. Assuming
CAD models with round geometric feature edges, i.e. providing no clear defined
boundary between primitives, the faces encircled by the graph’s edges are not
uniformly curved. Thus, they are not suited for low order spline fitting. Re-
garding CAD surfaces having round geometric features our contribution can be
summarized as follows:

e an algorithm to generate a net of curves, running along geometric surface
features, such as valleys or ridges, called the feature graph

e an energy formulation to align and smooth a curve within a feature region

e a method to decompose a surface into its functional parts based on a
given feature graph using an edge thickening - offsetting - procedure, the
single parts are encircled by smooth boundaries aligned to nearby surface
features

We will show how to generate a consistent feature graph. Based on this graph
a patch layout is computed in reliable and fast way. For the creation of both
structures no primitive fitting, i.e. template matching, is required. Starting
with a triangle mesh as shown in fig.1, left, we will end up with a decomposition
like the one in fig.1, right.

Figure 1: Left: Typical CAD part as triangle mesh. Right: Patch layout of the CAD part

Within our setting the feature graph resembles the embedded graph result-
ing from other methods mentioned above. Thus the feature graph needed for
our patch layout generation could be replaced by any other graph structure
describing a surface partitioning.

1.8. Organization of the paper

In section 2, we explain our basic concepts and underlying notions of a
feature graph and a patch layout. Section 3 deals with the generation of a
feature graph. The creation of the patch layout from a given feature graph is
explained in section 4. All the steps described in sections 3 and 4 are illustrated
on the geometry shown in fig.3, left. Finally, results of our tests are given in
section 5.

2. Setting

The basic idea of our algorithm is to detect an initial set of primitives and
create a corresponding patch layout. The initial primitive guess is just a rough
approximation of the final layout (fig.2, left, fig.3, left), i.e. it is lacking smooth
boundaries and inherent connectivity information. Thus, in an intermediate step
we construct a feature graph (fig.2, left) which contains the missing connectivity
information. From this feature graph we then derive the significant points and
curves, meeting our smoothness and alignment requirements, of the final patch
layout (fig.2, right).

For a complete description of our layout generation method we define:

Figure 2: Left: Feature graph on CAD part consisting of faces, feature edges and node points.
The dark grey parts within each face denote the plane-like or weakly curves parts whereas in
the light grey part the surface starts to get curved. Right: Patch layout with face patches,
fillets and node patches, as well as offset and node curves and offset nodes.

Feature graph. A graph on the surface (fig.2, left), which represents the un-
derlying structure of a CAD surface. The feature graph is a net of smooth
surface curves, which run along surface features. It consists of:

Faces Main parts of the surface. These can be any kind of prim-
itives (planes, cylinders, cones, ...) from which the surface
is made. In this approach, we mainly focus on plane-like
faces.

Feature edges Smooth edges which separate two adjacent faces and corre-
spond to cylindrical /conical regions.

Node points Isolated points, which correspond to spherical/hyperbolic
regions, where several feature edges meet, i.e these points
are also incident to more than one feature graph face.

Patch layout. An embedded graph on the surface (fig.2, right), which de-
composes the geometry into various cells. Within each cell of the patch layout,
heavily changing curvature is not allowed. The possible cell types can be cate-
gorized as follows:

Face patches Represent the planar or weakly curved part of feature graph
faces.

Fillets Connectors between adjacent face patches. They corre-
spond to edges in the feature graph. Typically, a fillet is a
cylindrical or conical part with high curvature in direction
of the connecting faces.

Node patches Connectors of several fillets. They can have a spherical or
hyperbolic shape of any kind.

Regarding the boundaries between these cells we will encounter two types:

Offset curves Encircle face patches. Each offset curve separates a face
patch from an adjacent fillet. The feature edge which rep-
resents this fillet runs more or less parallel to the offset
curve. An offset curve can be seen as a shifted version of
a feature edge, i.e. it is obtained by translating a feature
edge by a variable distance value.

Node curves Separate fillets from node areas. In general each node patch
is bounded by a sequence of smooth node curves.

Start and endpoints of these curves will be denoted as offset nodes. Further
we will refer to the triangle mesh by M and its triangles by 7.

3. Feature graph

The basis of a consistent layout is a feature graph representing the layout’s
topological structure. So given a triangulated mesh M we present a strategy to
build all parts of a feature graph, such as faces, feature edges and nodes.

We focus on detecting plane-like regions. Other types of primitives could
possibly be included as an extension of the algorithm. The basic idea is to
detect those primitives I; on M and expand them to cover all of M. So we
will have a one-to-one relation between initial regions I; and expanded regions

F;. Having covered all of M we detect node points, i.e. vertices where more
than two regions meet. The node points are connected by curves, which sepa-
rate adjacent regions. These curves are very jagged and run only along edges
of the underlying mesh. We take these curves as a first approximation of the
later feature edges. Thus, they need to be smoothed to meet our alignment and
orientation requirements. The result of this last step is a net of smooth curves
on the surface - the feature graph. These curves encircle the feature graph faces
containing the regions I;, the weakly curved or plane-like part of each face. The
algorithm to generate the feature graph can be outlined as proposed in alg.1.

Algorithm 1: Generate feature graph

Input: triangle mesh M

Output: feature graph

Compute principle curvatures (values and directions)

Detect initial regions I;

Expand regions I; by a region growing process

Extract nodes and edge based face boundaries

Create smooth feature edges from edge based face boundaries

U W N

The details for every step of our feature graph algorithm (alg.1) are explained
in detail in the following subsections.

3.1. Principal curvatures.

The algorithm starts with computing the principal curvatures of the surface.
Curvature information is computed for each vertex of the mesh. We use an
approximation of the shape operator given in [10]. i.e. a stable and reliable
method where no fitting needs to be performed. Other methods (e.g. [4, 21])
would also be practicable. Having curvature values at all vertices we then assign
curvature information to all triangles T' € M by averaging curvature information
of all three incident vertices. Thus, for each triangle four unit vectors pointing
in principle curvature directions (£ X4z, £Xmin) are given together with their
corresponding curvature values (Kmaz and Kmin) With |Kmaz| = |Kminl-

3.2. Detect initial faces

Initial faces I; are taken to be the seeds for the set of feature graph faces
(fig.2, left, fig.3, left). They should be thought of as the inner of the main
building blocks from which the CAD surface is made of. In general, one could
detect any kinds of primitives as cylinders, cones, spheres, etc. For our purpose,
it is sufficient to restrict the primitives to nearly flat parts.

We use a curvature threshold 7 to characterize all triangles as being part
of an initial face. Thus we define the following set of flat triangles I :=
{triangle T'||kmaz| < 7}. In general, I can be split into a set of simply con-
nected components I;, i.e. I ={ly,...,I,}.

Apart from using 7 to characterize initial regions, it can also be considered
as a measure of allowed noise within initial regions. A higher value of 7 will
ignore more noise.

3.8. Ezxpand initial regions, Detection of edges and nodes

The expansion of the initial regions I; gives us a rough approximation of the
feature graph. This process sets up the final topology of the feature graph and
therefore defines its faces, feature edges and node points. The detected node
points are held fix during the rest of the algorithm, whereas the alignment of
the feature edges gets adapted later in a smoothing step.

Figure 3: Left: Initial regions I;. Right: Complete covering of M by expanded regions F; and
parts of the unsmoothed feature graph.

In order to ensure the correct placement of feature graph nodes and edges,

we developed a special growing strategy based on curvature information. We
use a region growing approach to realize the expansion of initial regions I; into
the uncovered part of M. The growing is controlled by a feature function, which
assigns curvature related priority values to free triangles.
Feature function. We expect that feature graph edges mainly run along a
ridge or in our case, where |Kmqz| is high. Using this scalar value as feature
function for the expansion process works very well in cylindrical areas. How-
ever, when the surface becomes spherical /hyperbolical, the values of k;y;, and
Kmae g€t more and more similar. Due to noise and numerical imprecision, the
principal curvature directions are very unstable. As a result, the edges of the
feature layout will run more or less randomly through such an area. For the
same reason we will also loose control about the location of the node points, i.e.
where three or more regions meet, in spherical /hyperbolic surface parts.

Our experiments show, that node points are best placed where the Gaus-
sian curvature K is high. The value of K¢ can be computed stable, even in
spherical regions. We therefore propose a growing strategy which uses |Kmaz|
values within cylindrical, i.e. fillet-like regions (with stable curvature direc-
tions), whereas in spherical regions K¢ values should drive the expansion. We
use |Kmaz — Kmin| 8s an estimate for the stability of the curvature operator.
Region growing. We classify the free triangles, i. e. not assigned to one of the

initial regions I;, into two groups namely stable E' and unstable ones N:

N := {triangle T'|T ¢ I, |kmaz — Kmin| < t}, tER
E:=M\(IUN)

Thus, our region growing will be driven by K4, for T € E and K¢ for T € N.
First the initial regions are expanded into the set E giving us a rough approx-
imation of the feature edge within fillet like regions. During this stage the
growing is controlled by k... In the second step the rest of the surface gets
covered, i.e. regions are expanded into areas with spherical character, i.e. into
N, using |K¢g| as the growing function. Finally the node points of the feature
graph are found. Points of the triangle mesh where more than two regions meet
get identified as nodes of the feature graph (fig.3, right). An algorithm for our
two step growing strategy is given in alg.2, also containing the details of our
actual region growing procedure.

Algorithm 2: Expand Regions
Input: Set of initial regions I = {I4,...,I,} with I; C M
Output: Set of disjoint regions F = {F,..., F,} with U F; = M
1 Initialize set of patches F = {I1,...,I,}
2 regionGrowing(F, kmaz, V)
3 regionGrowing(F, kg, F)

Procedure "regionGrowing(F, f, C)”

Input: Set of regions F' = {F7, ..., F,}, feature function f, one region
into which growing is allowed C
Output: Expanded regions F; with C C U} F;
PriorityQueue queue;
foreach triangle T € F; do
| queue.enqueue((T, i) with key=f(T));
end
while queue not empty do
(T,i) = queue.extractMin();
foreach neighbours T' of T do
if T7 has not been marked as patch member and T’ € C then
Mark T” as member of patch Fj;
queue.enqueue((T”,1), key=f(T"));
end

© 00 N O A W N

e
= o

end

[y
N

end

[y
w

The method is similar to a watershed technique from image segmentation,
see e.g. [17], where the order when to add triangles to an initial region I; is also
done via a priority queue.

8.4. Smooth feature graph

The rough approximation to the final feature graph from the last step cor-
responds to the set of boundaries of the expanded initial regions (fig.3, right,
fig.4, left) - a set of polygonal curves, where each curve runs along edges of the
underlying triangulation. Because a feature graph with smooth edges is neces-
sary to generate a consistent patch layout we need to smooth these curves (fig.4,
right). During smoothing the node points, which were detected in the previous
region growing step, are held fix.

Figure 4: Smooting feature curves with end points held fixed. Left: Edge based region
boundary. Right: Smoothed region boundary.

Smoothing energy. If the feature edges get smoothed using a standard
method, e.g. Laplace smoothing, they cannot be guaranteed to stay in highly
curved feature areas of the surface. Instead, we introduce an algorithm which
alters a curve on a surface such that the curve gets aligned to a given vector
field. This approach can be applied to the field of minimal principle curvature
directions X,,;,,. In practice this works fine, since in highly curved areas, the
principal curvature directions are very stable and smooth. So we are looking for
a smooth curve connecting the node points, which is aligned to the X,,;, field
in the vicinity of the curve.

In general our alignment energy for a curve v can be defined with respect to
a given tangential vector field X as follows:

B(y) = / (%)d 1)

where J denotes the rotation by 90 degrees in the oriented tangent planes. It
can be seen as a measure of how much curve tangents and vector field deviate.
The energy vanishes if the curve is an integral curve of X. The alignment energy
(eq.1) is non-linear and non-quadratic in the vertex positions, which makes it
more difficult to find a minimum. But since we are optimizing a 1D curve, the
number of degrees of freedom stays relatively small, so even a standard Euler
method finds a local minimum in a reasonable time.

We discretized a feature curve by a curve, whose vertices lie on the surface.
The edges are not forced to stay on the surface. Assuming, that the vector field

X is locally nearly parallel (its covariant derivative vanishes), the variation of
the energy (eq.1) at vertex v € v is approximated by

) JX <6w,X1u> (Xw)
(51,E%2/<51)7,7>d8%2 . 5 (2)
EINEY 2 el %l

5 we{v—1,0+1}
In (eq.2) X\ = (X (y(w))+X (v(v)))/2 is the mean vector of X at the edge (v, w)
and e,, = v(w) —(v) represents an approximation to curve’s tangent. Applying
several steps of an explicit Euler method leads to smooth feature curves (fig.4,
right).

In regions near to the two ends of the edges, the direction of minimal and
maximal principle curvature may exchange due to the effect of an adjacent fil-
let. This situation can be detected by matching the principal curvature vectors
between all adjacent triangles of the mesh. If the minimal and maximal curva-
ture vector exchange at an edge, where the feature polygon runs through, the
vectors in X are switched to be those of the maximal curvature field instead of
the minimal one.

4. Patch layout

Given a consistent topological feature graph we are now able to create the
final patch layout, i.e. the structure which decomposes the surface into its func-
tional parts such as faces, fillets and node areas. Our patch layout generation
process can be visualized as thickening the feature graph edges back into its
faces plus cutting of areas around its nodes. The complete algorithm for the
computation of patch layout related curves and nodes is given in alg.4.

Algorithm 4: Patch Layout

Input: Feature graph

Output: Patch layout

foreach Node point of the feature graph do

‘ Compute all its offset nodes

end

foreach Face F; of the feature graph do

foreach Feature graph edge vyv; bounding F; do
Determine offset direction dir = getSide(y;, Fj) € {left,right}
Compute distance map d§*"

Smooth distance map
Compute offset curves 5;1”
end

© ® N O ok W N =

[y
o

end
Compute node curves

[
N =

The proposed thickening procedures ensures the alignment of face boundaries
to nearby feature lines. Furthermore we connect feature oriented boundaries in
the vicinity of nodes areas at offset nodes. After having computed a consistent

10

loop of smooth offset curves around each face, we cut out the node areas by
node curves. An illustration of the whole process is given in (fig.5).

Figure 5: Generation of offset curves. Top left: Compute offset nodes as nearest points to
feature nodes in each adjacent initial patch I;. Top right: Regard distance to initial patch
I; as a one dimensional graph over the feature line. Bottom left: Smooth and aligned offset
lines. Bottom right: Final offset layout after smoothing the distance function.

4.1. Offset nodes

Offset nodes are points on the surface where offset curves and node curves
meet. By definition a region is bounded by a set of feature edges, which start
and end in node points. So for each face of the feature graph there exists an
associated set of node points. For each associated node point an offset node gets
created (fig.5, top left). A canonical choice for an offset node within a certain
face F; is the point, which is contained in the corresponding flat or weakly
curved part I; and which closest to the node point of the feature graph. Here
we use Dijkstra distances to determine those points. We refer to an offset node
within a face by n;;, where the two indices denote the offset curves, which meet
there (fig.6, left).

In practice, it happens that offset nodes of two adjacent feature nodes fall
onto the same geometrical position on the surface, i.e. closest points of different
node point coincide. This occurs especially for nearby feature nodes which are
connected by a very short feature edge. In this case, the corresponding feature
edge will not be offsetted. So that the final offset layout will not be spoiled by
these nearby feature nodes (fig.9, bottom right).

11

4.2. Offset curves

Each feature edge ; gets offsetted into its two adjacent faces resulting in
two offset curves 6§Ef ! and 62-”9“. The upper index refers to the offset direction
as seen from ~y;, whereas the lower index indicates the feature curve this offset
curve belongs to. Each of these curves is created from a scalar function denoted
by d'*'*(t) and ;""" (t) defined along ~;. Here the indices of d! (t) are defined in
the same manner as for the offset curves. In the remaining section we skip the
indices on, i.e. d’(t) becomes d(t), to shorten the notation. d(t) measures the
distance between a feature edge and the flat part of the corresponding adjacent
face. This is in general a nonsmooth function, so we apply convolution to get
rid of spikes within the set of distance values. The resulting distance values
then encode points on the final offset curve.
Distance function: The parameterized feature edge 7(t) is represented by a
set of points uniformly distributed along the feature edge. From each of these
points, a geodesic ray is shot perpendicular to the curve until the corresponding
initial region is hit. How to extend a ray geodesically can be found in [19]. The
length of the ray defines the distance d(t) (fig.5, top right). If the ray does not
hit the corresponding initial region between the two offset nodes, the value of
d(t) is set to be undefined. The result is a distance function d : [a,b] — R for
which all values in [a, b] are well defined and the rays emanating from ~(a) resp.
~(b) run into the corresponding offset nodes.
Convolution: We smooth d(t) by convolution with a hat function with large
support (e.g. half of the length of the feature curve). Let d : [a,b] — R be the
distance map after parameterizing the supporting interval on the feature curve
by arc length (as described above). By construction, the function values d(a)
and d(b) at the endpoints are the geodesic distance of the feature curve to the
offset nodes (fig.6, right).

d(b)
left
% Vi
I
d(a)

Figure 6: Left: Initial patch I of one face with adjacent feature curves +; and corresponding
offset curves 5?” and offset nodes n;;. Right: Offsetting a feature curve -;, definition of the
distance function d¥*"(t) only on a subset of ;

When keeping these values fix during the smoothing process, the resulting

12

offset curves will start and end in offset nodes. Thus, we have to convolute d
with a hat function and keep the function values at the endpoints. The trick for
doing this is to extend d to a larger domain in R by mirroring at the endpoints,
ie.

dla—z) = 2d(a)—d(a+ z),
db+z) = 2d(b)—db—=z), =z€[0,b—al

Convolution of this function with a hat function will (by symmetry) not change
the function values at a and b. These convoluted distances define a sequence of
points along the feature curve. Out of this sequence our polygonal offset curve
lying on the surface is created (fig.5, bottom left).

4.3. Node curves

There is one node area for each node point of the feature graph. In most
cases, a node area gets encircled by a sequence of node lines, which start and
end in offset nodes. As illustrated in (fig.7) let v be a feature graph node and
v; a feature line emanating from v. In general, there are two offset curves 6fef t
62ight, which arise by offsetting «; into the two adjacent faces. So a node curve
needs to be created between the offset nodes n;;, n;, to separate the node area

from the fillet corresponding to ~.

Figure 7: Left: Node area. The node lines (green) connect the endpoints of offset curves.
Right: Two feature edges meet at node point with angle close to 180, the corresponding offset
node gets split into two new ones.

This is done by constructing a plane out of the two points n;;, n;, and their
normals. The plane is defined to contain the vector connecting n;; and n;; and
the average of the two normals. The intersection curve of this plane and the
mesh will then be our actual node curve. If two feature curves ; and -; meet at
a node point with an angle close to 180 degrees (fig.7, right), the corresponding
offset node n;; gets split into two new ones. The two new nodes ngj and n}j
are found using the distance map. We look for the first point within the valid
range of d(t). The actual node curve is constructed as in the usual case. In the
actual implementation, we used a threshold of 120 degrees.

13

5. Results

We tested the algorithm on several CAD parts provided by our industry
partner Tebis AG. Here we discuss two parts in detail: the first part belongs
to a scan of a BMW motorcycle (fig.8). As can be seen, the algorithm finds a
suitable decomposition of the complex surface. The right lower picture shows
the patch layout on the part. The surface contains approximately 100k triangles
and the whole patch layout generation process took about 1 minute. The main
part was the curve smoothing, which took about 40 seconds. The second part
is a deformed metal plate (fig.9), where the algorithm took also less than 2
minutes. As can be seen this geometry contains fillets with varying thickness
(fig.9, bottom left) which are well detected by our method. The final patch
layout also contains nearby node points showing the ability of our method to
work in cases of degenerated offset curves (fig.9, bottom right).

Figure 8: Feature layout on the BMW motorcycle part. Top: given triangulated model. 2nd,
3rd: Feature graph from our method. Bottom: Final patch layout.

Our method is made to work with geometries having round features, because
at sharp edges a fillet region would be not well defined. Having noisy data
the geometry could be smoothed using [10] or the noise can captured by our
threshold defining the flat parts.

14

Figure 9: Top left and right: Feature graph on CAD model. Bottom left: Patch layout.
Bottom right: offset curves and feature graph in regions with nearby node points

6. Conclusion

We presented a method which fully automatically decomposes a given surface
into patches which are suited for spline fitting. Just a few parameters, e.g. the
curvature threshold, are necessary to drive the generation process, i.e. to control
the look of the final layout. Furthermore having an existing reverse engineering
pipeline based on graph like structure our method could easily be plugged in to
create a patch layout.

The method shows good results on a given class of CAD modeled geometries.
We only allow geometries which made of more or less planar patches with smooth
connector parts (fillets and nodes).

There are many other algorithms for patch layout generation, but the most
of them aim at a slight different problem. They focus on generation of a feature
graph. This is less useful for spline fitting, since the connection between different
patches are often rounded. The generation of a patch layout using offset curves
has not occurred to us yet. However, the feature graph from our method is quite
similar to that from [25]. One could of course use any other method for feature
graph generation and use it directly as input to our second step for computing
the offset layout.

To be able to extend the algorithm to surfaces made of more complicated
building blocks, additional study is necessary. The basic idea is to detect the

15

initial regions I; as given surface primitives (cylinders, spheres, cones, . ..) which
are found as a subset of the surface. Therefore it would be necessary to explore
the curvature related properties of common CAD building blocks.

Another extension would be to include sharp edges into the layout. Sharp
edges will not be offsetted, because the adjacent patches are directly connected
without any smooth connection.

7. Acknowledgement

We thank DFG research center MATHEON and Tebis AG for supporting this
research and providing the CAD models.

References

[1] Miklés Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun.
Tracks: toward directable thin shells. ACM Trans. Graph., 26(3):50, 2007.

[2] F. Cazals, F. Chazal, and T. Lewiner. Molecular shape analysis based upon
the morse-smale complex and the connolly function. In SCG ’03: Proceed-
ings of the nineteenth annual symposium on Computational geometry, pages
351-360, New York, NY, USA, 2003. ACM.

[3] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational
shape approximation. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,
pages 905-914, New York, NY, USA, 2004. ACM Press.

[4] David Cohen-Steiner and Jean-Marie Morvan. Restricted delaunay trian-
gulations and normal cycle. In Proc. of Symp. on Comp. Geom., pages
312-321. ACM Press, 2003.

[5] Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and
John C. Hart. Spectral surface quadrangulation. ACM Trans. Graph.,
25(3):1057-1066, 2006.

[6] Herbert Edelsbrunner. Surface tiling with differential topology. In SGP ’05:
Proceedings of the third Furographics symposium on Geometry processing,
page 9, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics Associ-
ation.

[7] Herbert Edelsbrunner, John Harer, and Afra Zomorodian. Hierarchical
morse complexes for piecewise linear 2-manifolds. In SCG ’01: Proceedings
of the seventeenth annual symposium on Computational geometry, pages
70-79, New York, NY, USA, 2001. ACM Press.

[8] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min,
William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin.
Modeling by example. ACM Trans. Graph., 23(3):652—-663, 2004.

16

[9]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical
face clustering on polygonal surfaces. In I3D ’01: Proceedings of the 2001
symposium on Interactive 8D graphics, pages 49-58, New York, NY, USA,
2001. ACM.

Klaus Hildebrandt and Konrad Polthier. Anisotropic filtering of non-linear
surface features. Computer Graphics Forum, 23(3):391-400, 2004.

Michael Hofer and Helmut Pottmann. Energy-minimizing splines in mani-
folds. In SIGGRAPH 04: ACM SIGGRAPH 2004 Papers, pages 284—293,
New York, NY, USA, 2004. ACM Press.

Imre Horvth Joris S. M. Vergeest, Sander Spanjaard and Jos J. O. Jelier.
Fitting freeform shape patterns to scanned 3d objects. J. Comput. Inf. Sci.
Eng., 1(3):218-225, September 2001.

Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-charts: Quasi-
developable mesh segmentation. In Computer Graphics Forum, Proceedings
of Eurographics 2005, volume 24, pages 581-590, Dublin, Ireland, 2005. Eu-
rographics, Blackwell.

Thomas Robin Langerak. Freeform feature recognition and manipulation
to support shape design. PhD thesis, TU Delft, 2008.

Yunjin Lee and Seungyong Lee. Geometric snakes for triangular meshes.
Computer Graphics Forum, 21(3):229-238, 2002.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least
squares conformal maps for automatic texture atlas generation. In SIG-
GRAPH °02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 362-371, New York, NY, USA,
2002. ACM.

Alan P. Mangan and Ross T. Whitaker. Partitioning 3d surface meshes
using watershed segmentation. IEFE Transactions on Visualization and
Computer Graphics, 5(4):308-321, 1999.

Bianca Falcidieno Marco Attene and Michela Spagnuolo. Hierarchical mesh
segmentation based on fitting primitives. The Visual Computer, 22(3):181—
293, March 2006.

Konrad Polthier and Markus Schmies. Straightest geodesics on polyhedral
surfaces. In Hans-Christian Hege and Konrad Polthier, editors, Mathemat-
ical Visualization, pages 135-150. Springer Verlag, Heidelberg, 1998.

Helmut Pottmann, Tibor Steiner, Michael Hofer, Christoph Haider, and
Allan Hanbury. Computer Vision - ECCV 2004, chapter The Isophotic
Metric and Its Application to Feature Sensitive Morphology on Surfaces,
pages 560-572. Springer, 2004.

17

[21]

Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, Yu-Kun Lai, and
Shi-Min Hu. Principal curvatures from the integral invariant viewpoint.
Comput. Aided Geom. Design, 24:428-442 2007.

Nickolas S. Sapidis and Paul J. Besl. Direct construction of polynomial
surfaces from dense range images through region growing. ACM Trans.
Graph., 14(2):171-200, 1995.

Ariel Shamir. Segmentation and shape extraction of 3d boundary meshes.
In EUROGRAPHICS 06: STARS, pages 137-149, 2006.

Idan Shatz, Ayellet Tal, and George Leifman. Paper craft models from
meshes. Vis. Comput., 22(9):825-834, 2006.

Tamds Varady, Michael A. Facello, and Zsolt Terék. Automatic extraction
of surface structures in digital shape reconstruction. Comput. Aided Des.,
39(5):379-388, 2007.

Jianhua Wu and Leif Kobbelt. Structure recovery via hybrid variational
surface approximation. Computer Graphics Forum, 24:277-284(8), Septem-
ber 2005.

18

