Domain Coloring of Complex Functions

Konstantin Poelke and Konrad Polthier

1 Introduction

Visualizing functions is an omnipresent
task in many sciences and almost every day
we are confronted with diagrams in news-
papers and magazines showing functions of
all possible flavours. Usually such func-
tions are visualized by plotting their func-
tion graph inside an appropriate coordinate
system, with the probably most prominent
choice being the cartesian coordinate sys-
tem. This allows us to get an overall im-
pression of the function’s behaviour as well
as to detect certain distinctive features such
as minimal or maximal points or points
where the direction of curvature changes.
In particular, we can “see” the dependence
between input and output. However, this
technique is limited to three dimensions,
simply because we do not know how to
draw higher-dimensional cartesian coordi-
nate systems.

This article gives a short overview about
the method of domain coloring for com-
plex functions, which have four-dimensional
function graphs and therefore cannot be vi-
sualized traditionally. We discuss several
color schemes focussing on various aspects
of complex functions, and provide Java-like
pseudocode examples explaining the cru-
cial ideas of the coloring algorithms to al-
low for easy reproduction. For a thorough
treatment of domain colorings from a more
mathematical point of view see [1].

2 What is a Function?

Let us briefly recap the definition of a
function to fix terminology. A function f
consists of three parts: first, a set D of in-
put values, which is called the domain of the
function, second, a set Y called the range of
f and third, for every input value x € D,
a unique value y € Y, called the function
value of f at z, denoted f(z). The set I'(f)
of all pairs (a, f(a)), a € D, is a subset of
the product set D x Y and called the func-
tion graph of f.

One particular type of functions that are
widely used in engineering and physics are
complex functions, i.e. functions f : D C
C — Y C C whose domain and range
are subsets of the complex numbers, and
we will focus on complex functions in the
following. We will identify C with the Eu-
clidean plane R? by the bijective assignment
x+yi — (x,y), justifying the term complex
plane. Note that the function graph I'(f) of
a complex function lives inside the product
space C x C = R%.

3 Domain Coloring

In contrast to function graph plotting in-
side Euclidean two or three space, the tech-
nique of domain coloring does not need ad-
ditional spatial dimensions for the range
but rather uses color dimensions to encode
the function values. More precisely, given a
complex function f : D — Y, one defines
a color scheme as a function col : Y —
HSB, which assigns to every value y € Y
a color col(y), specified in HSB color space

for instance. In practice D is usually a rect-
angular region of R2. Then an initially cho-
sen resolution divides D into a discretized
domain Dy, of pixels corresponding to small
rectangles of fixed width and height. Ev-
ery pixel 7 is identified with a point z; in D
where the function is evaluated, for example
the midpoint or a corner. Then one evalu-
ates the pull-back function f*col := colo f
at every point z; € D and assigns the re-
sulting color value f*col(z;) to the pixel i,
leading to a coloring of the whole domain
Dy,. This procedure is shown in Figure 1,
Listing 1 gives an easy implementation.

21 f
lIk———_———____——___"“‘-\\‘-

Z3 .
ZM

Dy, Y
Figure 1: Every pixel ¢ in the discretized domain

Dy, corresponds to a value z; € D and is colored
with the color f*col(z;).

col

Listing 1: Plotting procedure. The domain D is a
rectangular region specified by its lower left and up-
per right corner, whose (z, y)-coordinates are given
in the array double[] dom of size 4. The resolution
parameters determine the number of pixels of the
resulting image.

Image plot(double[] dom, Fun f, Fun col, int xRes,
int yRes){
// create new image object of size xRes*yRes
Image im = new Image(xRes,yRes);
// Increments in width and height direction
double xInc = (dom[2]-dom[0])/xRes;
double yInc = (dom[3]-dom[1])/yRes;
for(y=0; y<yRes; y++){
for(x=0; x<xRes; x++){
// midpoint where f is evaluated
z = (dom[0]+(x+0.5)*xInc, dom[1]+(y+0.5)*yInc);
// assign computed color to pixel
im.setColor(x,y,col(£(z))); }}
return im;

}
We just mention for completeness that
this idea can easily be transferred to sur-

faces D embedded in R? by using local co-
ordinate charts and texture mappings and

reducing the problem to the flat case in R?.

4 Color Schemes
4.1 Color Wheels

Every non-zero point z = (u, v) in the Eu-
clidean plane has a unique representation in
terms of polar coordinates as z = r-exp(iyp),
if one requires the angle ¢ to lie in the in-
tervall [—m, 7). ¢ is called the argument
of z, denoted argz, and r is the modu-
lus or absolute value |z|. The advantage
of this representation is that the argument
can be directly identified with a hue value,
which is usually given as an absolute an-
gle value between 0 and 360 or as a rela-
tive value between 0 and 1. We will make
steady use of the function ssBcolor(f1cat hue,
float sat, float bri) Which constructs an inte-
ger color representation from the specified
hue, saturation and brightness values, each
of them lying in the interval [0, 1]. Such
functions are usually contained in the stan-
dard libraries of modern programming lan-
guages, €.g. java.awt.Color.HSBtoRGB i Java or
colorsys.hsv_to_rgb in PythOH

This leads to a first color scheme as shown
in Figure 2, using the argument arg z as its
only parameter. Listing 2 gives its imple-
mentation.

Figure 2: Hue-based color wheel and resulting do-
main coloring for z — z2. The function duplicates
the argument of every point in the plane. As a re-
sult the upper half plane is mapped to the whole
plane, as every color already appears on the upper
half.

Listing 2: A hue based color wheel using the argu-
ment arg z as its only input parameter.

int col(Point z){

//arg only defined for non-zero value
if (z==0) return black;

// h between O and 1

h = (arg(z)+m)/2m;

return HSBColor(h, 1,1);

}

In case the argument is undefined, i.e. if
z = 0, the function returns black. We will
neglect this form of easy exception handling
as well as the conversion of argz into the
relative parameter h € [0, 1] in the follow-
ing.

Instead of using the hue value as a contin-
uous parameter, a discretized version of the
color wheel divides the plane into n equally-
sized cells, where in each cell the color is
constant. A natural choice is n = 4, divid-
ing the Euclidean plane into its four quad-
rants. This makes it easy to detect which
points are mapped into which quadrant, see
Figure 3 and Listing 3.

Listing 3: A discretized color wheel implementation
dividing the plane into four quadrants.

int col(Point z){

// array holding colors for cells

Color[] colors = {blue,red,yellow,green};
// compute cell index

int i = floor(h*4) ¥ 4;

return colors[il;

}

Alternatively one can use the argument
as a parameter for interpolating between
two or more colors leading to color gradi-
ents wrapped around the origin. A sim-
ple gradient color scheme between white
and black, discontinuous along the nega-
tive real axis, is then given by a function
blend(black,white, h) Which accepts two colors
and uses the relative hue value h as a weight
for a linear interpolation between the col-
ors’ RGB values such that biend(v1ack,white,0)
returns black and biend(black,white,1) Teturns

white. Figure 4 shows an application of this

Figure 3: The discrete color wheel divides the plane
into its quadrants. The image on the right shows a
plot of the Joukowski function (z+1/z)/2. Inside a
circle of radius 1 the plane appears mirrored along
the horizontal real axis.

scheme to functions of a type particularly
important in algebra and complex geome-
try.

i

Figure 4: A simple gradient color scheme. The
left picture shows the function f(z) = 2° — 1,
whose zeros are exactly the fifth roots of unity.
The five endpoints are the zeros whereas the other
endpoints all meet at infinity, where f has a
pole of order five. The horse-shoe-shaped image
on the right displays the meromorphic function
fm(2) = (= -1(z+1)?/((z +1i)(z —i)?). The two
endpoints are of order one and correspond to the
terms (z — 1) and (z + 4). The two points where
black and white interchange are of order two, de-
termined by the remaining terms.

Although the preceding color schemes
only used the argument of a point
z = rexp(iy), they already gave fairly good
representations for complex functions. By
taking the modulus into account we can en-
rich these color schemes with several addi-
tional features. As an example, Listing 4

marks zeros and poles as black and white
spots to make it easy to detect these distin-
guished points of a complex function, im-
proving the color wheel scheme from List-
ing 2.

Listing 4: Color wheel with highlighted poles and
zeros. Points z with |z| < r or |z| > R are colored
black and white, respectively. For r < |z| < R,
saturation and brightness are interpolated.

int col(Point z){
if (abs(z)<=r) return black;
else if(abs(z)>=R) return white;
else{
sat = fadeOut(abs(z));
bri = fadeIn(abs(z));
return HSBColor(h,sat, bri);
}
}

Note that in HSB color space white cor-
responds to full brightness with zero sat-
uration whereas black corresponds to zero
brightness. The methods fadern and fadeout

interpolate between 0 and 1 to provide
smooth transitions from black to fully sat-
urated bright colors to white, for instance
using smooth bump-type functions as given
in Figure 5.

a fadeIn fadeOut

r r+d R—-d R
Figure 5: Classical bump functions of the type
exp(loga (1/(z — z0))?), smoothly approaching zero
at x = 2y and attaining a predefined value 0 < a <
1 at © = 29 £ [, here shown for zyp = r and 2y = R,
respectively, and [= d. They provide smooth in-
terpolation functions for brightness and saturation.

4.2 Grids

Complex functions that are differentiable
(so called holomorphic functions) and have
nowhere vanishing derivative are of partic-
ular geometric interest: they are confor-
mal, i.e. they preserve angles. To illustrate

this phenomenom, it is helpful to imple-
ment grid-like color schemes such as rect-
angular grids or polar grids. We explain a
polar grid consisting of concentric circles as
contour lines around the origin and n rays
starting at the origin going through the n-
th roots of unity exp(2kmi/n), as shown in
Figure 6.

4 N ——

’ /
g ;X \

Figure 6: A polar grid color scheme with red con-
tour line of modulus 1 (top left) applied to the com-
plex sin (top right), the Joukowski function from
Figure 3 (bottom left) and the function f,, from
Figure 4 (bottom right).

There are two things to do: first, com-
pute the distance dy of argz (as a relative
value between 0 and 1) to the closest frac-
tion k/n for k =0,...,n— 1. Second, com-
pute the distance d. of the modulus |z| to
the closest multiple [- D, [€ N, where D is
the distance between any two consecutive
concentric circles. Depending on the dis-
tances dy and d., return either white if the
distances are too large, or a grayish color if
the distances are smaller than some user de-
fined thresholds. Since the implementation
is straight-forward, we do not give code list-
ings. Rectangular grids can be created in a

similar way, but it is more convenient to use
tilings as discussed in the next section.
4.3 Tilings

Tilings provide another source for numer-
ous color schemes. For instance, a rectan-
gular grid can be easily implemented using
a seamless texture showing a single cell of
the grid. Texture coordinates then estab-
lish an identification of the texture with a
(rectangular) region in the plane, leading
to a tiling of the whole plane. Listing 5
and Figure 7 explain this procedure, appli-
cations are shown in Figures 8 and 9.

Listing 5: A color scheme tiling the plane using
a rectangular texture stored in the image variable
tile whose width and height are given as the num-
ber of pixels. The structure rect describes a rectan-
gular region in Euclidean coordinates on which the
tile is mapped to. Every point outside this rectan-
gle corresponds to a unique point inside the rect-
angle by modulo calculation.

int col(Point z=x+yi){

// point modulo tile rectangle

double xInRect = (x-rect.LEFT) % rect.width;

double yInRect = (y-rect.BOTTOM) % rect.height;

// transform position into pixel coordinates

int xPixel = (xInRect*tile.width)/rect.width;

int yPixel = (yInRect*tile.height)/rect.height;

// return RGB value of corresponding pixel
return tile.getRGB(xPixel,yPixel);

SN

Figure 7: A tile is identified with a rectangular
region A inside the domain, giving rise to a lattice
whose cells are copies of A (left). Every point z
corresponds to a unique point inside A by taking its
coordinates modulo the lattice, yielding a regular
tiling of the domain (right).

4.4 Combining Color Schemes
A simple way to create new color schemes
is merging already existing ones into a sin-

Figure 8: The function z + 22 using a rectangu-
lar grid. All blue lines are mapped to horizontal
lines, whereas the red lines are mapped to verti-
cal lines (left). The complex exponential function
z — exp(z) deforming the originally circular FU
emblem (right). The emblem is unfolded in the
negative real half plane whereas the number of em-
blems is exponentially growing in positive real di-
rection. Note that this pattern is repeating in imag-
inary direction due to the periodicity of the com-
plex exponential function.

Figure 9: Again the function z — 22 (left) and the
function f,, (right), this time using a hand-drawn
pencil sketch of a twig.

gle scheme. For instance, it makes sense to
blend the polar grid in Figure 6 onto a color
wheel background to combine the informa-
tion about the argument given by the color
wheel with the information about the in-
duced plane deformation given by the grid.
This can be easily done by taking alpha val-
ues into account. The polar grid would re-
turn a fully transparent color, i.e. a color
having alpha value 0, whenever a point nei-
ther lies on a radial line nor on a concentric
circle, and a dark color with increasing al-
pha value if the point lies close to a grid line,

until the color is fully opaque for points ly-
ing directly on the grid. So assume we are
given a list of n color functions cy,..., ¢,
where we want to use c¢; as the background.
Then the resulting combined color scheme
is the function

afen(z), al.. . ales(2), alea(2), e1(2)))))

where a takes two colors as arguments and
blends the first color onto the second color
according to their alpha values, cf. [2]. The
following figures give some ideas what such
blended schemes may look like.

Figure 10: The “spider” (top left) is the complex
logarithm log(z), the Cayley map z — (2—1)/(z+1)
(top right) has many applications in complex ge-
ometry. The functions z — cos(1/z) (bottom left)
and z — exp(1/z2) have essential singularities at
zero, recognizable by the ever-repeating rainbows
shrinking to a point. All images are rendered using
a continuous color wheel onto which a polar grid
and semi-transparent rings indicating the direction
of growth of the modulus are blended, following an
idea from [3].

Of course this list of suggestions is by far
not exhaustive and provides just a very brief
introduction. However it should give you

enough basics to implement your own color
schemes and experiment with the parame-
ters.

Figure 11: The function f,, using a gradient
blended with a polar grid. The white rays connect
zeros with poles (top left). Contour lines enclose
the five zeros and the pole of order 4 at the origin
of the function z — z + 1/2%, using a solid back-
ground onto which the concentric circles of the po-
lar grid and semi-transparent rings are blended (top
right). The same function is shown using a discrete
color wheel with additional polar grid lines (bot-
tom left), also used for the rather artificial function
z — cos(z)/(sin(z* — 1)) (bottom right).

References

[1] K. Poelke and K. Polthier, “Lifted domain color-
ing,” Computer Graphics Forum, vol. 28, no. 3,
pp- 735-742, 2009.

[2] T. Portner and T. Duff, “Compositing Digital Im-
ages,” Computer Graphics, vol. 18, no. 3, pp. 253—
259, 1984.

[3] H. Lundmark, “Visualizing complex
alytic functions using domain coloring.”
//www.mai.liu.se/~halun/complex/domain_
coloring-unicode.html, 2004.

an-

