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Abstract

In recent years, substantial progress in shape analysis has been achieved through
methods that use the spectra and eigenfunctions of discrete Laplace operators.
In this work, we study spectra and eigenfunctions of discrete differential opera-
tors that can serve as an alternative to the discrete Laplacians for applications in
shape analysis. We construct such operators as the Hessians of surface energies,
which operate on a function space on the surface, or of deformation energies,
which operate on a shape space. In particular, we design a quadratic energy such
that, on the one hand, its Hessian equals the Laplace operator if the surface is a
part of the Euclidean plane, and, on the other hand, the Hessian eigenfunctions
are sensitive to the extrinsic curvature (e.g. sharp bends) on curved surfaces.
Furthermore, we consider eigenvibrations induced by deformation energies, and
we derive a closed form representation for the Hessian (at the rest state of the
energy) for a general class of deformation energies. Based on these spectra and
eigenmodes, we derive two shape signatures. One that measures the similarity
of points on a surface, and another that can be used to identify features of
surfaces.

1. Introduction

The spectrum and the eigenfunctions of the Laplace–Beltrami operator of a
surface have stimulated much recent work in shape analysis and geometry pro-
cessing, ranging from parametrization, segmentation, and symmetry detection
to shape signatures and mesh filtering. Such methods profit from properties of
the eigenfunctions of the Laplace–Beltrami operator. For example, on a curved
surface they form an orthogonal basis of the space of L2-functions on the surface.
Furthermore, the Laplacian depends only on the metric of the surface, hence the
eigenvalues and eigenfunctions are invariant under isometric deformations of the
surface. However, there are disadvantages as well. For example, a consequence
of the invariance to isometric deformations is an insensitivity to extrinsic fea-
tures of the surface, like sharp bends, that are of essential importance for some
applications.

Contributions. In this work, we derive operators, whose eigenmodes and
spectra can serve as alternatives to the spectrum and modes of the Laplacian
for applications in geometry processing and shape analysis. On the one hand,
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the eigenfunctions of these operators share properties with the eigenfunctions
of the Laplacian, e.g., they form an orthogonal basis of a space of variations of
the surface. On the other hand, there are fundamental differences, e.g., these
eigenfunctions depend (not only on intrinsic quantities but also) on the extrinsic
curvature of the surface. We consider two different settings: eigenvalues and
eigenmodes of the Hessian of energies that are defined on a space of functions
on a surface, and vibration modes and frequencies of the surfaces itself.

The Dirichlet energy of a surface is a quadratic functional on an appropri-
ate space of functions on a surface. The second variations of this energy are
described by the Laplace–Beltrami operator of the surface. We design a new
energy by modifying the Dirichlet energy. The eigenfunctions of the Hessian of
this energy are sensitive to the extrinsic curvature of the surface.

On a planar domain, the eigenfunctions of the Laplacian (under Dirichlet
boundary conditions) serve as a model for the vibration modes of a flat clamped
plate (Chladni plates). For curved surfaces more elaborate models are required
to describe the vibration modes of a surface. We consider a physical model
that describes vibration modes of a surface mesh through the eigenfunctions of
the Hessian of a deformation energy. In general, computing the Hessian of a
deformation energy is a delicate and laborious task. But, to compute the linear
vibration modes we do not need to compute the Hessian at all points in the
space of possible surfaces, but only at the point that represents the reference
surface. We derive a simple formula that can be used to compute the Hessian
at the reference surface for a general class of deformation energies. We hope
that this framework will stimulate further exploration of the eigenmodes and
eigenfrequencies of deformation energies.

As application, we propose two (multi-scale) signatures, the vibration sig-
nature, based on the vibration modes, and the feature signature, based on the
eigenmodes of the modified Dirichlet energy. To each of the two signatures we
associate a (multi-scale) pseudo-metric on the surface. The resulting vibration
distance can be used as a similarity measure on the surface and the feature
distance can identify features of a mesh. We prove a lemma that relates the
vibration signature to the linearized gradient flow of the deformation energy.
This gives further insight on the choice of the weights for the signature and
reveals the geometry behind the signature.

Related work. Recently, we have seen a boom of papers that use the eigen-
values and eigenfunctions of the Laplace–Beltrami operator as an ingredient to
algorithms in geometry processing and shape analysis. An overview of this de-
velopment can be found in the recent survey by Zhang et al. (2010) and in the
course notes of a Siggraph Asia 2009 course held by Lévy and Zhang (2009).
Here, we can only briefly outline the work that has been most relevant for this
paper.

The spectrum of the Laplace–Beltrami operator of a Riemannian manifold
contains a significant amount of information about the manifold and the metric.
Though it does not fully determine the Riemannian manifold, it can be used as a
powerful shape descriptor of a class of isometric Riemannian manifolds. Reuter
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et al. (2005, 2006) use the spectrum of the Laplace–Beltrami operator to con-
struct a fingerprint of surfaces, which they call the Shape-DNA. By construction
this fingerprint is invariant under isometric deformations of a surface. Among
other applications the Shape-DNA can be used for shape matching, copyright
protection, and database retrieval. Rustamov (2007) developed the Global Point
Signature (GPS), a signature that can be used to classify shapes up to isome-
try. Based on the GPS, Ovsjanikov et al. (2008) developed a method for the
detection of global symmetries in shapes. Dong et al. (2006) present an elegant
technique that uses the Morse–Smale complex (and the quasi-dual complex) of
a carefully chosen Laplace eigenfunction to generate a coarse quadrangulation
of a surface mesh. This approach was extended by Huang et al. (2008), who
design a least-squares optimization routine that modifies the selected Laplace
eigenfunction (and hence its Morse–Smale complex) and provides a user with
control of the shape, size, orientation, and feature alignment of the faces of the
resulting quadrangulation. The computation of the spectrum and eigenfunc-
tions of the Laplacian is a delicate and computationally expensive task, even
for medium sized meshes. Vallet and Lévy (2008) propose an efficient shift-
and-invert Lanczos method and present an implementation that is designed to
handle even large meshes. Using the eigenfunctions of the Laplacian, one can
compute the heat kernel of the surface. Sun et al. (2009) propose the heat kernel
signature, a surface signature based on the heat kernel which they use to derive
a measure for the geometric similarity of different regions of the surface. Due to
its construction, this measure is invariant under isometric deformations of the
surface. Independent of this work, Gebal et al. (2009) propose a similar signa-
ture, named the Auto Diffusion Function, and use it for mesh skeletonization
and segmentation. In the context of shape matching and retrieval, Dey et al.
(2010) use persistent extrema of the heat kernel signature to construct a robust
and efficient pose-oblivious matching algorithm for 3D shapes. Given a corre-
sponding pair of points on two shapes, Ovsjanikov et al. (2010) use the heat
kernel to construct an isometric map between the shapes which allows them
to find intrinsic symmetries and match partial, incomplete or isometrically de-
formed shapes.

Modal analysis is a well-established technique in structural mechanics that
aims at computing the modes and frequencies of an object during vibration. In
graphics, it is used to speed up physical simulations, see Pentland and Williams
(1989); Hauser et al. (2003); Barbič and James (2005); Choi and Ko (2005).
Recently, Huang et al. (2009) use vibration modes of a surface to decompose it
into physically meaningful parts. They compute the modes of the surface from
the Hessian of a simplified as-rigid-as-possible deformation energy, which was
proposed by Sorkine and Alexa (2007).

In physical simulation, thin shell models describe the dynamics of a thin
flexible structure that has a curved undeformed configuration. For example,
in cloth simulation thin shells are used to describe folds and wrinkles Bridson
et al. (2003). Common discrete models Baraff and Witkin (1998); Bridson et al.
(2003); Grinspun et al. (2003); Garg et al. (2007) describe the middle surface
of a thin shell by a mesh and measure the bending of the surface at the edges
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Figure 1: Visualization of modes of different energies. First column shows the Laplacian
eigenmodes, second column the eigenmodes of the modified Dirichlet energy EN

D , and third
column the vibrations modes derived from the thin shell energy restricted to normal variations.

of the mesh. Of particular interest for this work is the model of Grinspun et al.
(2003) that uses a discrete energy to simulate thin shells.

2. Laplace Modes and Spectrum

In this section, we briefly review the eigenvalue problem of the Laplacian on
surfaces. We first state a weak form of the problem for smooth surfaces and
then the discrete problem for surface meshes.

Let Σ be a smooth, compact surface in R3, and let H1 denote the Sobolev
space of weakly differentiable functions on Σ. On H1 we consider the two
bilinear forms

〈f, g〉L2 =

∫
Σ

f g dA and 〈f, g〉H1
0

=

∫
Σ

〈grad f, grad g〉Σ dA. (1)

Then, the eigenvalue problem for the Laplacian can be written in the following
weak form: find all pairs (λ, φ) ∈ R×H1 such that

〈φ, σ〉H1
0

= λ 〈φ, σ〉L2 (2)

holds for all σ ∈ H1. If the surface has boundary, additional conditions (e.g. Dirich-
let or Neumann) have to be satisfied.

In the discrete setting, we look at surface meshes in R3 and on a mesh x
we consider the finite dimensional space Fx consisting of functions that are
continuous and linear in every triangle. The bilinear forms 〈·, ·〉L2 and 〈·, ·〉H1

0

are well defined on Fx, see Dziuk (1988) and Hildebrandt et al. (2006), and can
be evaluated by splitting the integrals into a sum over the triangles T of x:

〈u, v〉L2 =
∑
T∈x

∫
T

u v dA and 〈u, v〉H1
0

=
∑
T∈x

∫
T

〈gradu, grad v〉Σ dA.

(3)
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A function in Fx is determined by its function values at the vertices vi of x, and
the Lagrange basis (or nodal basis) of Fx is formed by the functions ϕi ∈ Fx
that take the value one at the vertex vi and vanish at all other vertices. The
matrix representations of 〈·, ·〉L2 and 〈·, ·〉H1

0
with respect to the Lagrange basis

are the mass matrix M and the stiffness matrix S, which have the entries

Mij = 〈ϕi, ϕj〉L2 and Sij = 〈ϕi, ϕj〉H1
0
. (4)

Explicit representations of the matrices M and S can be found in Pinkall and
Polthier (1993), Wardetzky et al. (2007), and Vallet and Lévy (2008). The
discretization of the eigenvalue problem (2) is: find all pairs (λ, φ) ∈ R × Fx
such that

S φ = λM φ (5)

holds. This is a generalized eigenvalue problem for (possibly large) sparse matri-
ces. Fast solvers for this problem are discussed in Saad (1992); Vallet and Lévy
(2008) and an example of a software package that specializes in such problems
is Arpack (see Lehoucq et al. (1998)). Since S is symmetric and M is positive
definite, all eigenvalues of (5) are real and there exists and L2-orthonormal basis
of Fx consisting of eigenvectors.

It is common practice to replace the mass matrix M by a diagonal matrix
with entries corresponding to the sum of the entries of each row of M . This
is called mass lumping, see Wardetzky et al. (2007) for more details on the
construction of mass matrices. In the following, we will always consider the
diagonal lumped mass matrix, and we refer to the ith diagonal entry as the
mass of the vertex vi. The lumped mass matrix remains a symmetric and
positive definite matrix. Hence the eigenvalue problem (5) with the lumped
mass matrix has real eigenvalues, and we can always find an orthonormal basis
of Fx consisting of eigenvectors of (5), where orthonormality is now measured
with the scalar product on Fx given by the lumped mass matrix.

3. Modes of Surface Energies

In this section, we consider the modes and spectrum of the Hessian of sur-
face energies. We show that the Laplacian eigenvalue problem appears as the
eigenvalue problem of the Hessian of the Dirichlet energy. Based on this, we
construct a new energy, a modified Dirichlet energy, that unlike the Dirichlet
energy is sensitive to the extrinsic curvature of the surface, and we investigate
the modes of this energy.

By a surface energy we mean a twice continuously differentiable function
E : Fx → R. We are interested in the Hessian of E at minima m of E. At a
minimum the gradient of the energy vanishes and the eigenmodes associated to
the low eigenvalues of the Hessian of E point into the direction that locally cause
the least increase of energy. The Hessian of E depends on the second derivatives
of E and the scalar product on Fx, which in our case is the L2-product. For
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Figure 2: A qualitative comparison of modes of the modified Dirichlet energy and modes
of the Laplacian is shown. The three models on the left show lower modes of the modified
Dirichlet energy, which respect the extrinsic features, and the two rightmost models illustrate
two lower modes of the Laplacian.

u, v ∈ Fx let D2Em(u, v) be the second derivative at m in direction u and v.
Then, the Hessian at m ∈ Fx is the operator hessmE : Fx → Fx given by

〈hessmE u, v〉L2 = D2Em(u, v) (6)

for all u, v ∈ Fx. With respect to the Lagrange basis of Fx, hessmE has the
following matrix representation

hessmE = M−1∂2Em,

where ∂2Em be the symmetric matrix containing the second partial derivatives
at m and M is the mass matrix.

Eigenvalue problem. The eigenmodes and eigenvalues of the energy E at m
are the solutions (λ, φ) ∈ R× Fx of the generalized eigenvalue problem

∂2Em φ = λM φ. (7)

Since hessmE is self-adjoint with respect to the discrete L2-product, all eigenval-
ues of hessmE, i.e. the solutions of (7), are real and there is an L2-orthonormal
basis of Fx that consists of eigenmodes hessmE. In such a basis, the matrix
representation of D2Em and of 〈·, ·〉L2 are diagonal matrices. Furthermore, the
matrix ∂2Em is positive semi-definite (m is a minimum) which implies that the
eigenvalues of (7) are non-negative.

Dirichlet energy. An example of such an energy is the discrete Dirichlet
energy. For a compact smooth surface Σ, the Dirichlet energy is defined for
weakly differentiable functions σ : Σ → R (that vanish at the boundary of Σ)
by

E∆(σ) =
1

2
〈σ, σ〉H1

0
. (8)

Then, the discrete Dirichlet energy on a mesh x is defined for functions u ∈ Fx
by

ED(u) =
1

2
uTS u, (9)
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where S is the stiffness matrix of eq. (4). For a rigorous treatment of this dis-
crete Dirichlet energy and a convergence analysis see Dziuk (1988); Hildebrandt
et al. (2006). The minima of ED are the constant functions in Fx. The Dirichlet
energy is a quadratic functional and therefore has a constant Hessian. At any
point, ∂2E equals S and (7) is the Laplace eigenvalue problem.

Modified Dirichlet energy. Assume that Σ is an orientable smooth surface
in R3 and let ν denote the normal of Σ. Then, all three coordinates νk of ν are
smooth functions and for a weakly differentiable function ϕ the product ϕνk is
weakly differentiable. We define

EN∆ (ϕ) =

3∑
k=1

E∆(ϕνk). (10)

This energy satisfies the equation

EN∆ (ϕ) = E∆(ϕ) +
1

2

∫
Σ

ϕ2(κ2
1 + κ2

2)dA, (11)

where κ1 and κ2 are the principal curvatures of Σ. This means that END (ϕ) is
the sum of the Dirichlet energy of ϕ and the ϕ2-weighted total curvature of Σ.

To discretize the energy EN∆ we fix a normal direction at every vertex of
the mesh, and we denote the oriented unit normal vector at a vertex vi by
N(vi). Then, we say a continuous and piecewise linear vector field V on x
is a normal vector field if for every vertex vi of x the vector V (vi) is parallel
to N(vi). The space of normal vector fields on x is an n-dimensional vector
space and the map that maps a function u ∈ Fx to the normal variation Vu,
given by Vu(vi) = u(vi)N(vi) for all vi ∈ x, is a linear isomorphism. The three
coordinate functions V ku of Vu are functions in Fx and we define the discrete
energy END analog to eq. (10) by

END (u) =

3∑
k=1

ED(V ku ).

A simple calculation shows that the energy END satisfies

END (u) =
1

2
uTAu, (12)

where the formula
Aij = 〈N(vi), N(vj)〉Sij

relates the entries Aij of the matrix A to the entries Sij of the cotan-matrix S.

Modes of END . As illustrated in Figures 1 and 3, the eigenmodes of ED and END
differ significantly. Whereas the eigenmodes of the Laplacian are insensitive to
the extrinsic curvature, the modes of END corresponding to lower eigenvalues
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Figure 3: Two eigenmodes of the lower spectrum on the double torus with sharp features,
left: Laplacian, and right: modified Dirichlet energy.

hardly move in regions of high curvature, see Fig 1. A possible explanation for
this behavior is the following. The energy has its minimum at the origin of the
space of normal vector fields. Therefore, at the origin the gradient of the energy
vanishes and the modes of the Hessian corresponding to small eigenvalues point
into directions of least expenditure of energy. Now, equation (11) shows that ED
and END differ by a term that measures a weighted L2-norm of the function,
where the weight is the sum of the squared principal curvatures. Therefore,
eigenmodes of END that correspond to small eigenvalues have small function
values in areas of high curvature, because then a variation in this direction
causes less increase of energy.

4. Deformation Energies

In this section, we consider discrete deformation energies that are defined for
surface meshes in R3. Such energies measure the deformation of a mesh from
a reference mesh. A surface mesh is given by the positions of the vertices and
the combinatorial information which vertices form triangles. Here, we vary only
the positions of the vertices and leave the combinatorial information unchanged.
The positions of the vertices can be written in one 3n-vector x, where n is the
number of vertices. Hence, we can identify the space of meshes (with fixed
combinatorics) with R3n. We denote this space by X.

A general deformation energy. We consider deformation energies E : X 7→
R of the following form:

E(x) =
1

2

∑
i
ωi(x̄) (fi(x)− fi(x̄))

2
, (13)

where x is a surface mesh and x̄ a fixed reference mesh. In this equation, the
sum can run over the edges, the vertices, or the triangles of x, and the fi’s
and ωi’s are elementary functions, which e.g. measure angles, length of edges,
or area of triangles. The weights ωi must be positive and we require E to be
twice continuously differentiable around x̄. Then, E has a global minimum at x̄,
which implies that the gradient of E at x̄ vanishes and that the Hessian of E
at x̄ is positive semi-definite.

As an example of such an energy we consider a discrete energy that is de-
signed for thin shell simulation.
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Discrete Shells. If we regard the surface mesh as a thin shell, then a physical
model of thin shells provides us with a deformation energy. Here, we consider
the Discrete Shells proposed by Grinspun et al. (2003). The energy that governs
this model of thin shells is a weighted sum of two components: a flexural energy
and a membrane energy. The weights reflects properties of the material to be
simulated, e.g., in cloth simulation the membrane energy usually gets a high
weight due to the stretching resistance of cloth.

The discrete flexural energy is given as a summation over the edges of the
mesh:

EF =
3

2

∑
i

‖ēi‖2

Āei

(
θei − θ̄ei

)2
, (14)

where θei is the dihedral angle at the edge ei, Aei is the combined area of the
two triangles incident to ei and ‖ei‖ is the length of the edge. The quantities
‖ēi‖ , Āei , and θ̄ei are measured on the reference mesh. To write this flexural
energy in the general form (13) we set

fi(x) = θei and ωi(x) =
3 ‖ei‖2

Aei
.

The membrane energy consists of two terms: one measuring the stretching of
the edges,

EL =
1

2

∑
i

1

‖ēi‖
(‖ei‖ − ‖ēi‖)2, (15)

and one measuring the change of the triangle areas Ai

EA =
1

2

∑
i

1

Āi
(Ai − Āi)2. (16)

Here the second sum runs over the triangles of the mesh. We can describe EL
in the general form (13) by setting

fi(x) = ‖ei‖ and ωi(x) =
1

‖ei‖
,

and to describe EA we set

fi(x) = Ai and ωi(x) =
1

Ai
.

5. Modes of Deformation Energies

Modal analysis provides ways to compute the modes of a surface with re-
spect to a deformation energy. To inspect the modes of a mesh, given by a
3n-vector x̄, we consider a deformation energy E(x) that has x̄ as a reference
surface. Then, we are interested in the eigenvalues and eigenmodes of the Hes-
sian of the deformation energy E at the mesh x̄ ∈ X.

The Hessian of a deformation energy (or more generally of a function) does
not depend solely on the differentiable structure of X, but also on the metric
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Figure 4: Visualization of vibration modes derived from the discrete thin shell energy. In each
row the left most image shows the rest state followed by some deformations captured by a
vibration mode.

on X, hence belongs to Riemannian geometry. Therefore, before considering
the Hessian of E we equip X with a metric. Since X equals R3n, the tangent
space TxX at a mesh x can be identified with R3n. We can interpret an element
of TxX as a vector field on x, which assigns a vector in R3 to every vertex of x
and is piecewise linearly interpolated in the triangles. Then, a natural choice of
a scalar product on TxX is the L2-product of the piecewise linear vector fields.
In the nodal basis, this product is represented by the mass matrix, see Section
2. Since the mass matrix depends on the mesh x, we denote the mass matrix,
which represents the scalar product on TxX with respect to the nodal basis
by Mx. For completeness, we would like to mention that if x is a mesh that has
degenerate triangles, the discrete L2-product on TxX may be only positive semi-
definite. However, away from the closed set of meshes that have at least one
degenerate triangle, X equipped with the discrete L2-product is a Riemannian
manifold. Using the L2-product to obtain a metric on the shape space of a
surface is a common choice, for example it is used for the numerical integration
of gradient flows of geometric functionals like the area (mean curvature flow) or
the Willmore energy, see Dziuk (1991); Clarenz et al. (2004). However, other
choices of scalar products are possible as well. In Eckstein et al. (2007) gradient
flows of geometric functionals with respect alternative choices of scalar products
are explored.

We denote by ∂Ex the 3n-vector containing the first partial derivatives of E
at x and by ∂2Ex the matrix containing the second partial derivatives at x. We
would like to emphasize that ∂Ex and ∂2Ex do not depend on the metric on X,
whereas the gradient and the Hessian of E do. The gradient of E at x is given
by

gradxE = M−1
x ∂Ex. (17)

The Hessian of E at a mesh x is the self-adjoint operator that maps any tangent
vector v ∈ TxX to the tangent vector hessxE(v) ∈ TxX given by

hessxE(v) = ∇vgradxE, (18)

where ∇ is the covariant derivative of X. We would like to remark that eq. (18)

10



reduces to eq. (6) in the case that the metric is constant.

Hessian computation. In general, it is a delicate task to derive an explicit
representation of the Hessian of a deformation energy and often only approxi-
mations of the Hessian are available. Here, we derive a simple explicit formula
for the Hessian of a deformation in the general form (13) at the point x̄, which
involves only first derivatives of the fi’s.

Since the gradient of E vanishes at x̄, one can show that at x̄ the Hessian
of E takes the following form

hessx̄E = M−1
x̄ ∂2Ex̄.

This immediatly follows from the representation of the Hessian in local coordi-
nates, cf. (Jost, 2008, eq. 3.3.47, p. 152). Hence, at x̄ we do not need derivatives
of the metric to compute hessx̄E. Furthermore, to compute the second partial
derivatives of E at x̄ we do not need to calculate second derivatives, but we only
need the first derivatives of the fi’s. We present an explicit formula for ∂2Ex̄
in the following Lemma, which follows from simple application of the product
rule.

Lemma 1 (Explicit Hessian). Let E be a deformation energy of the form (13).
Then, the matrix ∂2Ex̄ containing the second derivatives of E at x̄ has the form

∂2Ex̄ =
∑

i
ωi(x̄) ∂fi x̄ ∂fi x̄

T , (19)

where ∂fi x̄
T denotes the transpose of the vector ∂fi x̄.

The computation of the first derivatives of the fi’s is usually straightforward,
and, in addition, the first derivatives of many elementary quantities are explicitly
stated in the literature. For example, a formula for the first derivative of the
dihedral angle θ can be found in Wardetzky et al. (2007) and a formula for the
first derivative of the area of a triangle is contained in Polthier (2005).

Eigenvalue problem. To obtain the eigenmodes of hessx̄E, we need to solve
the generalized eigenvalue problem

∂2Ex̄ Φ = λMx̄ Φ, (20)

where Φ ∈ Tx̄X and λ ∈ R. The structure of (20) equals the structure of (7),
thus the eigenvalues of (20) are real and the eigenmodes hessx̄E form an or-
thogonal basis of Tx̄X.

Vibration modes and gradient flow. To illustrate the concept of eigenmodes
of the Hessian of a deformation energy, we look at the vibrations of a mesh in
a force field induced by the energy. For simplicity, we consider the case of free
vibrations. In general, the dynamics of a time-dependent mesh x(t) in the space
X is governed by a system of non-linear second-order ODEs of the form

Mx(t)ẍ(t) = f(t, x(t), ẋ(t)),
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see Baraff and Witkin (1998). Here, the mass matrix Mx represents the physical
mass of x and f represents the acting forces. We consider the force field that
has E as its potential, i.e.,

f(t, x(t), ẋ(t)) = −∂Ex(t).

In the case of free vibrations, this is the only force. In a more general setting, we
could include damping and exterior forces, see Pentland and Williams (1989).
The equations that govern the motion of a time-dependent mesh x(t) during
free vibration are

gradx(t)E + ẍ(t) = 0, (21)

where we use the definition of the gradient, eq. (17), to simplify the formula.
Since we are interested in meshes x that are (arbitrarily) close to x̄, we expand
the force gradxE into a Taylor series around x̄. Using ∂Ex̄ = 0 (x̄ is a minimum
of E) we get

gradxE = hessx̄E(x− x̄) +O(‖x− x̄‖2). (22)

Then, if we omit the second order term in (22) and plug (21) and (22) together,
we get

hessx̄E u(t) + ü(t) = 0, (23)

where u(t) = x(t) − x̄. This is a system of second-order linear ODEs that are
coupled by hessx̄E. To solve the system we consider a normalized eigenbasis B
of hessx̄E. Written in such a basis, both matrices ∂2Ex̄ and Mx̄ are diagonal
matrices and equation (23) takes the form

Λw(t) + ẅ(t) = 0, (24)

where w is the representation of u in the basis B and Λ is a diagonal matrix that
contains the eigenvalues. The system (24) is decoupled and can be solved row
by row. Each row describes an oscillation around x̄ with frequency

√
λ in the

direction of the eigenmode Φ corresponding to the eigenvalue λ. This means,
that the eigenmodes of problem (20) describe the vibration modes of the mesh x̄
(with respect to the deformation energy E). The vibrations of a physical system
are usually not free, but are affected by damping forces. Common models for
such forces are Rayleigh damping, see Hauser et al. (2003), and, even simpler,
mass damping, see Pentland and Williams (1989). We would like to mention
that if Rayleigh (or mass) damping forces are added to the system, it still has
the same vibration modes, see Hauser et al. (2003).

The gradient flow of the energy E is given by the system

gradx(t)E + ẋ(t) = 0 (25)

of first order ODEs. It describes the evolution of a surface in a velocity field
given by the negative gradient of the energy. Initial data for the equation is
a position of the mesh x(t) for some time t0. Using eq. (22), we derive the
linearized gradient flow

hessx̄E u(t) + u̇(t) = 0. (26)
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Figure 5: Vibration distance to the marked vertex v of the Armadillo model in three colorings:
continuous coloring from white being similar to red being dissimilar to v and binary colorings
with two different thresholds where blue vertices are similar to v.

Analogously to eq. (23), this system can be decoupled using the eigenmodes of
hessx̄E.

6. Modal Signatures

In this section we introduce two multi-scale surface signatures: the vibra-
tion signature, based on the vibration modes of the surface with respect to the
Discrete Shells energy, and the feature signature, which uses the eigenfunctions
and eigenvalues of the modified discrete Dirichlet energy EN

D . The construction
of the signatures follows the construction of the heat kernel signature defined in
Sun et al. (2009).
The signatures we consider are multi-scale signatures, which take a positive

scale parameter t as input. For every t such a signature is a function on the
mesh, i.e., it associates a real value to every vertex of the mesh. Let v be a
vertex of a mesh x and let t be a positive value. Then, we define the vibration
signature of x at vertex v and scale t by

SV ib
t (v) =


j

e−λjt Φj(v)2R3 , (27)

where λj and Φj denote the eigenvalues and the L
2-normalized vector-valued vi-

bration modes of a mesh x with respect to the Discrete Shells energy. The value
Φj(v)R3 describes the displacement of the vertex v under the L2-normalized
vibration mode Φj . For a fixed t the vibration signature of v measures a weighted
average displacement of the vertex over all vibration modes, where the weight of
the jth eigenmode is e−λjt. The weights depend on the eigenvalues and on the
scale parameter. For increasing λ, the function e−λ t rapidly decreases, e.g., the
modes with smaller eigenvalue receive higher weights than the modes with large
eigenvalues. Furthermore, for increasing t all weights decrease, and, more im-
portantly, the weights of the vibration modes with smaller eigenvalues increases
relative to the weights of the modes with larger eigenvalues.
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In addition to (27), the vibration signature can be computed using the lin-
earized gradient flow, which we defined in eq. (26). Before we explain this point
of view in the next lemma, we introduce some notation. Let {b1, b2, b3} be the
standard basis of R3 and α ∈ {1, 2, 3}. We denote by δvα the vector field in TxX
that satisfies

〈δvα,Φ〉L2 = 〈Φ(v), bα〉R3 . (28)

for all Φ ∈ TxX. Explicitly δvα is given by

δvα = M−1
x evα,

where evα is the vector field on x that satisfies evα(v) = bα and vanishes at all
other vertices. If a diagonal mass matrix is used, then δvα = 1

mv
evα. Here mv is

the diagonal entry of the mass matrix corresponding to the vertex v; in the case
of the lumped mass matrix, mv is a third of the combined area of all triangles
adjacent to v.

Lemma 2. Let v be a vertex of x, and let u1(t), u2(t), and u3(t) be the solutions
of the linearized gradient flow equation (26) with initial values uα(0) = δvα.
Then, the vibration signature satisfies

SV ib2t (v) =

3∑
α=1

‖uα(t)‖2L2 (29)

for all t.

Proof. Using the vibration modes Φj we can derive the following explicit
representation of the functions uα(t):

uα(t) =
∑
j

〈δvα,Φj〉L2 e
−λjtΦj =

∑
j

〈Φj(v), bα〉R3 e
−λjtΦj ,

where we use eq. (28) in the last equality. Then, from the property that the
vibration modes Φj are orthonormal, we get

3∑
α=1

‖uα(t)‖2L2 =
∑
j

e−2λjt
3∑

α=1

〈Φj(v), bα〉2R3 =
∑
j

e−2λjt ‖Φj(v)‖2 = SV ib2t (v),

which proves the lemma.
We can interpret the initial value condition uα(0) = δvα as an initial defor-

mation of the surface. Then uα(t) describes how this deformation evolves under
the linearized gradient flow; for t → ∞, the surface reaches the rest state of
the energy. The signature measures for every t are the sum of the L2-norms
of u1( t2 ), u2( t2 ), and u3( t2 ). The signature is independent of the choice of an
orthonormal basis {b1, b2, b3} in R3 (which determines the initial value condi-
tions). The lemma gives a motivation for the choice of the weights e−λjt, that
appear in the definition of the vibration signature. Furthermore, the lemma
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v

Figure 6: Vertices (blue) similar to vertex v based on heat kernel signature Sun et al. (2009)
(top row) and our vibration signature (lower row). Left and right column depict similarity
based on a small range of t’s and middle column on a large range of t’s.

shows that one can compute the signature without computing the eigenmodes
and spectrum first. An algorithm based on eq. (29) would not be efficient for our
purposes, since we would need to solve the diffusion equation for every vertex of
the mesh. Still, if the goal is to evaluate the signature only at certain vertices or
for small time values, a computation based eq. (29) can be more effective than
a scheme that involves solving the eigenvalue problem.
The feature signature is constructed in a similar manner, but it uses the

eigenmodes and eigenvalues of the modified Dirichlet energy EN
D . We define

SFeat
t (v) =


j

e−λjt φj(v)
2 (30)

where the λj are the eigenvalues and the φj(v) are the L
2-normalized eigenmodes

of the Hessian of the modified discrete Dirichlet energy EN
D .

Multi-scale distances. From each of the two signatures we can construct the
following (multi-scale) pseudo-metric on the mesh: let v,ṽ be vertices of the
mesh x, then we define

δ[t1,t2](v, ṽ) =

 t2

t1


St(v)− St(ṽ)

ke
−λkt

2

d log t

 1
2

. (31)

By construction, for any pair of scale values t1 < t2, δ[t1,t2] is positive semi-
definite and symmetric, and one can show that it satisfies the triangle inequal-
ity. We call the pseudo-metrics constructed from SV ib

t and SFeat
t the vibration

distance and the feature distance.

15



v

Figure 7: Comparison of two similarity measures. Distance to vertex v in binary as well as
continuous coloring based on our vibration signature (left most) and the heat kernel signature
(right most).

The idea behind the construction of the pseudo-metric is to use the integral t2
t1
(St(v)− St(ṽ))

2
dt. However, the actual definition additionally includes two

heuristics. First, since for increasing t the values St(v) decreases for all v, we
normalize the value St(v)− St(ṽ) by dividing it by the discrete L

1-norm of St,

StL1 =


ke
−λkt.

Second, for a fixed vertex v, the signature St(v) varies more for small values of t
compared to large t. To increase the discriminative power of the pseudo-metric,
we associate a higher weight to the small t and a lower weight to the larger
t. We achieved this by using a weighted integral with weight function dlog t =
1
t dt. To discretize this weighted integral we use a uniform decomposition of the
logarithmically scaled interval [t1, t2].

7. Results and Discussion

We experiment with the vibration modes of the discrete thin shell energy,
the eigenmodes of EN

D , and, for comparison, the eigenfunctions of the cotan-
Laplace operator. As a discrete L2-scalar product we use the diagonal (or
lumped) mass matrix M . The diagonal entry in the ith row of the matrix is
a third of the combined area of the triangles adjacent to the ith vertex of the
mesh. To compute the eigenmodes of a mesh, we solve the generalized eigenvalue
problem (20). Since M is a diagonal matrix, this problem can be transformed
into a standard eigenvalue problem as described in Vallet and Lévy (2008).
Then, we solve the resulting standard eigenvalue problem with the shift-and-
invert Lanczos scheme described in Vallet and Lévy (2008). For most examples
and applications we do not need to compute the full spectrum, but only the
lower part of the spectrum.

Spectral zoo. We compare the eigenmodes of the Laplacian to the ones of the
modified Dirichlet energy EN

D . In addition, we consider the modes we obtain
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v

Figure 8: Results of the feature signature on the rocker arm model. The top row shows the
feature signature for increasing scale values. The bottom row shows on the left the feature
distance to the marked vertex v binary colored by a threshold, and, on the right, the surface

colored by curvature (


κ2
1 + κ2

2).

when considering the Discrete Shells energy and allowing only normal variations
of the mesh. Normal variations can be described by a functions on the mesh,
which described the offset of every point. Therefore, we can visually compare
the restricted eigenmodes to the eigenmodes of the Laplacian and the modified
Dirichlet energy. To convey an impression of the characteristics of the modes of
the different energies, we show some examples in Figures 1 and 3. To visualize
the modes we use blue color for positive values, white for zero crossings, and
orange for negative values. Additionally, we draw isolines as black lines.
As a first example, we study how the eigenmodes change when we isomet-

rically deform a flat plate, see Fig. 1. On the undeformed flat plate, the eigen-
modes of EN

D equal the eigenmodes of the Laplacian. As shown in Fig. 1,
there are certain differences between the three types of considered modes when
computed on the deformed plate. Due to its intrinsic nature the Laplacian
eigenmodes ignore the newly introduced feature, Fig. 1 left. In contrast, the
eigenmodes of EN

D and the vibration modes are sensitive to the feature, Fig. 1
middle and right. The eigenmodes of EN

D corresponding to lower eigenvalues
almost vanish at the feature and the vibration modes place additional extrema
on the fold.
Investigating the differences between the eigenmodes of the Laplacian and

EN
D further, we compute them on the double torus with sharp features shown
in Fig. 3. It can be seen that each of the shown Laplacian eigenmodes contains
a more or less equally distributed set of extrema as well as a certain reflective
symmetry, Fig. 3 left. The corresponding isolines suggest a low influence of the
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Figure 9: The thin-shell vibration distance computed on the dragon model in various resolu-
tions: 10k, 50k, and 130k vertices. The results look similar which indicates that the distance
can be well-approximated by computations on coarse meshes.

sharp features to the considered Laplacian eigenmodes. Similar to the Laplacian
modes the two eigenmodes for END also posses a reflection symmetry, Fig. 3
right. But here we find that the eigenmodes of the lower part of the spectrum
correspond to oscillations of flat areas surrounded by sharp edges, Fig. 3 right.
This matches our considerations in Section 3.

Fig. 4 shows eigenvibrations with respect to the discrete thin shell energy.
The images on the left (top and bottom row) show the reference mesh and each
of the other images visualizes a vibration mode. The discrete thin shell energy is
a weighted sum of a flexural and a membrane energy. If we decrease the weight
of the membrane energy, the resulting vibration modes include stretching and
squashing of the surface, Fig. 4 top row 2nd and 3rd image. In contrast, if we
put a large weight on the membrane energy, the resulting eigenmodes try to
preserve the metric. Examples of such modes are given in Fig. 4 top row 4th,
bottom row 2nd and 3rd image.

Vibration signature. In the following we examine the properties of the vi-
bration signature SV ibt defined in eq. (27) and compare it to the heat kernel
signature (HKS) introduced in Sun et al. (2009). As noted in Section 6, SV ibt (v)
encodes the vibration behavior of a vertex v on multiple scales, i.e., vertices
that oscillate with similar intensity throughout the eigenmodes, will be close in
terms of the vibration distance δ[t1,t2](·, ·). We illustrate this property in Fig. 5
for the Armadillo model (16k vertices). On the left we color plot the vibration
distance δ[t1,t2](v, ·) to the marked vertex v. Two further binary colorings are
given, colorizing vertices that are closer to v than a threshold in blue and the
other vertices in white. For a small threshold the vertices on both feet are close
to v; increasing the threshold causes parts of the hands to be colored in blue as
well.

Fig. 6 compares SV ibt to the HKS. Every image of the hand model (40k
vertices) depicts the vertices that are closer to the marked vertex v. In the
first column similar results are achieved for HKS and SV ibt . Since the HKS is
constructed using the spectrum and eigenfunctions of the Laplacian, the signa-
ture depends only on intrinsic properties of the surface. Thus the signature is
incapable of differentiating between isometrically deformed parts of a surface.
The vibration signature however is sensitive to extrinsic information and hence
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represents an alternative to the HKS. This characteristic of SV ibt becomes es-
pecially apparent in the second column of Fig. 6. Here the middle finger of
the hand is almost isometrically deformed. The HKS cannot distinguish this
situation from the undeformed one; hence it recognizes the tips of the three
longest fingers of the hand as similar to vertex v. As the deformation alters the
vibration behavior of the bent finger, SV ibt detects only the tips of the unbent
ones. Like the HKS, the vibration distance can be evaluated at different scales
(different choices of [t1, t2]). Choosing smaller values of t increases the weights
(cf. eq. 27) for eigenmodes with higher frequency. Therefore, more local vibra-
tions described by these eigenmodes contribute more to the vibration distance.
An example is shown on the right side of the lower row of Fig. 6. For smaller t,
δ[t1,t2](v, ·) captures vibrations of the fingertips as well and thus classifies the
vertices on all tips as similar to v.

In Fig. 7 we provide a last comparison of the vibration signature and the
HKS for the camel model (10k vertices). The vibration distance shown on the
left, finds both pairs of knees (at the forelegs and at the hind legs) to be the
closest to vertex v. For the HKS, shown on the right, the results are not as
intuitive: the vertices at the mouth and ears of the camel are closer to the
vertex v than the vertices at the hind legs, even closer than the vertices at the
knees of the hind legs. This behavior of the HKS was the same at different
scales and it is difficult to interpret the results. An indication for this behavior
can be found by inspecting the Fiedler vector, which is the eigenfunction of
the discrete Laplacian associated to the lowest (non-zero) eigenvalue. Of all
eigenfunctions, this one gets the highest weight in the heat kernel distance. On
the camel model, the Fiedler vector has one type of extrema (e.g. its minima)
at tips of the toes of the hind legs at the tip of the tail and the other type of
extrema (e.g. its maxima) at the tips of the toes of the forelegs, at the tips of
the ears, and the tip of the snout. The function values at the tips of the ears
and the tip of the snout are about the same as the function values at the knees
of the forelegs. Hence, the contribution of this eigenfunction to the heat kernel
distance is almost zero. This behavior repeats at some of the higher modes.

Feature signature. The feature signature and the feature distance can be
used to identify features of the surface like sharp bends or sharp corners. It is
our impression that the signature could serve as an indicator function to surface
segmentation algorithms. Fig. 8 shows the feature signature on the rockerarm
model for different scale values. Vertices of the mesh that have a signature value
close to zero are colored white in these images. The white areas seem to include
the important features of the rocker-arm model. The lower left image shows in
blue all the vertices that are close (with respect to the feature distance) to a
vertex on a sharp bend. For comparison we show a curvature plot (

√
κ2

1 + κ2
2)

on the rocker-arm.
Concerning the applicability as a feature indicator, a nice aspect of the

feature signature compared to curvature is that the feature signature naturally
comes with a scale parameter, whereas for curvature a scale space needs to be
constructed. Another interesting difference is the following. Some areas of the
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rockerarm model have high curvature but do not indicate features, e.g., the
curved area inside the hole has a much higher curvature than for example the
flat parts on the sides of the model. Still, the feature distance associates similar
function values to both of these parts.

v

v
v

v v v

v

v
v

v v v

v

v

v

v

v

v

Figure 10: Features detected with our feature signature (blue) and the heat kernel signature
(green) on a collection of models are shown.

Comparison of feature signature and heat kernel signature. Feature
detection is an application that highlights differences between our feature sig-
nature and the heat kernel signature. This is due to the isometry invariance of
the HKS, which implies that the HKS marks only features that remain features
under arbitrary isometric deformations. For example, sharp bends (like the one
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in Fig. 1) are not regarded as features by the HKS. Similar to the example shown
in Fig. 8, we select an initial point and mark all points that are close to the
initial point with respect to a modal distance. For comparison, Fig. 10 shows
results obtained with our feature distance (colored in blue) and with the heat
kernel distance (colored in green) on a collection of models. The first example,
the blade model (top left) shows the features detected for three different initial
points located on corners and sharp bends of the surface. Whereas the feature
signature finds almost identical sets of feature for all three initial points, the
results the HKS produces vary strongly. On the turbocharger model (top right)
we select two different initial points, one located on a sharp bend and one point
close to a bend. The images show that in the second case the feature signa-
ture marks points that have similar distance to a feature as the initial point.
Since the sharp bends on this surface are curved (in the tangential direction
orthogonal to the bend), the HKS detects these features as well and produces
comparable results to the feature signature. A second example where the fea-
ture signature and the HKS produce similar results is the bumpy plate (bottom
right).

Implementation details and timings. The computation of the eigenmodes
and eigenvalues of an energy splits in two steps: setting up the Hessian matrix
and solving the eigenproblem. To compute the signatures and distances, we
additionally need to evaluate formulae (27) (resp. (30)) and (31). Lemma 1
simplifies and accelerates the construction of the Hessians such that the time
required for this step is negligible compared to the computation of the eigen-
modes. Based on the lemma, we implemented an explicit formula for the Hessian
of the energies at the rest state, alternatively automatic differentiation can be
used. In the second step, we need to solve a sparse generalized eigenproblem.
One way to solve such a generalized eigenvalue problem is to transform it to a
standard eigenvalue problem. In our case the mass matrix is a positive definite
diagonal matrix, therefore such a basis transformation requires only rescaling
of the Lagrange basis vectors. Details for this procedure can be found in Vallet
and Lévy (2008). To compute the signatures and distance, only a fraction of the
lower part is required, because the weights e−λjt rapidly decrease with increas-
ing eigenvalue. Typically the first 300 eigenvalues and modes yield a faithful
approximation of the signatures and distances. To efficiently compute a lower
portion of the spectrum and its corresponding eigenvectors we employ the shift-
and-invert Lanczos method which does not need the inverse matrix explicitly.
Instead only a matrix vector product has to be provided which can be evalu-
ated by solving a linear system of equations. We solve these systems using the
sparse direct solver implemented in MUMPS, see Amestoy et al. (2001). Once
the eigenvalues are computed, the evaluation of the signatures and distances is
relatively fast. To discretize the integral in (31), we use a numeric quadrature.
We place the samples of the interval [t1, t2] such that they are equidistant on the
logarithmic scale, which yields equal weights for all points in the quadrature.

In our experiments, we found that coarse meshes already provide a good
approximation of the eigenmodes of the energy. Hence, for applications where
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computation time is crucial, it seems reasonable to first sub-sample the mesh
and to compute the spectrum and eigenvectors of the simplified model. Fig. 9
shows similarity results of the vibration distance for the Chinese dragon model
at different mesh-resolutions. Although the model is simplified significantly, the
similarity results still resemble the results of the fine mesh, indicating that the
signature and the distance can be well-approximation on coarse meshes. Table 1
provides timings for computing the vibration signature of different versions of
the Chinese dragon model.

Model #Vertices Hessian Eigenproblem SV ibt

Dragon (Fig. 9, left) 10k 1 s 58 s 4 s
Dragon (Fig. 9, middle) 50k 4 s 326 s 30 s
Dragon (Fig. 9, right) 130k 11 s 1122 s 100 s

Table 1: Timings for the chinese dragon model measured on a custom Macbook Pro with
a 2.66GHz CPU. From left to right: model, number of vertices, timings in seconds for con-
structing the Hessian, solving the eigenproblem, and computing the vibration signature at all
points.

8. Future Work

Our future work relates to the problem of spectral quadrangulations. In
contrast to the modes of the Laplacian, the modes of the energies considered
in this work are sensitive to the extrinsic curvature of the surface. Our goal is
to produce quadrangualtions that align with salient surface features. Further-
more, after submission of this paper we have developed a method that uses the
vibration modes and their modal derivatives to create a subspace of the shape
space of a mesh. Then, this subspace is used to speed up deformation-based
modeling of surfaces. Our results can be found in Hildebrandt et al. (2011).
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Vallet, B., Lévy, B., 2008. Spectral geometry processing with manifold harmonics.
Computer Graphics Forum .

Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E., 2007. Discrete
quadratic curvature energies. Computer Aided Geometric Design 24, 499–518.

Zhang, H., van Kaick, O., Dyer, R., 2010. Spectral mesh processing. Computer
Graphics Forum To appear.

24




