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Abstract We present an interactive modeling frame-

work for 3D shapes and for texture maps. The technique

combines a differential-based deformation method with

the idea of geometry brushes that allow to interactively

apply modifications by painting on the geometry. Where-

as most other deformation techniques demand the de-

signer to define and move hard constrained regions on

the surface, the proposed modeling process is similar to

sculpting.

Geometry brushes allow the user to locally manip-

ulate the metric, enlarge, shrink or rotate parts of the

surface and to generate bumps. In a similar way it is

possible to modify texture maps, or more generally, ar-

bitrary tensor maps on surfaces. The local modifications

of the surface are integrated to a globally consistent de-

formation and visualized in real-time.

While the geometry brushes are intended for local

editing, the underlying technique can also be applied

globally. We show how differentials may be modified for

creating specific effects, like cartoonization of shapes or

adjusting texture images.
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1 Introduction

Shape deformation is an important field of geometric

modeling. Many recent works have focused on surface-

based techniques using differential representations and

the advantages of this approach are well known. The

majority of these works deforms a surface by specifying

some hard constraints on the position of several ver-

tices and finding a plausible deformation which respects

these constraints. However, for many specific target-

shapes it can be tedious to generate the deformation

using constraints only.

The most related deformation methods use a handle

attached to a subset of vertices which can be manipu-

lated. Usually, these handles can be translated, scaled

and rotated. The modifications applied to the handle

are then propagated to the rest of the surface. For any

small local change the user must first define an appro-

priate handle before he can perform the manipulation

itself. It is often not intuitive how to define the handle

for a desired manipulation.

We present a deformation framework based on di-

rect control of the differential Df of a deformation

f : M → M∗ between two surfaces. Instead of specify-

ing constraints the designer manipulates the shape lo-

cally using geometry brushes. Like a brush in an image

processing software, the user can interactively design

by painting on the surface. Each brush applies a semi-

local transformation to the picked parts, i.e. scale, rota-

tion or any user-defined transformation. By semi-local,

we mean that the deformation itself may be global, but

some distance away from the selected region, the change
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is only marginal. This allows for intuitive editing of a

given surface with simple user-interaction.

The framework is based on a method for integrating

differentials on a simplicial surface. After altering the

differential, either locally or globally, the method gener-

ates a feasible global deformation which respects these

modifications. It is fast, robust and easy to implement,

and allows for deformations in real-time.

In the same way in which the surface itself is de-

formed, the framework can manipulate any given func-

tion defined on the surface, e.g. the UV -coordinates of

a texture map. Usually, textures are modeled by creat-

ing the texture map once and then by transforming the

texture image in R2 in order to match a given shape.

In contrast our framework allows to deform the texture

map itself in an intuitive way, e.g. by locally moving,

scaling or rotating the texture map while maintaining

global consistency.

While the proposed geometry brushes provide a pow-

erful set of transformations to modify a geometry, the

technique itself allows for any user-defined transforma-

tion of the differential. We show an example of glob-

ally modified differentials used to cartoonify the given

shape. The surface features are hereby enlarged by scal-

ing the metric dependent on the local curvature, similar

in spirit to the curvature clamping and feature enhance-

ment of [5].

1.1 Previous Work

Deformation. The variety of related approaches to

surface deformation is quite large. Therefore, we review

only the approaches most relevant to ours, namely those

based on differential surface representations. For a more

comprehensive insight the reader is kindly referred to

the excellent overviews by Botsch and Sorkine and by

Xu and Zhou [1,29].

There are several methods which use differential

quantities to represent the surface. A deformation can

be computed by modifying these quantities and recon-

structing the surface. The quantities applied are gradi-

ents of the coordinate functions [30], the Laplacian [11,

25], metric plus curvature [5,4] or a representation with

differential forms [16].

All of the methods work by constraining some ver-

tex positions and using the differential representation to

compute a nice deformation satisfying the constraints.

In contrast, our approach aims at deforming a surface

by directly manipulating the differential locally using

the proposed geometry brushes. Nevertheless, hard con-

straints are also incorporated in our framework.

Another technique has been carried over to surface

based methods from the realm of space deformations

(e.g. [18],[8]). Here, the user modifies only a simple,

coarse control-structure and the modifications are in

some way propagated to the shape, usually by translat-

ing them into constraints. In [31] the user may addition-

ally edit the curvature in precomputed surface regions.

Whereas these metaphors are very well suited to

apply large scale changes to a model they are by their

nature unable to give the user control over surface de-

tails. For example, altering the face details of the Caesar

model as depicted in Fig. 7 will be close to impossible

with these kinds of methods.

Geometry Brushes. Closer in spirit to the pro-

posed brushes are so called sketching interfaces. Here,

the user freely sketches the desired contours of a shape,

which is then modified to match those contours [32].

Similarly, he may edit the geometry by drawing a source-

and a desired target-line on the surface itself or by pre-

scribing the curvature along a line on the surface [19].

An example of modeling with brushes is the soft-

ware ZBrush [21]. Here, the user interactively modifies

a given geometry by drawing on it using a huge selection

of brushes. This is specifically well suited for adding and

editing high level detail. The idea of modeling brushes

is also presented by Lawrence and Funkhouser [14]. The

user paints a deformation on the surface. The painted

pattern is then transformed into velocity vectors in nor-

mal direction and the deformation is produced by a

physical simulation.

The work of von Funck et al. [6] presents a de-

formation which is obtained by the path line integra-

tion of a time-dependent, divergence-free vector field.

While their technique supports many more modeling

metaphors, it does not allow for scaling by its nature.

Takayama et al. [26] use modeling brushes in order

to transfer geometric details from one geometry to an-

other utilizing a differential surface representation.

While all of the above approaches apply brushes to

interact with the geometry, the brushes are employed

differently.

Maybe, the most similar approach to ours is the

work of Crane et al. [2]. They use a brush for painting

curvature on a surface and then compute a conformal

deformation using the target curvature. By prescribing

the curvature the approach controls second derivatives

and one can easily add bumps or scale parts of the sur-

face. Our approach gives the user the control over the

first derivative which enables different modeling brushes

like rotation or anisotropic scaling.

Texture Editing. There is extensive work done for

2D image editing [7,23,17], just to name a few. Most

often, the deformation is defined by constraining the

boundary or special points in the image to new posi-

tions.
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When it comes to editing textures, brushes are a

common tool. 3D painting systems apply them to draw

a texture image directly on a surface (e.g. [10]). While

this may include the creation or implicit modification

of a parametrization [12], the focus of our work lies

on the explicit modification of the texture map by the

brushes. There is relatively few work in this context,

since subsequent modifications to the textures are usu-

ally performed in the image space.

As our technique also features the use of positional

constraints it is related to the subject of constrained

texture mapping (see e.g. [15,13]). However, the focus of

our approach is on the local editing of the texture map

using the geometry brushes and we do therefore not

intent to compete with state-of-the-art in this regard.

More closely related is the work on texture mapping

by Seo and Cordier [24] which allows to additionally

constrain the gradients of the texture map in order to

rotate and scale parts of the texture. They compute the

warping using a time-dependant vector field similar to

the shape deformation [6].

2 The Modeling Framework

Based on discrete Hodge theory, we formulate a method

for integrating a given differential in the least squares

sense on a simplicial surface (Sect. 2.1). We then ap-

ply this integration-module for modeling and propose a

deformation framework (Sect. 2.2). Geometry brushes

are defined in section 2.3 which deform the surface it-

self by specifying local deformations. Similarly, texture

brushes for modeling the texture map are defined in

section 2.4.

2.1 Integration Module

Deformation. The presented deformation framework

starts from a triangular surface M represented by a set

of |V | vertices pi ∈ V ⊂ R3, i ∈ {0, . . . , |V | − 1} and

|T | triangles tj , j ∈ {0, . . . , |T | − 1}. A deformation of

the surface is a map fM : M → R3 which provides

an embedding of M , i.e. new vertex coordinates. The

undeformed surface corresponds to fM = IdM .

Similarly, we consider deformations of a given tex-

ture map ϕ : M → R2 on the surface. The deformed

texture map is fϕ : M → R2 where the undeformed

state is represented by fϕ = ϕ. Note that the represen-

tation of the undeformed state is different than for sur-

face deformations, since fϕ denotes the deformed state

whereas fM denotes the deformation between two sur-

faces.

In order to generalize both cases, we define a gen-

eral deformation map f : M → Rk, k ∈ N with an

undeformed state f∗ : M → Rk. This can be a surface

deformation, a texture deformation or a deformation on

any scalar- or vector-valued function defined on M . We

assume, that f ∈ Skh where Sh is the space of (contin-

uous) piecewise linear scalar maps on M . Any function

f ∈ Skh is represented by its values f(pi) at all vertices.

Differential. For any piecewise linear function f :

M → Rk, the differential Df : TM → Rk maps the

tangent plane TpM of any point p ∈ M (from inside a

triangle) into Rk. After choosing a basis of the tangent

plane, the differential is represented by the Jacobian

matrix of dimension k × 2:

Dpf(v) =

 ∇f0. . .

∇fk−1

 · v,∀v ∈ TpM (1)

where∇fi, i ∈ {0, . . . , k−1} are the gradient fields (row-

vectors) of the components of f = (f0, f1, . . . , fk−1).

Comparing this matrix in different tangent spaces

is not intuitive since they first have to be converted

to the same coordinate system. Thus, for simplifica-

tion, we extend the differential to the surrounding space

TpM × R = R3 and write it in Euclidean coordinates.

The gradient vectors ∇fi in Eqn. (1) remain the same,

but are now represented in 3D-Euclidean coordinates.

The dimension of the matrix becomes k× 3, but is still

of rank 2. Since fi is piecewise linear, the gradient field

is constant per triangle. It is computed on each triangle

t = (p0, p1, p2) by (see e.g. [20]):

∇fi(t) =

2∑
k=0

cot(αk)f̄kp̄k, (2)

where αk are the inner angles at pk and p̄k := p(k+2) mod 3

− p(k+1) mod 3 and f̄k := f(k+2) mod 3 − f(k+1) mod 3.

Integration. Our aim is to reconstruct a function

f from a given differential

A =

 AT0
. . .

ATk−1

 , A0, . . . , Ak−1 : M → R3 (3)

such that Df = A. In general, such a map does not

exist since A must satisfy some integrability conditions.

The vectors Aj , j ∈ {0, . . . , k − 1} must be gradient

vector fields which can be integrated globally to a scalar

function.

This setting is strongly related to Hodge-Helmholtz

decomposition [9]. Given a differentiable two-dimensio-

nal manifold M , any arbitrary vector field X on M can

be uniquely decomposed into the sum of three vector

fields

X = ∇u+ J∇v +H, (4)
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with a potential u : M → R, a co-potential v : M → R
and a harmonic vector field H. J denotes the rotation

of all vectors by 90 degrees in their local tangent plane.

When applying the Hodge-Helmholtz decomposition

to the row-vectors of any differential Df , the co-poten-

tial and harmonic parts vanish, since the row vectors

are already gradient fields. The Hodge-Helmholtz de-

composition separates any given k × 3 matrix A into a

differential and a non-integrable part (the co-potential

and harmonic part).

The potential can be computed by projecting the

given matrix A into the space of Jacobi matrices in L2

sense, i.e. by minimizing:

E(f) =

∫
M

‖Df −A‖2 (5)

for f : M → Rk. Deriving the Euler-Lagrange equation

results in a Poisson equation:

∆f = div(A), (6)

where div(A) is a vector whose entries div(A)i contain

the discrete divergence of the vector field formed by the

i-th row of A.

In the discrete case, where M is a triangular surface,

there is an analogue theory, called the discrete Hodge-

Helmholtz decomposition [22]. Eqn. (4) is similar, but

the function spaces are: u ∈ Sh, v ∈ S∗h and H is a

discrete harmonic vector field. S∗h is the space of non-

conforming finite element functions which are defined

by values on edge midpoints.

The potential is found by minimizing

E(f) =
∑
t∈T

area(t)‖Df|t −A|t‖2 (7)

for f ∈ Sh. The minimizer is found by setting all deriva-

tives of this energy to 0 which leads to k systems of

linear equations:

Lf j = bj , j ∈ {0, . . . , k − 1} (8)

where L is the cotan-Laplace matrix. When interpreting

the j-th column of A as a vector field Aj , then bj ∈ R|V |

denotes the divergence vector which contains the diver-

gence of Aj at all vertices (see [22], Eqn. (7) and [28],

Section 2.4.4). The solution vector f j ∈ R|V | contains

the values of the j-th component of f at all vertices.

2.2 Deformation Framework

The integration-method described in Sect. 2.1 allows to

generate a surface from an arbitrary user-given differen-

tial A. This module is the foundation for the proposed

modeling tools.

Starting from a given domain surface M the user

applies several deformations. The actual deformed sur-

face is denoted by M ′. Whenever another deformation

is applied to M ′, we first compute the differential of the

current embedding f : M → M ′ (resp. of the current

texture map f : M → R2). Then, the user-interaction is

translated into local modifications Amod(A) of the dif-

ferential A in each point of M . Finally, the integration-

module is called which assures a globally consistent dif-

ferential and generates the deformed surface (resp. tex-

ture map).

Since the domain surface M never changes, the ma-

trix L from Eqn. (8) always remains the same and can

be factorized once at the beginning. Every call of the

integration-module just solves k = 3 (resp. k = 2 for

texture editing) many systems of equations with dif-

ferent right vectors. Solving this linear system of equa-

tions can be done very fast, so this technique allows for

applying deformations in real-time. A summary of the

deformation process is given by Algorithm 1.

Algorithm 1: Interactive Deformation

Input: triangular surface M , possibly with texture
coordinates (u, v)

Assemble matrix L and compute pre-factorization;
Initialize deformation f := Id, resp. f := (u, v);
while True do

Compute differential A := Df ;

Modify A into Amod, e.g. by user interaction;
for i = 0 to k − 1 do

Compute divergence bj := div(Amod
j );

Solve Lfmod
j = bj ;

end

Set f := fmod and re-draw surface;

end

In Sect. 2.3 and 2.4, we propose common geometry

and texture brushes. Each brush defines a deformation

of the differential and can be applied as follows:

Global deformation: Apply the deformation to the

whole surface.

Semi-local deformation: Apply the deformation to

a set of selected triangles. This is useful if specific

parts of the surface need to be transformed.

Local deformation: Apply the deformation to all tri-

angles in the vicinity of a picked point on the sur-

face. After choosing a radius of influence, the user

paints the deformation via click and drag onto the

surface.

For local and semi-local deformations, we also pro-

pose the use of fading brushes which apply a large de-

formation to the center and fade out to the boundary
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of the region of interest. Fading brushes often provide

a smoother transition for strong deformations.

2.3 Modeling Brushes

The number of possible modeling brushes one can think

of is almost unlimited. Here, we introduce the most

canonical ones. It is quite simple to extend our frame-

work by further user-defined brushes.

Isotropic Scale Brush. This brush scales the area

by a given factor λ ∈ R, i.e. the modified differentials

as used in Sect. 2.2 are Amod(A) = λ ·A. The brush can

be used to shrink or enlarge specific parts of the surface

uniformly, as shown in Fig. 1.

a) b)

Fig. 1 a) Undeformed surface. b) Deformation using the
scale brush.

Anisotropic Scale Brush. Given a vector field

with vectors of unit length vp ∈ S3 and a scaling factor

λp ∈ R. The modified differentials are

Amodv,λ (A) = A+ (Id + (λp − 1)vpv
T
p ) (9)

which corresponds to an anisotropic scaling in direction

of vp by a factor of λp.

If λp and vp are chosen to be constant everywhere,

the shape is thickened anisotropically in the direction

of vp (see Fig. 2, top).

Alternatively, vp can be defined as function on M ,

e.g. as one of the principal curvature directions. Scal-

ing in minimum principal curvature direction elongates

cylindrical parts of the surface while the maximum prin-

cipal curvature direction thickens these parts (see Fig. 2,

bottom).

Rotate Brush. This deformation multiplies the

differentials with a rotation matrix R, i.e. the modi-

fied differentials are Amod(A) = R · A. The user first

specifies a rotation axis. While clicking and dragging

on the surface, the rotation is applied to all triangles in

the chosen area (see Fig. 3).

a) b)

c) d)

Fig. 2 Anisotropic scale a) in x-direction, b) in z-direction,
c) in minimum principal curvature direction, d) in maximum
principal curvature direction.

Fig. 3 Rotate Brush.

Bump Brush. The bump brush imprints a hill or

bump in normal direction onto the surface (see Fig. 4).

a)

p
v

w

x

b)

Fig. 4 Application of the bump brush. a) Schematic view of
the region of interest. b) Create bumps with a single click.

Given a center point p ∈ M , a radius r > 0 and a

slope value m ∈
(
−π2 ,

π
2

)
. The differential in each point

x within a disk of radius r around p is transformed by

(see Fig. 4, top left):
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1. Rotation around an axis v by an angle α:

v := N × x− p
‖x− p‖

, α := m sin

(
π
‖x− p‖

r

)
(10)

where N is the surface normal in p.

2. Scale anisotropically in the direction of w by a factor

of λ:

w =
x− p
‖x− p‖

, λ =
1

cosα
. (11)

Choosing a slope of m > 0 adds a bump onto the shape

while negative slope produces a valley.

Constraints. We want to note that our framework

supports hard constraints, similar to most other defor-

mation techniques. A set of vertices can be forced to a

desired position by constraining their values when solv-

ing the system of equations given by Eqn. (8). Both,

hard constraints and local control over the differential,

can be used simultaneously.

2.4 Texture Brushes

A texture brush modifies a 2D texture map on the sur-

face. It is applied similarly to a modeling brush by click-

ing or dragging on the surface or directly to a selected

region.

Texture Scale Brush. The anisotropic or isotropic

texture scale brush works similarly to the corresponding

modeling brush. The modified differentials are Amod(A)

= λA, λ ∈ R. The metric of the texture map is locally

scaled up or down (Fig. 5).

a) b)

Fig. 5 Texture scale brush. a) Input texture. b) Deformed
texture.

Texture Rotate Brush. Applies a rotation in the

tangent plane to the differentials of the texture map,

see Fig. 6.

Fig. 6 Texture rotate brush.

Texture Constraints. Using hard constraints for

texture deformation, we can adjust a texture image

by defining special feature points on the surface and

their corresponding positions in the texture image. The

integration-module is called on the undeformed differ-

ential and the given constraints. Texture constraints

can always be specified, also in addition to the use of

texture deformation brushes.

2.5 Implementation Details

We have implemented our modeling framework in Java

using the TAUCS library [27] to decompose the Laplace

matrix L and solve the system of equations (8). Since

the matrix is of co-rank 1, a Sparse Cholesky Decom-

position (SCD) cannot be applied directly.

One way to handle this problem would be to elim-

inate one variable from the system. We found it easier

though to add a sufficient small positive number ε on

the diagonal of the matrix, so it becomes positive defi-

nite and an SCD can be applied.

3 Results and Applications

We tested our technique on various models. The max-

imum computation time on all our tested models con-

sisting of several ten-thousand triangles is about a few

hundred milliseconds if the system is completely un-

constrained. However, when editing a specific area the

user may fix other parts of the model thus eliminating

the according variables from the system of equations

and significantly reducing the computation time with

the additional advantage that the fixed parts will be

perfectly preserved.
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The distinctive feature of our modeling framework is

the use of geometry brushes. A first impression of mod-

eling with the geometry bushes is provided by Fig. 7.

One can see, that enlarging the nose of the Caesar

model in this way is very intuitive. In fact it takes only

a few seconds. To see how the brushes are used to per-

form a more complex editing task and to get a further

impression of the different brushes the reader may also

consult the accompanying video.

Brushes are very intuitive and provide the artist

with a fundamentally different way of interacting with

the geometry. While in many situations other meta-

phors may be more effective, brushes prove to be es-

pecially useful in those scenarios where the other ap-

proaches are impossible or at best tedious to apply.

Therefore, geometry brushes are a supplement rather

than a competitor to the present set of interaction tools.

On this basis, it is difficult to conduct a fair com-

parison with related work that applies other modeling

metaphors. As Sect. 1.1 highlights, there are methods

that use brushes to perform deformation but most of

them are too different to enable a reasonable compari-

son. The most interesting tool to compare with in terms

of modeling would certainly be ZBrush but there is un-

fortunately no scientific literature available on the sub-

ject. With regard to the local editing of texture maps

the present alternatives are even less suitable for com-

parison, since most related work in this area is focussed

on the use of positional constraints.

For those reasons we have decided to stay clear of

any comparison but instead provide examples of edit-

ing tasks that can potentially benefit from the use of

geometry brushes. Local deformations using geometry

and texture brushes are shown in Sect. 3.1. A strength

of the framework is the possibility to define custom

brushes very easily and intuitively. Sect. 3.2 shows ex-

ample brushes for different applications.

3.1 Application of Brushes

The following examples show results of using geometry

brushes. The anisotropic scale brush is especially suited

to shrink cylindrical areas, such as the neck or legs of

animals, see Fig. 8. This deformation is generated by

first choosing a stroke size and then by painting on the

neck and legs until the desired shape is reached.

Fig. 9 shows a rotation about the height axis. We

have chosen a fading brush whose stroke size is the di-

ameter of the geometry. Therefore, the amount of rota-

tion varies linearly from α on top to 0 on the bottom.

The octopus in Fig. 10 is modeled by applying rota-

tions whose angle varies linearly along the longitudinal

Fig. 8 Left: undeformed surface. Right: deformed surface us-
ing the scale brush to shrink neck and legs.

Fig. 9 Left: undeformed model. Right: applying rotation
with linearly varying rotation angle.

direction. Similar to the buddha, we just applied a fad-

ing rotate brush to the tentacles.

Fig. 10 Left: undeformed model. Right: applying rotate
brush.
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Fig. 7 Editing with brushes. The nose of the Caesar model (left) is enlarged in real-time by a single continuous stroke with
a fading scale brush (middle images, parts affected by the brush coloured in magenta). The result can be seen to the right.

3.2 Custom Deformations

Beside the proposed brushes, it is quite simple to define

custom brushes with specific behaviour for the actual

application. Here we show some examples of custom

geometry and texture deformations. A custom defor-

mation is relatively simple to implement, once known

how the differential must be deformed locally.

Rotate Planes. As a theoretic experiment, we used

the differential-based deformation technique to rotate

all tangent planes by a constant angle around the sur-

face normals. It is similar to the rotate brush, but here,

the rotation axis varies over the geometry.

For most surfaces, the global rotation of the tangent

planes makes no geometric sense, except for minimal

surfaces. Each minimal surface M comes with an As-

sociated Family of minimal surfaces Mα, α ∈ R where

each surface of the family has the same Gauss map g [3].

The normal vectors in every point of M and the cor-

responding point in Mα are identical, and the tangent

planes are locally rotated by α.

Fig. 11 shows the results on applying this defor-

mation to minimal surfaces. Notice, how the conjugate

minimal surfaces (those for α = π/2) are nicely recon-

structed. We are aware that this kind of deformation

might not have many applications for surface modeling.

We rather see this feature as a theoretical justification

of our algorithm.

Cartooning. This custom deformation scales all

tangent planes locally dependent on the curvature ten-

sor at each point. Let p ∈M be a point on the surface

and e1, e2 the principal curvature directions in p with

curvature values κ1, κ2. For a given λ ∈ R, we apply

two anisotropic scalings in direction of ei, i = 1, 2:(
|κi|
|κmax|

Id + (1− |κi|
|κmax|

)S(ei, λ)

)
, (12)

where S is the anisotropic scale matrix from Eqn. (9)

and κmax is the absolute maximum curvature value of

all κ1 and κ2 on M .

Areas with high curvature are maintained while flat

or cylindrical areas are scaled by λ. The effect is global

Fig. 11 Global Rotation of all tangent planes on minimal
surfaces produces the Associated Family. Rotations are done
by 0, 30, 60 and and 90 degrees, where the last model shows
the conjugate surface. Top: catenoid is transformed into the
helicoid, Middle: transformation between first and second sur-
face of Scherk, Bottom: Costa Surface.

and scales the whole surface. We rescale the surface

after each application uniformly to its initial dimension,

thus it appears that changes are only made to areas

of high curvature. For λ > 0, areas of high curvature

are shrinked and surface features are sharpened. For

λ < 0 highly curved regions are blown up and generate

a cartoon-like effect (see Fig. 12).

While conceptually similar, the intention and effect

of our approach are different to the curvature clamping

and feature enhancement of [5] as illustrated by Fig. 13.

The difference is particularly apparent at the ears. They

are not only smoothed (a) resp. sharpened (c) but also

overproportionally contracted resp. expanded in the di-

rection of less curvature. Note further, that our method

has advantages in terms of performance since the pro-

cessing by [5] involves a non-linear optimization.

Texture Deformation using Constraints. Hard

constraints for texture deformation allow alignment of

the texture image by moving handles on the surface,

like in 2D image deformation techniques.
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Fig. 12 Cartooning of the Caesar head. Middle: Undeformed
model. Left: Smoothen features (λ < 0). Right: Sharpen fea-
tures (λ > 0).

a) b)

c) d)

Fig. 13 Comparison of cartooning (left) with the approach
of [5] (right). Top: Smoothen features (λ < 0), curvature
clamping. Bottom: Sharpen features (λ > 0), feature en-
hancement.

Fig. 14 shows an example of texture deformation by

specifying single points as constraints. Adjusting a tex-

ture image with this technique is simple and intuitive.

We provide this example to show how positional

constraints may be incorporated in our framework. Nev-

ertheless, the focus of our work lies on the direct manip-

ulation of texture gradients using the brushes as already

noted in Sect. 1.1 and we do not provide any compari-

son with similar methods for that reason.

Magnifying Brush. Fig. 15 shows an example of a

very specific brush for design purposes. It is applied to

the texture map and magnifies the selected area. At the

same time, it is compressed near the border such that

the texture map outside remains nearly unaffected.

a) b)

c) d)

Fig. 14 Specify hard constraints on texture coordinates. a)
Texture image with handles drawn in yellow. b) Target ge-
ometry. Yellow handles are placed manually. c) Initial texture
layout by projection. d) Deformed texture layout respecting
the constraints from the handles.

Using the notation of Fig. 4, we define d = ‖x−p‖
r

and apply the anisotropic scales S(w, λw) and S(v, λv)

to the differentials with:

λw =
1

√
d
λ + λ(1−

√
d)
, λv =

1
d
λ + λ(1− d)

, (13)

where λ ∈ R defines the amount of magnifying.

4 Conclusion

The deformation approach proposed in this article is

based on a simple and flexible technique which assures

that any local modifications produce a globally consis-

tent deformation.

This technique was utilized in a novel way by com-

bining it with geometry brushes to form a robust and in-

teractive modeling framework. By extending this frame-

work for editing textures directly on a given geometry,

the user is provided with an effective way to adjust tex-

tures to his needs without constantly having to switch

between geometry and texture view.
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a)
b)

c) d)

Fig. 15 a) Planar surface with texture image. b) Applica-
tion of the magnifying brush. c) and d) Magnifying textures
applied to surfaces.

For both, textures and shapes, the proposed brushes

allow for intuitive editing and provide added value to

the user. Therefore, they are a useful supplement to the

already great variety of editing tools available.
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