
Lossless Compression of Adaptive Multiresolution Meshes

Felix Kälberer, Konrad Polthier, Christoph von Tycowicz
Freie Universität Berlin, Germany

{Felix.Kaelberer, Konrad.Polthier, Christoph.vonTycowicz}@fu-berlin.de

Figure 1. Adaptive refinement of a bone model. Elements are colored according to our coding scheme. We store a bit for every blue and red triangle,
specifying whether it is further refined or not. These bits are sufficient to reconstruct the connectivity of the model. All other triangles can be reconstructed
using rules of the refinement scheme as explained in the text.

Abstract—We present a novel coder for lossless compression
of adaptive multiresolution meshes that exploits their special
hierarchical structure. The heart of our method is a new
progressive connectivity coder that can be combined with
leading geometry encoding techniques. The compressor uses
the parent/child relationships inherent to the hierarchical mesh.
We use the rules that accord to the refinement scheme and
store bits only where it leaves freedom of choice, leading to
compact codes that are free of redundancy. To illustrate our
scheme we chose the widespread red-green refinement, but
the underlying concepts can be directly transferred to other
adaptive refinement schemes as well. The compression ratio of
our method exceeds that of state-of-the-art coders by a factor
of 2 to 3 on most of our benchmark models.

Keywords-multiresolution; subdivision surfaces; level-of-
detail; connectivity coding; lossless; progressive mesh coding;
3D mesh compression

I. INTRODUCTION

Multiresolution meshes, i. e., meshes obtained through
successive subdivision of a coarse base complex, are com-
monplace in a variety of areas such as movie industry,
computer aided design (CAD) and numerical simulations.
The computing power of todays computer systems and the
availability of advanced modeling software make it easy to
generate grids with up to several million vertices. Storing
those meshes in a raw data format is notoriously expensive
due to the sheer amount of data; this is where compression
comes into play.

Adaptive refinement, i. e., the introduction of detail only
where it is needed, is an essential strategy to master the
processing, rendering, transmission and storage of such
meshes. For uniform refinement, the connectivity of the

mesh can be represented by just the base complex and the
number of subdivision levels. In contrast, Adaptively refined
meshes exhibit a non-trivial hierarchical structure. To the
best of our knowledge, the lossless compression of adaptive
triangle hierarchies has not been researched into before.

Generally compression comes in two stages: First a lossy
stage, where essential information of the input is extracted
and negligible data is dropped. Second, the data decimation
is generally followed by lossless encoding, in which the
remaining data is transcoded into a compact byte stream,
typically using entropy coding like Huffman or arithmetic
coding.

In view of mesh coding, the mesh data consists of connec-
tivity, geometry, and possibly attribute data such as colors
and texture coordinates. 3D mesh coders are often referred
to as lossless if they preserve the original connectivity of the
mesh, even if floating point data of coordinates and attributes
are truncated to a fixed precision. This tolerance within the
”lossless” category may be due to the fact that geometry
data will never be free from errors, and errors introduced
by truncating the least significant bits of a float value
are often negligible compared to noise, discretization, and
quantization errors during mesh acquisition.

Lossy mesh coders consider the connectivity of the mesh
as auxiliary information that does not contribute to the shape
of the model. In the same manner, tangential positions of
vertices within the surface are regarded as negligible. The
intention of those coders is usually the best reproduction
of the shape with respect to some distance norm within a
given byte limit. The mesh is often remeshed to a semi-

regular mesh that allows wavelet analysis to compress the
geometry data.

We consider connectivity compression a vital issue since
the outcome of many algorithms from geometry processing
and numerics depend on exact reproduction of connectivity,
think of animation or morphing. In our work we assume
that the data reduction has already taken place. Our input
models are hierarchical models that are adaptively refined.
We assume that somebody has carefully selected important
details and pruned the negligible ones by some criterion, be
it by preservation of shape, normals, visual impact, or by
numerical criteria. The use of a lossy black box encoder is
prohibitive if no further detail should be lost. Such situations
arise for example in numerical simulations where several
frames with varying refinement structure have to be stored.
In this case, the base mesh is stored just once, with different
refinement stages for each time step. The storage of view-
dependent refinements of objects in virtual environments
creates a similar use case.

RELATED WORK Numerous compression schemes for
triangle meshes have been developed for single-rate coding
(compressing the whole mesh in a region-growing fashion)
as well as progressive coding (encoding the model from
coarse to fine). On the single-rate side Edgebreaker [1] and
the method of Touma-Gotsman [2] are the most prominent
coders which have spawned a wealth of variants and im-
provements. Among the best-performing variants for con-
nectivity compression is the early-split coder of Isenburg
and Snoeyink [3] and the optimized Edgebreaker encoding
of Szymczak [4]. These coders profit from mesh regularity
and are able to push the bit rate well below the Tutte limit [5]
of roughly 3.24 bits per vertex.

The FreeLence algorithm [6] exploits correlation between
connectivity and geometry by accessing already encoded
geometry data when encoding connectivity and vice versa,
allowing it to push the bit rates well below that of [3] and [4].

For progressive transmission, models are often simplified
or remeshed [7], [8] to generate such a simple base mesh
from arbitrary connectivity meshes. In this context wavelet
coding approaches seem to perform best [9], however, these
coders only aim at the compression of the geometry and
do not allow lossless reconstruction of the connectivity
even for adaptive multiresolution meshes. (Although the
normal mesh compression by Khodakovsky et al. [10] is
able to generate such meshes, the adaptivity is controlled
by the coder thus neglecting any original criteria.) There
are lossless progressive coders as well [11], [12], but their
compression rates usually stay below those of the best
single-rate coders. The interested reader is referred to [13]
for a broader survey of 3D compression schemes.

CONTRIBUTION Our major contribution is a connectivity
compression scheme that is adapted to the special charac-
teristics of adaptive multiresolution meshes. We convert the
tree-like hierarchical structure to a binary stream, and use

Figure 2. Triangle after one and two iterations of uniform 1-to-4
refinement.

the refinement scheme’s rules, to prune redundant bits. This
alone nearly halves the data size compared to a naı̈ve coding
of the structure. With context based arithmetic coding and
an adapted traversal of the mesh we can furthermore take
advantage of structural regularities that are typically present
in real-world data. In combination, these measures push the
data rates to significantly below those of general triangle
mesh encoders, outperforming state-of-the-art by a factor of
2 to 3.

We designed our coder with compatibility, extensibility,
and scalability in mind. The compression scheme can be
used in conjunction with any of the recent methods for
geometry prediction [6], [14], data quantization [15], and bit
allocation [16]. Our scheme is fast and can be implemented
to run in linear time. The code is progressive, i. e., after
decoding the base mesh, the overall shape is reconstructed,
and further details will be added from coarse to fine level.

Even though we illustrated the scheme for red-green
refinement, the methods are not restricted to those meshes.
The extension to adaptive quadrilateral meshes is straight-
forward. Even exploiting the similarities of adjacent frames
in time-varying mesh sequences merely requires slightest
changes to our methods.

II. HIERARCHY CODING

In this section we explain how we encode the hierarchical
structure of adaptive multiresolution meshes and therefore its
connectivity. First we will explain the concepts of red-green
refinement, before we outline our encoding procedure in
Section II-B. Sections II-C to II-E then elaborate the details.

A. Red-Green Refinement

Many refinement schemes, such as butterfly [17] or
Loop [18] subdivision, are based on the dyadic split op-
eration where each triangle is divided into four congruent
subtriangles. First new vertices are introduced at each edge
midpoint, dividing the edges into two. Connecting the three
edge midpoints within each triangle then splits the triangle
into four, see Fig. 2. Therefore, the scheme is often referred
to as 1-to-4 split as well. Commonly, vertices inserted during
the refinement step are denoted as odd vertices whereas
vertices that have been present prior to refinement are termed
even. We will refer to subtriangles formed entirely by odd

Figure 3. Conformization of one, two and three hanging nodes. In case
of three hanging nodes the 1-to-4 split is applied. Up to symmetry, these
are the only non-conforming situations that can occur in balanced meshes.

vertices as center triangles and those containing an even
vertex as outer triangles.

Unlike global mesh refinement where all elements in the
mesh are refined to obtain a finer mesh, adaptive or local
mesh refinement performs the split operation only for se-
lected elements. Care must be taken at the transition between
elements of different refinement levels, since a new vertex
is inserted upon an edge of the refined element, but the
coarse neighboring triangle still contains the edge undivided.
These irregular vertices are called hanging nodes. To remove
the non-conforming situations between elements of various
refinement grades, the adjacent unrefined triangles must be
refined too. To maintain locality of the conformization, non-
conformal elements are bisected (see Fig. 3). In the finite
element community these temporal elements are called green
triangles whereas elements that are generated by the 1-to-4
split are called red triangles. Hence the name red-green
refinement. Since green triangles are less shape regular than
their parents the adaptive refinement is usually restricted to
balanced meshes where the refinement level of neighboring
elements must not differ by more than one level. This
bounds the number of hanging nodes on each edge to one,
preventing the bisection of green elements and therefore ever
thinner triangles.

The refinement strategy yields a canonical hierarchical
structure where each quadrisected element acts as a parent
for the four new triangles. Therefore each triangle of the
coarse base mesh will have an associated quad-tree that
specifies its refinement. We will write node to refer to the
entities of the quad-trees. This underlines parental relation-
ships between triangles at different resolutions of the mesh.
All refinement trees together form a forest whose leaf nodes
either represent a red triangle or a pair or triplet of green
triangles. We choose to associate the fourth child of a node
with the center triangle introduced during refinement of its
related triangle. The outer triangle incident to the parents
first vertex will be the first child, and so forth. Fig. 4 shows
three root triangles with associated refinement trees as well
as the represented adaptive triangulation.

B. Encoding

Akin to existing progressive coders we separately encode
the base domain from the hierarchy. Typically the root

Figure 4. Red-green refined mesh and its corresponding hierarchy trees.

triangulation is described by a small, carefully laid out mesh
that can be compressed exceedingly well using single-rate
coders. Our prototype uses the state-of-the-art single-rate
coder FreeLence [6] to losslessly encode its connectivity
and geometry. This compression will in general alter the
order of the base domain triangles as well the as their local
indexing, i. e., the ordering of references to vertices. To
ensure the compatibility of the refinement hierarchy, the root
triangulation and its associated refinement forest is matched
to the reconstructed deterministic output of the FreeLence
decoder so that refinement trees can be bijectively mapped
to root elements without coding of further information.

Starting from the base domain, encoding the refinement
hierarchy is sufficient to reconstruct the connectivity of the
mesh at any level of detail. Provided that encoder and
decoder agree on a common node traversal strategy, the
refinement hierarchy can be stored with one bit per node
where each bit specifies whether the node has children (is
refined) or not. The only exception is caused by triangles
with two hanging nodes, see Fig. 3, middle. The second
possibility to resolve the non-conforming situation arises by
flipping the diagonal edge. In this case we need to store one
additional bit. In practice, the direction of the diagonal edge
is often determined exclusively by local indexing. In this
case, the extra bit can be omitted if the coder uses the same
scheme that was used during mesh creation.

Due to the deterministic conversion of the hierarchical
structure in to a bit stream we can estimate an upper
bound for the code size. The number of leafs in the hi-
erarchy is no greater than the number f of triangles of
the finest resolution. Moreover, four nodes share a common
parent node. This bounds the number of code symbols to
f+ 1

4f+ 1
16f . . . < 4

3f ≈ 8
3v where v the number of vertices.

This also holds if we have conformizations of triangles with
two hanging nodes. In this case we have to store one extra
bit, but in fact we counted three green triangles in f that
where represented by just one node in the hierarchy tree.

To maintain the progressivity of the generated bit code we
traverse the hierarchy breadth-first, so that we successively
visit the nodes at a certain depth in all trees, before switching
to the next finer level. Finally the generated bit stream is
entropy encoded. In the following sections the algorithm is
explained in more detail.

C. Redundant Symbols

We converted the refinement structure into a compact bit
stream. Nevertheless the knowledge of the structure can
be used to further improve the hierarchy compression by
culling out nodes from the bit stream whose state can be
implicitly reconstructed. Because the hierarchy is directly
related to the mesh, the mesh constraints implied by the
refinement scheme instantaneously affect the hierarchy’s
structure. These dependencies are exploited by the following
extensions:

1-REGULARITY As mentioned

Marked triangles can not
be further refined due
to green triangles in the
parent level.

before, red-green refinement pro-
duces balanced meshes. There will
be at most one hanging node per side
of an element. Moreover, since the
nodes of the hierarchy are conquered
level-wise, we already know whether
the neighbors of the node in question
are green triangles that resolved a
non-conforming situation in the par-
ent level. As a consequence, nodes
representing triangles adjacent to coarse green elements can
not be refined. Hence, they can be skipped by the encoder.

HANGING NODES If all three neighbors of the current
node are already encoded, the total number of hanging nodes
within the element is known to the decoder. In case of
three hanging nodes, the decoder can immediately perform a
dyadic split. Consequently no symbol will be stored. Some
implementations of red-green refinement also prohibit two
hanging nodes so that those symbols could be culled out
from the output as well. Anyhow, this case will be handled
by our coder without overhead, cf. Section II-D.

UNIFORM REFINEMENT Uniformly refined meshes ex-
hibit a featureless hierarchical structure—the whole forest
can be described by one single scalar that specifies the
overall height of the refinement trees. Because many meshes
in practice are uniformly refined to a certain degree, we
exploit this property to reduce the number of code symbols.
We store a single byte encoding the degree of uniform
refinement separately, allowing the coder to skip all nodes
on coarser levels.

STREAM TRUNCATION An interesting observation is
that decoding a 0 from the stream has no effect on the hierar-
chy while a 1 causes a refinement of the current node (or its
associated triangle, respectively). As the refinement forest is
conquered in a breadth-first manner, nodes at the finest level
are visited last, thus concluding the output stream. These are
all 0 entries and are only needed for closing the forest, i. e.,
generating a valid hierarchical structure. This structure can
be constructed by the decoder without using these entries.
Therefore the encoder omits the finest nodes from the output
and even truncates 0’s written after the last 1 as these can
be implied. The decoder thus simply skips nodes for which

no bit was stored (i. e., the code contains no further symbols
that can be read).

Encoding the degree of uniform refinement in combination
with the omission of trailing zeros guarantees that not a
single symbol ends up in the output when a uniformly
refined mesh is compressed. The results on the number of
symbols that have to be coded for our benchmark models are
shown in Table 1. Among the described optimizations stream
truncation and 1-regularity perform best and contribute most
to the reduction of symbols. The effect of hanging nodes is
rather small since the degree of uniform refinement is stored
and the case where all three neighbors are know arises only
rarely (see Section II-E for more details). The same holds
for the uniform refinement as this optimization only affects
the coarsest levels containing exponentially few nodes. After
all, the number of symbols that have to be coded averages
out at nearly half the number of nodes.

D. Context Groups

With the steps in the last section we used the rules of the
refinement scheme to eliminate code symbols in cases where
the refinement scheme leaves no room for choice. The steps
above reduce the binary representation of the refinement tree
to a compact, redundancy free representation, without even
looking at the characteristics of the particular input model.
Models that appear in practice, however, do show certain
characteristics. Just like two adjacent pixels in a digital
photograph are likely to be similar, the refinement grades
in hierarchical meshes typically tend to be locally similar.

Luckily, our forest structure admits the definition of
neighbors, which lets us easily determine the effects of
locality. We call two nodes within one level of the hierarchy
adjacent, if their triangle counterparts in the mesh of that
level share an edge. Due to the locality of the refinement
depth, the split information of two adjacent nodes is highly
correlated, so the refinement state of the neighbor node is a
valuable hint. For instance, 23 thousand of the 96 thousand
nodes of the fandisk model have children, which gives each
hierarchy triangle the probability of 24 % of being split.
Given the knowledge that a particular neighbor is a leaf,
the probability of being subdivided drops to 7 %. If all three
direct neighbors are leafs, that probability is a mere 1.2 %.

Let X be the binary stream of split data. As shown by
Shannon [19], the entropy H(X) =

∑1
i=0−p(i) log(p(i)),

measured in bits per symbol, is the information content of X .
It poses a lower bound for the code length of any encoding
of the message X , where p(0) and p(1) are the probabilities
of X being 0 or 1, respectively. Good entropy coders, such
as arithmetic coding [20], approach this lower bound in the
limit and are thus optimal in the limit sense.

If we do have additional information about X , for instance
the state of the neighbor elements, the code length can be
reduced. Let Y be an information source that is correlated

model f #nodes drop 0s hanging 1-regul. uniform #left code size
bones 5622 5438 8% 0.0% 16% 0.0% 76% (4123) 1496 (1912)
bunny 90771 103002 28% 0.1% 22% 0.2% 50% (51369) 28800 (47992)
fandisk 86092 95532 34% 0.1% 23% 0.0% 42% (40518) 23416 (38520)
feline gauss 199008 229924 43% 0.2% 20% 0.2% 37% (85486) 48112 (74232)
feline mean 254044 303072 38% 0.1% 16% 0.8% 46% (137906) 62040 (128608)
femur 8944 10608 27% 0.2% 13% 0.0% 60% (6361) 2440 (4224)
heat transfer 96412 115034 1% 0.1% 15% 0.6% 84% (96242) 28056 (74144)
horse 96368 113228 37% 0.1% 18% 0.2% 45% (51481) 25792 (47392)
rabbit 68506 78570 23% 0.1% 21% 1.3% 55% (43261) 21592 (40544)
venus 138672 154792 40% 0.2% 24% 0.0% 36% (55812) 36360 (47352)
average 104444 120920 28% 0.1% 19% 0.3% 53% (57256) 27810 (50492)

Table 1. Removal of redundant symbols. Column 2 contains the number of faces and column 3 the number of tree nodes, i. e., the number of binary
decisions the decoder has to make. Columns 4 to 7 list percentage of bits that can be omitted by dropping trailing zeros, forbidding 3 hanging nodes,
exploiting 1-regularity, storing the number of levels of uniform refinement. Column 8 list the percentage and actual number of bits that have to be stored,
and the last column shows the size of the compressed code in bits, with (and without) the use of context groups.

to X (in our case y ∈ Y describes a particular configuration
of refinement states of the neighbor elements). The amount
of information that actually has to be stored is measured by
the conditional entropy

H(X|Y) =
∑
y∈Y

p(Y =y)
1∑

i=0

−p(i|Y =y) log p(i|Y =y),

that is, the amount of new information in X , given that we
already know Y . If X and Y are correlated, H(X|Y) is
strictly less than H(X).

In our implementation we use context groups as a simple
measure to profit from the correlation of hierarchy elements.
Recall that we specify with one bit whether the current node
is refined as we traverse the nodes in the trees level by level.
Whenever a binary code symbol is produced, we check the
status of the neighbors. If the neighbor has already been
visited during traversal, its refinement status will be known
to the decoder. Thus we can use the refinement status of
already processed neighbors as for the definition of contexts:
a neighbor can either be refined (45), not refined (4), or it
has not been processed before (?).

The statuses of the neighbor triangles define the context
group in which the symbol is encoded. We write symbols of
different context groups in separate arrays, which are entropy
coded independently. With arithmetic coding, each context
group y will compress to

H(X|Y =y) =
1∑

i=0

−p(i|Y =y) log(p(i|Y =y))

in the limit. The total code size per symbol results by
averaging the entropies individual contexts, weighted by
their respective probabilities,∑

y∈Y

p(Y =y)H(X|Y =y) = H(X|Y),

which proves that contexts are an appropriate tool to capture
all the mutual information that is inherent in the correlation
of neighboring elements.

So far we have not specified, how exactly we define
the contexts. The contexts arise from the number of 45 ,
4, and ? neighbors of a hierarchy node. Counting the
respective neighbor states is enough to capture substantially
different situations, since neighbor configurations with the
same number the respective states differ at most by cyclic
permutation or reversal. We write (x, y, z) to denote the
context with x 45 situations, y times 4, and z times ?.
Of the ten possible contexts we can eliminate the context
(3, 0, 0) as we never have to store a symbol in this context:
if all three neighbors are split, then the enclosed element
must be split too, as no three hanging nodes in a triangle
are allowed. The nine remaining cases are listed in Table 2.

E. Traversal Order

Grouping of the refinement information in separate con-
texts can immensely improve the efficiency of the entropy
coder, see Section II-D. In this section we review the com-
pression rates within the single context groups and discuss
the impact of the hierarchy traversal strategy on them.

The breadth-first traversal of the hierarchy is an important
factor in our coder. Yet it leaves freedom to choose any
iteration of nodes within each level. This choice directly
effects the distribution over the context groups, as the context
of a node solely depends on the refinement state of its
neighbors, and therefore on the fact whether these have been
already visited or not.

A customary traversal scheme would visit the children of
each node in a fixed ordering. Table 2 shows the symbols
distribution in each context group for one of our test models
(which is close to the average of our test set). Here naı̈ve
traversal refers to a strategy where children are visited
in order. Since in our implementation center triangles are
specified as the fourth child of its parent, outer triangles
are visited first. Hence context group (0,0,3), where none of
the three neighbors are known, contains most entries. This
group, though, is virtually incompressible as no advantage
can be taken of mutual information. The same holds for

Group Naı̈ve traversal Improved traversal
45 ,4,? #symb. %1’s bits/symb. #symb. %1’s bits/symb.
(2, 1, 0) 5913 81% 0.69 161 69% 1.04
(2, 0, 1) 14130 99% 0.05 29098 96% 0.21
(1, 2, 0) 5603 36% 0.96 128 26% 1.00
(1, 1, 1) 6141 41% 0.99 13466 56% 0.99
(1, 0, 2) 18752 93% 0.35 34718 89% 0.47
(0, 3, 0) 13606 1% 0.12 681 10% 0.52
(0, 2, 1) 12657 6% 0.34 32371 4% 0.29
(0, 1, 2) 16355 8% 0.43 27282 14% 0.60
(0, 0, 3) 33413 52% 1.00 1 100% 8.00
culled 176502 0 165166 0
total 303072 0.23 303072 0.20

Table 2. Population of the context groups for the naı̈ve and improved
traversal strategy on the feline mean model. For each traversal strategy we
provided the number of symbols in each context group, the percentage of
1’s among those symbols, and the compression efficiency in terms of bits
per symbol.

(1,1,1), (1,2,0), and (2,1,0) where the extra information
is rather ambiguous. Contrary, the other context groups
perform very well but are less populated.

We designed a new traversal scheme (Improved traversal
in Table 2) to redistribute the symbols and maximize the
overall compression. Instead of ordering the children in a
fixed manner we first iterate over every tree and collect all
nodes at that certain depth. This allows a global optimization
of the level-wise node traversal.

The principle of our algorithm is to maximize the mutual
information that can be exploited for encoding each node.
For that purpose we prioritize each node by the loss of
entropy we can expect from knowing more of its neighbors.
Therefore nodes that already profit from encoded neighbors
will be conquered first, which in turn provides more infor-
mation to its unprocessed neighbors. Clearly all nodes that
are skipped by the coder due to optimizations from Section
II-C feature a zero entropy and will hence be equipped
with the highest priority (0). To lower the computational
complexity we use a heuristic to prioritize the other nodes.
On initialization these nodes are set up with a priority of
4 and each time a node’s neighbor is processed its priority
decreases by one. As a result the context group (0, 0, 3)
contains almost no entries—in fact it will always comprise
one symbol if the mesh represents a connected surfaces.
The nodes are thus conquered in a region-growing manner,
so nodes with all three neighbors known become extremely
rare (cf. group (2, 1, 0) and (1, 2, 0) in Table 2). This
traversal directly affects the nodes’ order which causes the
change in the number of culled out symbols. Reviewing
the compression rates on our test models shows an average
improvement of more than 7 %.

III. INTERPLAY WITH GEOMETRY CODERS

So far we described the strength of our coder in terms of
connectivity compression. We also designed the coder with
compatibility in mind. Therefore it can be used in conjunc-
tion with recent techniques for geometry compression from
the multi- as well as the single-resolution setting.

GEOMETRY PREDICTION SCHEMES Several schemes
for point position prediction have been proposed over the last
decade. The parallelogram rule [2] has enjoyed great pop-
ularity in the single-rate compression community for both
its simplicity and efficiency. Such schemes can be applied
progressively for each individual resolution or run as a post-
processing step for the finest level. Here, our improved mesh
traversal strategy would even enhance the method since
multiple parallelograms can be used for prediction, i. e., a
bigger stencil can be employed (cf. FreeLence [6] for results
on prediction gains).

In the field of multiresolution coders, the wavelet coding
approaches stand out not only for the compression rates, but
also because they have spawned numerous descendants. In
fact, wavelet decompositions on surfaces usually apply Loop
[21] or butterfly [14], [10] stencils as prediction schemes
and subsequently define the local frame details to be the
coefficients of the wavelet transform. These steps can be
performed independently of the connectivity encoding and
require no adjustments.

DATA QUANTIZATION Classical global and local quan-
tization techniques are fully independent of our coder as
these have no effect on the connectivity. We extended our
prototype to apply either no quantization or logarithmic
quantization by implementing Isenburg’s [15] fast floating-
point compression. Most of the wavelet based progres-
sive geometry compression schemes are based on zerotree
coders [22], [21], which efficiently encode the location of
coefficients below threshold in subtrees. These coders could
profit from a combination with our coder as it restores the
complete refinement hierarchy. This information can then
be used to limit the vertex-based hierarchies of the zerotree
coder. Whenever the hierarchy is coarse, wavelet coefficients
do not have to be stored, so the zerotree coder needs less
code. Just setting the wavelet coefficients to zero does not
have effect, as the corresponding regions will be any quadric
surface patch. Bit allocation techniques like [16] have been
proposed to optimize the trade-off between the bit rate and
the quality of the reconstructed mesh. These only affect the
quantization of the coefficients and works jointly with the
zerotree coder, thus being compatible with our coder.

EMBEDDED BIT STREAMS For the progressive transmis-
sion of multiresolution meshes it is important to interlace the
connectivity and geometry data. This enables the decoder
to reconstruct an intermediate mesh from any prefix of the
stream. Therefore a common mesh traversal strategy has
to be chosen for the geometry and hierarchy compression.
Nevertheless, the traversal used by our coder can be changed
to any progressive conquering of the mesh in order to
facilitate a special geometry coder.

IV. RESULTS AND CONCLUSION

We measured the performance of our coder using the
ten models in Fig. 5. The feline, bunny, horse, rabbit, and

(a) feline gauss
v=99502, f0=504

(b) feline mean
v=127020, f0=504

(c) bunny
v=45547, f0=230

(d) horse
v=48186, f0=220

(e) heat transfer
v=48652, f0=2

(f) bones
v=2809 f0=3882

(g) fandisk
v=43048, f0=4828

(h) femur
v=4474, f0=532

(i) rabbit
v=34k, f0=210

(j) venus
v=69338, f0=388

Figure 5. The test models we used, the number v of vertices at the finest resolution, and the number f0 of triangles of the base mesh.

model f TG optEB FL Ours
bones 5622 885 853 632 638
bunny 90771 9132 8740 5219 3656
fandisk 86092 8217 8041 4521 3164
feline gauss 199008 17200 16499 10909 6111
feline mean 254044 21092 19347 12079 7853
femur 8944 791 784 530 400
heat transfer 96412 7979 7612 3559 3823
horse 96368 n/a 7811 5251 3266
rabbit 68506 n/a 6325 3469 2735
venus 138672 10986 10505 7312 4601

Table 3. Code sizes in bytes compared with the Touma-Gotsman algorithm
(TG), Szymczak’s optimized Edgebreaker encoding (optEB), and FreeLence
(FL). Note that the rates of FreeLence is not directly comparable to our
method, as FreeLence uses the model’s geometry to enhance connectivity
prediction, whereas the other methods compress the connectivity indepen-
dently.

venus models are constructed by adaptive coarsening of the
remeshes by Khodakovsky et al. [21]. For the feline gauss
and venus model we used Gauss curvature for coarsening,
the others have been generated using mean curvature as
criterion. Bones and heat transfer are courtesy of Zuse
Institute Berlin (ZIB), result from heat transfer simulations.
The femur model, courtesy of Oliver Sander, was refined
according to criteria of a two-body contact problem in a
human knee joint. The fandisk model was produced from a
QuadCover [23] parameterization, and was also coarsened
using the mean curvature criterion. Note that we included

the entropy coded orientation bits for the conformization as
well when necessary. In particular this concerns the bones,
heat transfer, and femur models, as these were not generated
with our own hierarchy manager.

Table 1 shows the efficiency of our strategies for redun-
dancy removal from the binary representation of the refine-
ment hierarchy. Here especially two approaches contribute
to the overall result: stream truncation and 1-regularity.
1-regularity heavily profits from the fact that the refinement
scheme only allows the subclass of balanced meshes. Stream
truncation exploits the rather simple observation that trailing
0 symbols can be omitted as these cause no change in
the reconstructed hierarchy. The effect of stream truncation
cannot be achieved by the context based entropy coder
alone. Keeping the zeros expanded our codes by 15%.
The strategies of Section II-C nearly halve the number of
symbols that have to be coded.

Arithmetic coding is another vital part of our compression
scheme. Without context groups, the compact binary repre-
sentation of the hierarchy is almost incompressible due to a
rather uniform distribution of the symbols, as confirmed by
values in parentheses in Table 1. Again, knowledge about
the mesh structure is used to apply context based arithmetic
encoding. The introduced context groups again reduced the
code length by approximately 50 %.

An evaluation of compression rates within each context
group was given in Table 2 and revealed huge gaps between

the performance of individual groups. These gaps can be
attributed to the mutual information inherent to each context
group. Therefore we devised a hierarchy traversal scheme
that shifts the distribution of symbols over the contexts and
thus equilibrates the mutual information available for the
coding of each node. Despite the fact that this raised the
number of encoded symbols, an average gain of over 7 %
for the overall compression rates could be achieved.

Table 3 summarizes our results in terms of compression
rates. Our coder outperforms the optimized Edgebreaker
coder (and the Touma-Gotsman coder, resp.) by factors of
up 2.7 (2.9), with factor of 2.2 (2.3) on average. The Free-
Lence algorithm achieves an average factor of 1.3 and even
surpasses our coder for two of the test models (bones and
heat transfer). Regarding the bones model these results are
not surprising as the outcome for the root mesh dominates
the overall code size (440 bytes). For the heat transfer model
it is not quite as obvious. In this case FreeLence profits from
the regularity and planarity of the grid. Only discrete angles
with a small set of free valences emerge, leading to excep-
tional compression rates. FreeLence however achieves this
compression rates by employing knowledge of the geometry.
Contrary, our method is independent of the geometry and
can be combined with any geometry compression scheme
which could in return employ knowledge of the connectivity,
i. e., the hierarchical structure. Thus, the other algorithms are
more appropriate for comparison to our coder.

ACKNOWLEDGMENT

This work was supported by the DFG Research Center
Matheon ”Mathematics for key technologies” and mental
images GmbH. We thank Martin Weiser and Sebastian
Götschel of the Zuse Institute Berlin as well as Oliver Sander
for providing their multiresolution data. Models are courtesy
of Stanford University, Caltech, and the Visible Human
Project. Finally we thank Andrzej Szymczak for providing
the Optimized Edgebreaker compression rates.

REFERENCES

[1] J. Rossignac, “Edgebreaker: Connectivity compression for
triangle meshes,” IEEE Transactions on Visualization and
Computer Graphics, pp. 47–61, 1999.

[2] C. Touma and C. Gotsman, “Triangle mesh compression,” in
Graphics Interface Conference Proceedings, 1998, pp. 26–34.

[3] M. Isenburg and J. Snoeyink, “Early-split coding of triangle
mesh connectivity,” in Graphics Interface 2006 Proceedings.

[4] A. Szymczak, “Optimized edgebreaker encoding for large and
regular triangle meshes,” in DCC ’02 Proceedings. Wash-
ington, DC, USA: IEEE Computer Society, 2002, p. 472.

[5] W. Tutte, “A census of planar triangulations,” Canadian
Journal of Mathematics, vol. 14, pp. 21–38, 1962.

[6] F. Kälberer, K. Polthier, U. Reitebuch, and M. Wardetzky,
“Freelence - coding with free valences,” Computer Graphics
Forum, vol. 24, no. 3, pp. 469–478, 2005.

[7] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin, “Maps: multiresolution adaptive parameterization
of surfaces,” in SIGGRAPH ’98 Proceedings, 1998.

[8] I. Guskov, K. Vidimče, W. Sweldens, and P. Schröder, “Nor-
mal meshes,” in SIGGRAPH ’00 Proceedings, 2000.

[9] J. Peng, C.-S. Kim, and C.-C. J. Kuo, “Technologies for 3d
mesh compression: A survey,” Journal of Visual Communi-
cation and Image Representation, vol. 16, 2005.

[10] A. Khodakovsky and I. Guskov, “Compression of normal
meshes,” in In Geometric Modeling for Scientific Visualiza-
tion. Springer-Verlag, 2003, pp. 189–206.

[11] M. I. Jack and J. Snoeyink, “Mesh collapse compression,” in
In Proceedings of SIBGRAPI99, 1999, pp. 27–28.

[12] P. Alliez and M. Desbrun, “Progressive compression for
lossless transmission of triangle meshes,” 2001.

[13] P. Alliez and C. Gotsman, “Recent advances in compression
of 3D meshes,” in Advances in Multiresolution for Geometric
Modelling, Dodgson, Floater, and Sabin, Eds. Springer, 2005.

[14] F. Morán and N. N. Garcı́a, “Hierarchical coding of 3d models
with subdivision surfaces,” 2000.

[15] P. Lindstrom and M. Isenburg, “Fast and efficient compression
of floating-point data,” IEEE Transactions on Visualization
and Computer Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[16] F. Payan and M. Antonini, “An efficient bit allocation for
compressing normal meshes with an error-driven quantiza-
tion,” CAGD, vol. 22, no. 5, pp. 466–486, 2005.

[17] N. Dyn, D. Levine, and J. A. Gregory, “A butterfly subdivision
scheme for surface interpolation with tension control,” ACM
Trans. Graph., vol. 9, no. 2, pp. 160–169, 1990.

[18] C. Loop, “Smooth subdivision surfaces based on triangles.”
Utah University, USA, 1987.

[19] C. E. Shannon, “A mathematical theory of communication,”
The Bell System Technical J., vol. 27, 1948.

[20] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding
for data compression,” Communications of the ACM, vol. 30,
no. 6, pp. 520–540, 1987.

[21] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progres-
sive geometry compression,” in SIGGRAPH ’00 Proceedings,
2000, pp. 271–278.

[22] A. Said, W. A. Pearlman, and S. Member, “A new fast and
efficient image codec based on set partitioning in hierarchical
trees,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 6, pp. 243–250, 1996.

[23] F. Kälberer, M. Nieser, and K. Polthier, “Quadcover - sur-
face parameterization using branched coverings,” Computer
Graphics Forum, vol. 26, no. 3, pp. 375–384, 2007.

