
Stripe Parameterization of Tubular Surfaces

Felix Kälberer, Matthias Nieser, and Konrad Polthier

Freie Universität Berlin

Abstract. We present a novel algorithm for automatic parameteriza-
tion of tube-like surfaces of arbitrary genus such as the surfaces of knots,
trees, blood vessels, neurons, or any tubular graph with a globally con-
sistent stripe texture. Mathematically these surfaces can be described as
thickened graphs, and the calculated parameterization stripe will follow
either around the tube, along the underlying graph, a spiraling combi-
nation of both, or obey an arbitrary texture map whose charts have a
180 degree symmetry.
We use the principal curvature frame field of the underlying tube-like
surface to guide the creation of a global, topologically consistent stripe
parameterization of the surface. Our algorithm extends the QuadCover
algorithm and is based, first, on the use of so-called projective vector
fields instead of frame fields, and second, on different types of branch
points. That does not only simplify the mathematical theory, but also
reduces computation time by the decomposition of the underlying stiff-
ness matrices.

1 Introduction

Tubular surfaces appear in many application areas such as networks of blood
vessels and neurons in medicine, or tube and hose systems in industrial environ-
ments. Often a tubular structure must be recovered and segmented from noisy
scan data. Our stripe parameterizer is an efficient and automatic method for the
parameterization and remeshing of free-form tubular surfaces given as triangle
meshes. Our special focus lies on free-form surfaces which are not made out of
regular, cylindrical tube pieces - those can be handled better by other algorithms
from CAD. An additional benefit of the stripe parameterization is the enhanced
visualization of the underlying geometric structure.

1.1 Previous work

Surface parameterization is an active research area. We will not attempt a com-
plete review of the literature but instead refer the reader to the surveys by
Floater and Hormann [1] and [2].

A very early surface parameterization method is the Tutte’s [3] barycentric
graph embedding. Tutte embeddings are of combinatorial structure and do not
capture the geometry of the surface. Early global parameterization methods were
introduced by Haker, Gu and Yau [4–6] who studied conformal parameteriza-
tions. Conformal maps are angle preserving at the cost of possibly large length
distortions, as angles and lengths can not be preserved at the same time.



To reduce length distortion, Kharevych et al. [7] used cone singularities for
conformal parameterization, which relax the constraint of a flat parameter do-
main at few isolated points. Such singularities have proven to be essential for
high quality parameterizations and have been used in other parameterization
schemes as well.

Tong et al. [8] use singularities at the vertices of a hand-picked quadrilateral
meta layout on the surface. The patches the meta layout are then parameterized
by solving for a global harmonic one form. Dong et al. [9] use a similar idea for
parmeterization but create the quadrilateral meta layout automatically from the
Morse-Smale complex of eigenfunctions of the mesh Laplacian.

Ray et al. [10] parameterize surfaces of arbitrary genus with periodic po-
tential functions guided by two orthogonal input vector fields. This leads to a
continuous parameterization except in the vicinity of singular points on the sur-
face. These singular regions are detected and reparameterized afterwards. With
the QuadCover algorithm [11] we built upon their idea to use an input field as
guiding directions for parameter lines. Input fields can be principal curvature
directions, for example, or user-designed fields using one of the recent tools for
the design of rotational symmetry fields like [12], [13], [14], or [15]. The idea
of QuadCover is to find a parameterization whose gradient matches the input
directions as well as possible.

The literature on parameterization of tubular objects is by far not as exten-
sive as for general surfaces. Huysmans et al. [16] construct a progressive mesh
which they map to an open cylinder. A subsequent iterative scheme optimizes
the vertex positions in the cylindrical domain. Unfortunately, that method can
not handle bifurcations. Antiga and Steinman [17] handle blood vessels with bi-
furcations by splitting the vessel tubes at their branches, and parameterize each
segment separately which leaves visible artifacts at the joints of the segments.
Zhu et al. [18] use conformal parameterizations on tubular objects. Since con-
formal maps do not allow precise control over the direction of parameter lines,
they cannot be aligned with the tube axis.

1.2 Contributions

We introduce the stripe parameterizer, an algorithm for the generation of glob-
ally consistent stripe parameterizations, see Fig. 1 and 9. Each parameterization
is a collection of texture maps which may also be used to remesh and segment
a surface. The stripe parameterizer is a generalization of QuadCover, which
parameterizes general surface meshes. The stripe parameterizer allows to map
stripe patterns onto a surface, i. e., texture maps whose individual charts are
symmetric with respect to rotations of 180 degrees. In contrast to QuadCover
where all texture image charts have to be symmetric with respect to 90 degree
rotations, the stripe parameterizer allows a more general set of texture images
with only 180 degree symmetry.

We develop the mathematical theory for stripe parameterizations and discuss
the differences to grid parameterization techniques including those in Quad-
Cover. Stripe parameterizations allows only a subset of the branch point types



of QuadCover. For example, cone points of index 1/4 at the corners of a cube
can not be used in stripe parameterizations since 90 degree rotational symmetric
textures charts would be required, see the cube in Fig. 2.

Only one type of branch points can occur on a 2-sheeted covering, so there is
no need to handle different branch types. The 4-sheeted branched covering sur-
face from QuadCover projects onto a unique 2-sheeted branched covering surface
for the stripe parameterizer. Furthermore, the stiffness matrix from QuadCover
decomposes into two matrices of quarter size. Thus, the numerical effort of com-
puting a stripe parameterization is seriously reduced.

We tested the stripe parameterizer on several test models and real world
examples including clinical data and various tree-like surfaces.

Fig. 1. Tree with stripe parameterization. Singularities are marked in green. The tex-
ture image consists of a vertical stripe visualizing the u-isolines of the parameterization.

2 Overview

A stripe parameterization is a special case of a (u, v)-parameterization, where the
parameter lines can be globally separated into u-lines and v-lines, as in Fig. 1.
This separation property is not present on general surfaces, if singularities of
quarter index are present.

Stripe parameterizations can be used for mapping texture images which are
symmetric by rotations of 180 but not necessarily 90 degrees, such as stripe
textures. An example of a parameterization which is not suitable for mapping
stripe textures is shown in Fig. 2.

Projective fields. The parameterization is guided by a so-called projective
field, which is a vector field on M , where the vectors v and −v are identified for
all v ∈ TpM , p ∈M . Thus, the vectors may change their sign without producing



Fig. 2. QuadCover parameterization with quad texture and stripe texture. Stripe tex-
tures can not simply be used in parameterizations from QuadCover.

a discontinuous projective field. Note, that projective fields are a special case of
N -RoSy fields for N = 2 as introduced by Palacios and Zhang [13].

The algorithm takes two projective fields as input and generates two scalar
functions (u and v), whose gradients match up with the input fields as well as
possible. The coordinates u and v can be used as texture coordinates in order
to map a pattern onto the surface. If you are only interested in a stripe pattern,
you could use only one input field and skip the computation of v.

Construct an input field. It is up to the user to construct an input field.
A canonical choice is the field of minimum curvature: In each point, the corre-
sponding vector points in direction of the (absolute) smaller principle curvature
and has unit length. Using this field (together with the 90 degrees rotated field)
as the input fields yields nearly curvature line parameterizations.

The algorithm. Starting from a given projective field, the algorithm first
constructs a locally integrable field. Second, the surface is cut open to a topo-
logical disk and this field is integrated yielding a parameterization. Third, the
parameterization is adapted such that the grid lines are connected across the
cuts. Details are given in Sect. 4.

Special issues arise when the projective field has singularities. They are re-
solved by using branched covering spaces. The projective field naturally simplifies
to a single vector field on the covering, and then standard Hodge decomposi-
tion techniques are used to assure global integrability. Details are explained in
Sect. 3.2.

3 Mathematical Setting

We use the theory of QuadCover’s 4-fold symmetric fields and apply it to the
projective vector field setting with 2-way symmetry properties. We introduce
the notion of projective vector fields and discuss consequences for the branched
2-fold covering spaces. We will describe our concepts in the smooth cast first,
followed by the discretization for triangle meshes.



3.1 Parameterizations and Matchings

Smooth case. Given a smooth 2-manifold M with charts Ui ⊂M ,
∑

i Ui = M .
A parameterization is a collection of diffeomorphisms fi = (ui, vi) that map all
charts into the parameter domains fi : Ui → Ωi ⊂ R2. One can now visualize
the parameter lines on M as the preimage under fi of the unit grid N × R (ui

lines) and R× N (vi lines).
A globally continuous stripe parameterization consists of parameter

functions fi in the charts Ui, such that the ui lines (resp. vi lines) coincide in all
regions where two charts Ui, Uj overlap. Thus, the parameter lines of a stripe
parameterization can be globally separated into u-lines and v-lines.

Given two guiding fields on the surface, we will only focus on computing the
u-component from the first input field, as the same rules apply for computing v
from the second field.

The transition functions between adjacent charts of a stripe parameterization
satisfy two conditions: First, the gradients of ui and uj have to agree up to sign,
because we do not distinguish ui lines and−ui lines on the parameterized surface.
Thus, the gradients of the charts are related by

∇ui(p) = (−1)rij∇uj(p), p ∈ Ui ∩ Uj (1)

with a constant number rij ∈ {0, 1} on the intersection Ωi ∩ Ωj . We call the
values rij matchings between charts Ui and Uj .

Second, the values of ui and uj may differ only by integer values, since the
u lines in the unit grid are invariant under translations by integer values.

Thus, we require the values of u in overlapping charts Ui and Uj to fulfill:

uj(p) = (−1)rijui(p) + tij , rij ∈ {0, 1}, tij ∈ N, p ∈ Ui ∩ Uj . (2)

Discretization. Each triangle of the mesh is considered as a chart. The
transition function between two adjacent triangles is fully determined by the
matching and the translation vector associated to their common edge, see (2).
See Sect. 4.1 for details on how we compute the matching.

3.2 Projective Fields

A parameter function u can be characterized by its gradient field. In each chart,
the gradient field ∇u is a continuous vector field. At the transition between two
charts Ui, Uj , the sign of the vectors may flip depending on the matching. Thus,
we cannot describe the derivatives of u as a globally defined vector field, but use
projective fields which are invariant under sign flips.

Definition 1. Given a manifold M with charts Ui and matchings rij. A pro-
jective field K on M is a collection of one vector field Ki in each chart Ui,
such that for all overlapping charts Ui ∩ Uj 6= ∅:

Kj = (−1)rijKi. (3)



Discretization. The projective fields are piecewise constant on the triangles.
Store one vector per triangle and the matching number on each edge. This fully
defines a discrete projective field. An odd matching at any edge means that the
vector in one adjacent triangle corresponds to the negated vector of the other
triangle.

3.3 Branched Covering Spaces

We use the notion of branched covering surfaces for an equivalent description
of projective fields. A projective field on the input surface can be regarded as a
vector field on a covering surface. This allows us to apply standard vector field
calculus to projective fields.

Coverings. First, recall some definitions on Riemann surfaces, see [19–21].
We will give an abstract definition of a covering and explain below how we
actually construct one.

U ′
i,0

U ′
i,1

τ0
i τ1

i

Ui

πi

πi πj

Ui Uj

U ′
i,0

U ′
i,1

U ′
j,0

U ′
j,1

πi πj

Ui Uj

Fig. 3. From left to right: Trivial covering. / Patching two coverings together with
matching rij = 1. / A projective field lifted to a vector field on the covering.

Definition 2. Let M be a Riemann surface. A 2-sheeted covering M ′ of M is
a Riemann surface with a local homeomorphism π : M ′ →M with the property:
For each point p ∈ M , there exists a neighborhood Up whose preimage π−1(Up)
is the union of exactly two pairwise disjoint topological disks. Fig. 3, left shows
a 2-sheeted covering.

We allow branch points p in our setting, where the preimage of a neigh-
borhood of p is exactly one topological disk (instead of two), cp. Fig. 4, middle.

Construction. We construct a covering of M as follows: From each chart Ui,
make two copies (layers) and name them U ′i,0 and U ′i,1. Let πi : U ′i,0 ∪U ′i,1 → Ui

be the operator which projects the copies back to Ui and τi,0 : Ui → U ′i,0,
τi,1 : Ui → U ′i,1 the inverse maps. The two layers U ′i,0 ∪ U ′i,1 together with πi is
called the 2-sheeted trivial covering of the chart Ui (Fig. 3, left).

In the next step, we glue these layers at the overlaps of the adjacent charts
together. For each pair of charts the layers can be glued in two different ways.
The matchings rij define how the layers are identified.



Fig. 4. Left: Stripe parameterization with branch point. The isolines of the u function
and its gradient vectors are drawn. Middle: The same parameter function on the 2-
sheeted covering (the covering surface is not embedded, it has self-intersections). Right:
Branch point on a parameterized tube object.

Definition 3. A covering surface induced by matchings rij is uniquely
defined by the following construction:

Let (U ′i , πi) be 2-sheeted trivial coverings of the charts Ui. The covering sur-
face is given as the union of all U ′i where the following points are identified: In
each two overlapping charts Ui, Uj, identify all points τi,0(p) with τj,rij

(p) and
τi,1(p) with τj,1−rij

(p), p ∈ Ui ∩ Uj (see Fig. 3, middle).

Since the trivial coverings of charts have no branch points and the charts
cover the surface, we cannot construct any branch points this way. We allow
branch points by removing single points from the surface. Depending on the
matchings we obtain a branch point there as shown in Fig. 3.

Discretization. In the discrete setting, branch points are located at vertices.
On a 2-sheeted covering they occur when the sum of all matchings of incident
edges is odd. This means starting somewhere in the neighborhood of v and
walking once around the vertex ends on a different layer in the covering than
the start point.

3.4 Vector Fields on Covering Spaces

Projective fields can be described as vector fields on a covering surface. This
result allows us to apply the classical vector field theory to projective fields.

A projective field K on M with matchings rij canonically lifts to a vector
field K ′ on the covering induced by rij . In each chart Ui, define the vectors on
its trivial covering as follows: For all p ∈ U ′i,0 set K ′(p) := Ki(πi(p)) and for
p ∈ U ′i,1 set K(p) := −Ki(πi(p)), see Fig. 3, third image.

The result is a globally well defined vector field K ′ on M ′, since the layers of
the covering are connected in the same way as the vector fields permute when
another chart is chosen.

Definition 4. Let M be a manifold with matchings rij and M ′ the induced
covering. A projective field lifted to a vector field K on M ′ is called a covering
field of M .



4 Stripe Parameterizer Algorithm

In this section we describe the main extensions and simplifications which have
been made to QuadCover to yield the stripe parameterizer. An important dif-
ference is the use of projective vector fields instead of frame fields.

Compute the potential function. Given a surface M together with a
projective field K, or, equivalently, a covering surface M ′ with a vector field K ′.
The parameter function is a scalar function u′ : M ′ → R. It can be projected
back to a parameter function u : M → R by taking the values of u′ in one of the
two layers (it does not matter which layer is taken, because the parameter lines
in both layers will be congruent).

The parameterization algorithm is divided into two stages: Assuring local
continuity and global continuity. The two stages are explained in Sect. 4.3 and
4.4. Sect. 4.1 deals on the creation of an input field. For the integration of a
projective field, we need to cut the surface open at a given cut graph. Sect. 4.2
explains the construction of such a cut graph.

4.1 Generate Input Field and Matching

Curvature field. In our experiments, we used the field of minimum principle
curvatures as input to the parameterizer. Discrete principal curvature directions
and values can be calculated as proposed in [22] or [23]. Note that we deal with
curvatures given on triangles, not on vertices.

Finally, one gets a unit vector v in each triangle pointing in along that prin-
ciple curvature direction which corresponds to the (absolute) smaller curvature
value. In triangle t, set K0(t) := v and K1(t) = −v.

We define matchings rij between every two adjacent triangles ti and tj by
setting rij = 0 if 〈K0(ti),K0(tj)〉 ≥ 0 and rij = 1 otherwise. This ensures that
the field does not turn around, but proceeds as straight as possible.

Note that the position of branch points immediately follows from the choice
of matchings and the matchings are determined by the input field. A branch
point arises at each vertex where the sum of matching of outgoing edges is odd.

4.2 Generating Cut Paths

A cut graph is a graphG embedded in the surface, such thatM\G is a topological
disk. We use a cut graph for the integration of projective fields in Sect. 4.3, and
use cut paths for the global continuity in Sect. 4.4.

Cut paths on M . Loosely speaking, cut paths are a set of paths on the
surface whose union is a cut graph. On closed surfaces, generating loops of the
first fundamental group are suitable cut paths. In QuadCover, we use certain
generators, namely the shortest system of loops as computed in Erickson and
Whittlesey [24]. A system of loops is a set of 2g simple loops with a common
base point, whose union is a cut graph.

We can treat branch points as tiny holes, as if they were removed from
the surface (see Sect. 3.3). Erickson and Whittlesey handled closed surfaces



only, but we might have a surface with boundary. Once we have more than
one boundary component, each additional boundary component needs one path.
Thus, in presence of b > 1 boundary components (or branch points) we need
2g + b− 1 paths.

In our implementation for triangle

Fig. 5. Surface with boundary and two
branch points. The colored lines visualize
the five cut paths.

meshes we identify all boundary ver-
tices and branch points into one point
B. On this surface (now without any
boundary), we apply the method of
[24] with B as the base point. When
we undo the identification of bound-
ary points, the paths which looped
through B now turn into paths that
connect boundary components and
branch points.

Cut paths on covering. For our
algorithm, we need cut paths on the
covering surface M ′. We get the cut
paths by computing them on M and
lifting them to the covering. The resulting paths cut M ′ into two separate simply
connected pieces. Thus, one of the paths could theoretically be discarded. It does
not matter for our method that the covering decomposes into two pieces. It is
more important, that the cut paths are symmetric with respect to a change of
layers, i. e., for each path there is another path which runs in the other layer
and has the same projection onto M , see Sect. 4.4.

4.3 Local Continuity

The gradient of the parameterization should align with the given input field as
well as possible, i. e., u′ should minimize the energy

E(u′) =
∫

M ′

‖∇u′ −K ′‖2dA. (4)

Recall, that the vectors of K ′ are identical up to a different sign in the two
layers. Since the energy has a unique minimum and due to the symmetric shape
M ′, the solution u′ is also a map with negated function values in different layers.

The optimization problem (4) can be solved using the Hodge-Helmholtz de-
composition. It states, that any vector field K ′ has a unique decomposition

K ′ = P + C +H (5)

with a gradient field P , a cogradient field C and a harmonic field H. P and H
are curl free (locally integrable), whereas C contains the curl part. Furthermore,
the three spaces of potential fields, copotential fields and harmonic vector fields
are perpendicular in L2 norm. Thus, discarding the second term leads to a curl



free field X̃ ′ := P +H whose integral is the minimizer of Energy (4). The middle
term C of the Hodge-Helmholtz decomposition is a non-conforming function
and is found by solving a linear system of equations with one variable per edge.
For details on the Hodge decomposition and integration of discrete vector fields
see [25].

So far, the parameterization algorithm outlines as follows:

1. Perform Hodge-Helmholtz decomposition of input field K ′.
2. Discard the non-integrable curl part and obtain a locally integrable field.
3. Cut the surface open to be simply connected and lift the cut graph to the

covering, such that the covering is cut into two connected pieces.
4. Obtain the parameterization u′ by integration: Perform a linear run over

all vertices (using a growing disk which does not cross the cut graph) and
compute the parameter values at each vertex such that the gradient matches
up with the vector field.

4.4 Global Continuity

The parameter lines of the solution u′ from the previous paragraph are not
necessarily continuous everywhere. They may have a mismatch at the cut graph
G, see Fig. 6.

Let γi be a set of cut paths. For each

Fig. 6. Parameterization after the
first stage. Grid lines are discontinuous
across the cuts.

path γi and each point p ∈ γi, one can
measure the gap di (discontinuous jump)
as the difference of function values on the
right and left side of the path.

The parameterization can now
be ”repaired” such that the parameter
lines match up. This is exactly the case
if all gaps are integer values. The repair-
ing algorithm is based on the following
observation: along each path γi, the gap
is always a constant di, since the deriva-
tive of the function is locally integrable.
Note, that there is an exception if two
paths γi, γj merge and run on top of each
other. In this case, the gap turns into di + dj . For further details, see [11].

Thus, the grid lines are globally continuous if and only if all di ∈ Z. In order
to adapt the function to fulfill the global continuity condition, we add a scalar
function ψ to u′ such that ũ′ := u′ + ψ satisfies d̃′j ∈ Z (where d̃′j are the gaps
of ũ′).

The remaining problem is to find this scalar function with given gaps. In
order to minimally distort the initial parameterization, we let ψ be a harmonic
function, as they are the smallest functions with given gaps in L2 norm. ψ
is found via minimizing the Dirichlet energy ED =

∫
M
‖∇ψ‖2dA under the

constraint of given gaps.
The second stage of stripe parameterizer has the following outline:



1. Compute cut paths γi.
2. Measure gaps di.
3. Find harmonic map ψ with gaps round(di)− di.
4. Add ψ to u′.

In step 3, the gaps are rounded to the closest integer. Rounding the gaps
such that the distortion is minimized is an NP hard combinatorial problem. As
we do not solve this problem exactly, the rounding behavior slightly depends on
the choice of cut paths.

5 Results

We have tested our method on different tube-like surfaces. Simple examples
are the knots in Fig. 7 without branchings. The principal curvature directions
are stable and can be computed very accurate in each point, so the algorithm
produces a parameterization of high quality.

Fig. 7. Left: Only u coordinates are used to map stripes on the knot surface. Middle:
Only v coordinates are used. Right: u and v coordinates are used. The texture image
is a diagonal line which connects two opposite corners.

Fig. 8. The tree model of Fig. 1 with diagonal stripe pattern generates a candy cane.
Singularities are marked in green.



The tree in Fig. 8 has a more complicated shape. It bifurcates and the thick-
ness of the twigs vary. Note the accurate placement of branch points. There are
two branch points at each bifurcation, allowing the circular stripes to split.

Fig. 10 shows a complex neuron model of genus 23, captured using confocal
microscopy. The produced parameterization has very little distortion even on
this complicated object.

The unshaded version in the top demonstrates how a stripe pattern helps
to perceive the complicated shape of the neuron. But also in the fully shaded
images, the stripes help to capture the object more easily.

The surface in Fig. 9 shows a human blood vessel which contains parts with
a very large tube radius as well as very filigrane branches. Regardless of this
difference in the scaling, the stripe density stays nearly constant everywhere.

Fig. 9. Parameterized blood vessel, captured by MRT. Courtesy of Fraunhofer MEVIS.

The parameterization of these models was fully automatic. We only chose the
density of the lines and the amount of curvature field smoothing. The models
had approximately 20k to 40k triangles and the algorithm terminated in less
than a minute.

6 Acknowledgements

The authors are grateful to Christian Hansen of Fraunhofer MEVIS (Bremen,
Germany) for providing clinical 3D models of vascular structures and fruitful
discussions concerning this work.

Many thanks to Sabine Krofczik and Jürgen Rybak, Department of Neuro-
biology at Freie Universität Berlin, as well as Steffen Prohaska and Anja Ku,
Zuse Institute Berlin (ZIB) for supplying the neuron geometry.

This research was supported by the DFG Research Center MATHEON and
by mental images.



Fig. 10. Parameterized neuron by courtesy of Freie Universität Berlin, Department of
Neurobiology. Top: depth shading. Bottom: full shading.

References

1. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In
Dodgson, N.A., Floater, M.S., Sabin, M.A., eds.: Advances in multiresolution for
geometric modelling. Springer Verlag (2005) 157–186

2. Hormann, K., Polthier, K., Sheffer, A.: Mesh parameterization: Theory and prac-
tice. In: SIGGRAPH Asia 2008, Course Notes. Number 11 (2008)

3. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. s3-13(1) (1963)
743–767

4. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Con-
formal surface parameterization for texture mapping. IEEE Trans. on Visualization
and Computer Graphics 6(2) (2000) 181–189

5. Gu, X., Yau, S.T.: Global conformal surface parameterization. In: Symp. on Geom.
Proc. (2003) 127–137

6. Jin, M., Wang, Y., Yau, S.T., Gu, X.: Optimal global conformal surface parame-
terization. In: In IEEE Visualization. (2004) 267–274

7. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via
circle patterns. ACM Trans. on Graphics 25(2) (2006)

8. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations
with discrete harmonic forms. In: Eurographics Symp. on Geom. Proc. (2006)



9. Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.: Spectral surface
quadrangulation. ACM SIGGRAPH (2006)

10. Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization.
ACM Trans. Graph. 25(4) (2006) 1460–1485

11. Kälberer, F., Nieser, M., Polthier, K.: Quadcover - surface parameterization using
branched coverings. Comput. Graph. Forum 26(3) (2007) 375–384

12. Ray, N., Vallet, B., Li, W.C., Lévy, B.: N-symmetry direction field design. ACM
Trans. Graph. 27(2) (2008) 1–13

13. Palacios, J., Zhang, E.: Rotational symmetry field design on surfaces. ACM Trans.
on Graphics 26(3) (2007) 55:1–55

14. Zhang, E., Hays, J., Turk, G.: Interactive Tensor Field Design and Visualization
on Surfaces. IEEE Trans. on Visualization and Computer Graphics (2007) 94–107

15. Lai, Y.K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.M., Gu, X.D.:
Metric-driven rosy fields design. Technical report, Tsinghua Univ., Beijing (2008)

16. Huysmans, T., Sijbers, J., Verdonk, B.: Parametrization of tubular surfaces on the
cylinder. In: WSCG (Journal Papers). (2005) 97–104

17. Antiga, L., Steinman, D.: Robust and objective decomposition and mapping of
bifurcating vessels. IEEE Trans. on Medical Imaging 23(6) (2004) 704–713

18. Zhu, L., Haker, S., Tannenbaum, A.: Flattening maps for the visualization of
multi-branched vessels (2005)

19. Farkas, H.M., Kra, I.: Riemann Surfaces. Springer Verlag (1980)
20. Fulton, W.: Algebraic Topology, A first course. Springer Verlag (1995)
21. Jost, J.: Compact Riemann Surfaces. Springer (2002)
22. Cohen-Steiner, D., Morvan, J.M.: Restricted delaunay triangulations and normal

cycle. In: Proc. of Symp. on Comp. Geom., ACM Press (2003) 312–321
23. Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features.

Computer Graphics Forum 23(3) (2004) 391–400
24. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators.

In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms. (2005) 1038–1046
25. Polthier, K., Preuss, E.: Identifying vector field singularities using a discrete Hodge

decomposition. In: Visualization and Mathematics III. Springer (2003) 113–134
26. Praun, E., Hoppe, H., Webb, M., Finkelstein, A.: Real-time hatching. In: SIG-

GRAPH. (2001) 581
27. Zöckler, M., Stalling, D., Hege, H.C.: Fast and intuitive generation of geometric

shape transitions. The Visual Computer 16(5) (2000) 241–253


