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Abstract. “Mathematics is everywhere” is the title for a panel at ICM 2014. The four
panelists discuss what can be put under this title, what are the messages that can be
passed to the public, and how to pass these messages. To most mathematicians, it seems
obvious that mathematics is everywhere, and a living discipline within science and tech-
nology. Yet, how many of them are able to convey the message? And, when most people
look around, they do not see mathematics, they do not know about the mathematics
underlying the technology, they know very little about the role of mathematics in the
scientific venture. Can we help building a powerful message? Can we unite forces for
better passing it?
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1. Introduction

“Mathematics is everywhere.”

Suppose you are a mathematician and you are put in front of this statement. Are
you convinced? If you are in front of your classroom, are you able to explain the
statement? And if you are in front of the public, or of a journalist, what examples
will you choose to illustrate the statement? We, the panelists, have the impression
that many of our mathematician colleagues are convinced. Yet, many of us lack
good examples to pass the message. Indeed, the message should first please us
before we decide to transmit it.

Let us now go to the schools. The teachers all know in principle that math-
ematical education is important but how can they answer the question “What is
mathematics useful for, nowadays that calculators can do the computations, for
us and that software solves the problems we used to learn to solve by hand?”
How many teachers can take you to a tour of the city and show you the maths
in all modern gadgets that you use, from a parabolic antenna, to a GPS, to the
architecture of a building and the synchronization of trafic lights.

∗Grant #2014/08628-1, São Paulo Research Foundation (FAPESP).
†This work was supported by NSERC in Canada.



2 E. Colli, F. Nemenzo, K. Polthier, C. Rousseau

If we now go to the public and claim that mathematics is everywhere, we could
expect many skeptical faces. . .

Mathematics and its creative role in science, technology and society deserves to
be better known. On the mathematical community side, this could result in more
support of the society to mathematics, more interest of the kids in schools for their
mathematics courses, and more interesting jobs for mathematically trained grad-
uates. On the other side, everyone benefits from the contribution of mathematics
to a better organization of our society, including public health system, manage-
ment of resources, organization of transports. And mathematical breakthroughs
in technology contribute to the creation of high technology companies.

This brings us to the gaps within our communities: gaps between mathemati-
cians and other scientists, between pure and applied mathematicians, between
researchers in mathematical sciences and mathematics educators. Perhaps the
deeper gap lies between what mathematics is and how the public, including politi-
cians and policy makers, sees it.

A challenge for the mathematical community is to convey the beauty and value
of mathematics, that “mathematics is everywhere”. Technology — used by people
everyday — is always an opportunity to explain to the public the power of math-
ematics. More difficult is to convey the idea that abstract ideas too are beautiful
and important and that a brilliant idea can make a breakthrough. At the most
basic level, there is the need to restore everyone’s (especially young people’s) sense
of awe and wonder.

Mathematicians should also be at the forefront of efforts to communicate math-
ematics, and bridge the gaps within the math community and society. Interna-
tional collaboration can make a significant difference. Preparing the right material
for communicating mathematics requires energy and is time consuming, especially
when it is hands-on. Also, anyone of us is always limited by his(her) own taste
of mathematics. Putting the material on line allows sharing resources and using
material on many different topics. Translating existing material can enrich sig-
nificantly the material accessible in a given country. But it does not suffice that
material be on line for it to be used. . .

Each of the four panelists will now present his(her) personal message. The pa-
per will end with a conclusion relating the contribution to the theme that occurred
during the panel itself.

2. Mathematics is everywhere

by Christiane Rousseau
Université de Montréal
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This title is an extraordinary slogan. If you are not convinced, let us give a few
examples.

Mathematics is everywhere in technology. Without mathematics, there would
be no CT Scan. Indeed, a CT Scan only gives a series of numbers, namely the
quantity of energy absorbed along the different rays through the body inside a
plane, i.e. the Radon transform of the image, and the inverse Radon transform al-
lows recovering a 2D image from these scattering data. Now, open your computer:
Google’s algorithm, which is so efficient, relies on the stationary distribution of a
Markov chain: a clever idea created an empire. The small files for the images that
you see on the Web have been compressed using Fourier transform in JPEG for-
mat, or wavelets in JPEG2000. Sensitive data is encrypted using number theory or
algebraic geometry. And your computer is built with transistors that are sophisti-
cated switches: building software ultimately comes to decomposing any operation
into parallel sequences of elementary operations on 0 and 1. More examples in [5].

Mathematics is everywhere in science. Already for more than two thousand
years, mathematics has evolved closely with physics, finding in physics a source
of problems and providing solutions to physical problems. More recently, math-
ematics increased relationships with other sciences, and especially biology. The
spectrum of applications in biology is immense, from the functioning of the cells
or groups of cells and organs including the brain, to the functioning of the full
body, with all the potential medical applications. Other types of applications in-
clude interactions of living populations, spreading and control of infectious diseases,
ecology and ecosystems, and how biodiversity is organized on the planet.

The international year Mathematics of Planet Earth 2013 (MPE2013) had a
very important outreach component with the goal of showing the many applica-
tions of mathematics to, on one hand, discovering, understanding and managing
our planet and, on the other hand, helping facing the planetary challenges of
climate change and sustainability. The unprecedented collaboration around this
international year is certainly explained by the increasing awareness among the
public and the scientists that the planet is in real trouble, and that mathematics
has a role to play in this issues. The theme is much wider than climate change
and sustainability. Putting mathematical “glasses” we can discover the interior of
the Earth by analyzing seismic waves generated by large earthquakes. Studying
the planetary motions inside the solar system allows explaining the past climates
of the Earth, and also the chaotic behavior of the inner planets, from which we
cannot exclude, either a collision between two planets or expelling one planet from
the solar system. The MPE2013 website (www.mpe2013.org) provides resources
for enriching the curriculum and for outreach activities. This makes it easy for
any teacher or professor to address such themes in secondary school, or even in
undergraduate education. It is remarkable that MPE2013 occurred with almost
no budget. This highlights how collaboration can significantly increase the impact
of our outreach activities.

As mathematicians we work too much in isolation, and we should join forces
with scientists to pass the message. I went in December 2013 to the Fall meeting
of the American Geophysical Union and attended an education session. I was very
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impressed by the nice material that was presented, including numerical simulations:
simulation of the formation of the Gran Canyon, simulation of a climate model in
which the user could change the parameters, etc. Such material could easily enrich
the curriculum in several of mathematics courses at the undergraduate level.

Having led MPE2013 since its inception in 2009, I was surprised by the number
of mathematicians and teachers of mathematics who looked first excited by the
theme and then disoriented if they had to produce examples. I would start listing a
few applications simple to explain: how to calculate the length of the day depending
on the season and the latitude, how a sundial works, provided that you correct time
through the equation of time, how to draw a map of the Earth, how the GPS works,
how to model the spread of an epidemic, etc. After a while, my vis-a-vis could
continue the game and provide new examples I had not thought of. This means that
even the convinced people need help to find good answers to questions like “What is
mathematics useful for?”, and “Has everything been found in mathematics?” Yet,
these very important questions deserve significant answers. An answer could start
with “Mathematics is everywhere.”, then list a few applications where mathematics
are hidden, before you continue with explaining the mathematics of your favorite
application.

An example. I am a passionate of popularization of mathematics. I like to
discuss examples and present strong scientific messages out of them. I like powerful
ideas which are unifying in science. One of them comes from Turing’s seminal
paper “The chemical basis of morphogenesis”[6]. It is the idea that the loss of
stability of an equilibrium through diffusion creates patterns. Take a flat stretch
of dry sand and let the wind blow: there will always be a small irregularity that
will stop some grains of sand, starting the beginning of a dune. Since the wind
blows regularly, sand deserts are never flat, but rather covered with dunes. The
same occurs with waves on the lakes and oceans, and with snow sastrugies in
Antarctica. Turing idea’s was that morphogenesis in biology has a chemical origin,
with reaction diffusion phenomena involving several chemical reactants. Initially,
the embryo has spherical symmetry, and the loss of stability of this equilibrium
through diffusion leads to the formation of limbs, nose, ears, etc. The same model
has been introduced in many areas from phyllotaxy when leaves appear along the
stalk to the growth of plants modeled by L-systems ([1]). The L-systems have
been introduced by the biologist, Aristid Lindenmayer. They model the growth of
complex plants by iteration of a small number of operations, similar to iterations
of a few instructions of a cellular automata (see Figure 1).

Reaction-diffusion models have also been proposed for modeling the fractal
patterns appearing on some seashells ([2]), and for the patterns of animal coatings
(see for instance Murray). A discrete version of the reaction-diffusion model can
be given for the pattern of the Cymbiola Innexa REEVE (see Figure 2), which
resembles a lot the Sierpinski carpet. The pattern is generated one line at a time,
similar to the ridges of a real shell. There are two reactants: the activator (A) is
colored and given the value 1, while the inhibitor (I) is white and given the value
0. If one divides the image into pixels, then the pattern is formed iteratively row
by row. The color of a pixel is the sum modulo 2 of the two pixels that touch him
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Figure 1. An example of L-system with two rules. On the figure, appears the initial
condition, a segment of type F , and the first six iterations. The symbol S corresponds
to a stalk piece and the symbol F to a terminal branch. The first rule corresponds to
replacing a terminal branch by a stalk of length 2 and three terminal branches. It is
given by: F 7→ S + [F ]−S + [S]−−[S]. The second rule doubles the length of the stalk:
S 7→ SS. ± corresponds to a rotation of a given angle to the left or to the right, and the
notation [branch] means that we must come back to the beginning of the branch before
starting the next instruction.

by the corner on the preceding row.
The reaction-diffusion model used to describe the patterns of animal coatings

is especially interesting. The same model allows four different types of patterns
(see Figure 3):

• spots;

• labyrinths;

• gaps;

• stripes.

For animal coatings, the patterns which appear depend only on the size and
shape of the surface at the time of the pattern formation. In particular, stripes
usually occur on thin tubular regions. It is especially striking that these four
types of patterns are exactly the ones observed in vegetation patterns. Vegetation
patterns occur when there is not enough water for full vegetation cover. Above
a certain threshold of moisture, vegetation can survive. Spots are observed when
the moisture is minimum, then labyrinths, then gaps. Stripes occur on slopes.

In chemistry, the most famous example is the Belousov-Zhabotinsky reaction-
diffusion, an oscillating reaction creating regular patterns before moving to a
chaotic behavior.

More recently, the model has also been used in the context of ecological inva-
sions, spread of epidemics, tumor growth and wound healing. James Murray has
been particularly active in all these applications.
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(a) A Cymbiola Innexa REEVE (b) A pattern generated by the
model

Figure 2. A Cymbiola Innexa REEVE (Photo credit: Ian Holden, Schooner Specimen
Shells), and a pattern generated by computer, using the discrete reaction-diffusion model
described.

(a) spots (b) labyrinths (c) gaps (d) stripes

Figure 3. The four types of patterns (images provided by A. Provenzale from papers [3]
and [4]). The stripes are perpendicular to the slope.
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3. Using math-glasses in Seoul: a walk in the city
with eyes and mind tuned in on mathematics

by Eduardo Colli
Universidade de São Paulo

The slogan “math is everywhere” is commonly used in math popularization
and is generally accepted and understood by those who teach mathematics. But
when one is faced with the task of convincing someone that this assertion is true
some philosophical issues arise: what exactly is meant by “everywhere”? What
does it mean “is”?

I think that it is more or less a common sense that “everywhere” in real life is
something near the concept of a dense set in mathematics. We cannot escape, in
our urban life, of seeing matters which are closed interrelated with mathematical
concepts. But on the other hand it would be rather pretentious to claim that every
aspect of life or of human life is related to mathematics: think about a conversation
between two old friends, telling each other how about their lives are in that day.
Or think in a film, or in a romance, or in a play. Can we say there is math there?
I would answer “no, at least based on what we know in the present days”.

Moreover, what we mean by saying “there is math here or there”? In fact,
there are some different ways of relate mathematics to what we see in real life. We
give three.

1. One is by means of an application, understood as some technique which
is developed by human beings in order to solve some problem. The GPS tech-
nology is an often cited example: it is based on the mathematical assertion that
in three-dimensional Euclidean space if we know our distance to four points (the
satellites), and these points are in generic position (in this case, there is no three
of them lying in the same line and the four do not lie in the same plane) then
our position is determined. In fact, three satellites suffice if the second solution
can be discarded by other means. The implementation of this principle also uses
more advanced mathematics, since relativity theory must be taken into account
for precise measurement of these distances.

2. Other is by means of relating a phenomenon to a mathematical model, like
a body in free fall. Nature is full of examples of patterns arising from simpler
rules that generate them. Even if this hypothesis is controversial, I assume that
mathematics is in these patterns.

3. A third is when some human being gets inspiration in mathematical concepts
to bring some kind of delight to real life. This is common in architecture, design and
art – see for example the Brazilia Cathedral, which is a hyperboloid of revolution,
or the catenaries present in Gaud́ı’s work, but it may also be the case in the creation
of games – like Hex – and puzzles – like Rubik’s cube. In these cases math appears
purposely but with no intention of solving a problem.
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These three categories are not completely disjoint. For example, an object of
design may seem to be inspired in mathematics, but the designer itself created
it without being aware of its mathematical relations. So the mathematics of the
object appear as a model of the object, as it was created by nature. Other example
is when a good mathematical model of a phenomenon can prove itself useful to
applications only much later than its discovery – for example Newton laws of
mechanics and gravity to explain the movement of planets and much later the
launch of satellites and spaceships. Here the mathematics that we attach to the
phenomenon brings the seed of a technical application.

At the end, mathematics is both language and science, it is both tool and
inspiration, it is application and abstraction. Is is inherent to the human being
and that is why it is everywhere.

The walk. It is endowed with this way of seeing – that we call here “math-
glasses”, a term already used elsewhere – that we will take a quick walk through
Seoul. The reader will easily recognize the three above mentioned ways of seeing
“mathematics everywhere” and I invite him/her to wear math-glasses from now
on in every situation possible.

I won’t reproduce pictures of the visited places, but rather indicate in the
footnotes the internet sources where they can be found. One may also use keyword
searches using the names of places and buildings. It should be clear that this text
was written several months before ICM, so I will be honest to say that in fact I
did not do a true walk, but an ‘internet walk’ in Seoul.

Modern architecture. Our first stop is in front of the (new) Seoul City Hall1.
This building was opened in 2012 and was conceived by Yoo Kerl. It seems that
mathematics have inspired the artistic realization of Kerl’s motivations – see the
composition with triangles, the approximation of an oval surface by polygons and
the curved surface in the facade, resembling a graph of a two variable function,
z = f(x, y), with z in the horizontal direction, perpendicular to the facade.

But apart from the direct mathematical inspiration of this particular building,
it calls our attention to the incredibly powerful tool that mathematics, together
with computers, brought to architects, designers, engineers and other with CAD
– Computer Aided Design. These softwares are the uttermost modern application
of geometry, particularly analytic geometry, linear algebra and curve/surface ap-
proximation and interpolation techniques. Nowadays it is impossible to walk in an
urban area, indoors or outdoors, without seeing buildings and objects that were
first drawn in some software like these.

East Asia ancient architecture. Our next stop is at the hall of Changdeok-
gung Palace, a typical example of East Asia ancient architecture2. I was astonished
to find that mathematics is also used to master the conception of new buildings in

1I like the picture of Minseok Kims Blog, at linkwind.blogspot.com.br/2012/11/new-city-hall-
of-seoul.html.

2There is a nice picture at en.wikipedia.org/wiki/Changdeokgung.
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this style, also taking into account the differences in style of japanese, chinese and
korean cultures. In [7] and references therein it is discussed the procedural mod-
eling of this kind of construction through CAD softwares where the user simply
chooses some parameters and the basic structure of walls and roofs is automatically
drawn following a prescribed algorithm.

In this case, human beings are modeling the creation of other human beings
and, as a result, establishing a path to preserving cultural heritage.

New branches of geometry thinking: packing. If we have children with us,
why not spending some time in a candy store, with its plastic cylinders fulfilled with
colored candies? Those who wear math-glasses easily recognize matters related to
sphere packing. Although children are mostly interested on colors, tastes and
textures, the seller could be particularly wondering whether one of his/her packing
cylinders lets less or more empty space accordingly to the size of the balls inside.

Reasoning in simple term shows that we may not expect great differences as a
function of the ball sizes, since locally the ratio between empty and filled space is
the same, independently of the size, as long as the balls have the same size. Of
course we have to neglect the effects of the wall, but they are small when the balls
are much smaller than the cylinder radius.

The sphere packing problem in infinite three-dimensional Euclidean space has
challenged mathematicians for three centuries with the so called Kepler conjecture,
stating that π√

18
is the best density possible for equal spheres. A computer-assisted

proof has been provided by Hale and Ferguson, and they are working on a proof
that could be checked by an automatic proof checker program3.

Parabolas or not? Night is falling and we go take a look at the Moonlight
Rainbow Fountain, at Banpo Bridge4. We immediately identify the parabolic
shapes of the jets. Are they really parabolic? If there was not air resistance, they
would be.

But suddenly each jet goes out with different slope5. What would we see
if we were placed at the beginning of the bridge, looking sideways at the jets?
(see Figure 3). We assume that despite the different slopes, the water goes out
always with the same velocity. The jets fulfill a portion of the sight plane, which
is bounded by a curve: the envelope. What curve does give the envelope? The
answer is surprising: it is also a parabola!

The introduction of air resistance complicates things a little bit and trajectories
are no longer parabolic. If it was a thrown object, a good model for air resistance
is a force proportional to the square of the absolute velocity and opposite to the
velocity vector. Therefore the parametrization of the trajectory would be the
solution of the second order ordinary differential equation (ẍ, ÿ) = (0,−mg) −
α
√
ẋ2 + ẏ2 (ẋ, ẏ).

3See en.wikipedia.org/wiki/Kepler conjecture.
4en.wikipedia.org/wiki/Banpo Bridge
5In the link spreadsomeawesome.com/2011/09/29/han-gang-river-cruise-in-south-korea/ one

can see a picture where the jet slopes vary sinusoidally.
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Figure 4. Parabolic fountain jets viewed from sideways. Each jet is launched at the same
velocity V0. The dotted line shows the envelope.

Notice also that each jet can have its own color, an effect that can be obtained
injecting light aligned with the water outlets. Then light is imprisoned in the jet,
which is a very interesting effect of total reflection, when the angle of the incident
ray is so small that there is no refraction, a simple consequence of Snell’s law. This
principle is used in the construction of optical fibers.

Traffic jam. Now it is time to go back to the hotel, but traffic conditions are
not favorable. Why are there traffic jams even in open roads without any traffic
signals or car accidents?

The flow on a road can be modeled in many ways and one of them is supposing it
is a continuous (see [9], for example). This continuous has three time-and-position-
dependent relevant variables: flow q = q(x, t), in cars per second, concentration
k = k(x, t), in cars per meter, and speed v = v(x, t), in meters per second. These
three variables are related by two simple equations, in such a way that it suffices to
study only one of them. The space and time evolution of this remaining variable
is then ruled by a partial differential equation, that can explain wave effects of the
traffic. This equation is an example of conservative laws, which deserves a whole
mathematical area on its own.

A group in Japan [11] shows experiment and analysis with real cars in a circular
lane (a video recording can also be seen). From the video it is clear that, at least
for a high concentration, constant concentration is an unstable state.

Subway queues. Giving up to get a taxi drive in the traffic jam, maybe the
subway is a good alternative. But subways have queues in the platforms [8]. People
arrive at the platform of train line obeying to some probabilistic distribution law,
in general something like a Poisson distribution, that says the probability of k
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people arrive between two train departures. On the other hand, there is a matrix
assigning probabilities of getting out at a station given that the passenger got in
at some other station.

With enough data the subway administration could then calculate the probabil-
ity of having a queue exceeding the capacity of the platform, avoiding dangerous
situations. Or they could carry on a careful study about the ideal time lapse
between two trains.

A hands-on 3-sphere. I am tired and not willing to face these queues. Better
spending time at a coffee shop, playing with a souvenir that I have found in some
trinket shop, the magical folding cube (Figure 3)6.

Figure 5. Magic folding cube.

But I am still wearing my math-glasses. I start wondering what if this object
was a kind of spacecraft of 8 chambers (the smaller cubes), each face of the chamber
with a door that opens only when there is another chamber at the other side of
the wall. This situation is achieved by a suitable articulation of the spaceship that
makes the walls touch. There is no door to the outside, only doors that connect
one chamber to the other. An astronaut in this spacecraft, where does he/she live?

The answer is: he/she lives in a 3-sphere! The 3-sphere is the only compact
orientable simply connected manifold of dimension three, but this we know only
now, after G. Perelman has proven a conjecture of Poincaré that stood unanswered
for more than one hundred years!

Conclusion. In this one day walk we saw geometry in its pure form or related
to modern aspects like interpolation and packing; ordinary and partial differential
equations; statistics and probability; and topology. Further exploration can go
much further than I did in the above paragraphs. The examples could be not only
directly used in classroom, but also be a source of inspiration in the task of seeking
out day-by-day examples.

6Taken from www.gyroscope.com
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4. Bridging gaps and communicating mathematics

by Fidel Nemenzo
University of the Philippines

In the late 50s, the British intellectual C.P. Snow, in his famous lecture ‘The
Two Cultures’, lamented the fragmentation of the learning in the academe and the
widening gap between the humanities/social sciences and the sciences. His lecture
drew attention to the failure of specialists to communicate their ideas across the
boundaries of their disciplines.

There are gaps too within our mathematical community, brought about by
specialization and the different ‘languages’ we speak. There is the gap between
‘pure’ and ‘applied’ mathematics, between research mathematicians and mathe-
matics educators.

But perhaps the deeper gap lies between those who do and teach mathematics
on one hand, and those who use mathematics– everyone! This is a gap between
what mathematics is and how the public sees it. The lack of understanding and
appreciation of mathematics on the part of the public has grave implications on our
students’ education, our school systems and government policy. In some countries,
funding support for mathematics and the basic sciences is dwindling, in favor of
the applied disciplines which are seen to have more ‘direct’ benefits to industry
and society. This underscores the need to communicate the beauty and power of
mathematics to the broadest possible audience and convey the message that math-
ematics is part of almost every aspect of our lives.

Like ordinary language, mathematics allows one to represent and communicate
ideas and meanings. It has been described as the language for the study of pat-
terns about quantity, space and shape, and structure. Mathematics is abstract,
but because of its precision, it is the language of science, helping us model and
understand the natural and physical world and providing the ideas that power
modern technology. In fact, it is also increasingly becoming part of the language
for understanding and modeling social phenomena in a diverse range of disciplines
such as economics and sociology.

Technology — ubiquitous and used by people everyday — gives us an oppor-
tunity to explain to the public the powers of mathematics.

Take for example, error-correction codes. Human beings are equipped with
the ability to detect and correct errors, and thus we are able to read and correct
the following corrupted message: “you can raed a taotl mses wouthit a porbelm.
This is bcuseae the human mnid deos not raed ervey lteter by istlef, but the word
as a wlohe.”Word processing programs too have error correction: MS Word can
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convert the mistyped word ‘mathemaitsc’ to the correctly spelt ‘mathematics’, by
identifying the corrupted word with the ‘closest’ item in its collection of legitimate
words. This implies the use of some notion of ‘distance’ between words.

It is a safe assumption that errors occur whenever we transmit data or informa-
tion across ‘noisy’ channels. Data can be text messages, digital images, sound or
movie files, etc. Coding theory is the mathematics behind the packaging of infor-
mation so that we are able to efficiently transmit the information, and detect and
correct the errors. The idea is to construct abstract mathematical objects called
‘codes’ which are used to represent the data one wishes to transmit. Good codes
are equipped with algebraic structure and some notion of ‘distance’ that allows
efficient error detection and correction. The traditional codes are constructed as
vector spaces over finite fields. But in the last two decades there has been growing
interest in codes over finite rings. There is also a class of codes built from algebraic
curves over finite fields.

Originating from the works of Shannon and Hamming during the mid-20th
century, and clearly motivated by the requirements of engineering and information
technology, research in coding theory draws ideas from many fields of mathemat-
ics, such as number theory, ring and field theory, linear algebra, combinatorics and
geometry. Coding theory is the mathematics working behind the scene in many
of the gadgets and machines we use everyday — such as mobile phones, CD and
DVD players, etc.

Prime numbers — the building blocks of the integers — are both fascinat-
ing and mysterious. They have pleasing properties that are a source of delight
for school children, amateur number enthusiasts and professional mathematicians.
They also baffle, and give rise to many open problems in mathematics. One par-
ticular problem is computational: given an integer, decompose it as a product of
prime factors (prime factorization). There is no known efficient algorithm for this,
and the difficulty of prime factorization serves as the basis for the security of well-
known public key cryptosystems, such as the RSA cryptosystem. Cryptosystems
are methods of encrypting (and decrypting) information for secure transmission.

Another mathematical object used in cryptography is an elliptic curve, whose
properties can be used to construct cryptosystems with higher security and shorter
keys. Elliptic curves are smooth cubic curves whose points are endowed with some
neat algebraic structure (over the rationals, a finitely generated abelian group)
and arithmetic. Although they have been studied as asbstract objects for the past
150 years, elliptic curves have some surprising applications. Andrew Wiles’ proof
of Fermat’s Last Theorem (1995) is based on the modularity of elliptic curves.
About thirty years ago, elliptic curve cryptosystems were introduced as an alter-
native to the standard RSA-type methods ([12], [13]). A point on a curve (defined
over finite fields) can easily be multiplied by an integer, but it is very difficult to
compute the number, given the original point and the result. The security of el-
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liptic curve cryptosystems is based on the difficulty of this computational problem.

Everyday, most people use and enjoy the benefits of technology such as their
mobile phones, digital cameras and the internet, unaware these run on the power
of mathematical ideas.

More than 50 years ago, the mathematician G.H. Hardy once rejoiced in the
‘uselessness’ of number theory, “whose very remoteness from ordinary human ac-
tivities”, he said, “should keep it gentle and clean.” [14] Today, number theory
— the study of numbers, such as prime numbers — is no longer seen as ‘useless’.
Like coding theory, it works behind the scenes in the internet, securing our email
and financial transactions, authenticating sources of data, and ensuring the safe
passage of information. This is the irreversible trend in mathematics — the di-
visions between the pure and the applied are breaking down. Abstract ideas in
mathematics, developed for their own sake, are now finding new applications. And
conversely, problems in physics, IT and engineering, the physical and biological
sciences, are stimulating new research in mathematics.

While the main task of mathematicians is to do mathematics, they should share,
with educators, the responsibility of promoting the right attitude towards math-
ematics, among students, the popular media, our governments, and the broader
public. A well-informed public is necessary for a public culture that is supportive
of mathematics. There are too many biases, fears and misconceptions out there
about our discipline that should be dispelled in all possible arenas, including social
media. Mathematicians should be at the forefront of communicating the delight,
beauty and power of mathematics as both language and tool, and dispelling the
stereotype of a mathematician as a performer of mental acrobatics, cut off from
society. An educated public need not have a grasp of equations and formulas, but
should understand the role of mathematics in shaping our world.

5. Conclusion.

The different contributions have highlighted the challenges facing our mathemati-
cal community. On the one hand, the suggested title of this panel, “Mathematics is
everywhere”, is a fascinating slogan that would deserve to be exploited more often,
both in terms of strong messages in science and technology, but also as a game to
be played when we look around us and dismantle what we see to discover the math-
ematics hidden in so many objects or phenomena around us. On the other hand,
the image of our discipline still needs improvement, and our community is facing
challenges mainly in terms of communication, collaboration between communities,
and preparation of messages, resources and material to communicate. We should
join forces to improve the situation, especially considering the fact that, with the
web, it is easier than ever to share resources and spread the message to the largest
public possible.
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