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1. Introduction

Cluster fans were introduced by S. Fomin and A. Zelevinsky in their work on cluster
algebras [6]. To each Weyl group there corresponds a cluster fan which encodes im-
portant algebraic information including the exchange graph of the corresponding cluster
algebra. One very natural problem is to find realizations of these fans as (outer) normal
fans of simple polytopes. This was first accomplished by F. Chapoton, S. Fomin, and
A. Zelevinsky in [4]: for each Weyl group W , they construct a simple convex polytope
whose normal fan is the cluster fan. Such a polytope is called a generalized associahedron
of type W .

A related family of fans was introduced by N. Reading. For every finite Coxeter group
W , and every choice of Coxeter element c, he defined a fan, called the c-Cambrian fan
[18] and denoted Fc. N. Reading conjectured that every Cambrian fan is the normal fan
of a polytope [18, Conjecture 1.1]. In [21], N. Reading and D. Speyer showed that all
Cambrian fans for a given Coxeter group are combinatorially isomorphic to the corre-
sponding cluster fan. However, since Cambrian fans are typically not linearly isomorphic
to cluster fans, the polytopes of [4] do not suffice to resolve N. Reading’s conjecture. We
call a polytope whose normal fan is the c-Cambrian fan, a c-generalized associahedron.
Our goal in this paper is to prove N. Reading’s conjecture, by constructing a c-generalized
associahedron for all finite Coxeter groups W and Coxeter elements c.
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Subsequently, a third construction of a fan associated to a cluster algebra was intro-
duced by S. Fomin and A. Zelevinsky [7], the g-vector fan. The definition of the g-vectors
associated to a cluster algebra is less elementary than the definition of the denomina-
tor vectors of the cluster algebra (which define the rays of the cluster fan) but in some
respects, the g-vectors are better-behaved. In [21], N. Reading and D. Speyer conjec-
tured that Cambrian fans are linearly isomorphic to g-vector fans of finite type cluster
algebras with respect to an acyclic initial seed. They proved this conjecture modulo the
assumption of a conjecture of [7]. The conjecture of N. Reading and D. Speyer was later
proved by different methods by S.-W. Yang and A. Zelevinsky [29]. Thus, in studying
Cambrian fans, we are also studying g-vector fans for cluster algebras of finite type with
respect to an acyclic initial seed.

We now discuss further our approach to constructing polytopes having a Cambrian
fan as normal fan. In order to do this, we have to go further back into the past. For
symmetric groups, that is for Coxeter groups of type A, the generalized associahedron is
combinatorially isomorphic to the classical associahedron Asso(Sn), whose combinatorial
structure was first described by J. Stasheff in 1963 [27]. Numerous realizations of the
associahedron have been given, see [4, 13] and the references therein.

We will be particularly interested in a realization of Asso(Sn) which is closely related
to the permutahedron, whose definition we now recall. Let (W,S) be a finite Coxeter
system acting by reflections on an R-Euclidean space. Let aaa be a point in the complement
of the hyperplanes corresponding to the reflections in W . The convex hull of the W -orbit
of aaa is a simple convex polytope known as a permutahedron, and denoted Perm

aaa(W ).
The normal fan of Permaaa(W ) is the Coxeter fan F .

An elegant and simple realization of Asso(Sn) defined by a subset of the inequalities
defining the permutahedron Perm(Sn), is due to S. Shnider & S. Sternberg [24] (for a
corrected version consider J. Stasheff & S. Shnider [28, Appendix B]). This polytopal
realization of the associahedron from the permutahedron has also been studied by J.-
L. Loday [13], and is often referred to as Loday’s realization. It is this construction which
we generalize here, for any finite Coxeter group.

For Coxeter groups of types A and B, the first two authors recently gave a Loday-
type realization of any c-generalized associahedron [8], and they showed that Loday’s
realization of the associahedron is a c-generalized associahedron for a particular c. For
hyperoctahedral groups, that is Coxeter groups of type B, the generalized associahedron
is called a cyclohedron. It was first described by R. Bott and C. Taubes in 1994 [3]
in connection with knot theory, and rediscovered independently by R. Simion [25]. See
also [4, 14, 16, 22, 25]; none of these realizations is similar to Loday’s (type A) realization.

Our construction of the c-generalized associahedron is very straightforward. Start
from Perm

aaa(W ) and its H-representation as a non-redundant intersection of half spaces.
Those half spaces correspond bijectively to rays of the Coxeter fan. The rays of the c-
Cambrian fan Fc are a subset of those rays, and therefore determine a subset of the half
spaces defining Perm

aaa(W ). The intersection of this subset of the half spaces is a polytope
whose normal fan is the c-Cambrian fan (Theorem 4.4), and thus is by definition a c-
generalized associahedron, which we denote by Asso

aaa
c (W ).

We give another description of the half spaces whose intersection defines Assoaaac (W ),
as follows. The maximal cones of the Coxeter fan are naturally identified with the
elements of W . Each maximal cone of the c-Cambrian fan Fc is the union of one or more
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Figure 1: Obtaining the associahedron from the permutahedron for the Coxeter group S4 and
Coxeter element c = s1s2s3. The left picture shows the permutahedron with the facets contained
in the boundary of c-admissible half spaces translucent and the facets contained in the boundary
of non c-admissible half spaces shaded. The picture to the right shows the associahedron obtained
from the permutahedron after removal of all non c-admissible half spaces.

maximal cones of the Coxeter fan. The elements of W corresponding to cones of the
Coxeter fan which are also cones of Fc are called c-singletons. A half space H of the
H-representation of Permaaa(W ) is called c-admissible iff its boundary contains a vertex
of Permaaa(W ) that corresponds to a c-singleton. It is exactly the c-admissible half spaces
whose intersection defines Assoaaac (W ). Note that this description of the half spaces used
to define Asso

aaa
c (W ) is not needed for the proof of Theorem 4.4. However, it is crucial in

the concrete combinatorial description of the c-generalized associahedra.
See Figures 1 and 2 for illustrations of the contruction of c-generalized associahedra by

intersecting the c-admissible half spaces while ignoring the non c-admissible half spaces.

Additionally, if W is a Weyl group and the vertices of the permutahedron Perm
aaa(W )

are chosen in a suitable lattice associated to W , then we show that Assoaaac (W ) has integer
coordinates in this lattice (Theorem 4.16).

Another interesting aspect of this construction is that we are able to recover the
c-cluster complex: relating cluster fans to quiver theory, R. Marsh, M. Reineke and
A. Zelevinsky introduce in [15] what N. Reading and D. Speyer call the c-cluster fan
in [21], and its associated simplicial complex the c-cluster complex. A c-cluster fan is
a generalization of the cluster fan to any finite Coxeter group W and Coxeter element
c ∈ W (c bipartite is then the traditional case); its applications in quiver representations
are most natural for W of types A, D and E.

By replacing the natural labeling of the maximal faces of Assoaaac (W ) by a labeling
that uses almost positive roots only, we obtain the c-cluster complex. This replacement
is determined by an easy combinatorial rule determined by c-singletons as stated in
Theorem 3.6. This suggests that these constructions will play an important role in the
study of c-cluster complexes and related structures.

This paper is organized as follows. In §2, we recall some facts about finite Coxeter
groups, Coxeter sortable elements, and Cambrian lattices. Additionally, the important
notion of a c-singleton is defined and fundamental properties are proven. In §3, we
recall some facts about fans, in particular Coxeter and Cambrian fans, and give a precise
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Figure 2: Obtaining the associahedron from the permutahedron for the Coxeter group S4 and
Coxeter element c = s2s1s3. The left picture shows the permutahedron with the facets contained
in the boundary of c-admissible half spaces translucent and the facets contained in the boundary
of non c-admissible half spaces shaded. The picture to the right shows the associahedron obtained
from the permutahedron after removal of all non c-admissible half spaces.

combinatorial description of the set of rays of Cambrian fans based on c-singletons. In §4,
we state and prove our main result (Theorem 4.4). Finally, in §5 we study some specific
examples of finite reflection groups. We work out the dihedral case explicitly to show that
the vertex barycentres of the permutahedra and associahedra coincide and we explain how
the realizations given in [8] for type A and B are particular instances of the construction
described in this paper.

In a sequel [1], we describe the isometry classes of these realizations.
The construction presented in this article has been implemented as the set of functions

CAMBRIAN to be used with the library CHEVIE for GAP3 [23, 5] and can be found on the
first author’s web page, [9].
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2. Coxeter-singletons and Cambrian lattices

Let (W,S) be a finite Coxeter system. We denote by e the identity of W and by
ℓ : W → N the length function on W . Let n = |S| be the rank of W . Denote by w0 the
unique element of maximal length in W .
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The (right) weak order ≤ on W can be defined by u ≤ v if and only if there is a
v′ ∈ W such that v = uv′ and ℓ(v) = ℓ(u) + ℓ(v′). The descent set D(w) of w ∈ W is
{s ∈ S | ℓ(ws) < ℓ(w)}. A cover of w ∈ W is an element ws such that s /∈ D(w).

The subgroup WI generated by I ⊆ S is a (standard) parabolic subgroup of W and
the set of minimal length (left) coset representatives of W/WI is given by

W I = {x ∈ W | ℓ(xs) > ℓ(x), ∀s ∈ I} = {x ∈ W |D(x) ⊆ S \ I}.

Each w ∈ W has a unique decomposition w = wIwI where wI ∈ W I and wI ∈ WI .
Moreover, ℓ(w) = ℓ(wI) + ℓ(wI), see [10, §5.12]. The pair (wI , wI) is often called the
parabolic components of w along I. For s ∈ S we follow N. Reading’s notation and set
〈s〉 := S \ {s}.

Let c be a Coxeter element of W , that is, the product of the simple reflections of W
taken in some order, and fix a reduced expression for c.

2.1. c-sortable elements

For I ⊂ S, we denote by c(I) the subword of c obtained by considering only simple
reflections in I. Obviously, c(I) is a Coxeter element of WI . For instance, take W = S5

and S = {si | 1 ≤ i ≤ 4} where si denotes the simple transposition (i, i + 1). If c =
s1s3s4s2 and I = {s2, s3} then c(I) = s3s2. Consider the possible ways to write w ∈ W
as a reduced subword of the infinite word c∞ = cccccc . . . . In [19, §2], N. Reading
defines the c-sorting word of w ∈ W as the reduced subword of c∞ for w which is
lexicographically first as a sequence of positions. The c-sorting word of w can be written
as c(K1)c(K2) . . . c(Kp) where p is minimal for the property:

w = c(K1)c(K2) . . . c(Kp) and ℓ(w) =

p∑

i=1

|Ki|.

The sequence c(K1), . . . , c(Kp) associated to the c-sorting word for w is called c-factoriza-
tion of w. The c-factorization of w is independent of the chosen reduced word for c but
depends on the Coxeter element c. In general the c-factorization does not yield a nested
sequence K1, . . . ,Kp of subsets of S. An element w ∈ W is called c-sortable if and only
if K1 ⊇ K2 ⊇ . . . ⊇ Kp. It is clear that for any chosen Coxeter element c, the identity e
is c-sortable, and Reading proves in [19] that the longest element w0 ∈ W is c-sortable as
well. The c-factorization of w0 is of particular importance for us and is denoted by w0.
To illustrate these notions, consider W = S4 with generators S = {s1, s2, s3}. The weak
order of S4 with elements represented by their c-factorization is shown in Figure 3 for
c = s1s2s3 and Figure 4 for c = s2s1s3 (the delimiter ‘|’ indicates the end of Ki and
the beginning of Ki+1). Moreover, the background colour carries additional information:
The background of w is white if and only if w is c-sortable.

2.2. c-Cambrian lattice

N. Reading shows that the c-sortable elements constitute a sublattice of the weak
order of W which is called the c-Cambrian lattice, [18, 20]. A Cambrian lattice is also a
lattice quotient of the weak order on W . In particular, there is a downward projection πc

↓

from W to the c-sortable elements of W which maps w to the maximal c-sortable element
below w. Hence, w is c-sortable if and only if πc

↓(w) = w, [20, Proposition 3.2]. It is easy
6



s1s2s3|s1s2|s1

s1s2s3|s1s2 s1s2s3|s2|s1 s2s3|s1s2|s1

s1s2s3|s1 s1s2s3|s2 s2s3|s1s2 s1s3|s2|s1 s2s3|s2|s1

s1s2s3 s1s2|s1 s2s3|s1 s1s3|s2 s2s3|s2 s3|s2|s1

s1s2 s2|s1 s1s3 s2s3 s3|s2

s1 s2 s3

e

Figure 3: c = s1s2s3

to recover πc
↓ in Figure 3 and 4. A c-sortable element w (white background) is projected

to itself; an element w which is not c-sortable (coloured background) is projected to
the (maximal) boxed c-sortable element below the coloured component containing w.
For instance in Figure 4, we consider c = s2s1s3 and have πc

↓(s2s3s2) = s2s3s2 and
πc
↓(s3s2s1) = πc

↓(s3s2) = πc
↓(s3) = s3.

We say that w ∈ W is c-antisortable if ww0 is c−1-sortable. We therefore have a
projection π↑

c from W to the set of c-antisortable elements of W which takes w to the
minimal c-antisortable element above w. For example we have π↑

c (s1s3) = s1s3s2s1s3 in
Figure 4. The maps πc

↓ and π↑
c have the same fibres, that is,

(
πc
↓

)−1
πc
↓(w) =

(
π↑
c

)−1
π↑
c (w).

These fibers are intervals in the weak order as shown by N. Reading, [20, Theorem 1.1]
and the fibre that contains w is [πc

↓(w), π
↑
c (w)].

2.3. c-singletons

We now introduce a important subclass of c-sortable elements: an element w ∈ W is

a c-singleton if and only if
(
πc
↓

)−1
(w) is a singleton. It is easy to read off c-singletons in

Figures 3 and 4: An element is a c-singleton if and only if its background colour is white
and it is not boxed, so, for example, s2s1s3 in Figure 4 is a c-singleton while neither
s1s3s2 nor s2s3s2 are c-singletons.

We now prove some useful properties of c-singletons.
7



s2s1s3|s2s1s3

s2s1s3|s2s3 s1s3|s2s1s3 s2s1s3|s2s1

s2s1|s2s3 s1s3|s2s3 s2s1s3|s2 s1s3|s2s1 s2s3|s2s1

s1|s2s3 s2s1|s2 s2s1s3 s1s3|s2 s2s3|s2 s3|s2s1

s1|s2 s2s1 s1s3 s2s3 s3|s2

s1 s2 s3

e

Figure 4: c = s2s1s3.

Proposition 2.1. Let w ∈ W . The following propositions are equivalent.
(i) w is a c-singleton;
(ii) w is c-sortable and ws is c-sortable for all s /∈ D(w);
(iii) w is c-sortable and c-antisortable.

Proof. ‘(i) is equivalent to (iii)’ and ‘(i) is equivalent to (ii)’ follow from the fact that the
fibre containing w is [πc

↓(w), π
↑
c (w)] and that the map πc

↓ is order preserving.

It follows that w0 and e are c-singletons.

The word property, see [2, Theorem 3.3.1], says that any pair of reduced expressions
for w ∈ W can be linked by a sequence of braid relation transformations. In particular,
the set

S(w) := {si ∈ S | si appears in a reduced expression for w} =
⋂

I⊂S
w∈WI

I

is independent of the chosen reduced expression for w. It is clear that w ∈ WS(w) and
that S(w) = K1 if w is c-sortable with c-factorization c(K1)c(K2) . . . c(Kp).

Two reduced expressions for w ∈ W are equivalent up to commutations if they are
linked by a sequence of braid relations of order 2, that is, by commutations. Let u,w be
reduced expressions for u,w ∈ W . Then u is a prefix of w up to commutations if u is
the prefix of a reduced expression w′ and w′ is equivalent to w up to commutations. We
now state the main result of this section. Its proof is deferred until after Proposition 2.7.

8



e

s1

s1s2

s1s2s3

s1s2s1

s1s2s3s1

s1s2s3s1s2

s1s2s3s1s2s1

c = s1s2s3

e

s3

s3s2

s3s2s1 s3s2s3

s3s2s1s3

s3s2s1s3s2

s3s2s1s3s2s3

c = s3s2s1

e

s2

s2s3 s2s1

s2s1s3

s2s1s3s2

s2s1s3s2s1

s2s1s3s2s3

s2s1s3s2s1s3

c = s2s1s3

e

s1 s3

s3s1

s3s1s2

s3s1s2s1 s3s1s2s3

s3s1s2s3s1

s3s1s2s3s1s2

c = s3s1s2

Figure 5: There are four Coxeter elements in S4. Each yields a distributive lattice of c-singletons.

Theorem 2.2. Let w be in W . Then w is a c-singleton if and only if w is a prefix of w0

up to commutations.

Remark 2.3. For computational purposes, it would be interesting to find a nice combi-
natorial description of w0.

Example 2.4. Let W = S4 with set of generators S = {si | 1 ≤ i ≤ 3} and Coxeter
element c = s2s1s3. The c-singletons of W are

e, s2s3, s2s1s3s2s1,
s2, s2s1s3, s2s1s3s2s3, and
s2s1, s2s1s3s2, w0 = s2s1s3s2s1s3.

We see here that s2s3 is not a prefix of s2s1s3s2s1s3, but it does appear as a prefix after
commutation of the commuting simple reflections s1 and s3.

Proposition 2.5. The c-singletons constitute a distributive sublattice of the (right) weak
order on W .

Examples of these distributive lattices for W = S4 are given in Figure 5.

Proof. Let L be the set of subsets P ⊂ {1, . . . , ℓ(w0)} with the property that the reflec-
tions at positions i ∈ P of w0 can be moved by commutations to form a prefix wP of w0.
This prefix wP represents wP ∈ W . Note that ℓ(wP ) = |P | because wP is a prefix up
to commutation of a reduced word for w0. The set L is partially ordered by inclusion
and forms a distributive lattice with P1 ∨P2 = P1 ∪P2 and P1 ∧P2 = P1 ∩ P2 according
to [26, Exercise 3.48]. (In particular, P1 ∪ P2, P1 ∩ P2 ∈ L if P1, P2 ∈ L).

We claim that P 7−→ wP is an injective lattice homomorphism.
First we check injectivity. Suppose wP = wQ for P 6= Q. Since wP and wQ are

reduced expressions, we have |P | = |Q| = r. Let P = {p1, . . . , pr} and Q = {q1, . . . , qr}
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with pi < pi+1 and qi < qi+1. Without loss of generality, let the smallest element in
(P ∪ Q) \ (P ∩ Q) be pi. Let s ∈ S be the reflection at position pi of w0, then s also
appears at some qj with qj > pi. When moving the reflections in Q to the front of w0,
the s that started at qj must pass the s at pi, but this implies that the expression for w0

would not be reduced at this step, which is contrary to our assumption. Thus the map
is injective.

We show that P 7−→ wP respects the lattice structures of L and W . Let P,Q ∈ L
and R = P ∩ Q. Since R ∈ L, wR is a prefix of w0 up to commutations. In particular,
it is also a prefix of wP and wQ up to commutations. Hence we have wR ≤ wP and
wR ≤ wQ. We obtain wP\R and wQ\R from wP and wQ by deletion of all reflections
that correspond to an element of R and conclude wP = wRwP\R and wQ = wRwQ\R.
We have S(wP\R) ∩ S(wQ\R) = ∅ since w0 is reduced. The proof is by contradiction
and is similar to the proof of injectivity. Therefore, no element of W is above wR and
below wP and wQ. We have shown wR = wP ∧ wQ with respect to the weak order
on W . A similar argument proves wT = wP ∨ wQ with respect to the weak order on W
where T = P ∪ Q: S(wT\P ) ∩ S(wT\Q) = ∅ implies that no w ∈ W below wR and
above wP and wQ exists.

The following lemma characterizes the elements that cover a c-singleton.

Lemma 2.6. Let c(K1) . . . c(Kp) be the c-factorization of the c-singleton w ∈ W and
s /∈ D(w). Then the c-factorization of the cover ws of w is either c(K1) . . . c(Kp)c(s) or
c(K1) . . . c(Ki∪{s}) . . . c(Kp).

If ws = c(K1) . . . c(Ki∪{s}) . . . c(Kp) then i is uniquely determined and s commutes with
every r ∈ Ki+1 ∪ L where L satisfies c(Ki∪{s}) = c(Ki\L) s c(L).

Proof. If s ∈ Kp then c(K1) . . . c(Kp)c(s) is obviously the c-factorization for ws. So we
assume s /∈ Kp. As w is a c-singleton, ws is c-sortable with c-factorization c(L1) . . . c(Lq)

where L1 ⊇ . . . ⊇ Lq. As s ∈ D(ws), there is a unique 1 ≤ i ≤ q and r ∈ Li such that
w = (ws)s = c(L1) . . . c(Li\{r}) . . . c(Lq) by the exchange condition.

Case 1: Suppose i = 1, i.e. i = 1 is the unique index such that

w = (ws)s = c(L1\{r})c(L2) . . . c(Lq). (1)

Case 1.1: r /∈ K1. Then r /∈ S(w) and s = r because r ∈ S(ws) = S(w) ∪ {s}.
Since any two reduced expressions of ws are linked by braid relations according to Tits’
Theorem, [2, Theorem 3.3.1] and since s /∈ S(w), we conclude that we have to move s
from the rightmost position to the left by commutation. In other words, s commutes
with K2 ∪ L.
Case 1.2: r ∈ K1 = S(w). As c(L1\{r})c(L2) . . . c(Lq) is reduced and L2 ⊇ · · · ⊇ Lq is
nested, we have r ∈ L2. Hence

K1 = S(w) = (L1 \ {r}) ∪ L2 = L1 ∪ L2 = L1.

Thus c(L2) . . . c(Lq) and c(K2) . . . c(Kp)s are reduced expressions for some ŵ ∈ W and
s ∈ D(ŵ). The exchange condition implies the existence of a unique index 2 ≤ j ≤ q and
t ∈ Lj such that

ŵs = c(L2) . . . c(Lj\{t}) . . . c(Lq).

10



In other words
w = c(L1)ŵ = c(L1)c(L2) . . . c(Lj\{t}) . . . c(Lq)

is reduced. But this contradicts the uniqueness of i = 1 in Equation (1). So r /∈ K1 and
we have finished the first case.

Case 2: Suppose i > 1, then K1 = S(w) = L1. Set ν := min(p, i − 1) and iterate the
argument for c−1

(L1)
w, c−1

(L2)
c−1
(L1)

w, . . . to conclude Lj = Kj for 1 ≤ j ≤ ν. If ν = p then

i = q = p + 1 and Li \ {r} = ∅. So Li = {s} ⊆ Li−1 = Kp which contradicts s /∈ Kp.
Thus ν = i− 1 for some i ≤ p and Lj = Kj for 1 ≤ j ≤ i− 1. We may assume i = 1 and
are done by Case 1.

Proposition 2.7. Let w be a c-singleton and w its c-sorting word. Any prefix of w up
to commutations is a c-singleton.

Proof. Let c(K1) . . . c(Kp) denote the c-factorization of w. It is sufficient to show that the
prefix w′ up to commutations of length ℓ(w)− 1 is a c-singleton. There is 1 ≤ i ≤ p and
r ∈ Kp such that w′ = c(K1) . . . c(Ki\{r}) . . . c(Kp) is the c-factorization of w′. It remains
to show that w′s is c-sortable for s /∈ D(w′).

Case 1: Suppose s ∈ D(w). Recall the definition of the Bruhat order ≤B on W : u ≤B v
in W if an expression for u can be obtained as a subword of a reduced expression of v,
see [2, Chapter 2]. The lifting property of the Bruhat order, see [2, Proposition 2.2.7],
implies w′s ≤B w. Moreover ℓ(w′s) = ℓ(w′) + 1 = ℓ(w). Thus w = w′s and s = r. In
particular w′s = w is c-sortable.

Case 2: Suppose s /∈ D(w), in particular s 6= r. So ws is c-sortable and by Lemma 2.6
there are two cases to distinguish: either c(K1) . . . c(Kp)c(s) or c(K1) . . . c(Kj∪{s}) . . . c(Kp)

is the c-factorization of ws.
Case 2.1: Suppose c(K1) . . . c(Kp)c(s) is the c-factorization of ws. Then s ∈ Kp and
the c-factorization of w′s is c(K1) . . . c(Ki\{r}) . . . c(Kp)c(s). In particular, the sequence
K1 ⊇ . . . ⊇ Ki \ {r} ⊇ . . . ⊇ Kp ⊇ {s} is nested and w′s is c-sortable.
Case 2.2: If c(K1) . . . c(Kj∪{s}) . . . c(Kp) is the c-factorization of ws then either s and r
commute or not.

Suppose first that s and r do not commute. Then j = i and r appears before s
in the chosen reduced expression of c, since s commutes with all simple reflections to
the right of the rightmost copy of s in the c-factorization of ws by Lemma 2.6. Then
w′s = c(K1) . . . c(Ki\{r}∪{s}) . . . c(Kp) is c-sortable.

Suppose now that s and r commute. If j ≤ i then

w′s = wrs = wsr = c(K1) . . . c(Kj∪{s}) . . . c(Ki\{r}) . . . c(Kp)

is the c-factorization of w′s. As K1 ⊇ . . . ⊇ Kj ∪ {s} ⊇ . . . ⊇ Ki \ {r} ⊇ . . . ⊇ Kp is
nested, w′s is c-sortable. The case j > i is proved similarly.

We conclude that w′s is c-sortable for any s /∈ D(w′), so w′ is a c-singleton.

Proof of Theorem 2.2. We know by Proposition 2.1 that w is a c-singleton if and only
if w is c-sortable and ww0 is c−1-sortable.

Suppose w is a c-singleton. Let s be the rightmost simple reflection appearing in the
c−1-factorization for ww0, so ww0 = us for some c−1-sortable element u.

11



We have su−1w = w0 and hence u−1w = sw0. Since S = w0Sw0, we conclude
that t := w0sw0 is a simple reflection. Now u−1wt = w0 implies ℓ(wt) > ℓ(w) and wt is
c-sortable by Proposition 2.1. But wt is also c-antisortable since wtw0 = u is c−1-sortable.
Hence, wt is a c-singleton that covers w in the weak order.

Repeating this process, we show that every c-singleton is on an unrefinable chain of
c-singletons leading up to w0. By downwards induction, every element of that chain is a
prefix of w0 up to commutations. This is clearly true for w0. As we went up each step,
though, we added a simple reflection which commuted with every reflection to its right
(or was added at the rightmost end), by Lemma 2.6. Thus, when we want to remove the
element we added at the last step, we can rewrite w0 using only commutations such that
this simple reflection is on the right.

3. Coxeter fans, Permutahedra, and Cambrian fans

In this section, we describe the geometry of Coxeter fans and c-Cambrian fans. We
first recall some facts about the geometric representation of W . We use the notation
of [10] for Coxeter groups and root systems. Let W act by reflections on an R-Euclidean
space (V, 〈·, ·〉).

Let Φ be a root system corresponding to W with simple roots ∆ = {αs | s ∈ S},
positive roots Φ+ = Φ∩R>0[∆] and negative roots Φ− = −Φ+. Without loss of generality,
we assume that the action of W is essential relative to V , that is, ∆ is a basis of V .
The set Φ+ parametrizes the set of reflections in W : to each reflection t ∈ W there
corresponds a unique positive root αt ∈ Φ+ such that t maps αt to −αt and fixes the
hyperplane Ht = {v ∈ V | 〈v, αt〉 = 0}.

The Coxeter arrangement A forW is the collection of all reflecting hyperplanes forW .
The complement V \(

⋃
A) ofA consists of open cones. Their closures are called chambers.

The chambers are in canonical bijective correspondence with the elements of W . The
fundamental chamber D :=

⋂
s∈S{v ∈ V | 〈v, αs〉 ≥ 0} corresponds to the identity e ∈ W

and the chamber w(D) corresponds to w ∈ W .
A subset U of V is below a hyperplane H ∈ A if every point in U is on H or on the

same side ofH asD. The subset U is strictly belowH ∈ A if U is belowH and U∩H = ∅.
Similarly, U is above or strictly above a hyperplane H ∈ A. The inversions of w ∈ W are
the reflections that correspond to the hyperplanes H which w(D) is above.

For a simple reflection s ∈ S, we have ℓ(sw) < ℓ(w) if and only if s ≤ w in the weak
order if and only if w(D) is above Hs. To decide whether w(D) is above or below Hs is
therefore a weak order comparison. These notions will be handy in §4.

A fan G is a family of nonempty closed polyhedral (convex) cones in V such that
(i) every face of a cone in G is in G, and
(ii) the intersection of any two cones in G is a face of both.

A fan G is complete if the union of all its cones is V , essential (or pointed) if the intersection
of all non-empty cones of G is the origin, and simplicial if every cone is simplicial, that
is, spanned by linearly independent vectors. A 1-dimensional cone is called a ray and a
ray is extremal if it is a face of some cone. The set of k-dimensional cones of G is denoted
by G(k) and two cones in G(k) are adjacent if they have a common face in G(k−1). A fan G
coarsens a fan G′ if every cone of G is the union of cones of G′ and

⋃
C∈G C =

⋃
C∈G′ C.

We refer to [30, Lecture 7] for more details and examples.
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The chambers of a Coxeter arrangementA and all their faces define the Coxeter fan F .
The Coxeter fan F is known to be complete, essential, and simplicial, [10, Sections 1.12–
1.15]. The fundamental chamber D ∈ F is a (maximal) cone spanned by the (extremal)
rays {ρs | s ∈ S}, where ρs is the intersection of D with the subspace orthogonal to the
hyperplane spanned by {αt | t ∈ 〈s〉}.

Recall that the set of rays of F is partitioned into n orbits under the action of W
where n = |S| is the rank of W . Moreover, each orbit contains exactly one ρs, s ∈ S.
Thus, any ray ρ ∈ F (1) is w(ρs) for some w ∈ W where s ∈ S is uniquely determined
by ρ but w is not unique. In fact, w(ρs) = g(ρs) if and only if w ∈ gW〈s〉.

3.1. Permutahedra

We illustrate Coxeter fans by means of permutahedra, that is, polytopes that have a
Coxeter fan as outer normal fan.

Take a point aaa of the complement V \ (
⋃
A) of the Coxeter arrangement A, and

consider its W -orbit. The convex hull of this W -orbit is a W -permutahedron denoted
by Permaaa(W ). There is a bijection between the set of rays ofF and the facets of Permaaa(W ):
there is a halfspace associated to each ray ρ ∈ F such that its supporting hyperplane
is perpendicular to ρ and such that the permutahedron is the intersection of these half
spaces. Let us be more precise.

Let ∆∗ := {vs ∈ V | s ∈ S} be the fundamental weights of ∆, that is, ∆∗ is the
dual basis of ∆ with respect to 〈·, ·〉. The fundamental chamber D is spanned by the
fundamental weights, that is, D = R≥0[∆

∗]. Hence, the rays of F are easily expressed
in terms of ∆∗: We have ρs = R≥0[vs] and therefore w(ρs) = R≥0[w(vs)] for any w ∈ W
and s ∈ S.

Without loss of generality, we choose aaa =
∑

s∈S asvs in the interior of D, that is
as > 0 for s ∈ S. All points w(aaa) are distinct and the convex hull of {w(aaa) |w ∈ W}
yields a realization of the W -permutahedron Perm

aaa(W ). It is not difficult to describe
this polytope as an intersection of half-spaces.

For each ρ = w(ρs) ∈ F (1), we define the closed half space

H
aaa
ρ := {v ∈ V | 〈v, w(vs)〉 ≤ 〈aaa, vs〉}.

This definition does not depend on the choice of w ∈ W such that ρ = w(ρs), but
only of the coset W/W〈s〉. The open half space H

aaa,+
ρ and the hyperplane Haaa

ρ are de-
fined in a similar manner, using strict inequality and equality, respectively. Now, the
permutahedron Perm

aaa(W ) is given by

Perm
aaa(W ) =

⋂

ρ∈F(1)

H
aaa
ρ .

We also write H aaa
(w,s), H

aaa,+
(w,s), or H

aaa
(w,s) instead of H aaa

ρ , H aaa,+
ρ , or Haaa

ρ where we implicitly

assume ρ = w(ρs). As for the rays of the Coxeter fan, w and s are not necessarily
uniquely determined, but we have Haaa

ρ = Haaa
(w,s) = Haaa

(w′,s) if and only if w ∈ w′W〈s〉 and

ρ = w(ρs) = w′(ρs). Moreover, w(aaa) ∈ Haaa
(w′,s) if and only if Haaa

(w′,s) = Haaa
(w,s). A simple

description of the vertex w(aaa) of the permutahedron follows:

w(aaa) =
⋂

s∈S

Haaa
(w,s).
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aaa

Hs1

s1(aaa)

s1s2(aaa) s2(aaa)

s2s1(aaa)s1s2s1(aaa)

Hs2

Hs1s2s1

α2

α1

vs1

vs2

Haaa
(e,s1)

= Haaa
(s2,s1)

Haaa
(s2,s2)

= Haaa
(s2s1,s2)

Haaa
(e,s2)

= Haaa
(s1,s2)

Haaa
(s1,s1)

= Haaa
(s1s2,s1)

Haaa
(s1s2,s2)

= Haaa
(s1s2s1,s2)

Haaa
(s1s2s1,s1)

= Haaa
(s2s1,s1)

Figure 6: The permutahedron Perm(S3) obtained as the convex hull of the S3-orbit of aaa or as the
intersection of the half spaces H aaa

(x,s)
.

Example 3.1 (Realization of Perm(S3)). We consider the Coxeter group W = S3 of
type A2 acting on R2. The reflections s1 and s2 generate W and the simple roots that
correspond to s1 and s2 are α1 and α2. They are normal to the reflecting hyperplanesHs1

and Hs2 . The fundamental weight vectors that correspond to the simple roots are the
vectors v1 and v2. Let aaa = a1v1+a2v2 be a point of the interior ofD. Then a1, a2 > 0. We
obtain the permutahedron Perm(S3) as the convex hull of the W -orbit of aaa. Alternatively,
the permutahedron is described as the intersection of the half spaces H aaa

(x,s) with bounding
hyperplanes Haaa

(x,s) for x ∈ W and s ∈ S. All objects are indicated in Figure 6.

3.2. Cambrian fans

A lattice congruence Θ on a lattice L is an equivalence relation on the elements
of L which respects the join and meet operations in L, that is, a1Θa2 and b1Θb2 implies
(a1∧b1)Θ(a2∧b2) and (a1∨b1)Θ(a2∨b2). For any lattice congruence Θ of the weak order
on W , N. Reading constructs a complete fan FΘ that coarsens the Coxeter fan F , [17].
A maximal cone Cϑ ∈ FΘ corresponds to a congruence class ϑ of Θ and Cϑ is the union
of the chambers of A that correspond to the elements of ϑ. In [17, Section 5] N. Reading
proves that these unions are indeed convex cones and that the collection FΘ of these
cones and their faces is a complete fan.

The c-Cambrian fan Fc of W is obtained by this construction if we consider the
lattice congruence with congruence classes [πc

↓(w), π
↑
c (w)] for w ∈ W and chosen Coxeter

element c. The n-dimensional cone that corresponds to the c-sortable element w is
denoted by C(w). It is the union of the maximal cones of F that correspond to the
elements of (πc

↓)
−1πc

↓(w) = [πc
↓(w), π

↑
c (w)]. In particular, C(w) is a maximal cone of Fc

and of F if and only if w is a c-singleton.
In [21], N. Reading and D. Speyer define a bijection between the set of rays of Fc

and the set of almost positive roots Φ≥−1 := Φ+ ∪ (−∆). To describe this labeling of the
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rays, we first define a set of almost positive roots for any c-sortable w. For s ∈ S(w), let
1 ≤ js ≤ ℓ(w) be the unique integer such that sjs is the rightmost occurrence of s in the
c-sorting word s1 . . . sℓ(w) of w and define

Lrs(w) :=

{
s1 . . . sjs−1(αs) if s ∈ S(w)

−αs if s 6∈ S(w),
and clc(w) :=

⋃

s∈S

Lrs(w).

Example 3.2. To illustrate these maps, we consider the Coxeter group W = S3 with
generators S = {s1, s2} as shown in Figure 6. Choose c = s1s2 as Coxeter element. It
is easy to check that w ∈ W \ {s2s1} is c-sortable and that w ∈ W \ {s2, s2s1} is a
c-singleton. From the above definition it follows that

Lrs1(e) = Lrs1(s2) = −α1, Lrs2(e) = Lrs2(s1) = −α2,
Lrs1(s1) = Lrs1(s1s2) = α1, Lrs2(s1s2s1) = Lrs2(s1s2) = α1 + α2,
Lrs1(s1s2s1) = α2, Lrs2(s2) = α2,

and therefore

clc(e) = {−α1,−α2}, clc(s1s2) = {α1, α1 + α2},
clc(s1) = {α1,−α2}, clc(s1s2s1) = {α2, α1 + α2},
clc(s2) = {−α1, α2}.

N. Reading and D. Speyer use the cluster map clc to prove that c-Cambrian fans and
cluster fans have the same combinatorics: the maximal cone C(w) of the c-Cambrian fan
represented by the c-sortable element w is mapped to the set clc(w) of almost positive
roots. The cardinality of clc(w) matches the number of extremal rays of C(w) and clc
induces a bijection fc between the set of rays of Fc and the almost positive roots by
extending clc to intersections of cones: clc(C1 ∩ C2) := clc(C1) ∩ clc(C2). To put it
slightly differently, N. Reading and D. Speyer showed the following Theorem.

Theorem 3.3 (Reading-Speyer [21, Theorem 7.1]). There is a bijective labeling fc :

F
(1)
c → Φ≥−1 of the rays of the c-Cambrian fan Fc by almost positive roots such that the

extremal rays of C(w) are labeled by clc(w).

We now aim for an explicit description of fc that relates nicely to c-singletons, but
first we need the following two lemmas.

Lemma 3.4. For β ∈ Φ≥−1, there exists a c-singleton w and a simple reflection s such
that Lrs(w) = β.

Proof. The identity e is a c-singleton and clc(e) = Φ≥−1 \ Φ+, so we are done if β is a
negative simple root. Suppose that β ∈ Φ+ and consider the longest element w0 with
c-sorting word w0 = sj1sj2 . . . sjN . Since w0(D) is above all reflecting hyperplanes,

Φ+ = {sj1sj2 . . . sjp−1(αsjp
) | 1 ≤ p ≤ N}

and β = sj1 . . . sji−1(αsji
) for some 1 ≤ i ≤ N . Since w = sj1 . . . sji is a prefix of w0, it

is a c-singleton and Lrsji
(w) = β.

Lemma 3.5. Let ρ ∈ F
(1)
c . There is a c-singleton w such that ρ is an extremal ray

of C(w).
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Proof. Pick ρ ∈ F
(1)
c . According to Theorem 3.3, fc(ρ) = β for some almost positive

root β. By Lemma 3.4, there is a c-singleton w and a simple reflection s ∈ S such
that Lrs(w) = β. This implies that ρ is an extremal ray of C(w).

If w is a c-singleton, then C(w) ∈ F
(n)
c is the maximal cone w(D) which is spanned

by the set of rays {w(ρs) | s ∈ S}. The main result of this section is

Theorem 3.6. Let ρ ∈ F
(1)
c . There is a unique simple reflection s ∈ S and there is a

c-singleton w such that ρ = w(ρs) and fc(w(ρs)) = Lrs(w).

Proof. The uniqueness of s ∈ S follows from the fact that any ray of the Coxeter fan is
of the form w(ρs) where s ∈ S is uniquely determined (but w is not!).

The first claim follows directly from Lemma 3.5. We proceed by induction on the
length of w. If ℓ(w) = 0 then w = e. In particular, e is a c-singleton and s = es is
c-sortable for any s ∈ S. Fix some s ∈ S. Since clc(e) = −∆ = {−αt | t ∈ S} and
clc(s) = {−αt | t ∈ 〈s〉} ∪ {αs}, we conclude fc(e(ρs)) = −αs as s(D) ⊂ C(s) and the set
of rays of F in s(D) ∩D are {ρt | t ∈ 〈s〉}.

Suppose that ℓ(w) > 0 and let t ∈ S be the last simple reflection of the c-sorting
word of w. By Proposition 2.7, wt is a c-singleton with ℓ(wt) < ℓ(w). By induction,
fc(wt(ρs)) = Lrs(wt) for some s ∈ S. If s 6= t then t ∈ W〈s〉. We conclude that wt(ρs) =
w(ρs) and Lrs(wt) = Lrs(w). Now suppose s = t. We have C(w)∩C(ws) = w(D)∩ws(D).
The extremal rays of this cone are {w(ρt) | t ∈ 〈s〉}, and their image under fc is

clc(w) ∩ clc(ws) = {Lrt(w) | t ∈ 〈s〉} = clc(w) \ {Lrs(w)}.

So fc(w(ρs)) = Lrs(w).

4. Realizing generalized associahedra

4.1. A general result

A fan has to satisfy some obvious conditions in order to be the normal fan of a full-
dimensional polytope. In particular, the fan has to be pointed and complete. These
conditions are far from sufficient and in general it is quite hard to decide whether a given
fan is the normal fan of a polytope or not. To illustrate this, we give an example of a
family of fans none of which is the normal fan of any polytope.

First, we recall the notion of the face fan of a polytope. Let P be a full-dimensional
polytope containing the origin in its relative interior. The face fan of P is the set of cones
spanned by all proper faces of P . As is true of the normal fan, the face fan is always
pointed and complete. There is a family of simplicial fans none of which is the face fan
of any polytope, see [30, Example 7.5]. Equivalently, no fan of this family is the normal
fan of any polytope, since the face fan of P equals the normal fan of the polar polytope
of P (and vice versa), see [30, Exercise 7.1].

We now aim for a sufficient criterion to decide whether a given fan is the normal fan
of a polytope. Our notation is inspired by Section 3.

Consider a pointed, complete, and simplicial fan G ⊆ Rn with d-dimensional cones G(d).
To ρ ∈ G(1) we associate a vector vρ such that ρ = R≥0[vρ]. Suppose that we are given a
collection of positive real numbers λρ, one for each ρ ∈ G(1). We then define a hyperplane

Hρ = {x ∈ R
n | 〈x, vρ〉 = λρ}
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and a half space
Hρ := {x ∈ R

n | 〈x, vρ〉 ≤ λρ} .

We write H +
ρ if the inequality is strict. Since G is simplicial, we have for every maximal

cone C ∈ G(n) a point x(C) defined by {x(C)} :=
⋂

ρ∈C(1) Hρ. Then

P := ConvexHull
{
x(C)

∣∣∣ C ∈ G(n)
}

and P̃ :=
⋂

ρ∈G(1)

Hρ

are well-defined polytopes of dimension at most n.
For example, the W -permutahedron constructed from the Coxeter fan F as explained

in §3.1 fits nicely in this context: x(w(D)) is by definition w(aaa) and the half spaces Hρ

are precisely the half spaces H aaa
ρ , for ρ ∈ F (1). In this case the two polytopes P and P̃

coincide.
Let C ∈ G(n) and let f ∈ C(n−1) be an (n − 1)-dimensional face of C. An outer

normal of C relative to f is a vector v normal to f , that is, normal to the hyperplane
spanned by f , and such that C ⊆ {x ∈ Rn | 〈x, v〉 ≤ 0}.

Let Ci, Cj ∈ G(n) be two adjacent maximal cones in G, that is, Ci ∩ Cj ∈ G(n−1). A
vector u is said to be pointing to Ci from Cj if there is an outer normal v of Cj relative
to Ci ∩ Cj such that 〈u, v〉 > 0. In particular, observe that:
(i) Any outer normal of Cj relative to Ci ∩ Cj is pointing to Ci from Cj ;
(ii) If xi ∈ Ci and xj ∈ Cj are points in the interior of these cones, then the vector xi−xj

is pointing to Ci from Cj ;
(iii) Any vector not contained in the span of Ci ∩Cj is either pointing to Ci from Cj or

pointing to Cj from Ci.
Notice that the vector x(Ci) − x(Cj) is a normal vector to Ci ∩ Cj , but not necessarily
pointing to Ci from Cj , since x(Ci) is not necessarily a point in Ci.

Theorem 4.1. Use the notation as above and suppose that x(Ci) − x(Cj) points to Ci

from Cj whenever Ci, Cj ∈ G(n) with Ci ∩Cj ∈ G(n−1). Then P = P̃ has (outer) normal
fan N (P ) = G and is of dimension n.

Remark 4.2. The hypothesis of Theorem 4.1 is satisfied in (at least) three cases.
First, the case of W -permutahedra constructed from the Coxeter fan F . Indeed, the

point w(aaa) is strictly inside the cone w(D). So w(aaa)−w′(aaa) points to w(D) from w′(D)
whenever w(D) and w′(D) are adjacent cones.

Second, the case of the parallelepiped constructed from the fan G which is the skew
coordinate hyperplane arrangement obtained from the hyperplanes which bound the
fundamental chamber in the Coxeter arrangement. (Note that this fan corresponds to
the usual construction of the Boolean lattice as a quotient of weak order, via the descent
map, see [12]).

Third, as we shall show, the case of Cambrian fans described on the two next sections.

Remark 4.3. A similar theorem, which includes the assumption that G should be a
coarsening of a Coxeter fan, appears as [11, Theorem A.3]. That theorem would suffice
for our purposes, but we prefer to give the following independent proof of the more
general theorem.
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Proof of Theorem 4.1. Let us prove first that P ⊆ P̃ . It suffices to prove that 〈x(C), vρ〉 <
λρ for C ∈ G(n) and ρ ∈ G(1) \ C(1).

Let C ∈ G(n) and ρ ∈ G(1) \ C(1). We will show that there is a finite sequence
C0 := C, . . . , Ck = C′ of maximal cones of G such that ρ ⊆ C′, Ci∩Ci+1 ∈ G(n−1) and vρ
is pointing to Ci+1 from Ci, for 0 ≤ i < k.

For x in C, we write x+ρ for the half line {x+ λvρ | λ ≥ 0} parallel to ρ and starting
at x. Write Cρ for the union of all maximal cones of G that contain ρ. Since G is a pointed
complete fan, Cρ contains n-dimensional balls of arbitrary diameter centered at points
of ρ. In particular, Cρ contains such a ball of diameter d, where d is the distance between
the lines containing ρ and x+ ρ. So (x+ ρ) ∩Cρ 6= ∅ for any point x ∈ C. Hence there
is a maximal cone C′ of G such that ρ is an extremal ray of C′ and (x+ ρ) ∩C′ 6= ∅ for
any point x ∈ C. For any x ∈ C, the line segment between C and C′ on x+ρ determines
a sequence of cones C0 = C, C1, . . . , Cp = C′ of G of arbitrary dimension, namely, the
cones that x + ρ meets between C and C′ in the natural order on the Ci induced by
the order of points of x + ρ given by the parametrization of this half line. We would
like this sequence to be of the form C = C0, C0,1, C1, C1,2, . . . , Ck−1,k, Ck = C′ such
that Ci is a maximal cone and Ci,i+1 = Ci ∩ Ci+1 is a cone of codimension 1. Since the
number of cones in G is finite, the number of cones met by all possible half lines x + ρ
for x ∈ C is finite. Since C is a full dimensional cone, we may move x in C and then
may assume that x+ ρ does not intersect any cone of G of codimension larger than 1. In
other words, there is a finite sequence C0 = C, C1, . . . , Ck = C′ of maximal cones of G
such that Ci,i+1 = Ci ∩Ci+1 ∈ G(n−1) and (x+ ρ)∩Ci 6= ∅. Pick yi in the interior of Ci

and in x+ ρ. So yi+1 − yi points to Ci+1 from Ci. Since the cones C0, . . . , Ck have the
same order as the points on x + ρ, the distance from x to yi is strictly smaller than the
distance from x to yi+1. This means the vector yi+1 − yi = κvρ with κ > 0. Hence vρ
points to Ci+1 from Ci.

Now, consider the piecewise linear path from x(C0) to x(Ck) that traverses from x(Ci)
to x(Ci+1). Since x(Ci+1) − x(Ci) points to Ci+1 from Ci, the vector x(Ci+1) − x(Ci)
is an outer normal to Ci relative to Ci ∩ Ci+1, and since vρ points to Ci+1 from Ci for
0 ≤ i < k, we conclude that 〈x(Ci+1)− x(Ci), vρ〉 > 0. Hence

〈x(C0), vρ〉 < . . . < 〈x(Ck), vρ〉 = λρ.

This proves P ⊆ P̃ .
Fix a cone C ∈ G(n). Define Q =

⋂
ρ∈C(1) Hρ. This is a convex cone pointed at x(C).

Since the hyperplanes Hρ for ρ ∈ C(1) are facet-supporting for P̃ , we know that Q ⊇ P̃ .

It follows that x(C) is an extremal point of both P̃ and P , and thus it is a vertex of each.

We next show that, near x(C), the three regions P , P̃ , and Q all agree. Let D ∈ G(n)

be adjacent to C. Since D(1) and C(1) have all but one element in common, x(D) lies
along one of the extremal rays of Q from x(C). Bear in mind that x(D) ∈ P . Each of
the n maximal cones of G adjacent to C yields a point in P along one of the rays of Q;
thus, near x(C), we have that P and Q coincide, and therefore so does P ′.

Thus, we have established that the facets of P and of P ′ which intersect x(C) are
exactly those supported by Hρ with ρ ∈ C(1). By definition, the outer normals to these
facets are C(1), and the outer normal cone to for both P and P ′ at x(C) is therefore
exactly C. Thus, the outer normal fan to P is exactly G.
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We still want to check that P = P̃ . It suffices to check that they have the same set of
vertices. We know that all the vertices of P are also vertices of P̃ , but we have not yet
ruled out the possibility that P̃ could have some extra vertices, that is to say, vertices
not of the form x(C). However, since the outer normal cones of P̃ at the vertices of the
form x(C) are known to be exactly the maximal cones of G, and thus to cover all of Rn,

it is impossible for P̃ to have any additional vertices, so P = P̃ .
The claim that dim(P ) = n follows from the fact that λρ > 0 for all ρ ∈ G(1): a

neighborhood of 0 is contained in P .

4.2. Realizations of generalized associahedra

We apply Theorem 4.1 to show how c-Cambrian fans Fc and associahedra Asso
aaa
c (W )

relate. The associahedron is described as the intersection of certain facet-supporting half
spaces H aaa

ρ of the permutahedron Perm
aaa(W ) determined by the set of rays of Fc, and the

common vertices of Assoaaac (W ) and Perm
aaa(W ) are characterized in terms of c-singletons.

The proof of Theorem 4.4 is deferred to Section 4.3.

Theorem 4.4. Let c be a Coxeter element of W and choose a point aaa in the interior of
the fundamental chamber D, to fix a realization of the permutahedron Perm

aaa(W ).
(i) The polyhedron

Asso
aaa
c (W ) =

⋂

ρ∈F
(1)
c

H
aaa
ρ

is a simple polytope of dimension n with c-Cambrian fan Fc as normal fan.
(ii) The vertex sets V (Assoaaac (W )) and V (Permaaa(W )) satisfy

V (Assoaaac (W )) ∩ V (Permaaa(W )) = {w(aaa) |w is a c-singleton}.

The first statement implies that every facet-supporting half space of the associahedron
is also a facet-supporting half space of the permutahedron. We mentioned this in the
introduction in the context of c-admissible half spaces. A facet-supporting half space H aaa

ρ

of the permutahedron Perm
aaa(W ) is c-admissible if w(aaa) ∈ Haaa

ρ for some c-singleton w.
We rephrase the first statement as follows:

Corollary 4.5. The associahedron Asso
aaa
c (W ) is the intersection of all c-admissible half-

spaces of Permaaa(W ).

We illustrate these results with a basic example.

Example 4.6. The first statement of Theorem 4.4 claims that the intersection of a
subset of the half spaces H aaa

ρ of Permaaa(W ) yields a generalized associahedron Asso
aaa
c (W )

if we restrict to half spaces such that ρ is a ray of the c-Cambrian fan Fc. Figures 7
and 8 illustrate this for W = S4 generated by S = {s1, s2, s3}. We use the following
conventions: The point aaa used to fix a realization of Permaaa(W ) is labeled A. A facet
of the associahedron Asso

aaa
c (W ) is labeled by the ray ρj ∈ Fc that is perpendicular to

that facet. Recall that each ray ρ can be written as w(ρsi ) for some (non-unique) c-
singleton w and some (unique) simple reflection si by Lemma 3.5. In Figure 7 we chose
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Figure 7: An unfolding of the associahedron Asso
aaa
c (S4) with c = s1s2s3. The 2-faces are

labelled by ρi ∈ F1
c for the facet-defining hyperplane Haaa

ρi
.

the Coxeter element c = s1s2s3 and can express the ray ρi ∈ Fc that corresponds to the
(c-admissible) half space H aaa

ρi
as follows:

ρ1 = e(ρs1),

ρ2 = e(ρs3) = s1(ρs3) = s1s2(ρs3) = s1s2s1(ρs3),

ρ3 = e(ρs2) = s1(ρs2),

ρ4 = s1s2(ρs2) = s1s2s3(ρs2) = s1s2s1(ρs2) = s1s2s3s1(ρs2),

ρ5 = s1(ρs1) = s1s2(ρs1) = s1s2s3(ρs1),

ρ6 = s1s2s3s1s2s1(ρs1 ),

ρ7 = s1s2s3s1s2(ρs2) = s1s2s3s1s2s1(ρs2),

ρ8 = s1s2s3(ρs3) = s1s2s3s1(ρs3) = s1s2s3s1s2(ρs3) = s1s2s3s1s2s1(ρs3), and

ρ9 = s1s2s1(ρs1) = s1s2s3s1(ρs1) = s1s2s3s1s2(ρs1).

The claim of the second statement of Theorem 4.4 is that the common vertices of Permaaa(W )
and Asso

aaa
c (W ) are the points w(aaa) for w a c-singleton. It is straightforward to verify this

claim directly if c = s1s2s3 in Figure 7: The common vertices of Assoaaac (W ) and Perm
aaa(W )

are labeled A through H and we have

A = aaa, B = s1(aaa), C = s1s2(aaa),

D = s1s2s1(aaa), E = s1s2s3(aaa), F = s1s2s3s1(aaa),

G = s1s2s3s1s2(aaa), H = s1s2s3s1s2s1(aaa).
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Figure 8: An unfolding of the associahedron Asso
aaa
c (S4) with c = s2s1s3. The 2-faces are

labeled by ρ = (w, s) ∈ F1
c for the facet-defining hyperplane Haaa

ρ .

If the Coxeter element is c = s2s1s3 (Figure 8) then we have the following list of expres-
sions for ρi ∈ Fc (we do not list all possible expressions for ρi):

ρ1 = e(ρs3), ρ2 = s2(ρs2 ), ρ3 = e(ρs1),

ρ4 = e(ρs2), ρ5 = s2s1s3s2s3(ρs3) ρ6 = s2s1s3s2s1s3(ρs2),

ρ7 = s2s1(ρs1), ρ8 = s2s3(ρs3), ρ9 = s2s1s3s2s1(ρs1).

The common vertices of the permutahedron and associahedron are labeled A through I
and we have

A = aaa, B = s2(aaa), C = s2s1(aaa),

D = s2s3(aaa), E = s2s1s3(aaa), F = s2s1s3s2(aaa),

G = s2s1s3s2s3(aaa), H = s2s1s3s2s1(aaa), I = s2s1s3s2s1s3(aaa).

4.3. Proof of Theorem 4.4

The proof of Theorem 4.4 is based on Theorem 4.1. Let c ∈ W be a Coxeter element
and let aaa be in the interior of D. We use the following notation. Set

R := {w(vs) | w ∈ W, s ∈ S}

so that the set of rays of the Coxeter fan is

R≥0R := {λv | λ ≥ 0, v ∈ R} .
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For v = w(vs) ∈ R, we write λ(v) := 〈aaa, vs〉 = 〈w(aaa), v〉 > 0 which depends only on s.
Let ρ be a ray of the Cambrian fan Fc. By Theorem 3.6, there is a c-singleton w and a
unique s ∈ S such that ρ = w(ρs) = R≥0[w(vs)]. With these notations, the equations of
the hyperplane Haaa

ρ and the half space H aaa
ρ attached to ρ can be rewritten as

Haaa
ρ = {x ∈ R

n | 〈x,w(vs)〉 = λ(vs)} and H
aaa
ρ = {x ∈ R

n | 〈x,w(vs)〉 ≤ λ(vs)} .

We use the same notations as in §4.1 applied to the c-Cambrian fan Fc and denote by x(C)
the intersection point of the hyperplanes Haaa

ρ for ρ the extremal rays of a maximal cone C
of Fc. (It is convenient here, if ρ = R≥0[v], to use the notation λ(v) instead of using the
notation λρ as in §4.1.)

Let w and w′ be distinct c-sortable elements such that the associated maximal
cones C := C(w) and C′ := C(w′) of the Cambrian fan Fc intersect in a cone of codi-
mension 1. So either w is a cover of w′ or w′ is a cover of w in the lattice of c-sortable
elements. Without loss of generality, we may assume that w is a cover of w′. To meet
the requirements of Theorem 4.1, we have to prove that the vector x(C) − x(C′) points
to C from C′.

Remark 4.7. We saw in §3 that C(w) is a maximal cone of the Cambrian fan Fc and of
the Coxeter fan F if and only if w is a c-singleton. Therefore, if we meet the requirement
of Theorem 4.1, then x(C(w)) is a vertex of Assoaaac (W ) and of Permaaa(W ) if and only if
w is a c-singleton, which will prove the second part of Theorem 4.4.

The intersection C ∩ C′ is contained in a hyperplane Ht for some reflection t ∈ W
since Fc is a coarsening of the Coxeter fan F . We now show which of the two roots
associated to Ht is an outer normal to C′ relative to C′ ∩ C.

Lemma 4.8. Let w,w′ ∈ W be c-sortable elements such that w is a cover of w′ in the
lattice of c-sortable elements. Suppose the (n− 1)-dimensional cone C(w) ∩C(w′) of Fc

lies on Ht for some reflection t ∈ W . Let β be a root for W that is perpendicular to Ht.
If β is an outer normal to C′ relative to C′ ∩ C, then β is a negative root.

Proof. Let w̃ ∈ (πc
↓)

−1(w′) such that w is a cover of w̃ in the right weak order. Then
w(D) ∩ w̃(D) ⊂ Ht is an (n − 1)-dimensional cone of the Coxeter fan F . Since β is an
outer normal for C(w′) relative to C(w) ∩ C(w′), it is an outer normal for w̃(D) with
respect to w̃(D) ∩ w(D).

Case 111: Suppose that w′ = w̃ = e. Then w = s for some s ∈ S. The hyperplane
dividing w(D) from D is Hs, perpendicular to αs. D lies on the side ofHs having positive
inner product with αs. Thus the outer normal β = −αs is a negative root.

Case 222: Suppose w̃ 6= e. Then w̃−1w = s ∈ S since w covers w̃ in right weak order.
By the previous case, w̃(−αs) is an outer normal. Since ℓ(w) = ℓ(w̃s) > ℓ(w̃), we have
that β = w̃(−αs) is a negative root, as desired.

We have that C ∩ R≥0R = {ρu1 , . . . , ρup
} and since Fc is simplicial, we may assume

that the extremal rays of C are the first n := |S| rays. Similarly, we may assume
{ρu′

1
, ρu2 , . . . , ρun

} are the extremal rays of C′. Hence, Ht is spanned by {u2, . . . , un}. As
we have x(C) :=

⋂n
i=1 H

aaa
ρui

and x(C)− x(C′) ∈
⋂n

i=2 H
aaa
ρui

, we conclude x(C)− x(C′) =

µβ for some µ ∈ R and β a negative root. Thus, x(C) − x(C′) is pointing to C from C′

if and only if x(C)− x(C′) = µβ with µ > 0.
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Lemma 4.9. Let w,w′ ∈ W be c-sortable elements such that w covers w′ in the lattice
of c-sortable elements and C(w) ∩ C(w′) ⊂ Ht is an (n − 1)-dimensional cone of Fc

for a reflection t. Let the extremal rays of C := C(w) and C′ := C(w′) be generated
by {u1, . . . , un} and {u′

1, u2, . . . , un} and suppose u1 + u′
1 =

∑n

i=2 biui ∈ Ht with bi ∈ R.
Then the following statements are equivalent:
(i) x(C) − x(C′) is pointing to C from C′;
(ii) x(C) − x(C′) = µβ with β ∈ Φ− and µ > 0;
(iii) 〈x(C) − x(C′), u1〉 > 0;
(iv) λ(u1) + λ(u′

1) >
∑n

i=2 biλ(ui).

Proof. The first equivalence follows from Lemma 4.8 and the preceding discussion.
As u1 ∈ C and C is spanned by the vectors in C ∩ C′ together with u1, we have

〈β, u1〉 > 0 if and only if β is an outer normal of C′ relative to C ∩ C′. This shows the
second equivalence.

The last equivalence follows from

〈x(C) − x(C′), u1〉 = λ(u1)− 〈x(C′),−u′
1 +

n∑

i=2

biui〉 = λ(u1) + λ(u′
1)−

n∑

i=2

biλ(ui).

We apply Theorem 4.1 to conclude:

If one of the equivalent conditions in Lemma 4.9 is achieved for all pairs of
adjacent cones in Fc, then Fc is the outer normal fan of Assoaaac (W ), which
proves Theorem 4.4.

The final step of the proof of Theorem 4.4 consists of showing that each pair of adjacent
cones in Fc satisfies the equivalent conditions of Lemma 4.9, which we do in Lemma 4.14
below.

We first consider the special case that e is covered by s ∈ S and there is a reduced
expression for c that starts with s, that is, s is initial in c.

Lemma 4.10. Let s ∈ S be initial in c. Then C(e) ∩ C(s) ⊆ Hs, u
′
1 = vs, u1 = s(vs),

and
u′
1 + u1 =

∑

r 6=s

brur ∈ Hs

with br = −2 〈αs,αr〉
〈αs,αs〉

≥ 0. Moreover, λ(u′
1) + λ(u1) >

∑
r 6=s brλ(ur).

Proof. Without loss of generality, assume S = {s1, . . . , sn} and s = s1. Since s ∈ S
is initial, s is a c-singleton. The maximal cones C(e) and C(s) of Fc are therefore
maximal cones of the Coxeter fan with extremal rays generated by {vs1 , . . . , vsn} and
{s(vs1), vs2 , . . . , vsn}. Since αr =

∑n

i=1 〈αr, αi〉vi, we have

s1(vs1) = vs1 − 2
〈αs1 ,vs1〉

〈αs1 ,αs1〉
αs1 = −vs1 +

n∑

i=2

(
−2

〈αs1 ,αsi
〉

〈αs1 ,αs1 〉

)
vsi .
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In particular, s(vs1 ) + vs1 ∈ Hs1 and 〈αs1 , αsi〉 ≤ 0 for s1 6= si. As aaa is a vertex
of Permaaa(W ), we conclude

λ(s1(u1)) = 〈aaa, vs1〉 > 〈aaa, s1(vs1)〉 = −λ(s1(vs1 )) +

n∑

i=2

biλ(si).

Some terminology and results due to N. Reading and D. Speyer are needed to prove
Lemma 4.14 (and therefore to finish the proof of Theorem 4.4). To distinguish objects
related to a Cambrian fan with respect to different Coxeter elements, we use the Coxeter
element as an index. For example, if we use the Coxeter element scs instead of c,
then Cscs(w) denotes the maximal cone that corresponds to the scs-sortable element w.
If s ∈ S is initial in c then Fsc is the sc-Cambrian fan for the Coxeter element sc of W〈s〉.

Lemma 4.11 ([21, Lemmas 4.1, 4.2]). Let c be a Coxeter element and s initial in c.
(i) Let w ∈ W such that ℓ(sw) < ℓ(w). Then w is c-sortable if and only if sw is

scs-sortable.
(ii) Let w ∈ W such that ℓ(sw) > ℓ(w). Then w is c-sortable if and only if w ∈ W〈s〉

and w is sc-sortable.

Note that ℓ(sw) < ℓ(w) if and only if the chamber w(D) of the Coxeter arrangement
corresponding to w lies above Hs. In this case, the maximal cone C(w) of Fc is above
the hyperplane Hs because w is minimal in its fibre (πc

↓)
−1πc

↓(w) = [πc
↓(w), π

↑
c (w)] for

the c-Cambrian congruence. On the other hand, if ℓ(sw) > ℓ(w), then w(D) is below Hs

in the Coxeter arrangement. In this case, we know that the maximum element of the
fibre [πc

↓(w), π
↑
c (w)] for w, and thus all of C(w), is below Hs, by [21, Lemma 4.11]. It

follows that the hyperplane Hs separates the cones of Fc into two families and it never

intersects a maximal cone of Fc in its interior. For ρ ∈ F
(1)
c we define

ζs(ρ) :=

{
s(ρ) if ρ 6= ρs,

−ρs otherwise.

We abuse notation and consider ζs also as a map on the set of vectors generating the

set of rays F
(1)
c . The following lemma is a consequence of [21, Lemma 6.5] and [21,

Theorem 1.1]. Compare also the comments after [21, Corollary 7.3], from which the last
statement is taken.

Lemma 4.12 ([21]). Let s ∈ S be initial in the Coxeter element c. If ρ1, . . . , ρn are the
extremal rays of the maximal cone C(w) ∈ Fc then ζs(ρ1), . . . , ζs(ρn) are the extremal
rays of a maximal cone of Fscs. If ℓ(sw) < ℓ(w), then these extremal rays are the extremal
rays of the maximal cone C(sw) that corresponds to the scs-sortable element sw.

Before we finish the proof of Theorem 4.4 with Lemma 4.14 we make an observation
that will be useful also in Section 4.4.

Lemma 4.13. Let c be a Coxeter element, s ∈ S initial in c, and w ∈ W〈s〉 sc-sortable.
Then the maximal cone C(w) ∈ Fc is spanned by Csc(w) ∈ Fsc and the ray ρs ∈ Fc.
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Proof. The ray ρs is the unique ray of Fc that is strictly below Hs by [21, Lemma 6.3].
From Lemma 4.11 it follows that C(w) is below Hs and has ρs as an extremal ray.
Hence C(w) is spanned by ρs and a maximal cone E(w) := C(w) ∩Hs ∈ A〈s〉.

Now consider all inversions t of w, that is, all hyperplanes Ht ∈ A such that C(w)
is above Ht. Since w ∈ W〈s〉 we conclude t ∈ W〈s〉. Hence, the inversions of E(w)
and Csc(w) coincide and E(w) = Csc(w).

Lemma 4.14. Let w,w′ ∈ W be c-sortable elements such that w covers w′ in the lattice
of c-sortable elements and C(w) ∩ C(w′) ⊂ Ht is an (n − 1)-dimensional cone of Fc

for a reflection t. Let the extremal rays of C := C(w) and C′ := C(w′) be generated
by {u1, . . . , un} and {u′

1, u2, . . . , un}.
Then u′

1 + u1 =
∑n

i=2 biui with bi ∈ R and λ(u′
1) + λ(u1) >

∑n

i=2 biλ(ui).

Proof. The proof is an induction on the rank n = |S| and the length ℓ(w).
If |S| = 1 then the result is clear, so assume that S = {s1, . . . , sn} with n > 1

and ℓ(w) = 1. Assume without loss of generality that w = s1, and since w covers w′,
w′ = e. If w is initial for c then we are done by Lemma 4.10. So assume that w is
not initial for c. For 2 ≤ i ≤ n we have ui = vsi . Moreover, we have u′

1 = vs1 and
u1 = u for some u ∈ R. Thus the maximal cones C(e) and C(w) are generated by
{vs1 , vs2 , . . . , vsn} and {u, vs2 , . . . , vsn}. For the sake of definiteness, suppose s = s2 is
initial in c. Then C(e) and C(w) are both below Hs. By Lemma 4.13, we have maximal
cones Csc(e) = C(e) ∩Hs and Csc(w) = C(w) ∩Hs in the sc-Cambrian fan Fsc of W〈s〉

and these cones are generated by {vs1 , vs3 , . . . , vsn} and {u, vs3 , . . . , vsn}. So by induction
on the rank of |S|, we obtain the claim with b2 = 0.

For the induction, we assume that the claim is true whenever w̃ is c̃-sortable for a
Coxeter group generated by S̃ with |S̃| < |S| or w̃ is a c-sortable element satisfying
ℓ(w̃) < ℓ(w).

Assume w,w′ ∈ W are c-sortable with ℓ(w) > 1 and w covers w′ in the lattice of
c-sortable elements. Let s ∈ S be initial in c. We split into cases based on the positions
of C(w) and C(w′) relative to Hs.Note that it is impossible for C(w) to lie below Hs

and C(w′) to lie above Hs simultaneously, since w covers w′ in the c-Cambrian lattice.
Case 111: Suppose C(w) and C(w′) are above Hs. The ray ρs is strictly below Hs

by [21, Lemma 6.3], so vs 6∈ {u′
1, u1, . . . , un}. Moreover, we conclude from Lemma 4.12

that the maximal conesCscs(sw) and Cscs(sw
′) in Fscs are generated by {s(u1), . . . , s(un)}

and {s(u′
1), s(u2), . . . , s(un)} since ℓ(sw) < ℓ(w), ℓ(sw′) < ℓ(w′) and w,w′ > s in the

right weak order. We have Cscs(sw)∩Cscs(sw
′) ⊂ Hsts because C(w)∩C(w′) ⊂ Ht. By

induction on the length, we have

s(u1) + s(u′
1) =

n∑

i=2

bis(ui) and λ(s(u1)) + λ(s(u′
1)) >

n∑

i=2

biλ(s(ui)) with bi ∈ R.

Applying s to these (in)equalities yields

u1 + u′
1 =

n∑

i=2

biui ∈ Ht and λ(u1) + λ(u′
1) >

n∑

i=2

biλ(ui) with bi ∈ R,

since λ(u) depends only on the orbit of u under the action of W .
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Case 222: C(w) and C(w′) are below Hs. Since w is c-sortable and ℓ(sw) > ℓ(w),
we have that w ∈ W〈s〉, and similarly for w′. The ray ρs is the only ray of Fc strictly
below Hs by [21, Lemma 6.3], hence we may assume that u2 = vs. Now {u1, u3, . . . , un}
and {u′

1, u3, . . . , un} generate the extremal rays of maximal cones Csc(w̃), Csc(w̃
′) ⊂ Hs

of the sc-Cambrian fan Fsc with w̃, w̃′ ∈ W〈s〉. The claim follows by induction on the
rank |S|.

Case 333: C(w) is above Hs and C(w′) is below Hs. Hence C(w) and C(w′) are
separated by Hs, so we have s = t. Hence u′

1 = vs (ρs is the only ray of Fc below Hs)
and there is a maximal cone Cscs(g) for some scs-sortable element g ∈ W which is
generated by the extremal rays ζs(u

′
1), ζs(u2), . . . , ζs(un). Now, observe that

ζs(u1) = s(u1),

ζs(u
′
1) = −u′

1 = −vs, and

ζs(ui) = ui for 2 ≤ i ≤ n.

Thus the extremal rays of the maximal cones Cscs(g) and Cscs(sw) are generated by
−vs, u2, . . . , un and s(u1), u2, . . . , un. Moreover, Cscs(g) ∩ Cscs(sw) ⊆ Hs.

We first show that g = w. The definition of Cambrian fans implies sw(D) ⊂ Cscs(sw).
From Cscs(sw)∩Cscs(g) ⊆ Hs we deduce that w(D) ⊂ Cscs(g). An equivalent statement
is w ∈ (πscs

↓ )−1(g). Now g > sw implies h > sw for all h ∈ (πscs
↓ )−1(g). But C(w)

is above Hs, so h < w implies h 6∈ (πscs
↓ )−1(g). Hence w is the minimal element of

[πscs
↓ (g), π↑

scs(g)] and we have w = g.
Though Cscs(w)∩Cscs(sw) ⊆ Hs, it is not possible to apply the induction hypothesis

immediately, since the length ℓ(w) has not been reduced, but we claim that for any z ∈ S
initial in scs either Cscs(w) and Cscs(sw) are both above Hz or both below Hz. Indeed,
from z ∈ S \ {s} we conclude that vz ∈ Hs. We know that u2, . . . , un ∈ Hs and
u′
1, u1, s(u1) 6∈ Hs. So vz ∈ Cscs(w) if and only if vz ∈ Cscs(sw). Since vz is the only ray

of Fscs below the hyperplane Hz , we have shown that Cscs(w) and Cscs(sw) are on the
same side of Hz.

This implies that we are now in Case 1 or Case 2 where w covers sw, both are
scs-sortable and z is initial in scs. Since {ζs(u1), ζs(u2) = u2, . . . , ζs(un) = un} gener-
ates Cscs(w) and {ζs(u′

1), ζs(u2) = u2, . . . , ζs(un) = un} generates Cscs(w), the argument
of the relevant case yields

ζs(u1) + ζs(u
′
1) =

n∑

i=2

b′iui ∈ Hs with b′i ∈ R.

We can re-express this quantity

ζs(u1) + ζs(u
′
1) = s(u1)− vs = u1 − s(vs) = u1 + u′

1 − (vs + s(vs))

where the second equality follows because Hs is fixed under the action of s, and the third
equality follows from the fact that u′

1 = vs. Since vs + s(vs) ∈ Hs, we conclude that
u1 + u′

1 ∈ Hs, and can therefore be written as
∑n

i=2 biui with bi ∈ R.

It remains to prove λ(u1) + λ(u′
1) >

∑n
i=2 biλ(ui). By Lemma 4.9 it is sufficient to

show that 〈x(C(w′))− x(C(w)), u′
1〉 > 0.
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Recall that t = s ∈ S. Pick a maximal chain in the c-Cambrian lattice

y0 ⋖ y1 ⋖ . . .⋖ yp

with y0 = s and yp = w. Then s ≤ yi for 0 ≤ i ≤ p, so C(yi) is above Hs for 0 ≤ i ≤ p.
So for the pair w̃′ = yi−1 and w̃ = yi we have zi := x(C(yi)) − x(C(yi−1)) = µiβi

with µi > 0 and βi ∈ Φ− by Lemma 4.9 and the proof in Case 1 above. Now 〈βi, vs〉
is the coefficient of the simple root αs in the simple root expansion of βi. Since βi is a
negative root, 〈βi, vs〉 ≤ 0. In particular we have

〈x(C(yi−1)), vs〉 ≥ 〈x(C(yi−1)), vs〉+ 〈zi, vs〉 = 〈x(C(yi)), vs〉

for 1 ≤ i ≤ p. Hence

〈x(C(e)), vs〉 > 〈x(C(s)), vs〉 ≥ 〈x(C(y2)), vs〉 ≥ · · · ≥ 〈x(C(w)), vs〉,

where the first inequality is Lemma 4.10. As u′
1 = vs we have

〈x(C(e)), vs〉 = λ(vs) = λ(u′
1) = 〈x(C(w′)), vs〉

Thus 〈x(C(w′))− x(C(w)), u′
1〉 > 0.

4.4. On integer coordinates

Suppose that W is a Weyl group and that the root system Φ forW is crystallographic,
that is, for any two roots α, β ∈ Φ we have sα(β) = β + λα for some λ ∈ Z. The simple
roots ∆ span the lattice L and the fundamental weights vs, s ∈ S, span a lattice L∗

which is dual to L. For β ∈ L and v ∈ L∗ we have 〈β, v〉 ∈ Z. In fact, β ∈ L if and only
if 〈β, v〉 ∈ Z for all v ∈ L∗. For each ray ρ ∈ Fc, we denote by vρ ∈ L∗ the lattice point
on ρ closest to the origin.

Lemma 4.15. Let Φ be a crystallographic root system for the Weyl group W and c be
a Coxeter element of W . The set {vρ | ρ an extremal ray of C} forms a basis of L∗ for
each maximal cone C ∈ Fc.

Proof. Let C = C(w) denote the maximal cone of Fc for some c-sortable w ∈ W . The
proof is by induction on ℓ(w) and the rank of W . Let s be initial in c. To apply
Lemma 4.11, we distinguish the two cases ℓ(sw) < ℓ(w) and ℓ(sw) > ℓ(w).

Suppose that ℓ(sw) < ℓ(w). Then sw is scs-sortable and C(w) = s (Cscs(sw)). Since
the simple reflection s preserves the lattice, the result follows by induction.

Suppose on the other hand that ℓ(sw) > ℓ(w). Then the cone C(w) lies below the
hyperplane Hs and w ∈ W〈s〉 is sc-sortable. Let C〈s〉(w) denote the maximal cone that
corresponds to w in the Cambrian fan F〈s〉 ⊂ Hs for W〈s〉. Then C〈s〉(w) = C(w) ∩Hs

by Lemma 4.13. The induction hypothesis implies that the extremal rays of C〈s〉(w)
form a basis for the lattice L∗

〈s〉 ⊂ Hs and ρs is the unique extremal ray of C(w) not
contained in Hs by Lemma 4.13. Since the fundamental weights vt, t ∈ S, span L∗ it
follows that L∗ is spanned by vs and L∗

〈s〉 = L∗ ∩Hs. Hence, the extremal rays of C(w)
span L∗.

Theorem 4.16. Let Φ be a crystallographic root system for the Weyl group W and c be
a Coxeter element of W . Suppose that aaa ∈ L. Then the vertex sets V (Permaaa(W )) and
V (Assoaaac (W )) are contained in L.
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Figure 9: An unfolding of the associahedron Asso
aaa
c (S4) with c = s1s2s3, the polar of the c-cluster

complex. The 2-faces are labeled by replacing the labels w(ρs) in Figure 7 by the almost positive
root Lrs(w).

Proof. The result for the permutahedron is obvious, since by definition the vertices of
the permutahedron are the W orbit of aaa, which is in L by assumption, and the action of
W preserves L.

Let w ∈ W be c-sortable, x(w) be the vertex of Assoaaac (W ) contained in the maximal
cone C(w) ∈ Fc, and ρi, 1 ≤ i ≤ n be the extremal rays of C(w). Denote the lattice
point on ρi closest to the origin by yi. The point x(w) satisfies 〈x(w), yi〉 = ci for some
integer ci since aaa ∈ L. Because {yi}, 1 ≤ i ≤ n, is a basis of L∗, this set of equations for
x(w) has an integral solution. In other words, x(w) ∈ L.

5. Observations and remarks

5.1. Recovering the c-cluster complex from the c-singletons

It is possible to obtain polytopal realizations of the c-cluster complex from the con-
struction of generalized associahedra which we have presented, as follows. Suppose that
we are given a W -permutahedron Perm

aaa(W ), a Coxeter element c, and the c-sorting
word w0 of w0. We can easily compute all c-singletons using the characterization given
in Theorem 2.2. The associahedron Asso

aaa
c (W ) is now obtained from Perm

aaa(W ) by keeping
all the admissible inequalities, that is all inequalities 〈v, w(vs)〉 ≤ 〈aaa, vs〉 for c-singleton w.
We label the facet 〈v, w(vs)〉 ≤ 〈aaa, vs〉 of Assoaaac (W ) by the almost positive root Lrs(w)
and extend this labeling to the Hasse diagram of Assoaaac (W ) as follows: if a face f is
the intersection of facets F1, . . . , Fk then assign f the union of the almost positive roots

28



A A

A

B

C D

E

FF

G

H

H

I I I

1

1

1

2

2

33

4

4

5

5

A

B

C D

E

F

G H
I

1

2
3

4

5

−αs2 αs1

αs1 + αs2
αs2 + αs3

αs3

αs2

−αs3 −αs1

αs1 + αs2
+αs3

Figure 10: An unfolding of the associahedron Asso
aaa
c (S4) with c = s2s1s3, the polar of the c-cluster

complex. The 2-faces are labeled by replacing the labels w(ρs) in Figure 8 by the almost positive
root Lrs(w).

assigned to F1, . . . , Fk. By Theorem 3.6, this labeling matches the labeling of the c-
Cambrian fan by almost positive roots given by Reading and Speyer. Therefore, the
opposite poset of this labeled Hasse diagram is the face poset of the c-cluster complex
because it is the face poset of the c-Cambrian fan Fc. The polar of Asso

aaa
c (W ) is therefore

a polytopal realization of the c-cluster complex. In particular, a set of almost positive
roots is c-compatible (see [19]) if and only if it can be obtained as the intersection of
some facets of Assoaaac by the process described above.

We illustrate the recovery of the c-cluster complex for W = S4. Figure 9 corresponds
to the Coxeter element c = s1s2s3 and Figure 10 corresponds to the Coxeter element c =
s2s1s3. We use the polar of the c-cluster complex for the illustration.

First, consider the Coxeter element c = s1s2s3. The facets are labeled by almost
positive roots as indicated. The vertices correspond to clusters as follows:

A = {−αs1 ,−αs2 ,−αs3}, B = {αs1 ,−αs2 ,−αs3}

C = {αs1 , αs1 + αs2 ,−αs3}, D = {αs2 , αs1 + αs2 ,−αs3},

E = {αs1 , αs1 + αs2 , αs1 + αs2 + αs3}, F = {αs2 , αs1 + αs2 , αs1 + αs2 + αs3},

G = {αs2 , αs2 + αs3 , αs1 + αs2 + αs3}, H = {αs3 , αs2 + αs3 , αs1 + αs2 + αs3},

1 = {−αs1 ,−αs2 , αs3}, 2 = {αs1 ,−αs2 , αs3},

3 = {αs1 , αs1 + αs2 + αs3 , αs3}, 4 = {−αs1 , αs2 + αs3 , αs3},

5 = {−αs1 , αs2 , αs2 + αs3}, 6 = {−αs1 , αs2 ,−αs3}.

Next, consider the Coxeter element c = s2s1s3. The facets are labeled by almost positive
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roots as indicated and the vertices correspond to clusters as follows:

A = {−αs1 ,−αs2 ,−αs3}, B = {−αs1 , αs2 ,−αs3}

C = {αs1 + αs2 , αs2 ,−αs3}, D = {−αs1 , αs2 , αs2 + αs3},

E = {αs1 + αs2 , αs2 , αs2 + αs3}, F = {αs1 + αs2 , αs1 + αs2 + αs3 , αs2 + αs3},

G = {αs1 , αs1 + αs2 , αs1 + αs2 + αs3}, H = {αs3 , αs2 + αs3 , αs1 + αs2 + αs3},

I = {αs1 , αs1 + αs2 + αs3 , αs3}, 1 = {−αs1 ,−αs2 , αs3},

2 = {−αs1 , αs2 + αs3 , αs3}, 3 = {αs1 ,−αs2 , αs3},

4 = {αs1 ,−αs2 ,−αs3}, 5 = {αs1 , αs1 + αs2 ,−αs3}.

5.2. A conjecture about vertex barycentres

J.-L. Loday mentions in [13] that F. Chapoton observed the following: the vertex
barycentres of the permutahedron and associahedron coincide in the case of Loday’s
original realization of the (classical) type A associahedron. The first two authors observed
the same phenomenon for the realizations of type A and B associahedra described in [8].
None of these observations have been proven so far. Checking numerous examples in
GAP [23], we observed that the vertex barycentre of Permaaa(W ) and Asso

aaa
c (W ) coincide

for aaa =
∑

s∈S avs, a > 0. The cases checked include types An for n ≤ 7, Bn and Dn for
n ≤ 5, F4, H3, H4, and dihedral groups I2(m). The experiments can be summarized in
the following conjecture.

Conjecture 5.1. Let W be a Coxeter group and c ∈ W a Coxeter element. Choose a real
number a > 0 and set aaa =

∑
s∈S avs to fix a realization of the permutahedron Perm

aaa(W ).
Then the vertex barycentres of Permaaa(W ) and Asso

aaa
c (W ) coincide.

It is straightforward to prove this conjecture for a special family, the dihedral groupsGm

of order 2m. We outline the proof.
Let m ≥ 2 be an integer. The dihedral group Gm of order 2m is the finite Coxeter

group of type I2(m) generated by the two reflections s and t with st having order m. For
any m, the action of Gm on V = R2 is essential and we identify R2 with the the complex
numbers. If we define

vs :=
1 + ei

π
m

2
and vt :=

1 + e−i
π
m

2

then Gm is generated by the reflections with respect to the hyperplanes spanned by vs
and vt. We choose

aaa :=
vs + vt

1 + cos( π
m
)
= 1

and follow our earlier notation where w(aaa) denotes the point obtained by the action
of w ∈ Gm on aaa. Then

w(aaa) =

{
eiℓ(w)

π
m if ℓ(sw) < ℓ(w)

e−iℓ(w)
π
m if ℓ(sw) > ℓ(w).
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The convex hull of the points w(aaa), w ∈ Gm, is the permutahedron Perm
aaa(Gm) which is a

regular 2m-gon. It is easy to verify that the origin is the vertex barycentre of Permaaa(Gm).
We consider the Coxeter element c = st; if c = ts, the reasoning is similar. The c-

singletons are e and all w ∈ Gm with ℓ(sw) < ℓ(w). The generator t is the only c-sortable
element which is not a c-singleton. Denote the intersection of the line through aaa and t(aaa)
and the line through w0(aaa) and sw0(aaa) by P . The associahedron Asso

aaa
c (Gm) is the

convex hull of P and the points w(aaa) where w ∈ Gm is a c-singleton. A straightforward
computation yields

P =
i sin

(
π
m

)

cos
(
π
m

)
− 1

.

and it is not hard to verify that

∑

w∈Gm
not c-singleton

w(aaa) =

m−1∑

k=1

(
e−i

π
m

)k

= P,

so the vertex barycentres of Permaaa(Gm) and Asso
aaa
c (Gm) coincide.

5.3. Recovering the realizations of [8] for types A and B

5.3.1. Type A

Let B = {e1, . . . , en} be the canonical basis of Rn. The symmetric group Sn acts
naturally on Rn by permutation of the coordinates. We set

∆ := {ei+1 − ei | 1 ≤ i ≤ n− 1} and Φ+ := {ej − ei | 1 ≤ i < j ≤ n}.

Then Φ = Φ+ ∪ (−Φ+) is a root system of type An−1 with simple roots ∆. Moreover,
we recall that the reflection group Sn acts essentially on

V := R[∆] =

{
x = (x1, . . . , xn) ∈ R

n

∣∣∣∣∣

n∑

i=1

xi = 0

}
⊂ R

n.

Let si be the simple reflection that maps the simple root ei+1 − ei to ei − ei+1. The
dual basis ∆∗ of ∆ is described by

vsi :=
i− n

n

i∑

k=1

ek +
i

n

n∑

k=i+1

ek ∈ V.

We choose aaa :=
∑n−1

i=1 vsi , so aaa =
∑n

k=1

(
k − n+1

2

)
ek.

There is a bijection between Coxeter elements c ∈ Sn and orientations of the Cox-
eter graph of Sn: if si appears before si+1 in a reduced expression of c then the edge
between si and si+1 is oriented from si to si+1. The orientation is from si+1 to si if si
appears after si+1 in a reduced expression of c. Given an oriented Coxeter graph, we can
apply the construction described earlier and obtain a permutahedron Perm

aaa(Sn) and an
associahedron Asso

aaa
c (Sn).

Consider the affine subspace V ⊂ Rn that is a translate of V by vG = n+1
2

∑n

i=1 ei:

V =

{
x = (x1, . . . , xn) ∈ R

n

∣∣∣∣∣

n∑

i=1

xi =
n(n+ 1)

2

}
.
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Translate Perm
aaa(Sn) ⊂ V by vG to obtain Perm

aaa(Sn) + vG ⊂ V . The vertices of the
translate Perm

aaa(Sn) + vG are the orbit of aaa + vG =
∑n

i=1 iei under the action of Sn; in
other words, we have

w(aaa) + vG =

n∑

i=1

w−1(i)ei

for w ∈ Sn. The permutahedron Perm
aaa(Sn) + vG was described in [8] but the vertices

were labeled differently.

Proposition 5.2. Consider a Coxeter element c ∈ Sn or equivalently an orientation of
the Coxeter graph and let vG and aaa be as above. The associahedron Asso

aaa
c (Sn) + vG is

the associahedron Assoc constructed in [8].

Proof. In [8, Proposition 1.3], it was proved that the c-singletons are the common ver-
tices of the permutahedron and the associahedron and that the normal fan of the latter
is Fc. In other words, the realization of the associahedron in [8] precisely matches the
description of Assoaaac (Sn) given in Corollary 4.5.

5.3.2. Type B

Consider the simple root system of type B given by

∆′ := {en+1 − en} ∪ {ei+1 − ei + e2n+1−i − e2n−i | 1 ≤ i ≤ n− 1} ⊂ R
2n.

If we set V ′ := R[∆′] then V ′ is a n-dimensional subspace of R2n which is contained in V ,
the span of the type A2n−1 root system as in 4.3.1. Denote the simple reflection that
corresponds to en+1 − en by s0. For 1 ≤ i ≤ n− 1, we denote the simple reflection that
corresponds to (ei+1 − ei) + (e2n+1−i − e2n−i) by sn−i. The hyperoctahedral group Wn

(or Coxeter group of type Bn) is generated by these reflections. It is easy to see that

V ′ = V ∩
⋂n−1

i=1 V B
i where V B

i := {x ∈ R2n |xi + x2n+1−i = 0}. In particular we have
aaa ∈ V ′.

The claim that aaa is in the open cone spanned by the fundamental weights of ∆′ follows
from the fact that the scalar product of aaa with any element of ∆′ is strictly positive.

A Coxeter element c ∈ Wn is related to an orientation of the Coxeter graph of Wn as
in type A: If si appears before (resp. after) si+1 in a reduced expression of c then the edge
between si and si+1 is oriented from si to si+1 (resp. from si+1 to si). A Coxeter element
or an orientation of the Coxeter graph therefore yields a permutahedron Perm

aaa(Wn)
as described in Section 3.1 and an associahedron Asso

aaa
c (Wn). The orientation of the

Coxeter graph of Wn determines a symmetric orientation of the Coxeter graph of S2n,
that is, an orientation of the Coxeter graph of type A2n−1 where the edges {si, si+1}
and {s2n−i−1, e2n−i} have opposite orientations. This orientation determines a Coxeter
element c̃ of S2n and we have

Perm
aaa(Wn) = Perm

aaa(S2n) ∩ V ′ and Asso
aaa
c (Wn) = Asso

aaa
c̃ (S2n) ∩ V ′.

The following proposition is a direct consequence of the construction in [8].

Proposition 5.3. Consider a Coxeter element c ∈ Wn or equivalently an orientation
of the Coxeter graph of type Bn. Let vG and aaa be as above for type A. The translated
associahedron Asso

aaa
c (Wn) + vG is the cyclohedron constructed in [8] that corresponds to

the orientation of the Coxeter graph determined by c.
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