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The field of geometry processing concerns the representation, analysis, manipulation, and op-
timization of geometric data. It has made rapid progress motivated by, enabling, and improv-
ing the technological possibilities for the creation of digital models from real-world objects.
For example, laser scanners sample millions of points from the surface of physical objects
with high accuracy and software tools produce complex digital shapes from the sampled data.
This development has a strong impact on the structure of shape processing in industry. As a
consequence, software systems must be adjusted to follow this trend. For example, CAD sys-
tems, which traditionally use spline representation of surfaces, need to be able to process and
optimize highly resolved polygonal meshes. This creates a demand for differential geometric
concepts for polygonal meshes and stable numerical, geometric, and topological algorithms.

F1—1 Deformation-based shape editing

In recent years, a special focus in geometry processing has been on schemes for deformation-
based surface editing. In such a deformation-based editing system, see [9, 10] and references
therein, a user can select parts of a geometry as handles and translate and rotate them in
space. The system automatically deforms the shape so that the handles interpolate or approx-
imate the specified positions. To provide intuitive usability, the computed deformations must
be physically meaningful to match the user’s intuition and experience on how shapes deform.
This is achieved by computing static equilibrium states of the elastic object subject to con-
straints or external forces that represent the user’s input. A major advantage of deformation-
based editing over traditional modeling techniques, like NURBS or subdivision surfaces, is
that many complex editing tasks can be described by few constraints. For example, all shapes
shown in Figure 1 are created by applying one rigid transformation to three handles (the head
and the two hands). This allows for efficient and simple click-and-drag user interfaces.

A challenging problem is that on the one hand to compute a deformation a non-linear opti-
mization problem has to be solved and on the other hand a shape editing system must provide
interactive response times. Hildebrandt et al. [23] developed a scheme for deformation-based
editing of surface meshes based on model reduction. The scheme constructs a low-dimensional
approximation of the optimization problem underlying the editing framework and thereby
achieves a runtime that depends only on the complexity of the low-dimensional system. Mo-
tivated by the observation that a typical modeling session requires only a fraction of the full
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Figure 1. Deformation-based modeling of a dragon model. Handles (blue areas) can be translated and
rotated in space to define a deformation.

shape space of a detailed mesh, they chose to apply dimension reduction to the problem.
Second and third derivatives of the potential energy are used to construct a low-dimensional
shape space that forms the feasible set for the optimization. For the fast approximation of
the energy and its derivatives, they propose a scheme based on a second reduced shape space
for a simplified mesh. By construction, the two reduced shape spaces are isomorphic and the
isomorphism can be used to pull the energy from the shape space of the simplified mesh to
the shape space of the full mesh. To solve the reduced optimization problem, a quasi-Newton
method is used. To improve the performance, the inverse Hessian at the rest state of the en-
ergy is computed during the preprocess and used as a preconditioner for the system. Results
are shown in Figures 1 and 2.

The modal reduction approach provides interactive response times, albeit at the expense of
an elaborate preprocess. Recently, von Tycowicz et al. [45] proposed efficient reduction tech-
niques for the approximation of reduced forces and for the construction of reduced shape
spaces of deformable objects that accelerate the construction of a reduced dynamical system,
increase the accuracy of the approximation, and simplify the implementation of model reduc-
tion. Based on the techniques, von Tycowicz et al. extend the interactive deformation-based
editing scheme in [23] to elastic solids with arbitrary, nonlinear materials.

Figure 2. Results of our geometric modeling technique are shown on the test suite of models and poses
introduced in [10]. Two even larger deformations have been added.
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F1—2 Mesh fairing and smoothing

For meshes appearing in real world applications, noise is an omnipresent artefact that arises
due to resolution problems in mesh acquisition processes. For example, meshes extracted
from image data or supplied by laser scanning devices often carry high-frequency noise in the
position of the vertices. This imposes a strong need for smoothing methods. Hildebrandt and
Polthier [18] have developed a fairing method that allows to prescribe a bound on the max-
imum deviation of every vertex of a polyhedral surface from its initial position. The scheme
is modeled as a constrained non-linear optimization problem, where a discrete fairness en-
ergy (e.g., a discrete Willmore energy) is minimized while inequality constraints ensure that
the maximum deviation of the vertices is bounded. The optimization problem is solved by an
active set Newton method with gradient projection.

An important application of surface smoothing is the removal of noise from 3D laser scan
data. Though a laser scanner can capture the geometry of an object with high precision [32], the
resulting data still contains noise. Surface smoothing methods are applied, in a post process,
after a surface has been created from a number of range images. A benefit of the constraint-
based fairing scheme over alternative approaches is that it can preserve the measuring accu-
racy of the data while smoothing out the noise. A second application of the scheme is the
removal of aliasing and terracing artifacts from isosurfaces, which appear when a surface is
extracted from volumetric data. It is assured that the surface remains within the domain con-
sisting of the voxels that contain the initial surface and their 1-neighbors. In addition, the
scheme was recently applied by Váša and Rus [43] for removing artifacts induced by quanti-
zation of the vertex positions, which is used for mesh compression. The fairing method offers
the benefit that the vertices are kept within the cubical cells specified by the quantization.

Figure 3. Left: A noisy scan of a Chinese lion with a height of 10 cm. Right: Every point of the smoothed
output of our method [18] remains within a 0.1 mm distance to its initial position. The surfaces are
colored by mean curvature.
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Figure 4. Results of a similarity measure that is derived from one of our shape signatures are shown
on the left. Distance to the vertex v (pink dot) in binary as well as continuous coloring. The basis of the
signature are vibration modes of elastic shells. Examples of vibration modes are shown on the right.

F1—3 Modal shape analysis

In recent years, substantial progress in shape analysis has been achieved through methods
that use the spectra and eigenfunctions of discrete Laplace–Beltrami operators. Hildebrandt et
al. [22, 24] have studied spectra and eigenfunctions of discrete differential operators that can
serve as an alternative to discrete Laplacians for applications in shape analysis. They construct
such operators as the Hessians of surface energies, which operate on a function space on the
surface, or of deformation energies, which operate on a shape space of surfaces. In particu-
lar, they have designed a quadratic energy whose Hessian equals the Laplace operator if the
surface is a part of the Euclidean plane. Otherwise, the Hessian eigenfunctions are sensitive
to the extrinsic curvature, e.g., sharp bends, on curved surfaces. Furthermore, they considered
eigenvibrations induced by deformation energies and derived a closed form representation for
the Hessian (at the rest state of the energy) for a general class of such deformation energies.
Based on these spectra and eigenmodes, they derive two shape signatures: one that can be
used to measure the similarity of points on a surface, and another that can be used to identify
features of surfaces. A conceptual difference of this similarity measure and most others is that
it not only uses a local neighborhood to measure similarity, but also it uses global information
encoded in the spectrum and the eigenfunctions of an adequate differential operator. This is
illustrated in Figure 4, which shows an example in which our signature identifies regions of a
surface as similar regions (the knees of the hind legs and the knees of the front legs of the
camel) though the local geometry of the regions is different.

F1—4 Controlling dynamic shapes

Creating motions of objects or characters that are physically plausible and follow an anima-
tor’s intent is a key task in computer animation. Traditionally, the motions of objects or char-
acters are generated from keyframes that specify values for all of the object’s or character’s
degrees of freedom at a sparse set of points in time. Then, a continuous motion is obtained
by fitting splines through the keyframes. This technique is attractive since it offers an ade-
quate amount of control over the motion at a low computational cost. One drawback for this
technique is that it offers little help to an animator who wants to create physically plausible
motions. Physical simulation can produce realistic motions, but it is a delicate task to explicitly
determine forces and physical quantities that produce a motion that matches an animator’s
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Figure 5. Top: Snapshots of a cloth animation that exhibits physical behavior but is controlled by
keyframes are shown. The animation is created with our scheme for interactive spacetime control of
deformable objects, see [24]. The scheme uses the concept of wiggly splines (bottom).

intentions. This is aggravated by the fact that physical simulations are integrated forward in
time, which means that small changes at some point in time can have a large impact on the
state of the system at a later time. Control over a simulation can be achieved by computing
optimal physical trajectories that are solutions of a variational spacetime problem [48]. Such
techniques calculate acting forces that minimize an objective functional while guaranteeing
that the resulting motion satisfies prescribed spacetime constraints, e.g. interpolates a set of
keyframes. Resulting forces are optimally distributed over the whole animation and show ef-
fects like squash-and-stretch, timing, or anticipation that are desired in animation. However,
a major drawback of this approach is that a complex optimization problem must be solved
to compute a motion and animators are reluctant to use any technique which slows down an
animation system deviating from interactive speeds [30].

Hildebrandt et al. [24] have developed a technique for generating motions of deformable
objects that can be controlled by spacetime constraints like keyframes, velocities, and forces.
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The main feature of our scheme is that (after a preprocess) it offers interactive response times
for creating a motion, adjusting physical parameters, or editing control parameters. This is
achieved by a combination of model reduction, a multipoint linearization, modal coordinates,
and a fast and robust algorithm for computing the so-called wiggly splines. Examples are
shown in Figure 5.

F1—5 3D mesh compression

Compression of digital geometry models is the answer to an industrial demand: Ever-finer
geometric detail, requiring millions of vertices, is part of the everyday agenda in the movie in-
dustry, the computer aided design (CAD) industry, and in server-sided rendering applications.
Over the last years, many exciting ideas and new theoretical insights have been devoted to
finding ways of reducing the amount of storage such models absorb. Some of those ideas have
become industrial standards, like the compression methods built into MPEG-4 and Java3D. Dif-
ferent requirements gave rise to differing solutions with varying trade-offs between efficiency
of representation and accuracy of detail – there are lossless and lossy approaches, there are
wavelet and spectral decomposition methods, there are progressive as well as single-resolution
techniques. But often, such as for detailed mechanical components in CAD systems, lossy stor-
age is prohibitive, and this is where lossless coders enter. Lossless stands for the ability to
encode the floating point positions of the mesh at highest accuracy; in practice, positions are
often quantized to 10–14 bits per coordinate, a concession which has turned out to be toler-
able in applications. Unlike other types of multimedia, e.g., sound and video, curved surfaces
do not admit straightforward application of signal processing techniques from the Euclidean
setting like the fast Fourier transform. However, many of these techniques can be generalized
to surfaces with arbitrary topology based on the notion of semiregular meshes (also referred
to as multiresolution meshes). These meshes result from successive refinement of a coarse,
carefully laid out base mesh and are for example inherent to multigrid methods for solving
differential equations or level-of-detail visualizations in virtual environments. Applying the re-
finement locally allows to increase the mesh resolution only where it is needed, however, at
the expense of a non-trivial hierarchical structure. We have developed a lossless connectivity
compression (see [29, 44]) that is adapted to the special characteristics of such adaptive mul-
tiresolution meshes. Using information theoretic strategies such as context-based arithmetic
coding, we take advantage of structural regularities that are typically present in real-world
data. Additionally, we present extensions that exploit correlations of the refinement structure
in sequences of time-dependent meshes (see Figure 6). The scheme works seamlessly with
wavelet-based coding strategies for which we devised improved context modeling exploiting
intraband and composite statistical dependencies. This has been combined with adaptive lossy
trajectory storage for adjoint gradient computation in PDE-constrained optimal control prob-
lems [16, 17, 47]. Trajectory compression was successfully applied to optimal control of car-
diac defibrillation [15].

Unfortunately, in many applications 3D meshes do not possess such a hierarchical structure
and therefore no assumptions can be made about its complexity, regularity or uniformity. For
such irregular meshes single-rate techniques have been proven to be very efficient. In partic-
ular, our FreeLence scheme [28] belongs to this category. It uses free valences and exploits
geometric information for connectivity encoding. Furthermore, FreeLence takes advantage of
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Figure 6. The coherence of consecutive frames in time-varying sequences, as in this cloth simulation, is
exploited to further improve the performance of the compression scheme.

an improved linear prediction scheme for geometry compression of 3D meshes. Together,
these approaches yield a significant entropy reduction for mesh encoding with an average of
20–30 % over leading single-rate region-growing coders, both for connectivity and geometry.

F1—6 Discrete surface parametrization

For smooth surfaces, a number of special parametrizations which are adapted to the surface
geometry are well known from classical differential geometry, like conformal (angle preserv-
ing) parametrizations and parametrizations by curvature lines, by asymptotic lines, by conju-
gate nets, etc. A particular application often demands a certain type of parametrization due
to its special geometric properties. For example, conformal parametrizations are desirable for
texture mapping, because in the small they scale but do not distort the texture image. Con-
formality is also called for when a surface is to be remeshed with nearly regular triangles or
quadrilaterals. This raises very natural questions regarding discrete surfaces (meshes), like:
“What does it mean for a discrete surface to be conformally parametrized?” The key challenge
is to find proper discrete versions of differential geometric notions and to develop the corre-
sponding theory. The main goal is to develop a theory of discrete surface parametrizations for
arbitrary surfaces and to profitably apply it to problems arising in practice.

Discrete conformal parametrizations via circle patterns. For polyhedral surfaces, i.e., surfaces
glued from planar polygons, there are various definitions of conformal maps. One definition
deals with polygons inscribed in circles, and is formulated in terms of these circles. A confor-
mal map then is a pair of circle patterns with equal intersection angles. A generalization of this
definition (the angles are preserved as good as possible) was used to create conformal maps
of triangulated surfaces in [31]. See also the Showcase 19 about the Matheon bear where this
method has been applied.

Discretely conformally equivalent meshes. A new conformal mesh flattening algorithm was
suggested in [42] and further developed in [4], see Figure 7. It is based on a strikingly simple
definition for discrete conformal equivalence: Two triangle meshes with the same combina-
torics are considered discretely conformally equivalent if scale factors can be associated to
the vertices such that the length of an edge in the second mesh is obtained by multiplying
the length of the corresponding edge in the first mesh with the geometric mean of the scale
factors associated to its two vertices. This definition discretizes in a straightforward manner
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Figure 7. A discrete conformal map to the plane. Domain of parametrization (left), lines of constant
parameter values (middle), seamless repeating pattern on the target geometry (right)

the concept of conformal equivalence for Riemannian metrics on a smooth manifold. Most im-
portantly for the applications, we found a variational principle which reduces the conformal
flattening problem (to find for a given surface mesh a conformally equivalent flat mesh) to
an unconstrained convex optimization problem. The target function is a convex function of
the (logarithmic) scale factors at vertices, whose value, gradient and Hessian can be computed
efficiently. A useful feature of our method is the possibility to produce conformal parametriza-
tions which are isometric on the boundary. This means the mesh can be flattened while the
boundary edges retain their original lengths. This is desirable because we could show that
among all conformal flattenings of a surface with boundary, the one with least distortion is
the one that is isometric on the boundary.

Discrete quasiisothermic parametrizations. A related problem is to find a parametrization
as close as possible to a conformal curvature line (isothermic) parametrization. The method
suggested in [40] is based on construction of S-isothermic parametrizations for triangulated
surfaces, see Figure 8. These are planar quad-meshes with touching incircles. For surfaces that
do not admit discrete isothermic coordinates this method generates so called quasiisothermic
parametrizations. Technically this method is an application of the conformal parametrization
scheme developed in this project with special boundary conditions deduced from the princi-
pal curvature data of the surface. The parametrization along isothermic coordinates is useful
for the creation of visually pleasing meshes for architectural building hulls. One of its main
features is the planarity of the facets. Also the induced circle packing on the surface can be
used by architects to create patterns.

F1—6.1 Low distortion parametrizations
The efficiency of multilevel methods strongly depends on the quality of the underlying hierar-
chy of grids. While in the solution of planar partial differential equations such a hierarchy usu-
ally comes with an adaptive refinement process, manifold meshes in geometry processing are
often given as a collection of fine-grid triangles. At this stage, surface parametrizations play a
crucial role as a preprocessing step for generating nested multilevel hierarchies of grids. More-
over, surface parametrization is an ongoing research topic with a wealth of other applications
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Figure 8. Discrete quasiisothermic parametrization of a piecewise flat triangulated surface. A boundary
value problem is solved to create the parametrization (left), a new mesh is created from this map, edges
align with the principle curvature directions of the surface (middle), the quadrilaterals possess touching
incircles (right).

of their own ranging from texture mapping to extension of image processing algorithms, from
remeshing to the automatic construction of hierarchical subdivision surfaces. All applications
using natural coordinates will benefit from the added structure of a global parametrization.

We focus on generating a nested quadrilateral multilevel hierarchy of given triangle meshes.
This hierarchy is based on the QuadCover algorithm [26], which automatically computes a
quadrilateral surface mesh. QuadCover uses a curvature aligned parametrization yielding little
length and area distortion of the resulting parametrization.

For controlling the alignment of quadrilaterals, a guidance frame field (e.g., derived from
principal curvature directions) can be used. In a first step, the curl part of the guidance field is
removed with the discrete Hodge-Helmholtz decomposition of [37], making the guidance field
locally integrable. Integrating the resulting field leads to a local parametrization in the vicinity
of each point, but globally, the parameter lines will not necessarily close up. Continuity is then
enforced in a second step by computing a base of the first homology group and adapt the
frame field for each of these base path to fulfill the closing condition.

Finally, we simplified the notion of frame fields by describing them as vector fields on a
branched covering. It allows to apply the methods from classical vector field analysis to frame
fields. Frame field singularities (with an index of multiples of 1/4) appear as branch points of
the covering.

Figure 9. Automatic QuadCover parametrization (middle) from a triangle mesh (left) and a generated
multigrid structure (right)
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Figure 10. Parametrization of feline model (left) and resulting quad mesh (right)

Special care has to be taken for singularities of positive integral index. They do not resolve
to branch points in the covering surface. We analysed the theory behind and gave an extension
to QuadCover which allows the placement of these singularities [35].

The parameter lines divide the surface into quads which are used as a base for an adaptive
nested quad hierarchy. We applied this method to generate hierarchical subdivision surfaces
from irregular input meshes.

Additionally, we extended the QuadCover algorithm for stripe parametrizations of tubular
objects [27]. It allows to map a regular stripe pattern globally onto tube-like surfaces such
as vessels, neurons, trees, etc. Stripe parametrizations are quite useful for visualization of
medical data.

F1—7 Convergence of discrete differential operators

Differential geometry studies the geometry of curved manifolds. Traditionally, the manifolds
are assumed to be differentiable and techniques from calculus are used. Discrete differential
geometry develops discrete notions and concepts that describe geometric properties of dis-
crete manifolds in analogy to the smooth theory. The results in this field are heavily used for
geometric computations, which are performed on discrete manifolds since computers can only
process finite sets of numbers.

An important aspect of this theory is the construction of discrete differential operators
and discrete curvatures on polyhedral surfaces (or polygonal meshes) and the study of their
convergence properties.

Discrete Laplace–Beltrami operators. Discrete Laplace–Beltrami operators are basic objects in
discrete differential geometry [7], discrete complex analysis [13, 34], and numerics of geomet-
ric partial differential equations [14]. In addition, different applications in fields like computer
graphics [12, 33], geometry and image processing [9, 39], computational biology [8], and neuro-
science [1, 41] use discretizations of the Laplace–Beltrami operator.

Among the different discretizations of the Laplace–Beltrami operator on polyhedral sur-
faces, the cotan Laplacian [36] introduced by Pinkall and Polthier, is probably the most promi-
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nent. Wardetzky et al. [46] analyze structural properties of discrete Laplace–Beltrami opera-
tors. Building on the continuous setting, they propose a set of desirable properties for dis-
crete Laplace–Beltrami operators and prove a theoretical limitation: discrete Laplacians cannot
satisfy all the properties. For example, the cotan Laplacian satisfies all but one of the prop-
erties, namely the maximum principle. In addition to the analysis, Wardetzky et al. introduce
a construction of discrete Laplace–Beltrami operators that uses the outer differential of dis-
crete 1-forms. A discrete Laplace–Beltrami operator is obtained by specifying an L2-product
on the space of discrete 1-forms. Using the concept of an intrinsic Delaunay triangulation of a
polyhedral surface, Bobenko and Springborn [6] propose a modified cotan Laplacian that has
non-negative weights. This implies that the discrete operator satisfies a maximum principle,
which, in general, is not satisfied by the cotan Laplacian. For an example of a cotan-discrete
minimal surface that does not satisfy the maximum principle, we refer to [38].

Hildebrandt et al. [21] established convergence results for a wide class of discrete differ-
ential geometric properties of polyhedral surfaces, such as convergence of geodesics, conver-
gence of the surface area, weak convergence of the mean curvature, weak convergence of the
Laplace–Beltrami operators, and convergence of solutions to the Dirichlet problem of Pois-
son’s equation. In particular, convergence of the prominent cotan-formula was shown, proving
consistency of this finite-element approach with the smooth theory. Beyond these results, an
important question is whether one can construct a consistent discretization of the strong
form of the Laplace–Beltrami operator, i.e., a discretization that converges pointwise. Based
on the cotan weights, various constructions of discrete Laplacians have been proposed. How-
ever, pointwise convergence results for these operators could only be established for special
types of meshes (e.g., meshes with certain valences) and counterexamples to consistency have
been reported [21, 49]. Hildebrandt and Polthier [20] introduced a discretization of the strong
Laplace–Beltrami operator based on the cotan-weights and prove its consistency.

Discrete Willmore energy. The Willmore energy of a smooth surface M in R3 is the nonlinear
geometric functional

W(M) =
∫

M
H2dvol.

W(M) agrees, modulo multiples of the total Gauß curvature
∫
M K dvol, with the functionals

∫

M
(κ2

1 + κ2
2)dvol and

∫

M
(κ1 − κ2)2dvol. (1)

The Gauß–Bonnet theorem implies that the total Gauß curvature is constant under variations of
a surface that keep the boundary and tangent planes at the boundary fixed. Hence, under such
boundary constraints a minimizer of the Willmore energy is also a minimizer of the other two
functionals. This means it has the least curvature (as a minimizer of the first functional in (1))
and the least difference in the principal curvatures (second functional). In addition, the second
functional in (1) has the remarkable property that it is invariant under Möbius transformations
of R3, see [2].

Boundary value problems for the Willmore energy are of fourth order, which makes discretiz-
ing the Willmore energy and the associated flow on polyhedral surfaces a difficult task. Based
on a discretization of the mean curvature vector, Hsu, Kusner, and Sullivan [25] introduced
a discrete Willmore energy for polyhedral surfaces and used Brakke’s Surface Evolver [11] to
compute minimizers with different genus. Bobenko [3] proposed a discrete Willmore energy
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Figure 11. Mean curvature (middle) and Gaussian curvature (right) computed using a generalized
shape operator on a 3d-scanned model. Color coding from white (negative) to red (positive).

for polyhedral surfaces that preserves the Möbius symmetry of the continuous energy. In [5]
the flow of this discrete energy is studied.

On smooth surfaces, the Willmore energy is linked to the Laplace–Beltrami operator through
the mean curvature vector field H, which is the product of the mean curvature H and the sur-
face normal field. The mean curvature vector field equals the Laplace–Beltrami operator of the
embedding of the surface, thus the Willmore energy equals the squared L2-norm of the mean
curvature vector. Since the embedding of a polyhedral surface is continuous and piecewise
linear (hence in the domain of the discrete Laplace–Beltrami operators), the construction of
the discrete strong Laplace–Beltrami operators in [20] extends to a construction of discrete
mean curvature vectors and discrete Willmore energies. Pointwise approximation of the mean
curvature vector field of a surface and consistency of the discrete Willmore energies were
proved.

Convergence of discrete curvatures. Curvature is a central concept in the study of geometric
properties of surfaces in R3 and appears in many interesting geometric and physical prob-
lems. Examples are the study and construction of surface with constant mean curvature and
the analysis and integration of curvature flows. The estimation of curvatures of a smooth sur-
face from an approximating discrete surface is important for the numerical treatment of such
problems and for various applications in engineering and computer graphics.

In classical differential geometry, the curvatures of a smooth surface M in R3 are repre-
sented by the shape operator S, a tensor field on the tangent bundle of M . Since the definition
of S involves second derivatives of the embedding of the surface, it does not apply to poly-
hedral surfaces. A polyhedral surface has planar triangles and its curvatures are concentrated
at the edges and vertices. Hence, roughly speaking, they cannot be described by functions but
by distributions. Hildebrandt and Polthier [19] implemented this idea by introducing general-
ized shape operators that can be rigorously defined for smooth and polyhedral surfaces. The
generalized shape operators are functionals on an appropriate Sobolev space of weakly differ-
entiable vector fields. They showed that this description of curvature of polyhedral surfaces
can be used for the pointwise approximation of the classical shape operator of a smooth sur-
face. These are the first pointwise approximation results for the shape operator of a smooth
surface from polyhedral surfaces in this generality.
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