Variational Shape Approximation of Point Set Surfaces

Martin Skrodzki !, Eric Zimmermann ', and Konrad Polthier !

1 Freie Universitit Berlin, Germany

1

Abstract

This work proposes an algorithm for point set segmentation
based on the concept of Variational Shape Approximation
(VSA), which uses the k-means approach. It iteratively selects
seeds, grows flat planar proxy regions according to normal sim-
ilarity, and updates the proxies. It is known that this algorithm
does not converge in general. We provide a concrete example
showing that the utilized error measure can indeed grow dur-
ing the run of the algorithm. To reach convergence, we pro-
pose a modification of the original VSA. Further, we provide
two new operations applied to the proxy regions, namely split
and merge, which enqueue in the pipeline and act according
to a user-given parameter. The advantages over reqular VSA
are independence of both a prescribed number of proxies and a
(manual) selection of seeds. Especially the latter is a common
drawback of region-growing approaches in segmentation.

1 Introduction

Point sets arise naturally in almost all kinds of three-
dimensional acquisition processes, like 3D laser-scanning and
have been recognized over 30 years ago as fundamental shape
for representation in computer graphics. In comparison to
meshes, they have a decreased demand in storage and have
the advantage to be the direct representation of the object as
obtained from acquisition devices, whilst lacking connectivity
information.

However, in many applications, large parts of the point set
carry redundant information. For example, a flat area of a
surface can be sampled sparsely compared to an area of high
curvature. The identification of such flat areas can be achieved
e.g. via segmentation. Cohen-Steiner et al. proposed the Vari-
ational Shape Approximation (VSA), [1]. The procedure seg-
ments a given mesh into a given number of regions approxi-
mated by proxies, which can be used for a simplified model. A
translation to point sets was done by Lee et al. [4] with a focus
on feature extraction.

In a survey of simple geometric primitives detection meth-
ods for captured 3d data, the authors of [3] find VSA to be a
method in particular suited to be run on individual algorithms
as opposed to in- or outdoor scene data. It is summarized as
an “automatic clustering” approach with low abstraction level
and medium data fidelity, which attains a good balance in terms
of e.g. speed, scalability, simplicity, and generality when com-
pared to other methods, see [3] for details.

Despite its advantages, the VSA procedure and its trans-
lations have several downsides. First, as [1] also states, the
procedure is not convergent in general, which is the same for
meshes and point sets alike. Second, the available variants as-
sume a prescribed number of proxies. Third, the quality of the
final segmentation depends on the choice of starting seeds for

martin.skrodzki@fu-berlin.de, eric.zimmermann@fu-berlin.de, konrad.polthier@fu-berlin.de

the proxies. Our main contributions are:

e Provide an example of a growing error during the run of
the VSA algorithm which applies to meshes [1] and point
sets [4] alike.

e Presentation of a modified VSA version and proof of its
convergence.

e Description of two new operations, split and merge, in the
VSA pipeline, making the initial choice of a fixed proxy
number and manual seed selection unnecessary.

2 VSA Procedure

The VSA procedure partitions a surface S C R?® into m € N
disjoint regions R; C S, UR; = S, where each region is associ-
ated a linear proxy P; = (C;, N;) € R3 x SQ, where C; denotes
the center and IV; denotes an associated unit-length normal, i.e.
every proxy appears as a plane. After an initial seed selection
every region grows w.r.t. a metric given by

£V (R P) = / () — Nl de,

TER;

where n(xz) denotes the surface normal at point =z € S.
Throughout the whole paper, with ||-|| we refer to the Euclidean
norm. Observe that this is the second proposed metric in [1]
and the first one considers only the point positions. We focus
on the one driven by normals as the authors found it to be
favorable. In the discrete setting, where S is given as a (tri-
angulated) mesh with elements t;, the error metric simplifies

to
LY (R, P) = |Inlts) — Nall* |51, (2.1)
tj

with n(t;) the element normal and |¢;| its area. In their adap-
tion to point sets, Lee et al. replaced the element normals and
area term in Equation (2.1) by vertex normals and weighted
all points equally with value 1. Here, it is possible to intro-
duce more complex weighting terms in the point set setting
(e.g. [6]), since we do not have an adequate equivalent to the
area of an element. Afterwards, in both the mesh and the point
set setting, the error measure

m
E{(Ri,P)|i=1,...,m}) =Y L (R, P). (2.2)
i=1
is minimized.

In order to find a minimum of the above error functional, the
VSA procedure relies on a variation of Lloyd’s k-means algo-
rithm [5]. It works on both meshes and point sets, while the
latter just uses the points, its normals, and a proper notion
of neighborhoods. From all respective elements, m are chosen
randomly to build up the proxies, with C; as a proxy’s barycen-
ter and N, its normal. The neighbors of selected elements are
collected into a priority queue Q and sorted increasingly with

growing £2'. Afterwards the following three steps are per-
formed iteratively until convergence:

1. Flood: As long as Q is not empty, pop the first element.
Ignore it, if it has already been assigned to a proxy. If not,
assign it to the proxy that pushed it into @ and collect all
neighboring elements into the queue with proxy label they
got pushed by.

2. Prozy Update: Update all proxy normals as averaged sum
of the normals of their associated elements.

3. Seeds: For each proxy respectively, find an element in each
region which is most similar according to the associated
proxy normal and use it as seed element for the next flood-
ing step.

In the work of Lee et al. [4], the authors use the k nearest
neighbors as their neighborhood notion, with k € {15,...,20}.

3 Example for a Growing Error Functional

Although the authors of [1] state that they cannot guarantee
global convergence, they do not provide a concrete example. In
this work, we contribute to the understanding of the algorithm
by describing a setup in which the error function (2.1) does
grow during the run of VSA.

Consider the 2-dimensional setup shown in Figure 1(a) with
n points given connected on a line with normal (_11) next to a
line of n points with normal (). At the right end of the second
line, there is a single point with normal (701) and another single
point with normal given by

el () ())

Now, two proxies will act on this example, with their initial
seeds shown in yellow and blue in Figure 1(a). They each start
on one of the two lines of n points respectively. The result after
a flood is shown in Figure 1(b), where each line is completely
covered by the proxy starting on it and the two single points
are associated to the proxy with normal ((1)) After updating

the proxy normals, the yellow proxy has normal (711) while the
blue proxy has normal N given by the equation above. Thus,
the yellow proxy starts from an arbitrary point on its line while
the blue proxy starts from the rightmost point. The error after
this first flood and proxy update is given by

(-1

Starting from the new seed points, a second flood results in the
situation shown in Figure 1(c). Here, almost all points except
for the rightmost one are associated to the yellow proxy with
normal (711) Its new normal after a proxy update is

2 2

Ei=n- +

st () 0)-)

which amounts to an error after the second flood and proxy

update given by
0 , -1 /

-1 ,
- N
Choosing e.g. n = 100, we obtain E; ~ 1.9802, but
FE5 ~ 39.395. Furthermore, the corresponding error value af-

ter the flood is also growing.

2

+n-

2

+

2

EQZTL-

IGS 2019 Poster

\
O™ point

(a) Setup for growing error functional.

LLLLLLU_UZFL

(b) Segmentation after first (c) Segmentation after second
flood. flood.

Figure 1: Example for a growth in the error measure after a
flood and proxy update.

4 Modification for Converging VSA

In order to obtain an algorithm with guaranteed convergence,
we propose to alter the steps of the algorithm as follows. First,
we perform an initial seeding, one flood step, and a proxy update
as explained above. Instead of the seeding step, we perform the
following procedure:

4. Switch: For all points p € P, consider their k nearest
neighborhoods Ny (p). Assume that p is assigned to proxy
P;. If any point p, € Ni(p) is assigned to another proxy
Pj, compute the change of the error measure in Equa-
tion (2.2) resulting from reassigning p from P; to P;. Com-
pare it to the current best known reassignment. After it-
erating through all points p € P, reassign the point such
that the error measure is reduced maximally.

This new switch step replaces the seed step and the flood step
described above. That is, it is only iterated together with the
prozy update. The iteration is continued until no further switch
operations can be performed. Although we describe the switch
for point sets, it can easily be adopted for the mesh setting. For
this alternate procedure, we can prove the following statement.

Theorem 1 (Error reduction by switch and proxy update,
M. S. and E. Z.). Given a point set P = {p1,...,pn} with a
netghborhood structure, such that the neighborhood graph on P
is connected and normals ni,...,n, on P, with n' denoting
the number of points in P, then each prory update step and
each switch step as defined above leads to prozies (R;, P;) with
a smaller error measure in Equation (2.2).

Proof. Concerning the proxy update step, consider

VE({R:, P}) =V ij L2 (R;, P)

S Vwilng — Nill;

i=1p;ER;

m

Z Z ij(niji).
P;ER;

=1

M, that is updating the proxy normal
prER; WL

as weighted average of its assigned normals, we obtain

Z 2wing — Z 2w;j (szem ‘Wm>

Setting N; =

Z 2w;(n; — N;)

w
p;ER; p;ER; p;ER; 2peer, Wt
Zp;eRi 2weny
= E ijnj — _— . E wj
Z cRr,; W
p;ER; Pe i PjER;
= E 2win; — E 2wene = 0.
p;ER; PeER;

Thus, at the chosen updated proxy normal, the energy reaches
a (local) minimum. As the energy is convex as sum of norms,
which are convex, the found minimum is indeed its global min-
imum for the current choice of segmentation.

Concerning the switch step, only those points are reassigned
which reduce the value of error measure (2.2). Therefore, triv-
ially, after a switch operation the error is smaller. O

This theorem proves the convergence of our modified VSA pro-
cedure.

5 New Operations: Split and Merge

Two drawbacks of region growing approaches are the prescribed
number of proxies to be chosen and the proper placement of
seed points. The latter is often done manually in order to en-
hance results. In this section, we want to propose two new op-
erations, which also adds adaptability of the algorithm to input
and desired outcome. Also, they give the user the possibility to
control the level of detail, i.e. how fine the segmentation should
be in the end. For this, we introduce a user-given parameter
k € Rx>o which controls the maximum deviation within a proxy
region R; from a corresponding completely flat approximation.
This parameter is used in the following two additional steps:

(a) Split: Given a proxy P; with its region R; such that
[,2’1(RZ~7P¢) > k. We use weighted principal component
analysis [2] to compute the most spread direction of R;.
The set R; is then split at the center of this direction into
two new regions R; = R} LI R?. The new normals are cho-

sen as N, = ijeR} S and a corresponding N
J K3

respectively. The new centers C} and C? are then placed
at those points of R}, R? that have least varying normals
from N} and N? respectively.

Note that the reasoning of Theorem 1 holds for this case,
too. Thus, the modified VSA procedure outlined above,
enriched with an additional split step does continue to con-
verge.

(b) Merge: Consider a pair P;, P; of neighboring proxies with
their respective normals N;, N;. If the region R =R; UR;
with normal N’ = % achieves an error measure (2.2)
strictly less than k, the two regions are replaced by their
union R’, with normal N’ and a chosen center C’ € R’
with its normal least deviating from N'.

Note that we could allow only those pairs of neighboring
regions to merge such that

L*Y(Ri, P) + L' (R, P;) < L*" (R, P).

Then, the error measure would not increase and termina-
tion of the algorithm would be guaranteed. However, this
would result in neighboring regions not observing the user-
given k threshold. Therefore, we accept an increase of the

IGS 2019 Poster

global error measure in favor of a better region layout. In
all experiments performed, the algorithm still converged.

Both operations alter the number m of proxies. Thereby, a
significant disadvantage of the algorithm is eliminated as the
user does not have to choose m a priori. It is replaced by
the user’s choice of k, providing a semantic guarantee on the
regions being built by the algorithm. The user can prescribe a
value of k computed from the desired curvature within a proxy.

In the merge process outlined above, we asked for two neigh-
boring regions. However, we have not defined any relation on
the regions yet. In the meshed case discussed above, two re-
gions are neighbors if and only if they share an edge in the
mesh. In the context of point sets, we cannot rely on this, thus
we propose the following definition. During the flood step de-
scribed above, an element p is popped from the priority queue
QO together with a possible assignment to a region R;. How-
ever, it is ignored if p has already been assigned to a region R;.
In this case, we denote R; and R; to be neighbors, if i # j.
This can be extended to the switch simply by considering two
proxies to be neighbors, if in the k nearest neighborhood of a
point p € P;, there exists a point g € Pj, i # j.

This finishes the whole VSA pipeline, including the addi-
tional two steps merge and split. In the following, we show
several results of the altered VSA on point sets.

6 Experimental Results

As our proposed extension of the VSA procedure gives some
possibilities to arrange the steps, for the following experiments
we used the pipeline:

Iterate(seeding - flood - proxzy update - one split - one merge).

The displayed models with respective number of points
in brackets are the CAD models Joint (9,998), Rocker-
arm (10,000), and Fandisk (6,475) as well as the real-world
models Balljoint (10,002), Max Planck Bust (10,112), and
Bunny (4,899), shown in Figures 2 and 3. The used param-
eters are given in the following table:

Model m m k K
Joint 15 34 8 20
Rockerarm 15 45 11 50
Fandisk 15 27 8 20
Balljoint 20 44 10 50
MaxPlanckBust | 20 41 8 20
Bunny 15 36 &8 20

All these models visually give nice segmentation results, espe-
cially when we consider that all of them started with randomly
selected seeds, where the number of seeds increased by the
merge step in all cases to reflect the local geometries’ behavior.
A further visual comparison can be seen in Figure 3. The first
row shows the segmentation gained with our approach, result-
ing in 27 (Fandisk) and 36 (Bunny) proxies. The second row
shows results obtained by applying the VSA procedure with a
corresponding number of seeds chosen randomly. Finally, there
third row has been started with 15 triangle seeds for both mod-
els, which where selected manually for improved guidance of
the algorithm, while additional seeds where added randomly
to have the final seed numbers 27 (Fandisk) and 36 (Bunny).
Here, we can see that our algorithm produces comparable re-
sults, despite the fact of not having manually placed seeds.

(a) Balljoint (b) Joint

(c) Max Planck Bust (d) Rockerarm

Figure 2: Our VSA adaption applied to four point-based models.

Figure 3: Segmentation applied to the Fandisk (left) and Bunny
(right) models with our approach (first row), the VSA [1] with
automatic (second row), and manual selected seeds (third row).

IGS 2019 Poster

7 Conclusion

We have explained the VSA procedure, created an example
with a growing error measure (2.1), proposed an alternate
pipeline with the new operation switch, and gave proof of its
convergence. Furthermore, we presented the two new opera-
tions split and merge, which make the procedure independent
of a prescribed number of proxies and a (manual) initial selec-
tion of seeds as shown in our experiments.

For future work, we want to compare the quality of our seg-
mentation approach with state-of-the-art methods and investi-
gate a novel simplification algorithm based on the model ap-
proximating proxies.

References

[1] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun.
Variational Shape Approximation. In ACM Transactions
on Graphics (TOG), 2004.

[2] Paul Harris, Chris Brunsdon, and Martin Charlton. Ge-
ographically weighted principal components analysis. In-
ternational Journal of Geographical Information Science,
2011.

[3] Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy
Boubekeur. A survey of simple geometric primitives detec-
tion methods for captured 3d data. In Computer Graphics
Forum, volume 38, pages 167-196. Wiley Online Library,
2019.

4

Kai Wah Lee and Pengbo Bo. Feature curve extraction from
point clouds via developable strip intersection. Journal of
Computational Design and Engineering, 2016.

[5

Stuart P. Lloyd. Least squares quantization in pcm. IEEE
transactions on information theory, 28(2):129-137, 1982.

[6] Martin Skrodzki, Johanna Jansen, and Konrad Polthier.
Directional density measure to intrinsically estimate and
counteract non-uniformity in point clouds. Computer Aided
Geometric Design, 64:73-89, 2018.

