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Abstract
With the emergence of affordable 3D scanning and printing devices, processing of large point clouds has to be performed in many
applications. Several algorithms are available for surface reconstruction, smoothing, and parametrization. However, many of these
require the sampling of the point cloud to be uniform or at least to be within certain controlled parameters. For nonuniformly
sampled point clouds, some methods have been proposed that deal with the nonuniformity by adding additional information such
as topological or hierarchical data. In this paper, we focus on point clouds sampling surfaces in R3. We present the notion of local
directional density measure that can be intrinsically computed within the point cloud, that is without further knowledge of the
geometry despite the given point samples. Specifically, we build on the work of [1] to derive a local, directed, and discrete measure
for density. Furthermore, we derive another discrete and a smooth density measure and compare these three experimentally. Each
of the three considered measures gives density weights to use in discretizations of operators such that these become independent
of sampling uniformity. We demonstrate the effectiveness of our method on both synthetic and real world data.

1 Introduction
Point clouds arise naturally in almost all kinds of 3D acquisition processes. As early as 1985 points were recognized as
both fundamental and elementary means for graphic processing, see [9]. A guiding principle of the point-based approach
is the direct processing of raw scanning data without prior meshing. Based on this idea, a multitude of algorithms has
been devised to work on point clouds. However, because of missing connectivity data, point clouds pose new challenges
on the corresponding processing methods. For example, when sampling a 3D object by a point cloud, reconstructing
the object’s topology from the point cloud is in general a hard problem.

When considering point clouds sampling surfaces in R3, many algorithms make additional assumptions on the
sampling quality. For example, Amenta et al. assume in their power crust algorithm [1] that the distance of the sample
to the sampled object is bounded by the local feature size. Results that are independent of the sampling, like the kd
tree data structure of Friedmann et al. [4] are somewhat rare. In particular, when discretizing differential geometry
operators like the gradient [8], the Laplace operator [2], or the shape operator [15], implicit or explicit assumptions are
made on the uniformity of the point cloud.

In this paper, we present an approach to handle nonuniform densities in point clouds. Our method works intrinsically
without using additional information beside the raw point cloud. We define a local density measure from a point of the
point cloud into any tangential direction. The measure can be transformed to give local weights on the neighborhood of
each point. These can then be used e.g. in the operator discretizations mentioned above in order to make them robust
even on nonuniform samples. Computational experiments show the effectiveness of our approach on both synthetical
and real world data.
Contributions of this paper are the following:

• definition of a discrete directional density measure for point clouds

• intrinsic computation of local density without additional information

• weights for discrete operators to overcome density effects

2 Related Work
Several methods have been devised to handle nonuniformly sampled point clouds within different applied scenarios.

In the setting of surface reconstruction, the authors of [6] propose an unsigned distance function which enables
them to process input data consisting solely of 3D sample positions without any normal information. Since the surface
extraction does not depend on a change of sign of the implicit representation, the method is immune to noisy and
nonuniformly distributed samples. A different approach is taken in [10]. Here, the authors add volumetric or prior
information to global implicit surface reconstruction to eliminate the ill-posedness of nonuniformly sampled point clouds.
Yet another proposal is made in [17], where a local hierarchical clustering method is used to improve the consistency
of the point cloud distribution. Within a two-step process, the computational complexity of the point cloud is reduced
and the remaining points are transformed into a uniform sampling. Similarly, the authors of [11] use a combination of
octree data partitioning, local Delaunay tetrahedralization, and graph cut optimization for their surface reconstruction
approach. They achieve processing of point density variations of more than four orders of magnitude.

For registration of point clouds with nonuniform density, the authors of [5] propose to extend registration algo-
rithms by including topological information of the sampled surface. Thereby, they aim to compensate effects that
the nonuniformity has on 3D neighborhood searches. One of the main applications of [3] is also registration. The
authors use nonuniform density in order to reduce cost in storing, processing, and visualizing a large-scale point cloud.
They consider a randomized resampling strategy to select a representative subset of points while preserving features
depending on the application.
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Considering simplification methods for point-sampled surfaces, in [13], it is described that nonuniform samplings
call for more sophisticated approaches yielding higher computational overhead. Furthermore, the authors state that
finding suitable global factors can be difficult for nonuniformly sampled point clouds.

The general problem of nonuniformity in point clouds is approached in [16]. Finding that analyzing methods for
uniform samples cannot be easily extended to nonuniform settings, the authors present an extension of Fourier analysis
to measure spectral and spatial properties of various nonuniform sample distribution. This includes in particular
adaptive, anisotropic, and non-Euclidean domains. A different approach is taken in [12]. The authors use spectral
analysis of manifolds to derive optimal sampling conditions for a given surface representation. However, they also find
that if their method is directly used on a point cloud with a nonuniform distribution limitations on convergence and
stability may arise.

In conclusion, the state-of-the-art methods either propose solutions tailored to a special application, try to deal
with nonuniformity by adding additional data, or do not work reliably on nonuniform point samples at all. In the
following, we present an approach that is general, does no need further information beside the point cloud itself, and
can handle nonuniform samples.

3 Three Approaches to Directional Density Measures
We will now introduce three different density measures on point clouds. The first is a continuation of the work
presented in [8] and builds on the covariance matrix. The second works with a unit circle on the tangent plane and the
corresponding segments induced by projections of neighboring points. Finally, the third measure utilizes smooth basis
functions.

For the remainder of the paper, we consider a point cloud P = {pi ∈ R3 | i = 1, . . . , n}. Denote for each point
pi ∈ P its neighborhood by Ni ⊆ P . We will assume pi /∈ Ni. Note that the following considerations are independent
of the actual definition of neighborhood. Therefore, they can be applied for a combinatorial k-nearest approach as well
as for Euclidean neighborhoods.

In general, it is desirable to have a neighborhood that is as symmetric as possible with regard to all directions.
When using combinatorial neighborhoods with k nearest neighbors, points lying almost as close to the query point as
others might be excluded simply because k neighbors have already been found. Furthermore, to prevent numerical
errors, especially when dividing by the distance, we drop those points that lie at most εm away from the query point,
where εm denotes the machine accuracy. We define the k-nearest neighborhood of pi ∈ P with distance at least εm by

Ñi = {pj ∈ P | j = 1, . . . , k, pj the k-nearest neighbors to pi with εm < ‖pi − pj‖}.

This neighborhood is then relaxed to

Ni = Ñi ∪ {pj ∈ P | abs(‖pi − pj‖ − max
p`∈Ñi

‖pi − p`‖) ≤ εm}, (1)

where abs denotes the absolute value. That is, we include all those neighbors, that did not fall into the k-nearest
neighborhood by a small account. This definition of neighborhood was proposed in [7].

We denote by Ci ∈ R3×3 the covariance matrix of the set Ni, given by

Ci =
∑

q∈Ni∪{pi}

(q − b̄)(q − b̄)T , b̄ =
1

|Ni|+ 1

∑
q∈Ni∪{pi}

q

with b̄ the barycenter. Furthermore, we identify its eigenvalues by αi, βi, γi ∈ R. Note that the covariance matrix is
positive semidefinite, therefore all eigenvalues are nonnegative. We assume αi ≥ βi ≥ γi and call the corresponding
eigenvectors vi, wi, ni ∈ R3, with ‖vi‖ = ‖wi‖ = ‖ni‖ = 1.

The covariance matrix induces a tangent plane Ti at the neighborhood Ni with distance r to a center point b and
normal vector n by minimizing the least squares energy

E(n, r) =
∑

q∈Ni∪{pi}

(〈q − b, n〉 − r)2.

The minimum is obtained for b = b̄, n the eigenvector ni of Ci corresponding to the smallest eigenvalue γi, and r = 0,
see [14, Section 2.1.2]. As vi and wi are of norm 1 and orthogonal, they form an orthonormal basis for Ti.

The final goal is to define weights on all neighboring samples pj ∈ Ni of a point pi ∈ P . These weights can then be
used in any discretization scheme, e.g. for the gradient [8], the Laplace operator [2], or the shape operator [15]. A first
expectation on the weights is nonnegativity. Secondly, as a test case with known ground truth for our density measures,
we consider the neighborhood Ni to be the vertices of a regular |Ni|-gon, see Figure 1. In this regularly sampled case,
each weight should be roughly 1. Therefore, we normalize all measures to fit these two expectations.

3.1 Covariance Matrix Densities

In [8], the authors present an approach to estimate the density of a point cloud P in a given direction from a point
pi ∈ P . They propose to use the eigenvalues and the eigenvectors of the covariance matrix built on a neighborhood Ni
of pi. Recall that the two eigenvectors vi, wi of the covariance matrix corresponding to the larger two eigenvalues αi, βi
form an orthonormal basis of Ti. Therefore, any unit direction on Ti can be parametrized by ϕ ∈ [0, 2π) as

eϕ = cos(ϕ)vi + sin(ϕ)wi ∈ Ti (2)

with ‖eϕ‖ = 1. The density δ(eϕ) of P at pi in direction eϕ is approximated using the quadratic form

δ(eϕ) = δ1i cos2(ϕ) + δ2i sin2(ϕ) (3)
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Figure 1: Neighborhood of a point pi on Ti given as a regular |Ni|-gon.

and the integral form of the tangential part of the diagonalized covariance matrix(
αi 0
0 βi

)
=

1

2π

∫ 2π

0

δ(eϕ)eϕe
t
ϕ dϕ. (4)

In particular, we obtain δ(vi) = δ1i for direction e0 = vi and δ(wi) = δ2i for direction eπ/2 = wi. Inserting
the quadratic form (3) into the integral (4) and computing the integral component-by-component, δ1i and δ2i can be
expressed in terms of the eigenvalues αi and βi by

δ1i = 3αi − βi, δ2i = 3βi − αi. (5)

The corresponding calculations are given in the appendix. Since the eigenvectors vi, wi form an orthonormal basis of
the tangent space, we have 〈eϕ, vi〉 = cos(ϕ) and 〈eϕ, wi〉 = sin(ϕ). Plugging these expressions and the equalities (5)
into (3), we obtain the directed density measure

δ(eϕ) = (3αi − βi)〈eϕ, vi〉2 + (3βi − αi)〈eϕ, wi〉2.

For a point pi ∈ P , the density in direction of a neighbor pj ∈ Ni can then be computed as

δ(etanij ) = (3αi − βi)〈etanij , vi〉2 + (3βi − αi)〈etanij , wi〉2, (6)

where etanij denotes the tangential part of the vector eij = pj − pi. Note that this expression is not strictly dependent
on the direction, as the scalar products obtain different values with varying length of etanij . Therefore, we normalize the
argument and obtain

δ̄(etanij ) = (3αi − βi)〈etanij /
∥∥etanij ∥∥ , vi〉2 + (3βi − αi)〈etanij /

∥∥etanij ∥∥ , wi〉2. (7)

In [8], the authors give the density measure slightly differently, namely as

δLP (etanij ) =
3αi − βi

2
〈etanij /

∥∥etanij ∥∥ , vi〉+
3βi − αi

2
〈etanij /

∥∥etanij ∥∥ , wi〉. (8)

(a) Density δLP given in (8) evalu-
ated around point pi on a uniform sam-
pling. The density does not reflect the
uniform sampling but assigns different
weights to the neighbors.

(b) Density δ given in (6) evaluated
around point pi on a uniform sampling.
Note how the different distances affect
the density measure.

(c) Density δ̄ given in (7) evaluated
around point pi on a uniform sampling.
Note how all points are assigned similar
values.

Figure 2: Density measures δLP (8) and δ with both regular (6) and normalized input (7) on the same, uniformly sampled point
cloud. Values of δLP and δ ranging from low (blue) to high (red). Note how δLP and δ as in (6) assign varying density values
although the neighborhood is very uniformly sampled, while δ as in (7) does assign equal density values.
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This measure obtains both positive and negative values, which is not suitable to be used as weights. In particular,
even for quite uniformly sampled neighborhoods, the points in the neighborhood are not attributed equal weights, see
Figure 2a. Therefore, we assume that the authors of [8] meant to give (6) as density measure, which results from the
above computations and which assigns equal weights to uniformly sampled neighborhoods, see Figure 2b for regular
and Figure 2c for normalized input.

Note that expression (6) is symmetric with respect to its argument, that is, δ(etanij ) = δ(−etanij ). Therefore, a point
pj ∈ Np in direction etanij that lies in a very sparsely sampled area might still get assigned high density weight if points
on the opposite side −etanij of pi are sampled densely, see Figure 3a. Furthermore, the density weight is sensitive to
variations in the neighborhood. Moving one neighbor pj ∈ Ni far away from pi, the direction of the first principal
component changes and thereby also the density measures assigned to the neighborhood. Consider the situation shown
in Figure 3b, where one outlier drastically changes the density values. Finally, if the point pi is not located close to the
barycenter of Ni, the assigned weights are not necessarily accurate, as given in Figure 3c.

pj

pi

(a) The point pj ∈ Ni lies in a sparsely
sampled area. However, the density
measure δ still assigns a high value to
pj as there is a densely sampled area on
the other side of pi, in direction −eij .

pi

pi

(b) Density δ evaluated around point
pi on two slightly varying neighbor-
hoods. While the upper neighborhood
is assigned expected values, the assign-
ment in the lower neighborhood is off
because of slight variations.

pi

(c) Density δ given in (6) evaluated
around point pi not being close to the
barycenter of the given neighborhood.
Assigned density values are large on the
sparse points to the ends of the neigh-
borhood and small in the sole densely
sampled area.

Figure 3: Problems of the density δ given in (6) because of symmetry, outliers, and placement of the neighborhood. Densities
computed from δ ranging from high (red) to low (blue).

Despite the shortcomings of δ mentioned above, it could also evaluate to a negative value. Namely, if αi > 3βi and
etanij close to vi, i.e. 〈etanij , vi〉2 ≈ 1, we get δ(etanij ) < 0. As the weights are required to be positive, the values of δ have
to be shifted to a strictly positive interval. We set

δCov(etanij ) := δ̄(etanij ) + max
pj∈Ni

{−δ̄(etanij ), 0} (9)

and obtain the first discrete density measure δCov. In order to have a measure which gives large values for sparse
directions and low values for dense directions, we reflect the values at their arithmetic mean

mCov
i =

∑
pk∈Ni

δCov(etanik )/|Ni|

and normalize to obtain a value between 0 and |Ni|:

σCov(etanij ) =
|Ni|

(
2mCov

i − δCov(etanij )
)∑

p`∈Ni
(2mCov

i − δCov(etani` ))
= 2−

δCov(etanij )

mCov
i

. (10)

In particular, if all weights are approximately equal, i.e. δCov(etanij ) ∼ mCov
i on a regular |Ni|-gon, we have σCov(etanij ) ∼ 1

for all pj ∈ Ni.

3.2 Arc Length Density

In this section, we will derive a discrete density measure that does not suffer from the disadvantages of δCov as listed
above. It was proposed in [7]. Given a point pi ∈ P and its neighborhood Ni, we first project all neighbors pj ∈ Ni as
well as pi to the tangent plane Ti and obtain their projections p̄j , p̄i ∈ Ti. The projected neighbors are then projected
once more onto the circle of radius r = 1 around p̄i on Ti, creating p̃j ∈ Ti with ‖p̃j − p̄i‖ = 1 for all pj ∈ Ni, see
Figures 4a and 4b.

Given an orientation of the tangent plane Ti by the normal at pi, the points p̃j can be ordered along the unit circle
around pi by their angle ϕj . If ϕj = ϕ` for two points pj , p`, we order by their indices j, `. We set ϕ(v1) = 0. Denote
the order by p̃j1 , . . . , p̃j|Ni|

. For any point p̃j` , ` ∈ {1, . . . , |Ni|}, consider the arc length on the unit circle from p̃j`−1

to p̃j` and from p̃j` to p̃j`+1 , see Figure 4b.

4



The main idea for the density measure is now to assume a direction etanij to point into a dense area, if the arcs to
the two neighbors of p̃j are short compared to the longest possible arc length 2π. The second discrete measure is then
given by the sum of half the lengths of the adjacent arcs. For a point pj ∈ Ni with projection p̃j` we define

δArc(etanij ) :=
^(p̃j`−1 − p̄i, p̃j` − p̄i)

2
+

^(p̃j` − p̄i, p̃j`+1 − p̄i)
2

(11)

with the angle ^ between two vectors given in radians. Recall that the length a of an arc of angle φ ∈ [0, 2π] is given
by a = r · φ, but since we project to the unit circle, this reduces to a = φ.

Although this definition does not suffer from the problematic symmetry as δCov, there is still a slight inconvenience.
Consider a densely sampled region neighboring a sparsely sampled region as shown in Figure 4c. The circle arc
separating the sparse point and the dense region is solely contributing to the density measure of the border point of
the dense region, assigning it a significantly higher value than the other points of the dense region.

As in Section 3.1, we will now normalize the measure (11) in order to obtain positive weights that are about 1 on
a regular |Ni|-gon. Therefore, we set

σArc(etanij ) =
δArc(etanij )|Ni|∑
pk∈Ni

δArc(etanij )
. (12)

As in (10), for equal weights in our test case of the regular |Ni|-gon, we have σArc(etanij ) ∼ 1 for all pj ∈ Ni.

3.3 Smooth Basis Density

Having presented two discrete density measures δCov and δArc above, we will now present a smooth density measure,
based on the discrete data given. The first steps are the same as in Section 3.2. That is, we consider the projection p̃j
of all points pj ∈ Ni to a unit circle on Ti around pi, see Figure 4. As before, each point p̃j is assigned an angle ϕj
with ϕ(v1) = 0. The main idea is now to define a basis function on each p̃j and thereby obtain a density measure at
any angle ϕ ∈ [0, 2π) by

δRBF : [0, 2π)→ R≥0, δRBF(ϕ) =
1

|Ni|
∑
pj∈Ni

ψj(ϕ). (13)

The basis function ψj should be of finite local support to only influence a small neighborhood around the sample
point pj . It should furthermore be smooth to obtain a smooth density measure δRBF. Finally, the size of the local
support should be chosen such that uniformly distributed samples pj lead to a preferably uniform density. Therefore,
we propose the bump function as local basis

ψj : [0, 2π)→ R≥0, ψj(ϕ) =

exp

(
1

r−2
i (ϕ−ϕj)2−1

)
ϕ ∈ (−ri, ri),

0 otherwise
(14)

with ri = 2π
|Ni|

. Note that ψj is C∞ and of finite local support. See Figure 5a for an corresponding illustration of
equation (13) and see Figure 5b for a plot of the resulting density measure on a uniform point sample.

Once more, as in (10) and (12), we will normalize the values of δRBF to have density weights of approximately 1 on
the regular |Ni|-gon. Therefore, we set

σRBF(etanij ) =
δRBF(etanij )|Ni|∑
pk∈Ni

δRBF(etanij )
. (15)

Tipj1

pj2

pj` pj4

pj3

pi

p̄j1

p̄j2

p̄j` p̄j4
p̄j3

p̄i

(a) Points pj ∈ Ni and the center point
pi are projected to the tangent plane
Ti.

p̃j`

p̄i
p̄j1

p̄j2

p̄j` p̄j4

p̄j3

Ti

r = 1p̃j1

p̃j2

p̃j3

p̃j4

Arc(pj1 , pj2) Arc(pj2 , pj3)

(b) Points p̄j are projected onto the
unit circle around p̄i on Ti. For each
point pj , its density is computed as half
of the sum of the arc lengths on the cir-
cle starting at its projection p̃j .

pi

(c) Note how the leftmost point in the
upper region gets a different weight
than the other points. Values ranging
from high density (red) to low density
(blue).

Figure 4: Illustration of the arc length density. Points pj ∈ Ni are projected to the tangent plane Ti. There, they are projected to
the circle of radius 1 around pi. For each point pj , its density is computed as half of the lengths of the arcs on the circle starting at
its projection p̃j . When applied to nonuniform dense samples, the borderpoints of dense regions get ranked significantly different
from the inner points of the region, as the arc to the neighboring sparse region is only distributed on the end points.
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3.4 Concluding Overview

In the Sections 3.1 to 3.3 we presented three different directional density measures on point clouds. Namely, we built
on a method by [8] to define a measure δCov, (9), based on the covariance matrix. Furthermore, we projected points to
an estimated tangent plane and distributed the arc lengths of the unit circle around the center point as density measure
δArc, (11). Finally, we defined smooth radial basis functions for each sample pj and summed these up to obtain a
smooth density measure δRBF, (15).

All three measures are to be used as weights in discretizations of differential geometry operators as described in
the beginning of Section 3. Therefore, we normalized them to our test case: the regular |Ni|-gon. We obtained three
corresponding weights σCov, (10), σArc, (12), and σRBF, (15). In the next section, these different weights will be
experimentally evaluated.

4 Experimental Results
In this Section, we summarize some experimental results proving the effectiveness of our approach. As a first preliminary
test, we compute the different normalized density measures σCov (10), σArc (12), and σRBF (15) on k-neighborhoods
consisting of regular k-gons. Thereby, we justify the definitions of the respective measures by showing that they obtain
weights around 1 as desired. In Table 1, we presented the computed the maximal deviation from weight 1 for the
three measures and different k. Note that all weights lie well within a range around 1, given a machine precision. We
find that the values of δArc seem to deviate most. However, this comes with growing values of n, where in any real
application typically small values of k are used.

k k = 3 k = 12 k = 60 k = 360
σCov 2 · 10−16 4 · 10−16 7 · 10−16 13 · 10−16

σArc 1 · 10−16 7 · 10−16 197 · 10−16 7736 · 10−16

σRBF 0.0 1 · 10−16 4 · 10−16,−4 · 10−16 82 · 10−16

Table 1: Results of density measures σCov (10), σArc (12), and σRBF (15) on a regular k-gon neighborhood for varying k. The
numbers indicate the maximum deviation of the weights from 1.0.

Having passed this first preliminary experiment, we will benchmark our weights on a discretization of the shape
operator originally proposed by Taubin in [15]. The discretization has been used on point clouds with some alterations
discussed in [8, 14, 7]. The main idea is to discretize a matrix Mi at point pi ∈ P as

Mi =
1

2π

∑
pj∈Ni

ωijκije
tan
ij e

tan
ij

t
, (16)

where etanij is the same vector as in Section 3, ωij is a weight assigned to each point in order to have a faithful
approximation, and κij is the directional curvature for the direction etanij . It is discretized as

κij =
2〈ni, eij〉
‖eij‖

.

With this setup, the principal curvatures κ1
i , κ2

i at point pi ∈ P can be computed from the eigenvalues m1
i ,m

2
i of Mi

by

κ1
i = 3m1

i −m2
i , κ2

i = 3m2
i −m1

i .

(a) Three basis functions (14) shown in green, blue, and
red, as well as the corresponding density δRBF, (13), shown
in orange.

(b) Several basis functions on a set of uniform samples
shown in blue. Note how the corresponding density (shown
in red) becomes almost uniform in the center.

Figure 5: Plotting several basis functions (14) and the corresponding densities (13).
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For the weights ωij , Taubin suggests in [15] to use

ωTau
ij =

2π ‖eij‖∑
pj∈Ni

‖eij‖
, (17)

which we will compare to our, properly adjusted weights:

ωCov
ij =

2πσCov
ij ‖eij‖∑

pj∈Ni
‖eij‖

, ωArc
ij =

2πσArc
ij ‖eij‖∑

pj∈Ni
‖eij‖

, ωRBF
ij =

2πσRBF
ij ‖eij‖∑

pj∈Ni
‖eij‖

. (18)

(a) extracted point
cloud (1186 samples)

(b) max. principal cur-
vature with ωTau

ij

(c) max. principal cur-
vature with ωCov

ij

(d) max. principal cur-
vature with ωArc

ij

(e) max. principal cur-
vature with ωRBF

ij

Figure 6: Plotting maximum principal curvature on a cube with differently sampled sides for weights ωij as indicated ranging
from low (blue) to high (red).

4.1 Synthetic Models

We will first run some test on synthetical models before testing the weights on real world models. A first test case is
a cube on which two opposing sides are sampled with only a quarter of the points on the each of the other sides. It
is given as a mesh, from which we extract a point cloud (Figure 6a). On this, we test the different weights and plot
the maximum principal curvature max(κ1

i , κ
2
i ) for each point pi ∈ P . Images are created with k = 13 and relaxed

neighborhoods as defined in Equation (1).
Note how the weights ωTau

ij and ωCov
ij assign higher values to the edge between two equally dense sampled sides than

to the edges bridging two differently sampled sides of the cube. Additionally, ωCov
ij is not able to recover the corners

of the cube as points of high curvature. The assigned curvature values on the edges are more regular for weights ωArc
ij

and ωRBFij , also the corners are marked as points of high principal curvature.
In Section 3.1 we saw that the weights ωCov

ij exhibit a problematic symmetrical behavior. This effect leads to an
overestimate of those edges of the cube neighboring two dense regions. Furthermore, it prevents the weights ωCov

ij to
determine the corners of the cube as points of highest curvature.

(a) extracted point
cloud (1186 samples)

(b) max. principal cur-
vature with ωTau

ij

(c) max. principal cur-
vature with ωCov

ij

(d) max. principal cur-
vature with ωArc

ij

(e) max. principal cur-
vature with ωRBF

ij

Figure 7: Plotting maximum principal curvature on a Gaussian bump on the plane for weights ωij as indicated ranging from low
(blue) to high (red).

A second test case is a Gaussian bump on an otherwise flat plane given as a mesh. From that, we extract a point
cloud (Figure 7a) on which we test the different weights and plot the maximum principal curvature max(κ1

i , κ
2
i ) for

each point pi ∈ P . Images are created with k = 13 and relaxed neighborhoods as defined in Equation (1). Note that
in this case, weights ωTau

ij , ωCov
ij , and ωRBF

ij perform very similar. However, the weights ωArc
ij are not able to recover the

curvature of the bump. That is, because weights for some points on the border of the geometry become very large, as
the arcs reach almost a length of π there. These throw off the curvature estimates for the whole geometry.

A third and final test on synthetic models is run on an octahedron with tangential noise added to it. The test is run
only on the so far supreme weights ωtau

ij and ωRBF
ij . Figure 8a shows how despite the noise, weights ωRBF

ij emphasize
the edges and corners of the octahedron better than weights ωtau

ij .
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Model #Points Max. Princ. Curv. ωTau
ij Max. Princ. Curv. ωRBF

ij

Bearing 3,475 59.25111533960161 62.39209885818981
Dragon 50,000 2.55179467645741 2.36348617774811
Fandisk 6,475 14.14216652836357 15.01480643981332
noisy Rocker Arm 40,177 2.49300719256904 2.40278912989522
noisy Venus 17,018 22.53991528077439 23.56054013807663

Table 2: Models and values of the maximum principal curvature detected for the two weights ωTau
ij and ωRBF

ij .

4.2 Real World Models

Due to the shortcomings found for ωCov
ij and ωArc

ij in Section 4.1, in the following we will concentrate on weights ωTau
ij

and ωRBF
ij . We will test the two weights on several real world models. For each, we evaluate the range of maximum

principal curvatures detected and also give a visual evaluation of certain interesting features.
Given that the distribution of points on the curvature range is comparable, a larger detected range means for higher

sensitivity to the curvature of the geometry. The detected highest maximum principal curvature values for the tested
models are given in Table 2. Note that all models include points of maximum principal curvature max{κ1

i , κ
2
i } = 0.

Therefore, the values in Table 2 give the range of maximum principal curvature for the models. Note that the curvature
range of ωRBF

ij is higher or comparable to that of ωTau
ij .

In Figures 8 and 9 we visually compare the results of principal maximum curvature visualization on several real
world geometries. All experiments were performed with k = 12 neighbors and relaxed neighborhoods as defined in (1).
Note that the curvature assignments with weights ωRBF

ij emphasize features better, as highlighted in Figures 8b and
8c. Also, the values of curvature are more regular in particular along sharp features, even if curved, as highlighted in
Figure 9a. The effect of noise on the curvature computation is shown in Figures 9b and 9c. In both cases, weights
ωRBF
ij are slightly more resilient in presence of noise and emphasize features better. In particular, all examples show

that utilizing the additional weights, no artifacts are introduced and no curvature estimates become flawed.

5 Conclusion
In this paper, we presented three possible local density measures. Namely, we find that the density measure of [8]
suffers from several shortcomings, therefore we introduce a different discrete measure and an additional smooth density
measure. After deriving the measures theoretically, we prove their effectiveness on both synthetic and real world data
in the context of maximum principal curvature computation. Different other applications are left for further research.
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(a) Maximum principal curvature on a noisy octahedron with weights ωtau
ij on the left and ωRBF

ij on the right. Note how despite
the noise, weights ωRBF

ij still capture the edges and corners of the octahedron more precisely than weights ωtau
ij .

(b) Maximum principal curvature of the bearing model with weights ωtau
ij on the left and ωRBF

ij on the right. Note how the
weights ωRBF

ij recover more points of low curvature in the area highlighted in the lower left and assign higher curvature to the
tightly curved area highlighted in the upper right.

(c) Maximum principal curvature of the dragon model with weights ωtau
ij on the left and ωRBF

ij on the right. Note how the weights
ωRBF
ij better emphasize the curvature on the highlighted part.

Figure 8: Comparison of weights ωtau
ij and ωRBF

ij on a noisy octahedron and two real world models.
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(a) Maximum principal curvature of the dragon model with weights ωtau
ij on the left and ωRBF

ij on the right. Note how the weights
ωtau
ij create a jump in the curvature assignments on both straight and bend edges. This jump is less present when using weights
ωRBF
ij .

(b) A noisy mesh of the rocker arm model on the left colored by maximum principal curvature with weights ωtau
ij in the center

and ωRBF
ij on the right.

(c) Maximum principal curvature of the venus model with weights ωtau
ij on the left and ωRBF

ij on the right.

Figure 9: Further comparison of weights ωtau
ij and ωRBF

ij on three more real world models. Note how the results are similiar due
to mostly good sampling of the models. Despite the noise, weights ωRBF

ij are still able to capture points of high curvature on the
model (shown in white in the highlight).
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Appendix
We now have a closer look on the expression of δ1i , δ2i , given by the two largest eigenvalues αi, βi from (4). A unit
direction on Ti can be expressed in terms of the orthonormal basis of the eigenvectors of the covariance matrix vi, wi.
Hence,

eϕ =

(
cos(ϕ)
sin(ϕ)

)
, with eϕe

t
ϕ =

(
cos2(ϕ) cos(ϕ) sin(ϕ)

cos(ϕ) sin(ϕ) sin2(ϕ)

)
. (19)

for some ϕ ∈ [0, 2π). We now compute the integral form of the tangential part of the diagonalized covariance matrix
by using the quadratic form (3) and the matrix from (19)(

αi 0
0 βi

)
=

1

2π

∫ 2π

0

δ(eϕ)eϕe
t
ϕ dϕ

=
1

2π

∫ 2π

0

δ(eϕ)

(
cos2(ϕ) cos(ϕ) sin(ϕ)

cos(ϕ) sin(ϕ) sin2(ϕ)

)
dϕ

=
1

2π
δ1i

∫ 2π

0

(
cos4(ϕ) cos3(ϕ) sin(ϕ)

cos3(ϕ) sin(ϕ) cos2(ϕ) sin2(ϕ)

)
dϕ+

1

2π
δ2i

∫ 2π

0

(
cos2(ϕ) sin2(ϕ) cos(ϕ) sin3(ϕ)
cos(ϕ) sin3(ϕ) sin4(ϕ)

)
dϕ

=
1

2π
δ1i

(
3π
4

0
0 π

4

)
+

1

2π
δ2i

(
π
4

0
0 3π

4

)
=δ1i

(
3
8

0
0 1

8

)
+ δ2i

(
1
8

0
0 3

8

)
.

This leaves us with the two equations

αi =
3

8
δ1i +

1

8
δ2i βi =

1

8
δ1i +

3

8
δ2i ,

which are rearranged to express δ1i , δ2i in terms of the eigenvalues

δ1i = 3αi − βi δ2i = −αi + 3βi

to finally obtain equation (5).
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