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Abstract We present a discrete Hodge-Morrey-Friedrichs decomposition for piece-
wise constant vector fields on simplicial surfaces with boundary which is struc-
turally consistent with the smooth theory. In particular, it preserves a deep linkage
between metric properties of the spaces of harmonic Dirichlet and Neumann fields
and the topology of the underlying geometry, which reveals itself as a discrete de
Rham theorem and a certain angle between Dirichlet and Neumann fields. We illus-
trate and discuss this linkage on several geometries.

1 Introduction

Hodge-type decomposition statements form an indispensable tool for the analysis
and structural understanding of vector fields and more generally differential forms
on manifolds. Dating back at least to Helmholtz’ classical result [9] on the de-
composition of a vector field into a divergence-free and a rotation-free component,
there has been a remarkable evolution of extensions and generalizations. Nowadays
there is a well-developed theory for Hodge decompositions of differential forms of
Sobolev class (see e.g. [6] for an overview), which is of central importance e.g.
for finite element Galerkin methods for problems involving vector fields such as
Maxwell’s equations or Navier-Stokes systems. A surprising property is the strong
linkage of certain spaces of harmonic forms to the topology of the geometry, whose
first encounter is given by de Rham’s theorem, stating that on a closed manifold the
space of harmonic k-forms is isomorphic to the k-th cohomology group with real
coefficients. On a surface with non-empty boundary, the corresponding statement
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applies to the spaces of harmonic Dirichlet fields H 1
D and Neumann fields H 1

N ,
which are subspaces of all harmonic fields with certain boundary conditions im-
posed. However, there are now two decompositions—one including H 1

D , the other
one including H 1

N —and in general there is no single L2-orthogonal decomposi-
tion including both these spaces at the same time. A recent result by Shonkwiler
[7, 8] identifies the reason for this non-orthogonality as the existence of non-empty
subspaces representing the interior cohomology of the manifold (in contrast to the
cohomology induced by the boundary components), which establishes another as-
tonishing linkage between metric properties and the topology. In particular, the prin-
cipal angles between H 1

N and H 1
D seem to act as an indicator for the influence of

boundary components on the overall geometry and therefore as a theoretical shape
signature.

For the numerical treatment of vector fields there is a variety of discretization
strategies available, e.g. the finite element exterior calculus [2, 1] by Arnold et. al.,
which suggests a family of spaces of polynomial differential forms of arbitrary de-
gree and generalizes classical ansatz spaces such as the Raviart-Thomas elements
or Nédélec’s elements, or the discrete exterior calculus [3] by Hirani, which defines
discrete differential forms as simplicial cochains. Here we focus on a discretization
by piecewise constant vector fields (PCVFs). Their usage and analysis in geome-
try processing tasks goes back at least to the work by Polthier and Preuss [5] and
Wardetzky [10], and they have become a main ingredient for frame field modelling,
surface parametrization or deformation modelling, just to name a few examples. A
complete, structurally consistent set of Hodge-type decompositions for PCVFs on
simplicial surfaces with boundary has been recently developed by Poelke and Polth-
ier [4], and we refer the reader to this article for all details concerning discretization,
implementation and numerical solving left out in section 3.

2 Hodge-type Decompositions, Topology and Duality Angles

In its modern formulation the Hodge decomposition theorem states that on a closed
Riemannian manifold the space Ω k of smooth k-forms can be decomposed L2-
orthogonally as

Ω
k = dΩ

k−1⊕δΩ
k+1⊕H k (1)

where H k is the space of harmonic k-forms satisfying dω = δω = 0. Here and in
the following, ⊕ always denotes an L2-orthogonal direct sum. A remarkable result
is de Rham’s theorem which provides an isomorphism H k ∼= Hk(M) between the
space of harmonic k-forms and the k-th cohomology group with real coefficients on
M, and therefore identifies the dimension of H k as a topological invariant.

As soon as the manifold M has a non-empty boundary ∂M 6= /0, eq. (1) is no
longer valid. Instead, the analogous splitting is now given by two decomposition
statements known as the Hodge-Morrey-Friedrichs decomposition (see [6]) and
given by
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Ω
k = dΩ

k−1
D ⊕δΩ

k+1
N ⊕H k ∩dΩ

k−1⊕H k
N

= dΩ
k−1
D ⊕δΩ

k+1
N ⊕H k ∩δΩ

k+1⊕H k
D .

Here, the subscript D denotes Dirichlet boundary conditions (i.e. the tangential part
t(ω) of a differential form ω has to vanish along ∂M) and N denotes Neumann
boundary conditions (i.e. the normal part ω |∂M −t(ω) has to vanish along ∂M)
which are imposed on the corresponding spaces. Again, there are isomorphisms
H k

N
∼=Hk(M) and H k

D
∼=Hk(M,∂M), respectively, with the latter space Hk(M,∂M)

denoting the k-th relative cohomology of M.
With respect to the characterization of vector fields on surfaces with boundary,

a natural question is whether there is a single orthogonal decomposition including
H 1

N and H 1
D at the same time. To this end, we say that a surface M is of type Σg,m, if

M is a compact orientable surface of genus g≥ 0 with m≥ 1 boundary components.
We have the following result:

Lemma 1. Let M be a surface of type Σ0,m. Then there is an L2-orthogonal decom-
position

Ω
1 = dΩ

0
D⊕δΩ

2
N ⊕dΩ

0∩δΩ
2⊕H 1

D ⊕H 1
N .

Lemma 1 includes the common case of two-dimensional flat domains embedded
in R2. On the other hand, if g ≥ 1 this equation does not hold any more. A recent
result by DeTurck, Gluck and Shonkwiler [7, 8] identifies subspaces of H 1

D and
H 1

N representing the cohomology corresponding to the inner topology of M (i.e.
the genus) as the defect, and this observation transfers to the discrete setting, see [4,
Sec. 3.4].

3 Discrete Correspondence

Now, let Mh be a compact, orientable simplicial surface with boundary, triangulated
by affine triangles, equipped with the locally Euclidean metric. Let Xh denote the
space of PCVFs on Mh, which are given by one tangent vector XT per affine triangle
T of Mh, and let L and F denote the finite element spaces of linear Lagrange
and Crouzeix-Raviart elements on Mh, respectively, with subspaces L0 ⊂ L and
F0 ⊂F consisting of all basis functions whose degrees of freedom associated to
simplices on the boundary are set to zero. Then there is a discrete Hodge-Morrey-
Friedrichs decomposition [4, Cor. 3.3]

Xh = ∇L0⊕ J∇F0⊕Hh∩∇L ⊕Hh,N

= ∇L0⊕ J∇F0⊕Hh∩ J∇F ⊕Hh,D,

where Hh is the space of all discrete harmonic PCVFs, defined as the L2-orthogonal
complement of ∇L0⊕ J∇F0 within Xh, and J denotes a counter-clockwise (with
respect to a fixed unit normal field) rotation by π/2 in the tangent plane of
each triangle. There are discrete de Rham isomorphisms Hh,N ∼= H1(Mh) and
Hh,D ∼= H1(Mh,∂Mh), and an analogous statement of lemma 1 holds true for the
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Fig. 1 Bases for Hh,N (top row) and Hh,D (bottom row) on an annulus with a hole (“AwH”),
which is a surface of type Σ0,2. The rightmost image shows the first Neumann field and the second
Dirichlet field.

discrete version, too. In particular, by Poincaré-Lefschetz duality it is dimHh,D =
dimHh,N = 2g+m−1 for a surface of type Σg,m.

Figure 1 shows bases for the spaces Hh,D and Hh,N on a surface of type Σ0,2.
In this case both spaces are L2-orthogonal to each other and consequently there is a
complete discrete decomposition

Xh = ∇L0⊕ J∇F0⊕ J∇F ∩∇L ⊕Hh,D⊕Hh,N .

The numerical angles in table 1 confirm this result. Each angle α is computed as
usual by

cosα =
〈X ,Y 〉L2

‖X‖L2 ‖Y‖L2
for X ∈Hh,N , Y ∈Hh,D.

Note that the orthogonality of the shown vector fields is always meant with respect
to the L2-product on Xh. Locally, these fields are in general not orthogonal, see the
rightmost image in fig. 1.
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Fig. 2 Basis fields for Hh,N (left column) and Hh,D (right column) on a torus with a cylinder
attached (“TwC”), which is topologically Σ1,2. The fields in the first and third row all concentrate
their mass in the same fashion along the longitudinal and latitudinal cycles that reflect homology
generated by the torus.

Our second example in fig. 2 shows bases for the three-dimensional spaces Hh,N
and Hh,D on a torus with a cylinder attached, which is of type Σ1,2. Whereas both the
second Neumann and Dirichlet field form an angle of almost π/2 to all other fields,
this is not true for the other fields, whose masses concentrate on the toroidal region.
Figure 3 shows a close-up of two pairs of fields on the toroidal region, one forming
locally acute angles, the other forming locally obtuse angles. As their mass on the
cylindrical region is negligible, the local situation here dominates the L2-angle, and
indeed the first pairing forms an acute L2-angle of 0.74 radians, whereas the sec-
ond pairing forms an obtuse L2-angle of 2.31 radians, see table 1. Consequently, the
spaces Hh,N and Hh,D cannot appear simultaneously in a single orthogonal decom-
position on this geometry.

AwH Hh,D(a) Hh,D(b)
Hh,N(a) 1.57 1.57
Hh,N(b) 1.57 1.57

TwC Hh,D(a) Hh,D(b) Hh,D(c)
Hh,N(a) 2.30 1.57 0.74
Hh,N(b) 1.62 1.57 1.55
Hh,N(c) 2.41 1.58 2.31

Table 1 Angles between the basis fields for Hh,N and Hh,D on the flat AwH-model and the TwC-
model in radians.
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Fig. 3 Two parings of Neumann and Dirichlet fields from the bases shown in fig. 2. The left image
shows the first Neumann field and the third Dirichlet field, forming locally acute angles on each
triangle on the torus region. The right image shows the third Neumann field and the third Dirichlet
field, forming obtuse angles.

4 Outlook

Our discretization scheme captures the structural properties present in the smooth
case and in particular preserves the deep linkage between the geometry, i.e. the met-
ric properties, and the underlying topology. Still, it is not clear in which way the
angles between Dirichlet and Neumann fields are related to the boundary compo-
nents of Mh. The examples explicitly computed in [7] are a first starting point for
the search of a relation that could be even quantitatively described. A better under-
standing of this correlation is very promising with regard to applications including
metric-topological shape signatures, extraction of certain vector field components
with controlled characteristics and parametrization tasks of surfaces with boundary,
and is current work in progress.
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