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Figure 1: (a) Semi-regular quad mesh M, (b) base complex BB obtained by removing all parameter loops in M, (c) optimized base complex
proposed by this paper and (d) quadrilateral remeshing of M along the new base complex with 9 x 9-grid per patch.

Abstract

In this paper we give an explicit algorithm to optimize the global
structure of quadrilateral meshes i.e base complexes, using a graph
perfect matching. The approach consists of constructing a special
graph over the singularity set of the mesh and finding all quadri-
lateral based complex subgraphs of that graph. We show by con-
struction that there is always an optimal base complex to a given
quadrilateral mesh relative to coarseness versus geometry aware-
ness. Local structures of the mesh induce extra constraints which
have been previously ignored but can give a completely different
layout. These are diagonal, multiple and close to zero length edges.
We give an efficient solution to solve these problems and improve
the computation speed. Generally all base complex optimization
schemes are bounded by the topology of the singularities, we ex-
plore the space of layouts encoded in the graph to identify remov-
able singularities of the mesh while simultaneously optimize the
base complex.

This is the author’s version. The final version is published at CAGD
elsevier (GMP2017).

1 Introduction

Quadrilateral surfaces or quad meshes are fundamental in computer
graphics and geometry processing. Their metric property such as
low distortion and their global structure such as the number of
charts are the perfect domains for many applications such as spline

*e-mail:faniry.razafindrazaka @charite.de
Tkonrad.polthier @fu-berlin.de

fitting, subdivision surfaces, hierarchy in finite element analysis and
computer animation. While several algorithms to convert triangle
meshes into highly regular quad meshes have been proposed, few
works focus on the global structure of the generated quad meshes.
Most of the time these structures are bounded by the combinatorics
of the singularities. A small change in the singularity layout in-
duces a global effect on the resulting quad tiling. Changing the
connectivity e.g. merging two singularities or flipping one edge of
the mesh is very complicated to track on these class of meshes.

This paper concerns the global structure optimization of semi-
regular quad meshes generated mainly by frame field based pa-
rameterization such as [Kilberer et al. 2007; Bommes et al. 2009;
Bommes et al. 2013]. These classes of parameterizations are pow-
erful to achieve very low distortion meshes at the cost of increasing
number of quads. They are not very suitable for coarse quad layout
generation due to their greedy nature. The generated base com-
plexes have too many patches which are mainly caused by the so
called near misses, a parameter line misses to connect to a near by
singularity. Nevertheless they are very good candidate as a starting
layout for our optimization.

So far, there have been handful works focusing on the global struc-
ture of a given quadrilateral surface. The work of Bommes et
al. [Bommes et al. 2011] analyzes the spirals present in the base
complex. They are first detected and then eliminated according to
a local editing state machine. This approach produces relatively
coarse base complexes but not all spirals could be removed by the
local operations. Tarini et al. [Tarini et al. 2011] proposes to disen-
tangle the graph of separatrices in order to find another graph with
less separatrix energy. A tree of possible configuration is then built
until a local minimum state is found. This approach relies heav-
ily on the mesh combinatorics and the search of valid configuration
can be stuck in local minima. Zhang et al. [Zhang et al. 2016] uses
a similar approach by identifying possible singularity connection
using rectangular area based filtering. Valid quad layout is then ob-
tained by iteratively adding a quad layout constraints in a binary
program. Recently, a polycube based simplification [Cherchi et al.
2016] has been introduced. While not directly related to our fo-
cus, they succeed to optimize a given polycube base complex to a
simpler base complex. Their method unfortunately can only handle
meshes with polycube domains.



Other approaches [Peng et al. 2011; Verma and Suresh 2015] re-
duce the number of singularities present in the mesh by local mesh
editing or quad templates embedding but ignore the global struc-
ture of the resulting quad mesh. Local merging of a pair of sin-
gularities is most of the time related to a third singularity. Quad
mesh simplification [Tarini et al. 2010] can also be used to gener-
ate coarse quad layout. Uncontrollable singularity behaviour and
distorted patches make the search of good layout non-optimal. Sev-
eral quad layout generation algorithms, even though not quadrilat-
eral mesh based, use greedy loop selection [Campen et al. 2012],
quadratic optimization [Bommes et al. 2013] or frame field aligned
geodesic [Razafindrazaka et al. 2015; Pietroni et al. 2016].

Our approach is similar to [Razafindrazaka et al. 2015; Pietroni
et al. 2016] which uses matching theory to find an optimal lay-
out. These previous works focuse mainly on triangle meshes while
several problems can occur on quadrilateral meshes that could be
problematic in the layout optimality. More a perfect matching al-
ways exists on quad meshes such that no T-junctions nor stopping
criteria are required. In contrast to Zhang et al. [Zhang et al. 2016],
our matching formulation is more versatile, works on meshes with
boundary and optimizes for a solution in one go.

In a nutshell we give an algorithm which simplifies a given quad
layout and guarantees a pure quad and optimality of the final lay-
out. Our construction is not limited by the topology of the singular-
ity, we propose a simple approach to allow some singularities to be
merged while optimizing the global structure of the quadrilateral
mesh using a tree of subgraphs. We give a detailed implementa-
tion of the construction allowing the generated mesh to be used in
several applications scenario.

1.1 Definitions and Notations

On a quad mesh, a regular vertex has valence four in the interior
and valence two on the boundary. It is called irregular or singular
otherwise. We denote by S the set of all singularities of M. The
valence of a vertex is the number of faces adjacent to that vertex.
In the dual mesh, a regular (or singular) vertex induces a regular
quadrilateral patch (or singular n-gon with n # 4) region.

1.1.1 Base Complexes and Quad Layouts

At a valence n singularity there are n ports which can be geometri-
cally represented as the edges incident to that vertex. A parameter
line is a sequence of mesh edges connecting two singularities. A
separatrix is a curve (not necessarily a parameter line) connecting
two singularities. Hence, parameter lines are particular types of
separatrices. The base complex B of a quad mesh is the set of all
parameter lines of the mesh inducing a quadrilateral patch layout
of the surface (figure 1(b)). A quad layout is a set of separatrices
which after reparameterization gives a base complex of the surface.
A quad layout is more general than a base complex since patch
edges do not need to be aligned to mesh edges (figure 1(c)). It is
this observation which will guide us in our quest of good base com-
plexes.

1.1.2 Halfedge Representation

We use the halfedge datastructure to represent our mesh. In this rep-
resentation edges are split into two directed and opposite halfedges.
A halfedge h will maintain a pointer to its head vertex v, opposite
halfedge h . opposite, next halfedge h.next and a face defined
on its left. A quadrilateral face can be for example represented as
four successive halfedges having the same left face. To avoid ex-
ception, boundary halfedges will have an opposite halfedge marked
as boundary.

hprev  hnext
h.opposite

L h

Figure 2: Halfedge datastructure, operator o and .

1.1.3 Graph and Matching

A weighted graph G = (V, E¢) is a set of vertices Vi connected
by edges in e € Eg with an associated weight function we : Eq —
Ry. A subgraph H = (Vy, En) of G is a graph with Vi C Vg
and Exg C Eg. A matching of G is a subgraph such that no two
edges share a vertex. A maximum matching is a matching with a
maximal number of edges. If all vertices of G is in the matching
subgraph, then the matching is called perfect.

1.1.4 Port Splitting

At each singularity s, a halfedge h, emanating from s defines a
port. They are related by a permutation o defined as follow: given
an halfedge hs whose opposite halfedge point to s

o(hs) = hs.prev.opposite.

In other words, o returns the next halfedges emanating from s in a
counter-clockwise order modulo Valence(s). In many quad mesh
optimizations, the set of tuples (o, hs) form a rotation system en-
coding the combinatorial embedding of a graph layout on the sur-
face.

We define a graph G with these ports as nodes and arc of separatri-
ces as edges,

Vg = {hs, sts € Sand s = hs.opposite.head}.

Our main goal is to explore subgraphs H of G which forms a quad
layout of M such that Ey C Eg.

1.1.5 Notations

We define an edge of G by et = (hs, OSig“S*(hz)). We call hg
the base port and o*"st (h;) the candidate port where hs is con-
nected to in Vig. The operator sign_, = %1 decides the orientation
of o in the port association. Each edge is decomposed into two
parameter curves Base(es:) and Of £set(est). Base(est) (resp.
Of fset(est)) is the parameter curve from h (resp. hy) to its inter-
section point with the parameter curve from h; (resp. hs). In other
words, they are the two right sides of a parametric right triangle
patch on M as in figure 3.

Figure 3: An edge of G decomposes into two parameter curves
Base(est) and Of fset(est).



2 Graph Construction

The construction of G is performed in a motorcycle style graph but
a ray only stops when a singularity is reached. The propagation is
defined by an operator (3 acting on a port hs such that

B(hs) = hs.next.opposite.next

It follows immediately that for each s € S there exists an integer n
n

—_——t—
and t € S such that 8" (hs) = Bo---0 B(hs) = ht.opposite.
For separatrices ending at a boundary vertex, we need to consider
that vertex as a singularity and define properly the notion of ports
with the correct permutation.

To be able to evaluate distances and ratios on the mesh, we assign
a unit length to each edge. The length of a parameter curve on M
from a port hs to an halfedge 8" (hs) is for example

18" (hs)| =n

i.e. the number of parameter edges visited from the port hs to

B (hs).

8™ (hs,,)

Figure 4: Halfedge local ordering at a regular vertex of the base
complex B.

‘We summarize the graph construction in Algorithm 1. Lines (2)—(6)
are initialization steps which are necessary for fast evaluation and
construction of the graph edges. Line (4) assigns per vertex four
integers which are the number of steps used to reach the halfedge
pointing to the vertex v in a counter-clockwise order (figure 4). Line
(6) is a maximum deviation initialization associated to each port.
The importance and use of these values are detailed in Section 3
to reduce the graph and to have a robust quad topology constraints.
The main part of the algorithm is executed in Line (7)—(26). The
construction starts at a port h, then follows a parameter line until
a singularity is reached. During the propagation, candidate ports
are collected according to a ratio test and new edges are added to
(. The main idea of the ratio test in Line (15) and (20) is that if
two singularities lie on the hypotenuse of a right triangular grid,
then they are likely to be connected. Line (26) makes sure that the
separatrix part of the base complex is also added to G making sure
that as a graph B C G and hence a quad layout subgraph always
exists.

3 Filtering

The graph G is a combinatorial representation of the port connec-
tions. In its geometric realization several filtering have to be intro-
duce to reduce the size of G and to remove arc edges which may
induce degenerate patches in the subgraph.

Algorithm 1 Construction of the graph G

: procedure GRAPHCONSTRUCT

1
2 forve Bandv ¢ Sdo
3 if Valence(v) == 4 then
4: | I, = {i, j k,m}s.tv = pP(hs,).head forallp € I, > Figure 4
5: for s € Vi do
6 | L, =1Ry =1
7 for h; € Vi do
8: n=1
9: while v = f"(hs).head ¢ S do
10: if v € B and Valence(v) == 4 then
11: Assumen=i€l,ands; =s
12: L=m/i
13 R=j/i
14: Base(ess,) = Base(esﬁ,) = {B*(hs)}a=0..n
15: if L < L, then
16: Offset(ess,,,) = {ﬁa(hs)}a:(),..m
17: sign,, =-1
18: ApDEDGE(ess,)
19: L;L =L
20: ifR < Ry, then
21: ‘ OffSEt(ess,) = {ﬁa(hs)]azo.../
2| ||| | s, =0
23: ‘ ‘ | ‘ ‘ ApDEDGE(ess))
2% J | | R,=R
25 n=n+1
26: c=EcUEg > Assure existence of quad layout subgraph

3.1 Geodesic and Singularity

The filtering strategy already included in Algoritm 1 Lines (15),(20)
makes sure that all edges in G are a straight line drawn in the grid
induced from the quad mesh. This condition is called in [Razafind-
razaka et al. 2015] a singularity-free condition which enables the
predicate ADDEDGE to draw an arc on M connecting for example
the port ks and o' (hs,, ) by using a simple scan-conversion algo-
rithm. Singularity-freeness is not a necessary condition for G but it
enables the assignment of a local uv alignment to each edge. Notice
that the port A is not directly connected to hs,, because naturally
the hypotenuse of the triangle rectangle having length |3*(hs)| and
width |3 (hs,, )| aligns best to 0~ *(hs,, ) at spm.

Sm Sm

3.2 Helix Filtering

The quality of the base complex is closely related to the number of
helical configurations present in the mesh. They are necessary to
achieve very uniform quadrilateral meshes but are problematic in
our search of coarse layouts. Helices introduce multiple edges in
the graph and hence increase the size of G with unnecessary edges.
Since we aim for coarse base complexes, the arc-length of edges
in G should be preferably short. Hence we assign to ADDEDGE
a check if an edge is already in GG, determine its base length and
replace it if the new constructed edge has less base length. We
summarize the procedure ADDEDGE in Algorithm 2. The input of
the algorithm is an edge es; which is going to be added to G. Line
2 checks if the edge is not yet in F ¢ then add it accordingly. Else
it is already in F¢ denoted by ;" which shares the same base
port and candidate port as es; but with different lengths. Line 6
checks if the base length of the new edge is smaller than the previ-
ous edge. If it is the case, then the old edge is replaced by the new
one. This check makes sure that only helices with the largest pitch
are stored. Hence two vertices of G are at most connected by two
edges of different lengths: the shortest (in helical configurations)
and the longest (separtrix of the base complex) among all possible
connections.

In [Razafindrazaka et al. 2015] the helices are used as a stopping
criterion. A user defined threshold is then necessary to filtered the
type of helices. Notice that in the case of quadrilateral mesh such



Algorithm 2 Adding an edge to G with helix filtering

Algorithm 3 Disjunctive Edges

1: procedure AppEDGE(est)

2 if e ¢ Eg then

3: | Eg = Eg U {eq}

4 else

5 | Letef™ eG > Same endports as e;; but with different lengths
6 | | if[Base(es)l < [Base(ef,”")| then

7.

st

] e > Use edge with less base length

a threshold is not needed and hence, the implementation is fairly
simple.

4 Constrained Minimum Weight Perfect

Matching

4.1 Minimum Weight Perfect Matching with Disjunctive
Constraints

The problem of finding a layout subgraph of M is equivalent to
finding a minimum weight perfect matching under disjunctive con-
straints in G [Oncan et al. 2013; Razafindrazaka et al. 2015]. The
perfect matching assures that per port there is exactly one adjacent
separatrices. The disjunctive constraints are topological constraints
which guarantee that the resulting patches are quads without degen-
eration. The binary program P; solving the matching problem is
formulated as follow

minimize Y wee (1)
e€Eg
s.t. Z ze = 1, for all not virtual v € Vg 2)
e€Adj(v)
Tey +Tey <1, forall (e1,e2) € Cuiag U Cai;  (3)
ze. € {0,1}, forall e € Eg )

where Adj(v) is the set of edges sharing a vertex v € Vg. The
objective functional minimizing the total edge weight is given in
(1). The weight of an edge es; is simply the linear combination
of its base length and height length i.e, we = |Base(est)| +
a|Length(es:)|. The parameter « controls generally the coarse-
ness against geometric feature alignment. Virtual vertices are
boundary vertices where a tracing line is stopping as defined
in [Razafindrazaka et al. 2015]. The inequality in (3) is a disjunctive
constraints disallowing two particular edges in G to appear simul-
taneously in the solution.

4.2 Disjunctive Edges Cyis;

Two edges are in conflict or disjunctive if their presence in the per-
fect matching subgraph of GG induces a non quad patch in M. These
are exactly two edges which are locally aligned to the same param-
eter line on M. Instead of checking them one by one and iteratively
solve a matching problem, we build a set of conflicting edges Cuis;
similar to [Razafindrazaka et al. 2015] but with a simpler construc-
tion. In this case, we do not need to store curves passing through
triangles, the discrete metric of the quad enables to store them effi-
ciently per vertex independent of the mesh resolution.

Given an edge es; € Eg, we would like to find all edges which
are locally aligned to es:. These are all edges whose base curves
are locally parallel. More precisely let v € Of fset(es:) N B then
there exists two edges ep, and e, such that v € Base(epz) N
Base(ery) (see figure 5 (a,b)). These can be eventually edges of

: procedure DisjUNCTIVE(est)
: for v € Offset(ess) N B do
\ Take {ep}x, {ery}y 5.t v € Base(epy) N Base(eyy)

> Interior vertices
» Figure 5

: ‘ ‘ for all x do

: | Caisi = Caigj U {(ests )}

: forall y do

: ‘ if sign_, # sign,, or [0ffset(e)| < |0ffset(es)| — d(t, v) then

|

1
2.
3:
4.
5:
6
7
8 | | | Cais = Caisj U {(ests €ry)}

B. All edges which are connected to hj, have base length greater
than |Base(eps)|, are locally aligned to es;. The same as all
edges which are connected to h,, have base length greater than
|Base(ery)|, are locally aligned to es: except those which do not
intersect with e like the red edge drawn in figure 5(b). The dis-
junctive edge set is defined as follow

Caisi = {ze + 2 < lifeN f # @ and are locally aligned on M }

In algorithm 3 is a summary of the process. The metric d in line (7)
is the integer metric on M. Notice that in contrast to the algorithm
1 of [Razafindrazaka et al. 2015], no explicit intersections are made
during the construction.

4.3 Diagonal Edges Ciiag

In the graph construction, the ratios defined in algorithm 1 line (12)
and (13) can be exactly one. Notice that, this case will generate
two geometrically equal edges but different alignment on M which
induces a degenerate patch (area equal to zero) in the final layout,
figure 6(c). The degeneration is avoided by adding extra disjunc-
tive constraints to the matching problem to prevent the appearance
of both edges in the subgraph matching. The generated diagonal
edges will always have less separatrix energy independent of the
values of the parameter «. It is then beneficial to have them in the
matching solution. However they are minimum in both base lengths
and offset deviations, and reduce the number of patches of the ini-
tial base complex at the cost of high angle deviations which cannot
be resolved even for large values of a.

A solution to this problem is for example to allow only far apart
singularities to be diagonally connected. This is a parameter de-
pendent since closeness is not well defined. A post validation could
also be applied by identifying these configurations, removing the
corresponding edges from the graph and recomputing a solution. In
our implementation we did not do any of these optimizations. We
keep diagonal edges to avoid missing some interesting layouts es-
pecially when the number of singularities increase as in figure 6.
The additional conflict set Cyia, is defined as follow,

Caiag = {ze + x5 < life, f € Diag(Square) on M}

where Diag(Square) is the diagonal of a square grid on M.

4.4 Graph Reduction

As proven empirically in [Darmann et al. 2011], the complexity
of the binary program P; depends weakly on the size of G but
strongly on the size of the disjunctive constraints Cisj U Cgiag. Our
preferred solver ILOG-CPLEX does not succeed for example to
find a feasible solution for disjunctive constraints exceeding three
hundred thousand. This can happen even on low sized graph. In
figure 9 are two examples (ARMADILLO,LUCY) of quad meshes
where this issue appears. We suspect that this is caused by spirals
present in the base complex where no other possible candidates can



Patches : 744 no diagonal Patches : 575 with diagonal

Figure 6: (a) Without diagonal edges, (b) with constrained diago-
nal edges and (c) with non-constrained diagonal edges.

be used and hence producing an exponential increase of conflicting
edges.

Since we are aiming at a much coarser and low distortion quad lay-
out, we can exploit the geometric property of the edges to reduce G.
Our reduction strategy is to remove an edge of G if it is too close
to another edge sharing a common vertex in terms of ratio. More
precisely, consider two edges es; and es,, such that [Base(es)| <
|Base(esqw)|. Consider Ratiogs = |[Offset(est)|/|Base(est)|
and Offset(esw)|/|Base(esw)| such that

d = |Ratios; — Ratiogw| < €

for a user specified . We then remove e, from the graph if it is
not in B (figure 8 (b)). The motivation behind the reduction is that if
esw 18 part of the final layout, then it will induce a very small sided
patches since the singularity ¢ is close by as illustrated in figure 8(a).
Notice that the reduction does not affect very much the final layout
geometry for coarse layout (see for example the PEGASO model in
figure 9).

Theorem 1 (Optimal Base Complex) Given a quadrilateral mesh
M, an optimal base complex of M relative to the parameter o is a
solution of P1.

The existence of a solution is guaranteed by BB. Since no patch con-
tains a singularity, Cyisj guarantees a pure quadrilateral base com-
plex. Degenerate patches i.e area equal to zero are removed by
Cliag and patches with side lengths close to zero are removed by e.
In other words, the theorem fills the gap in all previous proposed
solutions: no existence guarantee [Razafindrazaka et al. 2015] and
the presence of T-junctions [Pietroni et al. 2016].

5 Results and Analysis

In our analysis, we took models already optimized by existing
methods and run our algorithm to check if these can still be im-
proved or not. We also check our method for robustness on models
with several singularities. In all experimentation, we took the bal-
ance parameter = 10 as motivated by the sequences in figure 7.
In general, small values of « are always suitable for coarse base
domains. We choose ¢ = 107 x Diam(M) which we found rea-
sonably good, mesh resolution independent and works well for a
large variety of quad meshes. To solve the binary problem, we use
ILOG-CPLEX (www.ibm.com).

5.1 Compared to Matching Based Approach

We compare with existing methods [Razafindrazaka et al. 2015;
Pietroni et al. 2016] using matching formulation. The perfect
matching quad layout proposed in [Razafindrazaka et al. 2015]
works on seamless parameterization but unfortunately a theoreti-
cal guarantee which assures the existence of subgraph layout for
their proposed graph construction is still missing. This is resolved
in [Pietroni et al. 2016] by only looking for a maximum matching
at the cost of T-junctions and eventually complicated zero-chains.
Our approach is an optimization approach, has always a solution
and contains no T-junctions. In figure 10 we took models generated
by [Pietroni et al. 2016] as input and analyze the optimized layout



Patches = 118

Figure 7: Several values of o which correspond to a simplification like behaviour of the base complex B.

3

(b)

Figure 8: Graph reduction by removing edges which might induce
a thin strip on the final layout, using a control parameter €.

|Ecl |Cdisj| U |Cdiag| CPLEX (ins) Num. Patches
£ With Reduction 1959 27606 0.66 977
( Without Reduction | 3059 736023 Fail -
% With Reduction | 4165 187810 3.32 574
£ Without Reduction | 4245 196148 3.38 580
7z With Reduction | 2528 40961 1.03 940
3 Without Reduction | 9863 5772675 Fail -

Figure 9: ARMADILLO [Ebke et al. 2014], PEGASO and
Lucy [Pietroni et al. 2016] the size of the conflict set is huge and
the solver may fail to find a solution.

generated by our method. We noticed that the number of patches is
not so different although the T-junctions are gone. In this case, op-
timality is relative since their method aims for exact field alignment
where we aim at coarse layout but still low distortion.

5.2 Compared to Zhang et al.

The approach of Zhang et al. [Zhang et al. 2016] is a particular case
of the perfect matching approach. Their graph construction is based
on using rectangular area filtering where we are using singularity-

Patches | 528 731 941 870
T-junctions | 44 0 38 0

Figure 10: Layout generated by [Pietroni et al. 2016] containing
T-junctions (left), optimized using the proposed method (right) with
no T-junctions.

free triangular area, our space of layout is then larger. The use of
area detection instead of separatrix tracing construction makes the
construction of the conflict set difficult and hence the use a subopti-
mal iterative approach is not appropriate. In figure 11 is a compari-
son example on the ROCKERARM model. We can clearly see the ef-
fect of using rectangular patch detection where all separatrices tend
to be short. In our triangular patch detection (on the right), some
candidates port which are not found by the rectangles are identified
and the layout , at least visually, exhibit a good balance between
coarseness and geometric feature alignment.

Figure 11: (a) Approach proposed by Zhang et al. using rectangu-
lar area detection (b) our approach using triangle free singularity
approach.

5.3 Compared to Tarini et al.

Tarini et al. [Tarini et al. 2011] proposes a greedy approach to opti-
mize the base complex of a given quadrilateral mesh. The key idea
behind their algorithm is to modify B by finding possible connec-
tions inside the corridor of a given port (two parallel separatrices)
and making sure that the resulting layout is all quads. This is in
some aspect a possible way to construct G using corridor as a fil-
tering condition for port connections similar to the rectangular area
detection of [Zhang et al. 2016] with the drawback that the behavior



|| Name IS |Ecl ICaisl [Caiagl Num. Patches ||

Lion 229 2725 31851 50 870
GARGOYLE 178 2340 28489 84 731
FERTILITY 42 904 12856 20 132
Bumpry Torus 108 2514 61216 40 285
ELEPHANT 110 2182 43773 52 306
Hanp 40 693 16943 11 124
FanDisk 30 334 1798 10 103

Table 1: Several statistics on the optimized patches

of the corridors cannot be control during the optimization. Never-
theless they propose a greedy solver based on a tree of valid config-
urations to solve P without disjunctive constraints. The search of
valid configurations may take several minutes due to local minima
and optimal valid configuration cannot be reached.

Figure 12: Left: layout optimized by Tarini et al. with 1308
patches after 351 moves (~ 15 s). Right: our optimization with 455
patches (~ 0.6 s). The BUDDHA model was produced by [Bommes
etal 2013].

On low resolution model i.e low number of singularities, the
method of Tarini et al. succeeds to produce similar layout as ours.
On high resolution model (figure 12) on the other hand their method
struggle to get out of local minima even after several moves increas-
ing significantly the number of patches.

In figure 13 are some more layouts optimized by our method where
the quad meshes where generated by [Kilberer et al. 2007]. The
statistics of the patches and the graphs are given in Table 1. The
running time is relatively fast. The low resolution models are in
average one seconds on a single core 3,5 Ghz CPU.

6 Extensions and Future Works

6.1 Singularity Reduction

In this section, we study subgraph matching H* of G such that
|Viro| = |V| and |Vigr| < |Vi|, for k > 0. The subgroups H*’s
form quad layouts of M with some singularities removed. For the
practical implementation and evaluation, we leave them as future
works.

Merging singularities are very difficult on quad meshes which have
been the subject of many research papers. They are global operation

and uncontrollable behaviour can easily occur during the modifica-
tions. In [Peng et al. 2011] the merging of two singularities of va-
lence 3 and 5 requires for example a third singularity and a smooth-
ing is afterwards applied to reduce the distortion in the mesh. We
call a pair of singularities removable if a subgraph matching quad
layout of G exists without the pairs. We cannot remove one singu-
larity since it leaves the graph with odd number of vertices where a
perfect matching cannot exist. Without loss of generality we only
focus on removable pairs of singularity 3 — 5, other valences can be
handled similarly.

We are not solving the problem of the choice of singularities to
be removed. This is still an open problem.Given the singularities
connectivity the quad mesh, we provide conditions to remove a pair
of singularities and still provide a quad layout of the surface.

6.2 Necessary Condition

In order to have a perfect matching after removing a pair of singu-
larities, all ports adjacent to both singularities should have at least
two edges adjacent to them in GG unless they are connected to each
other. In figure 15 (a) is for example two singularities which cannot
be removed since two endports (on the left of the valence 3 and on
the right of the valence 5) have only one edge adjacent to them. This
could be resolve if we modify the quad mesh and connect directly
the loose ports to each other but this does not follow our general
construction and conflicting edges are not anymore well defined.
We leave that as part of independent research problem.

6.3 Sufficient Condition

Finding a sufficient condition for removable pairs of singularities
cannot be done without checking if a perfect matching exists or not
on the remaining set of port-singularities. A naive approach checks
all pairs of 3 — 5 singularities, removes them from the graph and
solves P;. This could work but the resulting layout might not be
pure quads. In the dual setting, a singularity of valence k£ induces
a k—gonal patch. The main idea is then to make sure that the pairs
3 — 5 are very close to each other which induces a triangular patch
and a 5—gon adjacent to each other in the dual (e.g figure 15 (b)).
Removing the common edge of both patches generates a quadrilat-
eral patch. We then introduce two new constraints as follow:

1. a candidate pair should lie on the diagonal of a rectangular
patch on M

2. separatrices separating a pair of singularities should not ap-
pear in the matching subgraph.

The first condition is a measure to check how close a pair is to each
other. The second condition makes sure that the subgraph layout if
it exists does not contain triangular patches nor 5-gon patches. Let
us denote by (s3, s5) a pair to be removed. If (1) is not satisfied
then there exists a singularity sy such that all edges adjacent to one
port of s, separates (ss, s5), condition (2) will then remove all of
these edges in the subgraph leaving one of the port of s, open. A
perfect matching cannot exist in that case in G. We summarize the
removal of a singularity pair by the following proposition.

Proposition 1 Given a pair of singularities (s3,ss) a subgraph
layout of M — {s3, s5} is a solution of P1 with the following con-
straint: x. = 0 for all edges e adjacent to the ports of ss and ss,
and for all edges separating sz and ss.

It can happen that no singularities of M can be removed even
though conditions (1),(2) are satisfied because we are bound to the
combinatorics of M. Extension of the graph GG could be done in
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Figure 13: Optimized layouts generated by the proposed approach. Input layouts (not shown) were generated by [Kdlberer et al. 2007].

() @
Figure 14: (a) Subgraph layout from G (b) edges adjacent to a
pair 3 — 5 singularity (c) removing corresponding edges in G (d) a
new layout subgraph in the reduced graph.

Figure 15: (a) Not removable pair of singularities (b) removable
pair inducing a non quad patches (c) removing edge separation
induces a pure quad layout.

this case but we will leave that as future work. As illustrated in fig-
ure 15 (c), removing singularities does not imply nice quality quad
patches. Smoothing and more optimization needs to be done in that
regards.

7 Outlook

We have given an algorithm to optimize the base complex of a given
quadrilateral mesh into coarse and geometric feature aligned new
base complex. The approach follows the recently introduced con-
strained perfect matching formulation making the construction fast,
robust and relatively simple to implement. The results prove that the
new approach performs very well, both in terms of speed and qual-
ity of the resulting layouts compared to current state of the art in
base complex optimization. We also showed that manipulating sin-
gularities such as merging can be achieved in the graph formulation.
This could be explored further in the future. The space of solution is
small and bounded by the combinatorics of the quadrilateral mesh.
A drift aware construction [Pietroni et al. 2016] combined with a
modified metric could be a solution. Finding a consistent extension
of the graph respecting the conflict set and allowing singularities
to be merged with optimality guarantee will be our main focus for
future works.
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