
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

SEBASTIAN GÖTSCHEL, CHRISTOPH VON TYCOWICZ,
KONRAD POLTHIER, MARTIN WEISER

Reducing Memory Requirements in
Scientific Computing and Optimal

Control

ZIB-Report 13-64 (October 2013)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Reducing Memory Requirements in Scientific
Computing and Optimal Control

Sebastian Götschel∗ Christoph von Tycowicz†

Konrad Polthier† Martin Weiser∗

Abstract

In high accuracy numerical simulations and optimal control of time-dependent
processes, often both many time steps and fine spatial discretizations are needed.
Adjoint gradient computation, or post-processing of simulation results, requires
the storage of the solution trajectories over the whole time, if necessary together
with the adaptively refined spatial grids. In this paper we discuss various tech-
niques to reduce the memory requirements, focusing first on the storage of the
solution data, which typically are double precision floating point values. We high-
light advantages and disadvantages of the different approaches. Moreover, we
present an algorithm for the efficient storage of adaptively refined, hierarchic grids,
and the integration with the compressed storage of solution data.

1 Introduction
The numerical solution and optimal control of time-dependent, nonlinear PDEs often
requires fine discretization both of the time interval [0,T] and the — typically three-
dimensional — spatial domain Ω to achieve accurate results. For optimization, adjoint
gradient computation is often used, see e.g. [28]. There, the solution trajectory over
the whole time interval needs to be stored, together with the adaptively refined spatial
grids. To be more precise, consider the abstract optimal control problem

min
y,u

J(y,u) s.t. c(y,u) = 0,

where the relation between the state y and the control u is governed by the equality
constraint c : Y ×U → Z?, which, for example, may be a parabolic PDE on Hilbert
spaces Y,U,Z. Under suitable assumptions, and with y = y(u) the unique solution of
the state equation c(y,u) = 0, we arrive at the reduced formulation

min
u

j(u) := J(y(u),u).

The reduced gradient, required for the optimization, is then given by

j′(u) = Ju(y,u)− cu(y,u)?λ ,

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany (goetschel@zib.de, weiser@zib.de)
†Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany (christoph.vontycowicz@fu-berlin.de,

konrad.polthier@fu-berlin.de)

1

where the adjoint variable λ fulfills cy(y,u)?λ = Jy(y,u). The notations Jy,Ju, . . . de-
note the partial derivatives with respect to the variables y,u. The adjoint equation is
backwards-in-time, and — depending on the objective functional and the state equa-
tion — the solution of the forward state equation is needed for the adjoint equation, so
the state has to be stored at every timestep.

Of course the storage of simulation results is not only important for optimization,
but also for other post-processing algorithms, visualization, archiving of results, and
more.

Not only the mere storage size is important, with the ever-growing speed of CPUs,
memory access time is more and more becoming a bottleneck for large-scale simulation
and optimization. To reduce the amount of data, compression methods are required to
be able to tackle real-world applications. In this paper, we discuss various techniques to
reduce the memory requirements, both bandwidth and size. An important criterion to
judge the quality of compression methods is the compression factor, which is defined
as the ratio between uncompressed and compressed storage size. Typically — but not
in all cases — a reduction of memory size leads also to a similar reduction of the
required memory bandwidth. Of course when using lossy compression, where parts of
the original information are discarded, the compression factor has to be discussed in
relation with the induced error.

This paper is organized as follows. In Sec. 2, we discuss approaches for general
floating point compression, before we come to methods specialized for optimal control
in Sec. 3. In both sections we mainly focus on the compression of the solution data. In
Sec. 4 we describe an algorithm for the efficient storage of the adaptively refined spatial
grids, and its integration with the lossy compression approach discussed in Sec. 3.2.

2 General floating point compression
In this section, we discuss approaches for general pupose floating point compression,
both lossless and lossy.

2.1 Lossless methods
For lossless methods, the sole criterion for comparison of different approaches is the
compression factor. The comparison depends on the test data sets used, which differ in
the literature. Nevertheless, the reported compression ratios are good indicators for the
quality and applicability of the algorithms to our problem at hand.

FPC. In [8], Burtscher and Ratanaworabhan present the lossless, single-pass, linear-
time compression algorithm FPC. It aims at compressing floating-point data with un-
known internal structure, with maximizing throughput, i.e. compression speed, as the
main objective. Sequences of double-precision floating-point values are processed by
predicting a value, determining the prediction error by an XOR operation, and com-
pressing the result.

As predictors, fcm [57] and dfcm [17] are used, such that prediction is essentially
a hash-table look-up to determine which value followed the last time a given sequence
of values occurred. If the predicted value is close to the true value, the XOR operation
produces many leading zeros. The number of leading zeros is encoded in a 3-bit value,
which is stored together with a bit specifying the chosen predictor and the remaining
non-zero bytes of the prediction error. The reported compression ratios range between

2

1.02 and up to 15.05 (for one special test data set), the geometric mean compression
ratio is 1.2 – 1.9 depending on the size of the look-up table for the predictors.

fpzip. While FPC uses no information about the structure of the data, the algorithm
fpzip by Lindstrom and Isenburg, based on [48], traverses the data in some coherent
order, and uses the Lorenzo predictor [31] to estimate values based on a subset of the
already encoded data. Row-by-row traversal of the data works especially well for data
on structured, cartesian grids. The predicted and true value is mapped from floating-
point to an integer representation. While fpzip is foremost a lossless compression
algorithm, it can be run in a lossy mode. Then, during the mapping stage, the least
significant bits are discarded, reducing the precision to 48, 32 or 16 bits/value, without
control of the quantization error. The integer residual is stored using range coding [49],
a variant of arithmetic coding. Lossless compression ratios of 1.4 – 2.7 for a double
precision test data set are reported in [48], with a average ratio of approximately 1.6.

2.2 Lossy methods
As expected, lossless methods can not reduce the amount of data significantly, due
to many quasi-random least significant bits. To achieve good compression ratios, we
have to resort to lossy compression techniques. Typically, the accuracy is reduced by
quantization of the true values, or of predicted values, which essentially is rounding.
Here, control of the quantization error is of crucial importance.

Comparison criteria for lossy methods are the compression ratio in relation with
the induced error. The different test data sets given in the literature, together with the
different error norms used to report the quantization errors, makes it difficult to give a
quantitative comparison of the algorithms described below.

Adaptive coarsening/sub-sampling. This method, presented in [59, 73], is closely
related to adaptive mesh refinement. Starting from simulation results on some fine,
uniform mesh, the mesh is tentatively coarsened. After reconstructing the solution, grid
points are removed where the data is represented on the coarser mesh with sufficient
accuracy. This procedure is carried out recursively on the new coarser meshes, until
no further coarsening is possible without violating the error bound. The result is an
adaptive mesh representing the data up to a specified accuracy. As no quantization is
used, compression is solely achieved by adaptivity. If the simulations are carried out
using standard adaptive mesh refinement during the solution process, data reduction is
only possible, if the necessary accuracy for solution and post-processing differ, like for
adjoint gradient computation. In [73] the reported compression factors range between
7.44 (3D data) and 25.1 (2D data) for a pointwise relative `∞ error of 10−3.

Graph Decomposition. In a recent work, Iverson, Kamath and Karypis [36] propose
a compression algorithm based on the decomposition of the compuational grid into
so-called ε-bounded sets. The method works on structured and unstructured meshes,
which are modelled via a graph. The nodes of the graph are the grid vertices for which
values are computed. These vertices are partitioned into non-overlapping sets Vi, such
that each set contains only vertices with values differing at most by a specified ε . In
each set Vi, the values are replaced by the mean value of the set, such that the point-
wise absolute error is bounded by ε . If there is local smoothness in the data, this
substitution increases the redundancy of the data, which is afterwards compressed using

3

standard lossless compression methods. For a testset consisting of data on structured
and unstructured grids with between 486,015 and 100,663,296 vertices, they report
average compression ratios between 20 and 50 for pointwise relative `∞ errors of orders
10−2 to 10−3.

ISABELA. Lakshminarasimhan et al. [45, 46] propose a method for “In situ Sort-
And-B-spline Error-bounded Lossy Abatement” (ISABELA), specifically designed for
spatio-temporal scientific data that is inherently noisy and random-like. In the spatial
domain, data is sorted from an irregular signal to a smooth monotonous curve. Then
a B-spline is fitted to the sorted data, the difference between data and fitted curve is
quantized and stored, together with the information necessary to invert the sorting pro-
cess. Their experience suggests that the ordering of the sorted data is similar between
adjacent timesteps such that delta-encoding can be used to compress the ordering in-
formation. The accuracy of the reconstruced data is reported by two quantities, the
normalized root mean squared error (NRMSE), and Pearson’s correlation coefficient
defined by

NRMSE =

(
∑i(Di− D̃i)

2
) 1

2

max(D)−min(D)
, ρ =

cov(D, D̃)

σ(D)σ(D̃)
,

where D denotes the original data, D̃ the de-compressed data, and σ the standard de-
viation. In [46] they report compression factors between 3.8 and 5.6 for error bounds
ρ > 0.99 and NRMSE < 0.01 and five different data sets.

FEMZIP. FEMZIP [68, 67] is a commercial tool for the compression of finite el-
ement solutions created by certain FE-programs. After a quantization step with pre-
scribed relative or absolute tolerance, a prediction step follows. In space, a hierarchic
approximation of the FE functions is performed, using coarsening of the computational
grid by algebraic multigrid techniques [68]. In time, prediction based on rigid body
movements is used. As a final step, the approximation residual is compressed using
arithmetic encoding. Compression factors of up to 13.3 are reported [67], but without
quantitative specification of the accuracy.

2.3 Geometry compression
Compression of geometric data is a vital factor in many computer graphics and visu-
alization applications. Here we will briefly discuss techniques developed for the com-
pression of polygonal surface meshes. For a more detailed overview and comparisons
of various schemes we refer to the excellent surveys [3] and [54].

A wealth of compression schemes have been developed for single-rate coding (com-
pressing the whole mesh in a region-growing fashion) as well as progressive coding
(encoding the model from coarse to fine). For triangle meshes, the most prominent
single-rate coders are the Edgebreaker [56] and the method of Touma and Gots-
man [69] which both spawned numerous descendants. In particular, the early-split
coder of Isenburg and Snoeyink [34] and the optimized Edgebreaker encoding of
Szymczak [66] are among the best-performing variants and are able to achieve bit rates
well below the Tutte limit [71] of roughly 3.24 bits per vertex. In addition, many tri-
angle mesh compression schemes have been generalized to polygonal meshes, such as
Martin Isenburg’s method [32] which extends the Touma-Gotsman coder.

4

Bits rates can be improved even further by accessing already encoded geometry
data when encoding connectivity and vice versa, hence exploiting the correlation be-
tween connectivity and geometry. Based on this approach, FreeLence [38] is espe-
cially performant in the triangular case, while Angle Analyzer [47] is optimized for
quadrilateral meshes.

Progressive coders follow a different approach: the coder starts from a coarse mesh
and then successively encodes refinement data for finer representations of the model.
This approach allows the application of multiresolution analysis to decorrelate high-
and low-frequency components of the geometry and/or attribute data such as colors
and texture coordinates. Details in the data are thus represented as wavelet-coefficients
which typically feature a smaller entropy than the original representation.

Wavelet transforms have been presented for both (unstructured) hierarchical and
irregular grids. The latter group employs mesh coarsening methods that progressively
remove vertices causing the smallest distortion. Prominent coders in this category are
[33, 2, 74]. The best results for geometry compression however have been achieved
for hierarchical meshes where efficient wavelet transforms have been derived based on
the notion of subdivison. The best known scheme in this group is the progressive ge-
ometry compression (PGC) codec by Khodakovsky et al. [42] adapting the established
zerotree coding scheme [61] from image compression. Numerous variants have been
proposed extending PGC to different types of meshes [41], resolution scalability[4]
and efficient embedded quantization [53]. Using context-based entropy coding to ac-
count for intraband correlations of the wavelet coefficients, Denis et al. [13] and von
Tycowicz et al. [72] are able to further improve the compression performance. In addi-
tion, [72] incorporates strategies to encode adaptively refined hierarchies independent
from the geometry or attribute data which we utilize in our coding technique presented
in Sec. 4.

In the field of geometry compression the accuracy is typically measured in terms
of the root mean square error as reported by METRO [10] which is based on a point-
to-surface distance and thus neglects tangential errors. For an accuracy of orders 10−4

to 10−5 w.r.t. the bounding box diameter, FreeLence reports average compression
factors of 21 for irregular triangle meshes whereas [72] achieves average factors of 29
and 122 for adaptive and uniform hierarchical grids, respectively.

3 Specialized methods for optimization with differen-
tial equations

In the remainder of this paper, we focus on methods tailored to the needs of optimal
control problems governed by time-dependent differential equations.

3.1 Checkpointing
So-called “checkpointing methods” are a tool for the computation of the reduced gradi-
ent using the adjoint equation. Instead of keeping track of the whole forward trajectory,
only the solution at some intermediate time steps is stored. During the integration of
the adjoint equation, the required states are re-computed starting from the snapshots.
Typically for the analysis of checkpointing methods, it is assumed that each checkpoint
has the same size, such that fixed spatial grids are considered.

5

3.1.1 Fixed timesteps

During the forward simulation, the algorithm has to decide when to create a checkpoint.
In the simplest setting, the temporal mesh is fixed as well as the spatial grid, and the
checkpoint distribution can be computed beforehand (“offline checkpointing”). In the
following we denote by c the total number of checkpoints, and by nt the total number
of timesteps of the time discretization.

One obvious strategy would be a to place checkpoints uniformly over the time in-
terval, a technique also known as windowing, e.g. [6]. Recursive application of this
strategy to each group of timesteps between two checkpoints results in a multilevel
checkpointing strategy [6, 23]. Both techniques do not yield optimal distributions,
i.e. distributions leading to a minimal amount of re-computations. Binomial check-
pointing [21, 22] is based on the fact that the maximal number of timesteps β (c,r) that
can be reversed fulfills

β (c,r) =
(

c+ r
c

)
,

when c checkpoints and at most r re-computations of each timestep are allowed. Via
dynamic programming one can evaluate the minimal extra number of forward steps
t(nt ,c) necessary to compute the adjoint using c checkpoints as

t(nt ,c) = rnt −β (c+1,r−1),

where r is the unique integer satisfying β (c,r−1)< nt ≤ β (c+1,r−1), see e.g. [22,
23]. An implementation called revolve by Griewank and Walther [22] is available.

The achieved compression factor for storage space is given by nt/c. However,
due multiple read- and write-accesses of checkpoints during the re-computations for
the adjoint equation, the reduction in memory bandwidth is significantly smaller. An
evaluation of the number of times a snapshot is written or read can be found in [63].
There Stumm and Walther analyse a multistage approach, where some checkpoints
are kept in RAM, others written to a hard disk or tape. Evaluating the write counts
for instance for nt = 1000 timesteps, and c = 50 checkpoints, i.e. compression factor
20, shows that only about 5% reduction of memory bandwidth is achieved for these
parameters [78]. In this example we get r = 2, and the computational overhead amounts
to 1,948 additional forward steps.

Here, we assumed that each timestep has the same computational cost; in case of
non-uniform timestep cost, optimal checkpoint distributions can be evaluated in O(cn2

t)
if the timestep costs are known a priori [76], or generated using heuristics [62].

3.1.2 Adaptive timesteps

If the number of time steps is not known beforehand, the optimal checkpoint distri-
bution can not be computed. Thus in practical applications, the user has to resort to
“online” placement of checkpoints during the state integration

An extension of the revolve algorithm, named a-revolve, is proposed in [29, 62],
and applied to optimal control of the Navier-Stokes equations. There, a heuristic strat-
egy to overwrite the contents of a previously recorded checkpoint is developed, based
on estimates of the computational cost for the current and the updated snapshot distri-
bution. While the resulting scheme is not proven to be optimal, numerical experiments
indicate that the generated checkpoint distribution is close to the corresponding offline
one.

6

Other work on online checkpointing was started in [27], with extensions and the-
oretical foundations in [64]. The approach presented there is proven to be optimal in
terms of re-computations for repetition number r = 2 and nt ≤ β (c,2). For r = 3 and
β (c,2) < nt ≤ β (c,3) optimal checkpoint distributions can not be computed, but for
a wide range of timesteps nt , the resulting algorithm is close to optimal. The method
works by continuously overwriting certain previously set checkpoints, until the end of
the state integration. For re-computations during the adjoint integration, intermediate
snapshots are stored using optimal offline checkpointing.

A different strategy for choosing which checkpoints to replace is devised in [77].
Although their algorithm, called dynamic checkpointing, works for an arbitrary number
of timesteps nt , the resulting distribution has just an optimal repetition number r, but is
not optimal in terms of the total number of re-computations.

For all three methods the reduction in memory bandwidth is drastically smaller than
the reduction in storage space. In fact, due to the frequent overwriting of snapshots, it
is questionable if a reduction of bandwidth can be achieved at all.

3.1.3 Discussion

Checkpointing is a compression method, which originally was developed for computa-
tion of gradients via the reverse mode of automatic differentiation, where a large num-
ber of arithmetic operations has to be reversed. In that context, two features are par-
ticularly important: checkpointing is lossless, and the additional computational work
grows slowly for an increasing number of timesteps [23]. For optimization with time-
dependent differential equations as constraints, the second property is not as important,
as the number of timesteps is typically small compared to the number of arithmetic op-
erations in automatic differentiation. The additional work — for typical settings two
up to four additional solves of the state equation — carries more weight. Also, in terms
of data transferred, only a small reduction of bandwidth can be achieved, in particular
with online checkpointing.

When using second order optimization methods, like Newton-CG, the state trajec-
tory is needed in each CG iteration to evaluate Hessian-times-vector products, leading
to higher computational work, as typically checkpoints are overwritten during adjoint
integration, and thus their original information is lost for the subsequent CG iterations
and has to be re-computed as well.

For non-uniform timestep cost which is not known a-priori, checkpoint distribu-
tions have to be chosen heuristically. With adaptive mesh refinement, also the sizes of
the snapshots are unknown a priori. For this case, no optimal checkpoint distributions
are known, not even heuristics.

3.2 Lossy compression
Checkpointing methods pay for the storage reduction with an increase in runtime, but
reconstruct the solution data exactly. However, due to discretization of the state equa-
tion by finite elements, quadrature, and iterative solution of the resulting linear equation
systems, the solution is inherently inexact. Thus a trade-off between storage demand
and accuracy is natural.

7

3.2.1 Point-wise error bounds

In [78] we propose using the general principle of transform coding for the compression
of finite element solution trajectories. It consists of a prediction step, quantization,
and entropy coding of the prediction errors, see Fig. 1. To fix the setting we consider
spatial discretization by a nested family T0 ⊂ ·· · ⊂ Tl of simplicial triangulations,
constructed from an initial triangulation T0 of a polygonal domain Ω⊂ Rd . This grid
hierarchy can be created either by uniform or adaptive refinement. The set of vertices
on level j is denoted by N j. The time grid for the time interval [0,T] is given by
0 = t0 < · · · < t f = T . For brevity, we restrict the attention to piecewise linear finite
elements.

Encoder

yi

transform

Φ : Rn → Rn

y 7→ z

quantization

Qδ : Rn → Zn

z 7→ ξ

entropy coding

c : Zn → {0, 1}Nc

ξ 7→ b

bitstream storage

decoding

c−1:{0, 1}Nc → Zn

b 7→ ξ

dequantization

Q†δ : Zn → Rn

ξ 7→ ẑ

inverse transform

Φ−1 : Rn → Rn

ẑ 7→ ŷ

ŷi

Decoder

Figure 1: Principle of transform coding.

Quantization. For a given accuracy δ > 0 we define the quantization Qδ : R→ Z as

Qδ (y) :=
⌊

y+δ

2δ

⌋
,

the reconstruction Q†
δ

: Z→ R then is given by Q†
δ
(ξ) := 2δξ . This guarantees the

quantization error bound
|y−Q†

δ
(Qδ (y))| ≤ δ .

This implies an `∞ error bound of δ on the coefficient vector, and hence an L∞ bound
on the FE function.

Prediction in space. Values yk of coarse level vertices are quantized directly to ξk =
Qδ (yk), yielding a reconstructed value ŷk := Q†

δ
(ξk). For new vertices xk ∈N j\N j−1

8

on level j > 0, we make use of the grid hierarchy and quantize and store only the
deviation of yk from a prediction Pk(ŷl : l ∈ N j−1) obtained from reconstructed val-
ues ŷl of lower level vertices. There are several algorithmic choices for the predictor.
One possibility is a change of basis from the nodal basis to the hierarchic basis [79].
This is easily implemented, as it essentially is the application of prolongation matrices
between grid levels, which is easily accessible in most FE codes.

A priori estimates for the compression factors were derived in [78]. To achieve
L∞-interpolation error accuracy for the reconstructed FE function, 2.9 bits/vertex in 2D
and 2.5 bits/vertex in 3D are sufficient. This amounts to compression factors of 22.1
and 25.6, respectively, compared to storing double precision floating point values at 64
bits/vertex.

Prediction in time. Additionally temporal correlations can be used to further re-
duce the entropy of the data. If gradient based methods like steepest-descent or quasi-
Newton methods are used, the state solution is only accessed backwards in time, and
no random access is required. We thus can use delta-encoding, and store for a timestep
tn < T only the difference

ξ
∆
k (tn) =

{
ξk(tn)−ξk(tn+1), k ∈

(
N j(tn)\N j−1(tn)

)
∩
(
N j(tn+1)\N j−1(tn)

)
ξk(tn), otherwise

.

At final time T ,
ξ

∆
k (t f) = ξk(t f) ∀k ∈N j(t f)\N j−1(t f).

Delta-encoding the quantized coefficients avoids error accumulation. Of course higher
order prediction can be used instead of the constant predictor described above, at the
expense of keeping more timesteps in RAM.

Entropy coding. The quantized and possibly delta-encoded coefficients ξ ∆
k are writ-

ten to disk using range coding [49]. They are encoded with variable-size symbols,
where fewer bits are assigned to the more frequent coefficients.

More details and numerical examples can be found in [78].

3.2.2 Adaptive error control

A crucial algorithmic choice is the quantization tolerance δ . To choose the error
bound as large as possible without impeding the convergence of the optimization algo-
rithm, we need to estimate the induced error in the reduced gradient j′(u) = Ju(y,u)−
cu(y,u)?λ . Typically, Ju and cu are independent of y, such that the error is determined
by the error of the adjoint. If additionally cy does not depend on the state, e.g. for linear
equations, the error in the adjoint eλ satisfies the equation cy(y,u)?eλ = −Jyy(y,u)εy,
where εy denotes the error in the reconstructed state solution. For nonlinear equations,
the error additionally depends on cyy(y,u)εy and the solution of the adjoint equation
with inexact data. Computationally available estimates of the gradient error can be
used to determine the quantization tolerance according to the progress of the optimiza-
tion procedure. A detailed discussion can be found in [19].

For second order methods, errors in the reduced Hessian have to be considered as
well. A derivation of error estimates and the influence on a Newton-CG method can be
found in [18] specialized to the application in optimal control of cardiac defibrillation,
and more general in [19].

9

3.2.3 H−1 error bounds

While bounding the pointwise `∞ error in the coefficients of the reconstructed FE so-
lution trajectory is easily implemented and yields good compression factors, consid-
ering other error measures is reasonable in the optimal control setting. In particular,
the reconstructed solution enters into the right-hand side of the adjoint equation. Due
to smoothing properties of parabolic equations, a quantization error with high spatial
frequency is preferable, such that the H−1-norm is more appropriate.

Controlling the H−1 error can be achieved by using a wavelet transform to represent
the finite element solution y(x, tn) at some fixed timestep tn as

y(x, tn) = ∑
k∈N0

y0,kφ0,k(x)+
l−1

∑
j=0

∑
m∈N j+1\N j

z j,mψ j,m(x).

For this we assume again a level partitioning of the grid vertices N = N0 ∪ ·· · ∪Nl ,
and denote by the subscript j,k values belonging to vertex k on grid level j. We use the
abbreviations n(j,k) = {m ∈N j+1 \N j | m is a child of k} and N(j,m) = {k ∈N j |
k is a parent of m}. Here, a vertex m ∈N j+1 is a child of k ∈N j, if m was created by
splitting an edge [k, l]. The scaling functions φ j,k satisfy the refinement relation

φ j,k = φ j+1,k + ∑
m∈n(j,k)

1
2

φ j+1,m,

the wavelets are of the form

ψ j,m = φ j+1,m− ∑
k∈N(j,m)

s j,k,mφ j,k.

The lifting coefficients s j,k,m are determined to impose vanishing moments on the
wavelets, see e.g. [65, 9]. In particular, one vanishing moment is easily obtained on
unstructured grids if the mass matrix is available.

The modified coarse grid values y0,k and wavelet coefficients z j,m are computed
using the fast wavelet transform with lifting [58, 65], for grid levels l−1, . . . ,0:

z j,m = y j+1,m−
1
2 ∑

k∈N(j,m)

y j,k ∀m ∈N j+1 \N j

y j,k = y j+1,k + ∑
m∈n(j,k)

s j,k,mz j,m ∀k ∈N j.

Norm equivalences, e.g. [12], suggest that the error bound ‖y− ŷ‖H−1 < ε holds,
if the wavelet coefficients z j,k are quantized using a level-dependent tolerance δ j ∼
2 j(d/2+1)ε .

To compare a first, simple implementation of this approach with the hierarchical
basis (HB) prediction of Sec. 3.2.1, we use the three functions

f1(x) = sin(12(x0−0.5)(x1−0.5)), x ∈ [0,1]2

f2(x) = sin(50(x0−0.5)(x1−0.5)), x ∈ [0,1]2

f3(x) = ‖x‖2 + sin(12(x0−0.5)(x1−0.5)), x ∈ [0,1]3.

For the HB approach, quantization tolerances were chosen to achieve L∞-interpolation
error accuracy. For the wavelet approach the tolerance was set to achieve the same
H−1 error as the corresponding HB result. The resulting compression factors shown in
Fig. 2 indicate that on average a wavelet approach might indeed give better compression
factors when H−1 reconstruction errors are used..

10

20

40

60

80

100

120

140

160

7 8 7 8 9 4 5 6

co
m

pr
es

si
on

fa
ct

or

grid levels

f1

f2

f3
HB

WLT

Figure 2: Compression factors for hierachical basis prediction/point-wise error bounds
(HB) and wavelet-based compression (WLT), for three test functions and different
mesh sizes.

3.2.4 Discussion

The lossy compression technique sketched in this section offers significant reduction of
storage space as well as memory bandwidth, as only the compressed data is transferred
to storage media. The computational cost of the basic method is negligible: Quan-
tization, delta-encoding in time, and entropy coding consist only of cheap elementary
arithmetic operations; in space, the prediction step amounts to the computation of prod-
ucts between prolongation matrices and FE coefficient vectors. Prolongation matrices
are often available from multigrid preconditioners, or can otherwise be computed in-
expensive on the fly.

As a downside, information is discarded in the quantization step, and the FE solu-
tion can not be reconstructed exactly. If used in optimal control of differential equa-
tions, adaptive control of the quantization error ensures that the inexactness has no
influence on the convergence of the optimization. For other post-processing tasks, like
data analysis or visualization, the error norms and tolerances can be chosen according
to the particular needs of the application, offering a flexible way to balance data size
and accuracy.

3.3 Other techniques
In this section we briefly discuss two techniques for the solution of optimal control
problems, with memory reduction as a side effect.

3.3.1 Model reduction

Model reduction techniques focus mainly on the reduction of computational complex-
ity via approximation of large-scale problems by smaller ones. First developed for
handling parameter-dependent differential equations, in the last years this algorithm
class is applied to optimal control and inverse problems as well. One popular method

11

for the construction of reduced models is proper orthogonal decomposition (POD).
There, a basis is computed from the solution of the state equation at a number of given
timesteps. For many problems, only few basis vectors are necessary to get sufficiently
accurate approximations. A detailed analysis of POD methods for parabolic PDEs can
be found in [43], see e.g. [30] for the use of POD in optimal control. In terms of mem-
ory requirements, only the snapshots of the solution of the large-scale problem need to
be stored.

Due to the reduced-order model, only sub-optimal controls can be computed. To
judge the quality of the approximate solution, a-posteriori error estimators were devel-
oped. In [70], such an estimator is derived for the linear-quadratic case, and extended
to semilinear equations in [40]. For the evaluation of the error estimate, state and ad-
joint solutions of the full problem are needed, posing the same requirements for storage
space as the original large-scale problem. A different technique is suggested in [37]:
they use the full model to compute the gradient and only use reduced models to find
a suitable steplength for the control update. Again, no reduction in memory size is
achieved. While both methods reduce memory bandwidth, a combination with lossy
trajectory compression for evaluation of error estimators or gradient computation ap-
pears attractive.

3.3.2 Multiple shooting

Multiple shooting is a well established method for the solution of ODE boundary value
problems. The time interval [0,T] is decomposed in a number of sub-intervals, with
auxiliary variables for the interfaces ensuring continuity of the solution. The resulting
cyclic, nonlinear system of equations is typically solved using Newton’s method. De-
tails and a short overview of the history of shooting methods can be found in [14], for
instance. In the last years, this principle was applied to solve optimal control problems
governed by time-dependent partial differential equations, e.g. [24, 11, 25, 26]. The
decomposition of the time domain leads to optimization problems on the sub-intervals,
where locally state and adjoint are implicit functions of the control and the auxiliary
variables [11]. Sequential solution of the local problems leads to a storage reduction,
as only the trajectory on the respective sub-interval is needed. The coupling of the sub-
problems via the auxiliary variables (“matching conditions”) avoids the disadvantage
of moving horizon techniques, where only sub-optimal controls can be computed (see
e.g. [35]). Combination with adaptive mesh refinement is discussed e.g. in [25, 26],
where a dual weighted residual (DWR) method [7] is used for error estimation.

Although the resulting algorithms are easily parallelizable due to the splitting in
local sub-problems, significant storage reduction is only achieved in sequential com-
putations, or if the number of sub-intervals is considerably larger than the number of
CPUs. Each CPU then has to provide storage only for the currently processed local
problem, plus additional storage for the auxiliary variables. Again, a combination with
lossy trajectory storage is an attractive possibility.

4 Compression of hierarchical, unstructured grids
For problems with spatially local solution features, it is beneficial to use adaptively
refined spatial meshes to reduce the computational cost and memory demand of simu-
lation and optimization. As a downside, in the context of trajectory storage discussed
here, this incurs the need to store the mesh together with the trajectory data. For apply-

12

ing our lossy compression approach, we even need the complete hierarchy, not just the
leaf level. In this section we discuss an efficient algorithm for mesh storage [39, 72], as
well as the integration of this method with the lossy compression approach described
above.

4.1 Connectivity compression
Numerous strategies for the adaptive refinement of grids have been presented in the
literature. Exploiting the particular structure inherent to a given strategy is paramount
in the construction of an efficient compression scheme. Here we present a method that
is tailored to hierarchies based on split operations for which the resulting grid is inde-
pendent of the order in which the operations are applied. In particular, we confine our
attention to the well-known and established red–green refinement [5] on 2-dimensional
grids. However, the ideas presented here can also be adapted to refinement schemes
for 3-dimensional grids and/or other types of elements. For example, [72] additionally
provides results for quadrilateral hierarchies.

Typically, the root grid is described by a small, carefully laid out mesh that can be
compressed well using single-rate coders. Explicitly, our implementation uses Free-
Lence [38] to losslessly encode the triangular base mesh. Starting from the root grid,
it is sufficient to encode which elements (including those on finer levels) have been
refined to reconstruct the adaptive hierarchy. Thus, the hierarchy can be represented
as a forest where each node corresponds to an element in the grid and the parent-child
relation reflects which triangles resulted through refinement of a particular coarse one.

We convert this representation into a bit stream by traversing the forest breadth-
first and writing true only if the node has children, i.e., was refined. If a geometric
criterion is used to resolve non-conforming situations between elements of differing
refinement grade, we can uniquely determine the connectivity of the grid from the
root grid together with the bit stream. However, if the conformization is determined
exclusively by local indexing, additional symbols have to be coded whenever there is
freedom of choice, e.g. a coarse triangle with two refined neighbors (see Fig. 3 middle).
We entropy code these symbols, but found that they where virtually incompressible
without knowing the exact implementation of the grid manager.

Figure 3: Red-green conformizations of non-conforming configurations due to adaptive
refinement.

Before compressing the bit stream we remove nodes whose state can be implicitly
reconstructed. In particular, no symbols are written in the following cases:

1-Regularity In balanced grids, neighboring triangles must not differ in more than one
level of refinement to ensure a certain level of shape regularity. Thus, elements
adjacent to coarse green triangles cannot be refined and can therefore be culled
from the bit stream.

13

Stream Truncation Due to breadth-first traversal, nodes at the finest level are visited
last. The corresponding false symbols can be left from the stream since they
cause no further refinements. In fact, we discard all trailing false entries.

Uniform Refinement We store a separate byte that encodes the degree of uniform
refinement, allowing the coder to skip all nodes on coarser levels.

Overall, for the test set of adaptive hierarchies used in [72], the above steps allow to
nearly halve the number of bits in the binary representation, without even looking at
the characteristics of the particular input grid. However, grids do show certain charac-
teristics in practice and we use context groups as a simple measure to account for the
conditional entropy (see [60]) of the bit stream. Just like two adjacent pixels in a dig-
ital photograph are likely to be similar, the refinement grades in hierarchical meshes
typically tend to be locally similar. We call two nodes within one level of the hier-
archy adjacent, if their corresponding triangles share an edge. This notion of locality
allows us to define the context of a node based on the refinement status of its neighbors.
Naturally, we may only assume knowledge of neighbors whose status is also available
during decoding. Thus, we define the context of a node by the number of refined, not
refined, and unknown neighbors. The latter category is made up of nodes whose sta-
tus can not be implied and have not been traversed so far. We write (x,y,z) to denote
the context with x refined, y not refined, and z unknown adjacent triangles. The sym-
bols of different context groups are kept in separate arrays, which are entropy coded
independently. With arithmetic coding, each context group will then compress to its
conditional entropy in the limit, allowing us to exploit the correlation in the refinement
status of adjacent triangles.

However, the mutual information inherent to each context group varies drastically.
For example, context (0,0,3) with all neighbors unknown is virtually incompressible as
no advantage can be taken of mutual information. The same holds for context groups
where the extra information is rather ambiguous, for example (1,1,1), (1,2,0), and
(2,1,0). At the contrary, the other context groups perform very well in the experiments.
These observations motivate an optimization of the traversal scheme used within each
level since the iteration of nodes can be arbitrary as long as encoder and decoder agree
on a common one. Instead of iterating each node using a standard breadth-first in-order
traversal of the forest, we determine an ordering that attempts to maximize the mutual
information. The idea is to prioritize each node by the entropy of its current context.
Learning these entropies, however, is expensive in terms of compression performance
as well as computational cost. As shown in [72], this approach typically leads to a fixed
prioritization of context groups once the learning phase is settled. Therefore, the effects
of the learning process of the contexts’ entropies can be remedied by using fixed prior-
ities. Explicitly, context groups are assigned higher priorities with decreasing number
of unknown neighbors, where ties are resolved by prioritizing contexts with a higher
number of known refined neighbors. While the (culled) binary representation of the
hierarchy is almost incompressible when entropy coded directly, the proposed context
groups together with the improved traversal reduced the code length by more than 50%
for the test data in [72].

Furthermore, the proposed context-based coding can easily be extended to time-
varying series. When coding the status of a node in a sequence of frames we can extend
the context groups to account for its status in a previous frame. The previous state of a
node can either be refined, not refined, or it did not exist, hence we triple each context.
If the refinements between frames does not vary much, the contexts corresponding
to previously refined nodes will mainly comprise true symbols whereas the other

14

contexts will primarily contain false. Therefore, grids which equal their preceding
frame can be stored at no cost (except for a small overhead due to the increased number
of context groups). On the contrary, if there is no correlation between the frames, the
compression will be as good as in the static case since the entropy of the individual
context groups can not increase.

4.2 Numerical example
The lossy compression method discussed in Sec. 3.2 is implemented in the C++ finite
element toolbox Kaskade 7 [20]. An implementation of the algorithm for connec-
tivity compression is available in JavaView [1], a toolkit for mathematical geometry
processing and visualization. Both packages have been combined using the Java Native
Interface to allow a fully adaptive solution of optimal control problems with compres-
sion of both meshes and solution data.

As an illustrative example we use an optimal control problem for the monodomain
equations describing the electrical activity in the heart (see e.g. [51, 44]) on a simple 2D
unit square domain Ω = (0,1)2. As membran model, we use the Rogers-McCulloch
variant of the Fitzhugh-Nagumo model [55]. The state equations for the transmem-
brane voltage v and the gating variable w are given by

vt = ∇ ·σ∇v−gv
(
1− v

vth

)(
1− v

vp

)
+η1vw+χΩcu(t)

wt = η2
(v

vp
−η3w

)
,

together with homogeneous Neumann boundary conditions, and initial values

v(x,0) =

{
101.0 in Ωexi

0 otherwise

w(x,0) = 0 in Ω.

Here, Ωexi is a circle with radius 0.04 and midpoint (0.5,0.5). The state variable is
y = (v,w); σ : R2→ R2×2 and g,ηi,vp,vth ∈ R+ are given parameters. For details, see
e.g. [50]. The control u is spatially constant on the control domain Ωc = [0.37,0.4]×
[0.45,0.55]∪ [0.6,0.63]× [0.45,0.55]. The objective is to dampen out the excitation
wave front induced by the initial values,

J(y,u) =
1
2
‖v‖2

L2(Ωobs×(0,T))+
α

2
‖u‖2

L2(0,T)→min,

where Ωobs = Ω \
(
[0.35,0.42]× [0.43,0.57] ∪ [0.58,0.65]× [0.43,0.57]

)
, and α =

3× 10−6. Optimality conditions and more details can be found in [18]. We use ad-
joint gradient computation and the BFGS-Quasi-Newton method [52] for optimization.
Spatial adaptivity is performed individually for state and adjoint using the hierarchical
DLY error estimator [15]. For time stepping, a linearly implicit extrapolated Euler
method [16] is used, with fixed timestep sizes for ease of implementation.

First, we consider just one iteration, i.e. one state and adjoint solve, on the time
interval [0,6] with timestep size 0.04. In space, we restrict the number of vertices to be
less then 60,000. We choose a fixed quantization tolerance δ = 10−2, yielding a rela-
tive absolute error bound of 10−4 for v. In Fig. 4 we show the v component of the state
variable at selected times. Compression factors for the state values, and the number

15

of bits/vertex necessary for connectivity encoding is shown in Fig. 5. Using delta-
encoding in time more than doubles the achieved overall compression factor for the
state values. The bits/vertex for connectivity encoding are reduced to 66% compared
to compressing each timestep separately. Detailed CPU times are shown in Table 1.

Figure 4: Uncontrolled solution v at 1ms, 3ms and 6ms. The adaptively refined meshes
have 37,344, 41,729 and 38,346 vertices.

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

co
m

pr
es

si
on

fa
ct

or

time [ms]

with delta-encoding
without delta-encoding

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6

bi
ts

/v
er

te
x

time [ms]

with delta-encoding
without delta-encoding

Figure 5: Compression factor of the state values using lossy compression with
δ = 10−2 compared to double precision floating point values at 64 bits/vertex (left),
bits/vertex for connectivity encoding (right), both with and without delta-encoding be-
tween timesteps.

state values grid

solve setup encode decode encode decode transfer

state 3026.2 31.4 11.3 – 90.6 – –
adjoint 1473.1 31.4 – 3.7 – 59.3 183.6

Table 1: CPU times (in seconds) for one state and adjoint solve, averaged over 5 test
runs. Times are measured without delta-encoding of trajectory and mesh.

solve consists of time for assembly, adaptivity, and solution of the linear systems us-
ing BiCGStab [75] with an ILU preconditioner. For state value compression, during
setup, the prolongation matrices required for the spatial prediction are generated, which
is more expensive than the actual encoding and decoding. The overall computational
overhead for state value compression amounts to 1.4% in the state equation, and 2.4%
in the adjoint. Encoding and decoding the mesh take up 3% and 4% in state and ad-
joint, respectively. As state and adjoint equations are solved on independently adapted

16

grids, the de-compressed state trajectory has to be interpolated on the adjoint mesh (last
column in Table 1) which takes up 12.5% CPU time of an adjoint solve; this overhead
occurs also if the trajectory is stored uncompressed. In our current preliminary im-
plementation, we have to re-create the mesh hierarchy in the Java code for encoding,
and in the C++ code after decoding. Additionally, as different data structures are used
in the two combined software toolboxes, re-assignement of the degrees of freedom is
necessary after the encoding step. This significant overhead is not included in the CPU
times reported here, as it can be avoided by improving the implementation.

Second, the complete optimization is performed on the time interval [0,4], with
timestep size 0.04, and a restriction to at most 25,000 vertices in space. Fig. 6 shows
the progress of the optimization method. For trajectory compression, different fixed
quantization tolerances were used. We estimate the spatial discretization error in the
reduced gradient by using a solution on a finer mesh as a reference. Clearly, lossy
compression has no influence on the optimization progress, up to discretization error
accuracy.

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14

‖ j
′ (

u)
‖ L

2

iteration

14.2
27.5

38
reference

Figure 6: Optimization progress for different quantization tolerances for the state tra-
jectory. No delta-encoding between timesteps was used.

5 Conclusion
To reduce the memory requirements of scientific data, essentially two classes of algo-
rithms are available: Methods like checkpointing, which reduce storage space at the
cost of computation time, and lossy compression techniques, where the trade-off is
between memory requirements and accuracy. While general purpose floating point
compression methods can be used for many different applications, good compres-
sion results can only achieved with structure-exploiting techniques, like checkpointing,
FEMZIP, or our lossy compression approach.

Optimal control problems pose specific requirements for accuracy, which can be
satisfied using quantitative error estimates to choose suitable quantization tolerances.
The combination of lossy state vakzes compression and compressed storage of adap-
tively refined meshes yields significant reduction of storage space and memory band-
width, at small computational cost.

17

Acknowledgment
The authors gratefully acknowledge support by the DFG Research Center MATHEON,
project F9.

References
[1] JavaView homepage. www.javaview.de

[2] Alliez, P., Desbrun, M.: Progressive compression for lossless transmission of
triangle meshes. In: Proc. 28th Annual Conference on Computer Graphics and
Interactive Techniques, pp. 195–202. ACM (2001)

[3] Alliez, P., Gotsman, C.: Recent advances in compression of 3d meshes. In:
N. Dodgson, M. Floater, M. Sabin (eds.) Advances in Multiresolution for Ge-
ometric Modelling, Mathematics and Visualization, pp. 3–26. Springer Berlin
Heidelberg (2005). DOI 10.1007/3-540-26808-1 1. URL http://dx.doi.
org/10.1007/3-540-26808-1_1

[4] Avilés, M., Morán, F., Garcı́a, N.: Progressive lower trees of wavelet coefficients:
efficient spatial and SNR scalable coding of 3D models. Advances in Mulitmedia
Information Processing-PCM 2005 pp. 61–72 (2005)

[5] Bank, R., Sherman, A., Weiser, A.: Some refinement algorithms and data struc-
tures for regular local mesh refinement. Scientific Computing, Applications of
Mathematics and Computing to the Physical Sciences (1983)

[6] Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic
optimization problems by finite element methods. Optim. Methods Softw. 22(5),
813–833 (2007). DOI http://dx.doi.org/10.1080/10556780701228532

[7] Becker, R., Rannacher, R.: An optimal control approach to a posteriori error
estimation in finite element methods. Acta numerica 10(1), 1–102 (2001)

[8] Burtscher, M., Ratanaworabhan, P.: FPC: A high-speed compressor for double-
precision floating-point data. IEEE Transactions on Computers 58(1), 18–31
(2009)

[9] Castrillón-Candás, J.E., Amaratunga, K.: Spatially adapted multiwavelets and
sparse representation of integral equations on general geometries. SIAM Journal
on Scientific Computing 24(5), 1530–1566 (2003)

[10] Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified
surfaces. Tech. rep., Paris, France (1996)

[11] Comas, A.: Time–domain decomposition preconditioners for the solution of dis-
cretized parabolic optimal control problems. Ph.D. thesis, Rice University (2005)

[12] Dahmen, W.: Wavelet methods for PDEs – some recent developments. Journal of
Computational and Applied Mathematics 128(1), 133–185 (2001)

[13] Denis, L., Satti, S., Munteanu, A., Cornelis, J., Schelkens, P.: Scalable Intraband
and Composite Wavelet-Based Coding of Semiregular Meshes. IEEE Transac-
tions on Multimedia 12(8), 773–789 (2010)

18

[14] Deuflhard, P., Bornemann, F.: Scientific computing with ordinary differential
equations, vol. 42. Springer (2002)

[15] Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical
finite element code. IMPACT Comp. Sci. Eng. 1(1), 3–35 (1989)

[16] Deuflhard, P., Nowak, U.: Extrapolation integrators for quasilinear implicit
ODEs. In: P. Deuflhard, B. Engquist (eds.) Large Scale Scientific Computing,
Progress in Scientific Computing, vol. 7, pp. 37–50. Birkhäuser (1987)

[17] Goeman, B., Vandierendonck, H., De Bosschere, K.: Differential FCM: Increas-
ing value prediction accuracy by improving table usage efficiency. In: High-
Performance Computer Architecture, 2001. HPCA. The Seventh International
Symposium on, pp. 207–216. IEEE (2001)

[18] Götschel, S., Nagaiah, C., Kunisch, K., Weiser, M.: Lossy compression in optimal
control of cardiac defibrillation. J. Sci. Comput., to appear (2013)

[19] Götschel, S., Weiser, M.: Lossy compression for PDE-constrained optimization:
Adaptive error control. ZIB Report 13-27 (2013)

[20] Götschel, S., Weiser, M., Schiela, A.: Solving optimal control problems with the
Kaskade 7 finite element toolbox pp. 101–112 (2012)

[21] Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Optimization Methods and software 1(1),
35–54 (1992)

[22] Griewank, A., Walther, A.: Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM
Transactions on Mathematical Software (TOMS) 26(1), 19–45 (2000)

[23] Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM, Philadelphia (2008)

[24] Heinkenschloss, M.: A time-domain decomposition iterative method for the so-
lution of distributed linear quadratic optimal control problems. Journal of Com-
putational and Applied Mathematics 173(1), 169–198 (2005)

[25] Hesse, H.K.: Multiple shooting and mesh adaptation for PDE constrained opti-
mization problems. Ph.D. thesis, University Heidelberg (2008)

[26] Hesse, H.K., Kanschat, G.: Mesh adaptive multiple shooting for partial differ-
ential equations. part I: linear quadratic optimal control problems. Journal of
Numerical Mathematics 17(3), 195–217 (2009)

[27] Heuveline, V., Walther, A.: Online checkpointing for parallel adjoint computation
in PDEs: Application to goal-oriented adaptivity and flow control. In: Euro-Par
2006 Parallel Processing, pp. 689–699. Springer (2006)

[28] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE con-
straints. Springer, Berlin (2009)

[29] Hinze, M., Sternberg, J.: A-revolve: an adaptive memory-reduced procedure for
calculating adjoints; with an application to computing adjoints of the instationary
navier-stokes system. Optim. Methods Softw. 20(6), 645–663 (2005)

19

[30] Hinze, M., Volkwein, S.: Error estimates for abstract linearquadratic optimal con-
trol problems using proper orthogonal decomposition. Comput. Optim. Appl. 39,
319–345 (2008)

[31] Ibarria, L., Lindstrom, P., Rossignac, J., Szymczak, A.: Out-of-core compression
and decompression of large n-dimensional scalar fields. In: Computer Graphics
Forum, vol. 22, pp. 343–348. Wiley Online Library (2003)

[32] Isenburg, M.: Compressing polygon mesh connectivity with degree duality pre-
diction. In: Graphics Interface Conference Proceedings, pp. 161–170 (2002)

[33] Isenburg, M., Snoeyink, J.: Mesh collapse compression. In: In Proceedings of
SIBGRAPI’99, pp. 27–28 (1999)

[34] Isenburg, M., Snoeyink, J.: Early-split coding of triangle mesh connectivity. In:
Graphics Interface Proceedings, pp. 89–97. Canadian Information Processing So-
ciety, Toronto, Ont., Canada, Canada (2006)

[35] Ito, K., Kunisch, K.: Receding horizon optimal control for infinite dimensional
systems. ESAIM: control, optimisation and calculus of variations 8(1), 741–760
(2002)

[36] Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algo-
rithms for scientific datasets. In: Euro-Par 2012 Parallel Processing, pp. 843–856.
Springer (2012)

[37] Jörres, C., Vossen, G., Herty, M.: On an inexact gradient method using proper
orthogonal decomposition for parabolic optimal control problems. Computational
Optimization and Applications pp. 1–10 (2013)

[38] Kälberer, F., Polthier, K., Reitebuch, U., Wardetzky, M.: Freelence - coding with
free valences. Computer Graphics Forum 24(3), 469–478 (2005)

[39] Kälberer, F., Polthier, K., von Tycowicz, C.: Lossless compression of adaptive
multiresolution meshes. In: Proc. Brazilian Symposium on Computer Graphics
and Image Processing (SIBGRAPI), vol. 22 (2009)

[40] Kammann, E., Tröltzsch, F., Volkwein, S.: A method of a-posteriori error estima-
tion with application to proper orthogonal decomposition. Tech. rep. (2011)

[41] Khodakovsky, A., Guskov, I.: Compression of normal meshes. In: In Geometric
Modeling for Scientific Visualization, pp. 189–206. Springer-Verlag (2003)

[42] Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compres-
sion. In: SIGGRAPH ’00 Proceedings, pp. 271–278 (2000)

[43] Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods
for parabolic problems. Numer. Math. 90, 117–148 (2001)

[44] Kunisch, K., Wagner, M.: Optimal control of the bidomain system (I):
The monodomain approximation with the RogersMcCulloch model. Nonlin-
ear Analysis: Real World Applications 13(4), 1525–1550 (2012). DOI 10.
1016/j.nonrwa.2011.11.003. URL http://www.sciencedirect.com/
science/article/pii/S1468121811003099

20

[45] Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R.,
Samatova, N.F.: Compressing the incompressible with ISABELA: In-situ reduc-
tion of spatio-temporal data. In: Euro-Par 2011 Parallel Processing, pp. 366–379.
Springer (2011)

[46] Lakshminarasimhan, S., Shah, N., Ethier, S., Ku, S.H., Chang, C.S., Klasky, S.,
Latham, R., Ross, R., Samatova, N.F.: ISABELA for effective in situ compression
of scientific data. Concurrency and Computation: Practice and Experience 25,
524–540 (2013)

[47] Lee, H., Alliez, P., Desbrun, M.: Angle-analyzer: A triangle-quad mesh codec.
pp. 383–392 (2002)

[48] Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data.
IEEE Transactions on Visualization and Computer Graphics 12(5), 1245–1250
(2006). DOI http://dx.doi.org/10.1109/TVCG.2006.143

[49] Martin, G.: Range encoding: an algorithm for removing redundancy from a digi-
tised message. Presented at Video & Data Recording Conference, Southampton
(1979)

[50] Nagaiah, C., Kunisch, K., Plank, G.: Numerical solution for optimal control of the
reaction-diffusion equations in cardiac electrophysiology. Computational Opti-
mization and Applications 49, 149–178 (2011). URL http://dx.doi.org/
10.1007/s10589-009-9280-3. 10.1007/s10589-009-9280-3

[51] Nielsen, B.F., Ruud, T.S., Lines, G.T., Tveito, A.: Optimal monodomain ap-
proximations of the bidomain equations. Applied Mathematics and Computation
184(2), 276–290 (2007)

[52] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

[53] Payan, F., Antonini, M.: An efficient bit allocation for compressing normal
meshes with an error-driven quantization. CAGD 22(5), 466–486 (2005)

[54] Peng, J., Kim, C.S., Jay Kuo, C.C.: Technologies for 3d mesh compres-
sion: A survey. J. Vis. Comun. Image Represent. 16(6), 688–733 (2005).
DOI 10.1016/j.jvcir.2005.03.001. URL http://dx.doi.org/10.1016/
j.jvcir.2005.03.001

[55] Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of
cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757
(1994)

[56] Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics pp. 47–61 (1999)

[57] Sazeides, Y., Smith, J.E.: The predictability of data values. In: Microarchitecture,
1997. Proceedings., Thirtieth Annual IEEE/ACM International Symposium on,
pp. 248–258. IEEE (1997)

[58] Schröder, P., Sweldens, W.: Spherical wavelets: Efficiently representing func-
tions on the sphere. In: SIGGRAPH ’95 Proceedings of the 22nd annual confer-
ence on Computer graphics and interactive techniques, pp. 161–172. ACM (1995)

21

[59] Shafaat, T.M., Baden, S.B.: A method of adaptive coarsening for compressing
scientific datasets. In: B. Kågström, E. Elmroth, J. Dongarra, J. Wasniewski
(eds.) Applied Parallel Computing. State of the Art in Scientific Computing. 8th
International Workshop, PARA 2006, Umeå, Sweden, June 18-21, 2006, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 4699, pp. 774–780.
Springer (2007)

[60] Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948)

[61] Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients.
In: IEEE Transactions of Signal Processing, vol. 41, pp. 3445–3462 (1993)

[62] Sternberg, J., Hinze, M.: A memory-reduced implementation of the Newton-
CG method in optimal control of nonlinear time-dependent PDEs. Optimization
Methods & Software 25(4), 553–571 (2010)

[63] Stumm, P., Walther, A.: Multi-stage approaches for optimal offline checkpoint-
ing. SIAM J. Sci. Comput. 31(3), 1946–1967 (2009)

[64] Stumm, P., Walther, A.: New algorithms for optimal online checkpointing. SIAM
J. Sci. Comput. 32(1), 836–854 (2010)

[65] Sweldens, W.: The lifting scheme: A construction of second generation wavelets.
SIAM Journal on Mathematical Analysis 29(2), 511–546 (1998)

[66] Szymczak, A.: Optimized edgebreaker encoding for large and regular triangle
meshes. In: DCC ’02 Proceedings, p. 472. IEEE Computer Society, Washington,
DC, USA (2002)

[67] Teran, R.I., Thole, C.A., Lorentz, R.: New developments in
the compression of LS-DYNA simulation results using FEMZIP.
6th European LS-DYNA Users’ Conference (2007). URL
https://www.dynalook.com/european-conf-2007/
new-developments-in-the-compression-of-ls-dyna.pdf

[68] Thole, C.A.: Compression of LS-DYNA3DTM simulation results using
FEMZIP c©. 3. LS-DYNA Anwenderforum (2004)

[69] Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface
Conference Proceedings, pp. 26–34 (1998)

[70] Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimates for linear-quadratic
optimal control problems. Comput. Optim. Appl. 44, 83–115 (2009)

[71] Tutte, W.: A census of planar triangulations. Canadian Journal of Mathematics
14, 21–38 (1962)

[72] von Tycowicz, C., Kälberer, F., Polthier, K.: Context-based coding of adaptive
multiresolution meshes. Computer Graphics Forum 30(8), 2231–2245 (2011).
DOI 10.1111/j.1467-8659.2011.01972.x. URL http://dx.doi.org/10.
1111/j.1467-8659.2011.01972.x

22

[73] Unat, D., Hromadka, T., Baden, S.: An adaptive sub-sampling method for in-
memory compression of scientific data. In: Data Compression Conference, 2009.
DCC ’09, pp. 262–271. IEEE (2009)

[74] Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle
meshes: Wavemesh. IEEE Transactions on Visualization and Computer Graphics
10(2) (2004)

[75] van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of bi-
cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.
13, 631–644 (1994)

[76] Walther, A.: Program reversal schedules for single-and multi-processor machines.
Ph.D. thesis, Institute of Scientific Computing, Technical University Dresden,
Germany (1999)

[77] Wang, Q., Moin, P., Iaccarino, G.: Minimal repetition dynamic checkpointing al-
gorithm for unsteady adjoint calculation. SIAM Journal on Scientific Computing
31(4), 2549–2567 (2009)

[78] Weiser, M., Götschel, S.: State trajectory compression for optimal control with
parabolic PDEs. SIAM J. Scientific Computing 34(1), A161–A184 (2012)

[79] Yserentant, H.: On the multi-level splitting of finite element spaces. Numer.
Math. 49(4), 379–412 (1986)

23

