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Abstract In this overview paper we will glimpse how new concepts from dis-
crete differential geometry help to provide a unifying vertical path through
parts of the geometry processing pipeline towards a more reliable interac-
tion. As an example, we will introduce some concepts from discrete dif-
ferential geometry and the QuadCover algorithm for quadrilateral surface
parametrization. QuadCover uses exact discrete differential geometric con-
cepts to convert a pair (simplicial surface, guiding frame field) to a global
quad-parametrization of the unstructured surface mesh. Reliability and ro-
bustness is an omnipresent issue in geometry processing and computer aided
geometric design since its beginning. For example, the variety of incompati-
ble data structures for geometric shapes severely limits a reliable exchange of
geometric shapes among different CAD systems as well as a unifying mathe-
matical theory. Here the integrable nature of the discrete differential geomet-
ric theory and its presented application to an effective remeshing algorithm
may serve an example to envision an increased reliability along the geometry
processing pipeline through a consistent processing theory.

1 Calculus on Simplicial Surfaces

We begin with a 2-dimensional simplicial surface Mh ⊂ Rn where n is typi-
cally in {2, 3, 4}. On a simplicial surface Mh we consider two types of piece-
wise linear (PL) function spaces, the conforming Lagrange space Sh(Mh) and
the non-conforming space S∗h(Mh). Both spaces are classic in finite element
literature, but here we will see how both function spaces team up to mimic
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Fig. 1 Gradient field ∇f and co-gradient field δf := J∇f are constant on each triangle.

the concept of primality and duality of grids in the framework of function
spaces on the same underlying geometry, thus allowing to use the simplicial
surface Mh as single base geometry. For example, solutions of the discrete
Cauchy-Riemann equations will consist of a pair of a discrete conforming
and non-conforming harmonic map in Sh and in S∗h resp. vice versa, all de-
fined on Mh .

Definition 1. The piecewise linear conforming Sh(Mh) and non-conforming
S∗h(Mh) function spaces on a 2-dimensional simplicial surface Mh ⊂ Rn are
given by:

Sh :=
{
f : Mh → R

∣∣ f|T is linear on each triangle T , and f ∈ C0 (Mh)
}

S∗h :=
{
f∗ : Mh → R

∣∣∣ f∗|T is linear, and continuous at edge midpoints
}

On first sight, the missing global continuity of functions f∗ ∈ S∗h sounds
like a drawback but the space of non-conforming functions will turn out as a
good match to Sh, see Figure 3 for the graphs of two sample functions. Both
function types have gradients from piecewise differentiation:

Definition 2. The gradient field ∇f of a function f ∈ Sh or S∗h is a constant
tangent vector in each triangle. The co-gradient field δf := J∇f is obtained
by rotation J of the gradient ∇f, i.e. by π

2 in each triangle.

1.1 Discrete Vector Fields

Piecewise constant vector fields were introduced to geometry processing in
[13] as a natural discretization of tangential vector fields on simplicial geome-
tries. Among the useful properties of PC vector fields, say compared to Whit-
ney type differential forms, are the formulation of the Hodge star operation
in function spaces instead of introducing a pair of primary and dual meshes.
After a short overview of PC vector fields and their integrability conditions
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we touch two sample problems, the discrete Cauchy-Riemann equation and
the discrete Hodge decomposition , to highlight the efficiency of PC vector
fields and to prepare some tools for the QuadCover application.

Definition 3. The space of piecewise constant tangential vector fields Λ1(Mh)
on a 2-dimensional simplicial surface Mh ⊂ Rn is given by:

Λ1(Mh) :=
{
v : Mh → TMh

∣∣ v|triangle T is a constant tangent vector in T
}

The gradient and co-gradients fields of functions in Sh or S∗h introduced
above are examples of piecewise constant (PC) tangential vector fields, see
Figure 1

Definition 4. On a simplicial surface Mh let v ∈ Λ1(Mh), p a vertex and m
an edge midpoint. Then the (total) discrete curl is given by

curlh v(p) :=
1

2

∮
∂ star p

v =
1

2

k∑
i=1

〈v, ci〉

curl∗h v(m) :=

∮
∂ starm

v = −
〈
v|T1

, c
〉

+
〈
v|T2

, c
〉

where ci are the edges of the oriented boundary of star p resp. c the edge with
midpoint m.

Fig. 2 Discrete curl and divergence operators.

Theorem 1 (Local integrability conditions). Let Mh be a simply con-
nected simplicial surface . Then a PC vector field v ∈ Λ1(Mh) can be char-
acterized as gradient field in term of the discrete curl operator:

1. v is a gradient field of a function in Sh ⇐⇒

curl∗h v(m) = 0 at all edge midpoints m.

2. v is a gradient field of a function in S∗h ⇐⇒

curlh v(p) = 0 at all vertices p.
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Definition 5. On a simplicial surface Mh let v ∈ Λ1(Mh), p a vertex and m
an edge midpoint. Then the (total) discrete divergence is given by

divh v(p) :=
1

2

∮
∂ star p

〈v, ν〉 ds = −1

2

k∑
i=1

〈v, Jci〉

div∗h v(m) :=

∮
∂ starm

〈v, ν〉 ds =
〈
v|T1

, J|T1
c
〉

+
〈
v|T2

, J|T2
c
〉

where ν is the outer unit normal along ∂ star p resp. ∂ starm.

Remark 1. Discrete rotation and divergence are related by curlh Jv = divh v
and curl∗h Jv = div∗h v, compare Figure 2.

1.2 Discrete Cauchy-Riemann Equation

With the first order operators ∇, curl and div at hand we deduce the discrete
Laplace-Beltrami operators and a notion of conjugacy of harmonic vector
fields.

Definition 6. The discrete Laplace-Beltrami operator ∆ of functions in Sh
resp. in S∗h on a simplicial surface Mh is given as divergence of the cor-
responding gradient functions, i.e. ∆hf(p) := divh∇f(p) for f ∈ Sh and
∆∗hf

∗(m) := div∗h∇f∗(m) for f∗ ∈ S∗h.

Fig. 3 Graph of a conforming harmonic function f ∈ Sh and a non-conforming harmonic

function g ∈ S∗
h, here satisfying the Cauchy-Riemann equation ∇g = δf .

A natural question is the existence of solutions to the discrete Cauchy-
Riemann equation which asks for pairs (f, g) of discrete maps f and g with
∇g = δf , and thus for discrete holomorphic resp. conformal maps z = f + ig.
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In the smooth setting, a co-gradient field δf has a potential function g with
∇g = δf if and only if f and g are a pair of conjugate harmonic maps, i.e. real
and imaginary parts of a holomorphic map. The discrete Cauchy-Riemann
equation holds for a matching pair of a conforming and a non-conforming
harmonic function:

Theorem 2 (Cauchy-Riemann equation). On a simply connected sim-
plicial surface Mh ⊂ Rn the harmonic maps in Sh and S∗h come in conjugate
harmonic pairs solving the discrete Cauchy-Riemann equation ∇g = δf [12]:

1. The co-gradient δf of f ∈ Sh is a gradient field of a function g∗ ∈ S∗h
⇐⇒ f is discrete harmonic in Sh.
Furthermore, the conjugate map g∗ ∈ S∗h is discrete harmonic.

2. The co-gradient δf∗ of f∗ ∈ S∗h is a gradient field of a function g ∈ Sh
⇐⇒ f∗ is discrete harmonic in S∗h.
Furthermore, the conjugate map g ∈ Sh is discrete harmonic.

Fig. 4 Conjugate pairs of a discrete catenoid and a helicoid in each row.
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1.3 Discrete Conjugate Minimal Surfaces

We extend the notion of piecewise linear functions to vector-valued piecewise
linear functions, i.e. simplicial maps F : Mh → R3 denoted by F ∈ Sh(Mh)3

resp. for edge-based representations denoted by F ∗ ∈ S∗h(Mh)3. The discrete
Laplace-Beltrami operator ∆hF is defined by applying 6 to the component
functions of F . In the special case of F = idMh

its Laplace becomes the
discrete mean curvature vector of Mh with versions at vertices

H(p) := ∆hidMh
(p) ∈ TpR3

and at edges
H(m) := ∆∗hid

∗
Mh

(m) ∈ TmR3

which measures the variation of discrete surface area in the space of conform-
ing F (Mh) or non-conforming meshes F ∗(Mh).

Surfaces with mean curvature H = 0 are called discrete minimal surfaces
since they are critical points of the discrete area functional. From H = 0
follows that the component functions of the identity map idMh

are discrete
harmonic, thus have conjugate harmonic pairs. Therefore, the conjugacy of
harmonic maps extends to the conjugacy of discrete minimal surfaces com-
posed of a pair of a conforming and a non-conforming discrete minimal sur-
face. See Figure 4 with a pair of a conforming catenoid and a non-conforming
helicoid, resp. its reverse representations in the second row. See Figure 14 with
several more discrete minimal surfaces with a smooth quad-parametrization.

1.4 Discrete Hodge-Helmholtz Decomposition

The Hodge-Helmholtz decomposition of vector fields on surfaces provides a
precise criterion for the local integrability properties of vector fields as well as
their relation to globally defined harmonic vector fields. Later we will make
flexible use of all three Hodge components of vector fields. As an example see
Figure 5 where a vector field on a simplicial torus is decomposed.

Theorem 3 (Hodge-Helmholtz decomposition). The space of piecewise
constant vector fields Λ1(Mh) on a simplicial surface Mh decomposes into
an L2-orthogonal sum of the spaces of gradient fields, co-gradient fields and
harmonic fields:

Λ1 = ∇Sh ⊕ δS∗h ⊕ (H := curl∗h ∩ ker divh)

v = ∇f︸︷︷︸
curl∗h∇f=0

⊕ δg︸︷︷︸
divhδg=0

⊕ w︸︷︷︸
curl∗hw=divhw=0
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This space of discrete harmonic fields H on a compact 2-surface of genus g
has correct dimension 2g. The roles of the conforming Sh and non-conforming
S∗h spaces may be exchanged.[13].

Proof. The gradient and co-gradient part of v can be computed by minimizing
a quadratic energy, the harmonic part is then obtained as remainder. The
gradient component of v ∈ Λ1 is the unique minimizer of

min
f∈Sh

∫
Mh

‖v −∇f‖2

and the co-gradient component is the unique minimizer of

min
g∈S∗

h

∫
Mh

‖v − δg‖2

w.r.t. to appropriate boundary conditions. It is easy to show that curl and
div components of the minimizer vanish.

Remark 2. Depending on applications, both spaces might be chosen of the
same type when the correct dimension of H is negligible.

Fig. 5 Hodge decomposition of a piecewise constant tangent vector field on a simplicial

torus to a gradient, co-gradient and harmonic field.

2 Mesh Parametrization

Triangle meshes are among the popular data structures for surface representa-
tions in computer graphics, geometry processing and finite element numerics.
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They provide a rich flexibility, for example, for adaptive mesh refinement ac-
cording to local resolution needs, and they come along with a large set of
efficient processing algorithms. On the other hand, sometimes more restric-
tive representations such as quad meshes are preferable. For example, when
trying to convert a mesh into a hierarchical subdivision surface, or when pan-
elizing a roof construction in architecture with simple planar glass panels, or
when trying to compute a morph between two scans of a pair of characters
in computer animations.

Assume two characters have been scanned and each scan is given as a high-
precision mesh with millions of triangles, see Figure 6. A morphing between
the two scans requires a bijective map between the two triangles meshes, cer-
tainly with additional restrictions of low distortion etc. Computing a homo-
topy automatically is typically very difficult and no perfect algorithm exists
yet. In practice, computer animators generate a matching to a large extent
by hand: on both meshes the same quad layout is drawn, thus generating a
bijective correspondence between points and quads of the two meshes, which
then extends to a smooth morphing of the two shapes. Here an automatic
mapping algorithm would be more than appreciated and is currently the
target of intensive research activities in geometry processing.

Fig. 6 Morphing a pair of 3d scans of two characters is currently performed by constructing

two matching grids on both models by hand (images by Beau Janzen).
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2.1 QuadCover Parameterization

We now use the discrete concepts derive in the previous sections to formu-
late the basic principles of the QuadCover algorithm [5] as an example and
application of discrete differential geometric concepts to the solution of the
intriguing problem of surface parametrization in geometry processing.

Fig. 7 QuadCover algorithm for quad-meshing guided by a frame field is described exactly
in discrete differential geometry concepts.

The QuadCover algorithm takes as input a triangle mesh plus a guiding
frame field X on Mh, see Figure 7. Formally, a frame field X on Mh consists
of a pair of constant vectors XT = (X1, X2)T in each triangle T ∈ TMh

.
In our application, it is convenient to extend a frame field X to a cross field
(X1, X2,−X1,−X2), also denoted by X. The continuity of a cross field across
the common edge eij = Ti ∩ Tj of two adjacent triangles Ti and Tj is given
by a periodic jump rij ∈ {0, 1, 2, 3} denoting the pairing of the first vector
X1 on Ti with the rij − th vector in the adjacent triangle Tj ; for simplicity
we assume orthogonal frames in this description. Overall this edge pairing
produces a well-defined continuous frame field resp. cross field on Mh, see
Figure 8.

The two tangent vectors of a frame field are intended to direct the pa-
rameter lines, namely, that optimally the parameter lines at each point are
tangent to the two guiding vectors. The two additional directions of a cross
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Fig. 8 Encoding the continuity of a frame field across the common edge of two adjacent

triangle.

field guide the same parameter lines, just in opposite direction. A frame field
may be obtained either automatically as principal curvature directions of a
discrete shape operator or a field may be carefully design to follow surface
features or even aesthetic reasoning.

A central statement is, given a triangle mesh plus a frame field, then the
QuadCover algorithm provides a merely exact and reliable computational
algorithm for the generation of an atlas of charts which generates a globally
consistent quad-layout on the surface. The inverse ϕ−1 of each chart ϕ maps
the Z2-grid of R2 onto the surface such that parameter lines are optimally
aligned in direction of the guiding frame field, see Figure 9. More precisely,
a chart ϕ ∈ Sh × Sh : Mh → R2 is a simplicial map from the surface Mh

to the texture domain R2. Using ϕ−1 the Z2-grid of the texture domain is
mapped as texture onto the surface, such that the Z2-lines are tangential to
the guiding frame field. An atlas of charts {ϕi} is computed such that their
inverses ϕ−1i generate a consistent quadrilateral grid

{
ϕ−1i

(
Ωi ∩ Z2

)}
on Mh.

Note, that grid on Mh is given as texture map, that means at this stage as a
functional representation on Mh.

Fig. 9 A chart on a simplicial surface (left) with fulfilled compatibility condition for

quad-parametrization (right).
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From a computer graphics point of view, the charts are nothing else than
element based texture maps from the surface Mh to the Euclidean texture
domain R2. That means that the images of triangles may not be connected
to the images of adjacent triangles and there corresponds on chart ϕi to
each triangle Ti. The compatibility of condition on the charts of a quad-based
parametrization requires that the images of two triangles {Ti, Tj} ⊂Mh with
non-empty common edge eij = Ti ∩ Ti are mapped to two triangles ϕi(Ti)
and ϕj(Tj) such that the common edge is mapped to two edges ϕi(eij) and
ϕj(eij) which are translated by an integer vector or rotated by a multiple
of 90◦ or a combination of both. This compatibility condition on the atlas
assures continuity of the grid lines on Mh, see Figure 12.

QuadCover Algorithm

The main steps of the QuadCover algorithm are given below, relying on the
discrete concepts introduced in the previous sections. For technical reasons
we use a cross field instead of a frame field. Assume a simplicial surface Mh

with cross field X is given. Then:

1. (Lift to 4-fold covering space) We lift the cross field to a 4-fold branched
covering surface M∗h of the mesh Mh, where each triangle is covered by
four triangles of M∗h . The four vectors of the cross field on Mh can be lifted
to a single PC vector field X∗ on M∗h where each of the four vectors of
the cross is lifted to a specific layer of M∗h , such that maximal continuity
is assured.

2. (Local integrability via Hodge) Compute the locally non-integrable curl-
component δg ∈ δS∗h(M∗h) of the vector field X∗ on M∗h and remove it
X∗ := X∗−δg. Locally, X∗ is now integrable and has a potential function.

3. (Global integrability via harmonic fields) The global matching of the grid
spacing along all loops (so-called global integrability) requires that the path
integrals of X∗ along all homology loops γ ∈ H1(M∗h) are integer valued.
This integrability property is obtained by a correction of X∗ by the L2-
smallest harmonic field w ∈ H such that∫

γ

X∗ + w ∈ Z for all homology loops γ.

Since the dimension of the space discrete harmonic fields is equal to the
dimension of the first homology group H1(M∗h), the minimizers exists.

Note, harmonic fields are curl∗-free, therefore the corrected field X̃∗ :=
X∗ + w is still locally integrable.

4. (Integration) The vector field X̃∗ is by 2. locally and by 3. globally in-
tegrable, thus on each chart on M∗h we can solve the 1st-order PDE

X̃∗ = ∇ϕ∗ with a function ϕ∗ ∈ Sh(M∗h). On each chart, ϕ∗ projects
to four functions (ϕ1, ϕ2,−ϕ1,−ϕ2) with ϕi ∈ Sh(Mh) giving the compo-
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nent functions of the simplicial chart ϕ = (ϕ1, ϕ2) : Mh → R2, the texture
map we were looking for.

Note, step 1 is necessary since frame fields and cross fields typically do
not globally decompose into vector fields, thus the Hodge theorem would not
apply without the introduced 4-fold covering. Practically, the 4-fold covering
surface is usually never created and all information stored otherwise.

Fig. 10 Lifting a frame field to a vector field on a 4-fold branched simplicial covering

surface .

The level lines of the chart functions ϕ∗ on M∗h obtained in the above
process will project to the parameter lines on Mh we are looking for. Equiv-
alently, the level lines of the two component functions of the projected chart
function ϕ = (ϕ1, ϕ2) on Mh directly yield the pair of parameter lines on
Mh.

Fig. 11 The level lines of the generated potential function on M∗
h compose to the quad

nets on Mh after projection.

Some sample applications are shown on the two figure tables 14 and 15.
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2.2 Implementation Issues

Smooth frame fields are often generated from principal curvature directions, if
the surface is smooth. The shape operator on simplicial surfaces derived in [4]
provides a reliable pair of principal curvature directions. Due to the instability
of umbilical regions for principal curvature computations, often curvature
directions are generated in a sparse set of trusted regions and then extended
using parallel transport to unreliable regions to cover the whole surface. These
extensions are smoothed either by a direct rounding approach [5], an iterative
rounding approach [2] or using holomorphic energies [7]. Typically, orthogonal
frame fields are used, but non-orthogonal frame fields are possible too, for
recent work see also [11].

Fig. 12 Transition function between a pair of triangle based charts (left) and an atlas on
a simplicial pretzel realized by a set of triangle based charts (right).

The principal idea behind the optimization is to find a texture map whose
per triangle gradients align best to the input frame fields. The Hodge energy
is either linearized by taking partial derivatives or put into a quadratic form.
Solving the two linear systems is fast and widely used in frame field-driven
parameterization methods [5],[2],[8],[3]. Unfortunately, it does not guarantee
injectivity so that recent methods [1] rather minimize the quadratic energy
using advanced non-linear solvers. The size of the system, in both methods,
can be dramatically reduced by first introducing a dual spanning tree which
defines a cut graph and then observing that the transition functions between
triangle charts must be a grid automorphism [5] in R2. The cut graph is nec-
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essary to be able to flatten the mesh in a 2D domain. The grid automorphism
condition assures the local integrability of the resulting parameterization.

Notice that the parameterization generated by the least square minimiza-
tion has seams along the cut path of the geometry. This is due to the local
integrability of the curl free frame field. To obtain a globally continuous
parameterization, the translation vector tij must be an integer translation,
i.e. tij ∈ Z2 and the singularities must be mapped to integer points or a
mixed of grid mid points and integer points. Adding these constraints to
the list square minimization makes the problem a mixed integer optimiza-
tion which is an NP-hard problem. Several heuristics have been proposed to
approximate the solution. The QuadCover algorithm [5] uses a simultaneous
rounding via corrections with harmonic vector fields along the homology gen-
erators. The Mixed Integer Quadrangulation [2] approaches the problem by
an iterative rounding which approximate a better solution at the cost of a
slower running time. Recent methods consider the problem as a mixed inte-
ger quadratic problem [1] which aims at the global minimum of the energy.
Figure 13 shows some examples of seamless parameterization using different
rounding strategies.

tij ∈ R2

tij ∈ Z2 with mixed grid

mid points and integer

singularities

tij ∈ Z2 with only integer

singularities

Fig. 13 Generation of seamless parameterizations using different rounding strategies gen-

erated by QuadCover.

The QuadCover algorithm is implemented based on JavaView available at
www.javaview.de.

2.3 Examples of Parameterizations

We give some example of parameterizations generated by the QuadCover
algorithm, among them are minimal and constant mean curvature surfaces as
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well as non-orientable surfaces such as the Klein bottle. A second slide shows
the generalizations StripeCover [6] and HexCover [9] for stripe covering and
hex-covering. The CubeCover algorithm [10] is an extension to 3d volumetric
meshes which converts a tetrahedral mesh with 3D frame field to a uniform
cubical mesh aligned with the surface boundary.

Fig. 14 QuadCover parametrizations of discrete minimal and constant mean curvature

surfaces with boundary alignment.
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